

FCC PART 15, SUBPART B and C TEST REPORT

for

8 IN 1 KAMELEON 2003 REMOTE FINDER

CATALOG NUMBER: 15-2138T

Prepared for RADIOSHACK CORPORATION 100 THROCKMORTON STREET, SUITE 1300 FORT WORTH, TEXAS 76102-2802

Prepared by:

MICHAEL CHRISTENSEN

Approved by:_____

KIRIT RAMANI

COMPATIBLE ELECTRONICS INC. 114 OLINDA DRIVE BREA, CALIFORNIA 92823 (714) 579-0500

DATE: JULY 22, 2003

	REPORT		APPENDICES			TOTAL	
	BODY	A	В	С	D	Ε	
PAGES	16	2	2	2	10	15	47

This report shall not be reproduced except in full, without the written approval of Compatible Electronics.

TABLE OF CONTENTS

Section	n / Title	PAGE
GENER	RAL REPORT SUMMARY	4
SUMM	ARY OF TEST RESULTS	4
1.	PURPOSE	5
2. 2.1 2.2 2.3 2.4 2.5 2.6	ADMINISTRATIVE DATA Location of Testing Traceability Statement Cognizant Personnel Date Test Sample was Received Disposition of the Test Sample Abbreviations and Acronyms	6 6 6 6 6 6
3.	APPLICABLE DOCUMENTS	7
4. 4.1 4.1.1	Description of Test Configuration Description of Test Configuration - EMI Cable Construction and Termination	8 8 9
5. 5.1 5.2	LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT EUT and Accessory List EMI Test Equipment	10 10 11
6. 6.1 6.2	TEST SITE DESCRIPTION Test Facility Description EUT Mounting, Bonding and Grounding	12 12 12
7. 7.1 7.2	Test Procedures Radiated Emissions (Spurious and Harmonics) Test Bandwidth of the Fundamental	13 13 15
8.	CONCLUSIONS	16

LIST OF APPENDICES

APPENDIX	TITLE		
А	Laboratory Recognitions		
В	Modifications to the EUT		
С	Additional Models Covered Under This Report		
D	Diagrams, Charts, and Photos		
	Test Setup Diagrams		
	Radiated Emissions Photos		
	Antenna and Effective Gain Factors		
Е	Data Sheets		

LIST OF FIGURES

FIGURE	TITLE
1	Plot Map And Layout of Radiated Site

Page 4 of 16

GENERAL REPORT SUMMARY

This electromagnetic emission test report is generated by Compatible Electronics Inc., which is an independent testing and consulting firm. The test report is based on testing performed by Compatible Electronics personnel according to the measurement procedures described in the test specifications given below and in the "Test Procedures" section of this report.

The measurement data and conclusions appearing herein relate only to the sample tested and this report may not be reproduced without the written permission of Compatible Electronics, unless done so in full.

This report must not be used to claim product endorsement by NVLAP, NIST or any other agency of the U.S. Government.

Device Tested:	8 in 1 Kameleon 2003 Remote Finder Catalog Number: 15-2138T S/N: N/A
Product Description:	See Expository Statement.
Modifications:	The EUT was modified in order to meet the specifications. Please see the list located in Appendix B.
Manufacturer:	Universal Electronics, Inc. 6101 Gateway Drive Cypress, California 90630
Manufacturer:	Jetta Company Limited Jetta House 19 On Kui Street, On Lok Tsuen, Fanling Hong Kong, China
Test Date:	July 17, 2003
Test Specifications:	EMI requirements CFR Title 47, Part 15 Subpart B; and Subpart C, Sections 15.205, 15.209, and 15.231
Test Procedure:	ANSI C63.4: 2001
Test Deviations:	The test procedure was not deviated from during the testing.

SUMMARY OF TEST RESULTS

TEST	DESCRIPTION	RESULTS
1	Conducted RF Emissions, 150 kHz - 30 MHz	This test was not performed because the EUT operates on DC power only and cannot be plugged into the AC public mains.
2	Radiated RF Emissions, 10 kHz - 3500 MHz	Complies with the Class B limits of CFR Title 47, Part 15, Subpart B; and Subpart C, sections 15.205, 15.209, and 15.231.

This document is a qualification test report based on the Electromagnetic Interference (EMI) tests performed on the 8 in 1 Kameleon 2003 Remote Finder Catalog Number: 15-2138T. The EMI measurements were performed according to the measurement procedure described in ANSI C63.4: 1992. The tests were performed in order to determine whether the electromagnetic emissions from the equipment under test, referred to as EUT hereafter, are within the Class B specification limits defined by CFR Title 47, Part 15, Subpart B; and Subpart C, sections 15.205, 15.209, and 15.231.

2. ADMINISTRATIVE DATA

2.1 Location of Testing

The EMI tests described herein were performed at the test facility of Compatible Electronics, 114 Olinda Drive, Brea, California 92823.

2.2 Traceability Statement

The calibration certificates of all test equipment used during the test are on file at the location of the test. The calibration is traceable to the National Institute of Standards and Technology (NIST).

2.3 Cognizant Personnel

Universal Electronics, Inc.

Jesse Mendez Electrical Engineer

Compatible Electronics, Inc.

Kirit RamaniTest EngineerMichael ChristensenTest Engineer

2.4 Date Test Sample was Received

The test sample was received on July 17, 2003.

2.5 Disposition of the Test Sample

The sample has not been returned to Universal Electronics, Inc. as of July 28, 2003.

2.6 Abbreviations and Acronyms

The following abbreviations and acronyms may be used in this document.

RF	Radio Frequency
EMI	Electromagnetic Interference
EUT	Equipment Under Test
P/N	Part Number
S/N	Serial Number
HP	Hewlett Packard
ITE	Information Technology Equipment
CML	Corrected Meter Limit
LISN	Line Impedance Stabilization Network

3. APPLICABLE DOCUMENTS

The following documents are referenced or used in the preparation of this EMI Test Report.

SPEC	TITLE
CFR Title 47, Part 15	FCC Rules – Radio frequency devices (including digital devices)
ANSI C63.4 2001	Methods of measurement of radio-noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz

4.1 Description of Test Configuration - EMI

Setup and operation of the equipment under test.

Specifics of the EUT and Peripherals Tested

The 8 in 1 Kameleon 2003 Remote Finder Catalog Number: 15-2138T (EUT) was tested as a stand alone device. The EUT was tested in 3 orthogonal axis. The EUT was continuously transmitting. The antenna is a PCB trace. During normal operation, the EUT will turn off within 5 seconds of releasing the button.

The final radiated data was taken in the mode above. Please see Appendix E for the data sheets.

4.1.1 Cable Construction and Termination

There are no external cables connected to the EUT.

5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT

5.1 EUT and Accessory List

EQUIPMENT	MANUFACTURER	MODEL NUMBER	SERIALNUMBER	FCC ID
8 IN 1 KAMELEON 2003	UNIVERSAL	CATALOG NUMBER:	N/A	AAO1502138
REMOTE FINDER (EUT)	ELECTRONICS,	15-2138T		
	INC.			

5.2 EMI Test Equipment

EQUIPMENT TYPE	MANU- FACTURER	MODEL NUMBER	SERIAL NUMBER	CAL. DATE	CAL. DUE DATE
Radiate Emissions Data Capture Program	Compatible Electronics	2.0	N/A	N/A	N/A
Spectrum Analyzer – Main Section	Hewlett Packard	8566B	3638A08784	June 20, 2003	1 Year
Spectrum Analyzer – Display Section	Hewlett Packard	85662A	3701A22279	June 20, 2003	1 Year
Quasi-Peak Adapter	Hewlett Packard	85650A	2430A00424	June 20, 2003	1 Year
Preamplifier	Com Power	PA-103	1582	March 6, 2003	1 Year
Biconical Antenna	Com Power	AB-900	15226	April 21, 2003	1 Year
Log Periodic Antenna	Com Power	AL-100	16202	February 3, 2003	1 Year
Antenna Mast	Com Power	AM-100	N/A	N/A	N/A
Turntable	Com Power	TT-100	N/A	N/A	N/A
Computer	Hewlett Packard	4530	US91912319	N/A	N/A
Monitor	Hewlett Packard	D5258A	TW74500641	N/A	N/A
Loop Antenna	Com-Power	AL-130	25310	June 4, 2003	1 Year
Horn Antenna	Com-Power	AH-118	10073	January 21, 2002	2 Year
Microwave Preamplifier	Com-Power	PA-122	25196	January 10, 2003	1 Year

114 OLINDA DRIVE, BREA, CALIFORNIA 92823 PHONE: (714) 579-0500 FAX: (714) 579-1850

6. TEST SITE DESCRIPTION

6.1 Test Facility Description

Please refer to section 2.1 and 7.1 of this report for EMI test location.

6.2 EUT Mounting, Bonding and Grounding

The EUT was mounted on a 1.0 by 1.5 meter non-conductive table 0.8 meters above the ground plane.

The EUT was not grounded.

7. TEST PROCEDURES

The following sections describe the test methods and the specifications for the tests. Test results are also included in this section.

7.1 Radiated Emissions (Spurious and Harmonics) Test

The spectrum analyzer was used as a measuring meter along with the quasi-peak adapter. Amplifiers were used to increase the sensitivity of the instrument. The Com Power Preamplifier Model: PA-103 was used for frequencies from 30 MHz to 1 GHz, and the Com-Power Microwave Preamplifier Model: PA-122 was used for frequencies above 1 GHz. The spectrum analyzer was used in the peak detect mode with the "Max Hold" feature activated. In this mode, the spectrum analyzer records the highest measured reading over all the sweeps.

The measurement bandwidths and transducers used for the radiated emissions test were:

FREQUENCY RANGE EFFECTIVE MEASUREMENT BANDWIDTH		TRANSDUCER
9 kHz to 150 kHz	200 Hz	Active Loop Antenna
150 kHz to 30 MHz	9 kHz	Active Loop Antenna
30 MHz to 300 MHz	120 kHz	Biconical Antenna
300 MHz to 1 GHz	120 kHz	Log Periodic Antenna
1 GHz to 3.50 GHz	1 MHz	Horn Antenna

The open field test site of Compatible Electronics, Inc. was used for radiated emission testing. This test site is set up according to ANSI C63.4: 1992. Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The turntable supporting the EUT is remote controlled using a motor. The turntable permits EUT rotation of 360 degrees in order to maximize emissions. Also, the antenna mast allows height variation of the antenna from 1 meter to 4 meters. Data was collected in the worst case (highest emission) configuration of the EUT. At each reading, the EUT was rotated 360 degrees and the antenna height was varied from 1 to 4 meters (for E field radiated field strength). The gunsight method was used when measuring with the horn antenna in order to ensure accurate results. The loop antenna was also rotated in the horizontal and vertical axis in order to ensure accurate results.

Radiated Emissions (Spurious and Harmonics) Test (con't)

The presence of ambient signals was verified by turning the EUT off. In case an ambient signal was detected, the measurement bandwidth was reduced temporarily and verification was made that an additional adjacent peak did not exist. This ensures that the ambient signal does not hide any emissions from the EUT. The EUT was tested at a 3 meter test distance to obtain final test data. The final qualification data sheets are located in Appendix E.

7.2 Bandwidth of the Fundamental

The -20 dB bandwidth was checked to see that it was within 0.25% of the fundamental frequency for the EUT. A data sheet of the -20 dB bandwidth is located in Appendix E.

8. CONCLUSIONS

The 8 in 1 Kameleon 2003 Remote Finder Catalog Number: 15-2138T meets all of the Class B specification limits defined in CFR Title 47, Part 15, Subpart B; and Subpart C, sections 15.205, 15.209, and 15.231.

Page A1

APPENDIX A

LABORATORY RECOGNITIONS

LABORATORY RECOGNITIONS

Compatible Electronics has the following agency accreditations:

National Voluntary Laboratory Accreditation Program - Lab Code: 200528-0

Voluntary Control Council for Interference - Registration Numbers: R-983, C-1026, R-984 and C-1027

Bureau of Standards and Metrology Inspection - Reference Number: SL2-IN-E-1031

Conformity Assessment Body for the EMC Directive Under the US/EU MRA Appointed by NIST

Compatible Electronics is recognized or on file with the following agencies:

Federal Communications Commission Industry Canada Radio-Frequency Technologies (Competent Body)

Page A2

APPENDIX B

MODIFICATIONS TO THE EUT

MODIFICATIONS TO THE EUT

The modifications listed below were made to the EUT to pass FCC 15.231 or FCC Class B specifications.

All the rework described below was implemented during the test in a method that could be reproduced in all the units by the manufacturer.

- 1) Changed R7 to 150 ohms.
- 2) Changed R8 to 1.0 kohms
- 3) Changed C7 to 2.0 pF

Page C1

APPENDIX C

ADDITIONAL MODELS COVERED UNDER THIS REPORT

ADDITIONAL MODELS COVERED UNDER THIS REPORT

USED FOR THE PRIMARY TEST

8 in 1 Kameleon 2003 Remote Finder Catalog Number: 15-2138T S/N: N/A

There were no additional models covered under this report.

Page D1

APPENDIX D

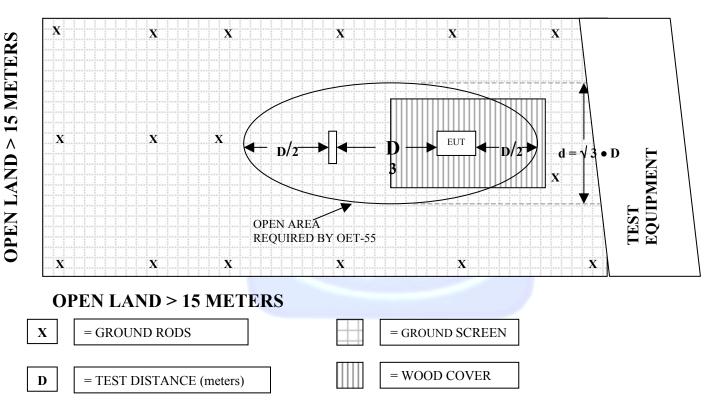

DIAGRAMS, CHARTS, AND PHOTOS

FIGURE 1: PLOT MAP AND LAYOUT OF RADIATED SITE

OPEN LAND > 15 METERS

COM-POWER AB-900

BICONICAL ANTENNA

S/N: 15226

CALIBRATION DATE: APRIL 21, 2003

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(MHz)	(dB)	(MHz)	(dB)
30	11.20	120	13.80
35	10.40	125	12.50
40	10.20	140	12.50
45	11.00	150	10.90
50	11.30	160	11.50
60	9.60	175	14.90
70	7.40	180	15.50
80	6.10	200	16.90
90	7.70	250	15.50
100	10.50	300	23.80

COM-POWER AL-100

LOG PERIODIC ANTENNA

S/N: 16202

CALIBRATION DATE: FEBRUARY 3, 2003

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
300	12.70	700	20.60
400	15.40	800	21.80
500	16.50	900	21.00
600	17.20	1000	21.50

COM-POWER PA-103

PREAMPLIFIER

S/N: 1582

CALIBRATION DATE: MARCH 6, 2003

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(MHz)	(dB)	(MHz)	(dB)
30	33.6	300	33.3
40	33.6	350	33.3
50	33.6	400	33.1
60	33.6	450	33.0
70	33.5	500	32.9
80	33.5	550	33.0
90	33.5	600	32.8
100	33.6	650	32.6
125	33.6	700	32.7
150	33.4	750	32.4
175	33.5	800	32.4
200	33.4	850	32.7
225	33.3	900	31.9
250	33.2	950	31.8
275	33.3	1000	32.5

COM-POWER PA-122

MICROWAVE PREAMPLIFIER

S/N: 25196

CALIBRATION DATE: JANUARY 10, 2003

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(GHz)	(dB)	(GHz)	(dB)
1.0	32.3	6.0	27.9
1.1	32.6	6.5	28.9
1.2	32.4	7.0	29.2
1.3	32.1	7.5	29.3
1.4	31.8	8.0	29.4
1.5	31.7	8.5	28.5
1.6	31.6	9.0	28.7
1.7	31.6	9.5	27.9
1.8	31.0	10.0	27.0
1.9	32.0	11.0	26.9
2.0	31.0	12.0	28.7
2.5	30.5	13.0	28.6
3.0	30.5	14.0	28.7
3.5	30.0	15.0	27.1
4.0	30.0	16.0	26.1
4.5	29.9	17.0	26.0
5.0	29.7	18.0	23.9
5.5	30.2		

COM-POWER AH-118

HORN ANTENNA

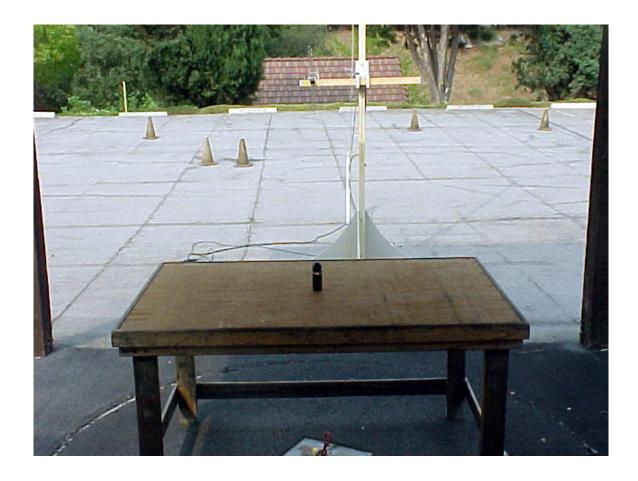
S/N: 10073

CALIBRATION DATE: JANUARY 21, 2002

	EL CEOD		ELCEOD
FREQUENCY (GHz)	FACTOR	FREQUENCY (GHz)	FACTOR
1.0	(dB)	10.0	(dB)
1.0	26.6	10.0	41.8
1.5	29.2	10.5	40.4
2.0	32.4	11.0	37.5
2.5	32.3	11.5	42.2
3.0	31.4	12.0	40.4
3.5	31.8	12.5	43.6
4.0	31.1	13.0	44.2
4.5	32.0	13.5	41.8
5.0	33.9	14.0	43.3
5.5	32.0	14.5	47.0
6.0	37.8	15.0	49.4
6.5	36.8	15.5	49.9
7.0	42.4	16.0	49.9
7.5	39.5	16.5	48.2
8.0	41.3	17.0	44.0
8.5	40.3	17.5	44.8
9.0	39.5	18.0	44.7
9.5	41.4		

COM-POWER AL-130

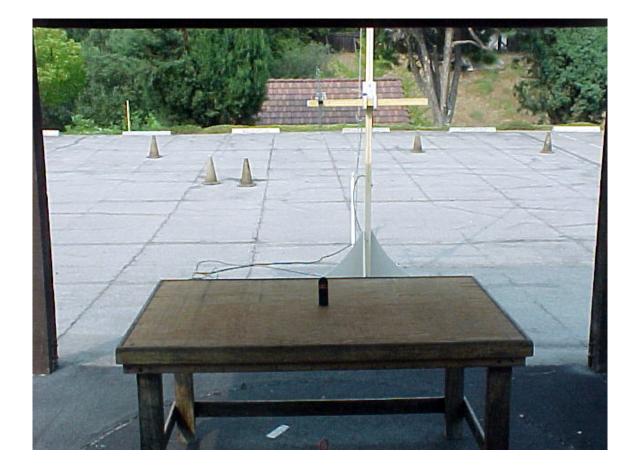
LOOP ANTENNA


S/N: 25310

CALIBRATION DATE: JUNE 4, 2003

FREQUENCY	MAGNETIC	ELECTRIC
(MHz)	(dB/m)	(dB/m)
0.009	-41.2	10.3
0.01	-41.3	10.2
0.02	-42.3	9.2
0.05	-42.5	9.0
0.07	-42.3	9.2
0.1	-42.5	9.0
0.2	-44.6	6.9
0.3	-42.1	9.4
0.5	-42.4	9.1
0.7	-42.1	9.4
1	-41.5	10.0
2	-41.0	10.5
3	-41.3	10.2
4	-41.3	10.2
5	-40.9	10.6
10	-41.6	9.9
15	-42.1	9.4
20	-42.2	9.3
25	-42.7	8.8
30	-44.3	7.2

FRONT VIEW


UNIVERSAL ELECTRONICS, INC. 8 IN 1 KAMELEON 2003 REMOTE FINDER CATALOG NUMBER: 15-2138T FCC SUBPART B AND C - RADIATED EMISSIONS – 07-17-03

PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS

Page D10

REAR VIEW

UNIVERSAL ELECTRONICS, INC. 8 IN 1 KAMELEON 2003 REMOTE FINDER CATALOG NUMBER: 15-2138T FCC SUBPART B AND C - RADIATED EMISSIONS – 07-17-03

PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS

Page E1

APPENDIX E

DATA SHEETS

Page E2

RADIATED EMISSIONS

DATA SHEETS

Page: 1 of 1

Test location: Compatible Electronics Customer : Universal Electronics, Inc. Date : 7/17/2003 Manufacturer : Universal Electronics, Inc. Time : 17.03 EUT name : 8 in 1 Kameleon 2003 Remote Finder Catalog # : 15-2138T Specification: Fcc B Test distance: 3.0 mtrs Lab: A Distance correction factor(20*log(test/spec)) : 0.00 Test Mode : SPURIOUS EMISSIONS FROM THE EUT VERTICAL AND HORIZONTAL POLARIZATION 10 kHz - 3500 MHz TESTED BY: MICHAEL CHRISTENSEN

NO SPURIOUS EMISSIONS FROM THE EUT WERE FOUND FROM 10 kHz TO 3500 MHz THE EUT WAS TESTED IN BOTH POLARIZATIONS

COMPANY		Universal E	lectroni	06											DATE		7/17/03	
EUT		8 in 1 Kam			te Finder	Cat N	0 15-213	8T							DATE DUTY C	VCLE	22.1	%
MODEL		Cat No. 15-		b5 Kellio	te Filider	, Cat IV	0.15-215	51							PEAK T		-13.112154	
S/N		N/A	21301												TEST D		3	Meters
TEST ENGINE	FR	MICHAEL	CHRIS	TENSEI	V										LAB	191.	A	Meters
					,			r										
Frequency	Peak	Average (A)		Antenna	EUT	EUT	EUT	Antenna	Cable	Amplifier		Mixer	*Corrected		Spec			
MHz	Reading (dBuV)		Polar.	Height	Azimuth (degrees)		Tx Channel	Factor (dB)	Loss (dB)	Gain (dB)	Factor (dB)	Factor (dB)	Reading (dBuV/m)	** (dB)	Limit (dBuV/m)		Comments	
349.3000	(dBuv)	50.3 A	H	(meters)	(degrees)	(A , 1 , 2) X	LOW	(ub) 14.0	3.2	(ub)	(ub)	(UB)	(uBu V/III) 67.5	-9.9	(ubu v/iii) 77.4		Comments	
						A Y	LOW	14.0	3.2	0.0	0.0	0.0	56.5	-20.9				
349.3000	52.4	39.3 A	Н	1.0	180	77.4 77.4												
349.3000	56.9	43.8 A																
349.3000	49.2	36.1 A																
349.3000	61.4	48.3 A																
349.3000	59.7	46.6 A	V	1.5	0	Z	LOW	14.0	3.2	0.0	0.0		63.8	-13.6	77.4			
				ļ														
	1																	

* CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

** DELTA = SPEC LIMIT - CORRECTED READING

PAGE 1 of PAGE 10

COMPANY		Universal H	Electroni	cs											DATE		7/17/03	
EUT		8 in 1 Kam			te Finder.	Cat No	0. 15-213	8T							DUTY C	YCLE	22.1	%
MODEL		Cat No. 15				·									PEAK T	O AVG	-13.1121545	dB
S/N		N/A													TEST DI	IST.	3	Meters
TEST ENGINE	ER	MICHAEI	CHRIS	TENSE	N										LAB		А	
Frequency	Peak		Antonno	Antenna	EUT	EUT	EUT	Antenna	Cable	Amplifier	Dictores	Mixer	*Corrected	Delta	Spec			
Frequency	Reading	Average (A) or Quasi-	Polar.	Height	Azimuth	Axis	Tx	Factor	Loss	Gain	Factor	Factor	Reading	**	Limit			
MHz	(dBuV)	Peak (QP)		0	(degrees)			(dB)	(dB)	(dB)	(dB)	(dB)	(dBuV/m)	(dB)	(dBuV/m)		Comments	
698.6000	68.2	55.1 A	Н	1.0	270	Х	LOW	20.6	4.6	32.7	0.0	0.0	47.6	-9.8	57.4			
698.6000	61.6	48.5 A	Н	1.0	90	Y	LOW	20.6	4.6	32.7	0.0	0.0	41.0	-16.4	57.4			
698.6000	65.7	52.6 A																
698.6000	57.0	43.9 A																
698.6000	66.8	53.7 A	V	1.0	90	Y	LOW	20.6	4.6	32.7	0.0	0.0	46.2	-11.2	57.4			
698.6000	66.5	53.4 A	V	1.5	180	Z	LOW	20.6	4.6	32.7	0.0	0.0	45.9	-11.5	57.4			
0/010000	00.5	55.1 11		1.5	100		Low	20.0		32.7	0.0	0.0	1015	1110	0			
	ļ			ļ														
4	1		1	1						1					1			

* CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

** DELTA = SPEC LIMIT - CORRECTED READING

PAGE 2 of PAGE 10

COMPANY		Universal F	lectroni	PE .											DATE		7/17/03	
EUT		8 in 1 Kam			te Finder	Cat N	0 15-213	8T							DATE DUTY C	YCLE	22.1	%
MODEL		Cat No. 15-		b5 Kellio	te Filider	, Cat IN	0.15-215	51							PEAK T		-13.1121545	
S/N		N/A	21301												TEST D		3	Meters
TEST ENGINE	FR	MICHAEL	CHRIS	TENSEI	V										LAB	191.	A	Meters
					,			r							LID			
Frequency	Peak	Average (A)		Antenna	EUT	EUT	EUT	Antenna	Cable	Amplifier		Mixer	*Corrected		Spec			
MHz	Reading (dBuV)	or Quasi- Peak (QP)	Polar.	Height			Tx Channel	Factor (dB)	Loss (dB)	Gain (dB)	Factor (dB)	Factor (dB)	Reading (dBuV/m)	** (dB)	Limit (dBuV/m)		Comments	
1047.9000	(dBuv)		H	(meters)	(degrees) 270	(A , Y , Z) X	LOW	26.8	2.6	32.4	(db)	<u>(ав)</u> 0.0	(dbu v/m) 48.2	-5.8	(dbu v/m) 54.0		Comments	
						A Y	LOW	26.8	2.6	32.4	0.0	0.0	48.2	-5.8 -10.5				
1047.9000	59.6	46.5 A	Н	1.0	180	54.0 54.0												
1047.9000	64.0	50.9 A																
1047.9000	58.3	45.2 A																
1047.9000	61.6	48.5 A V 1.5 180 Y LOW 26.8 2.6 32.4 0.0 0.0 45.5 -8.4													54.0			
1047.9000	63.3	50.2 A	v	1.0	180	Ζ	LOW	26.8	2.6	32.4	0.0	0.0	47.2	-6.8	54.0			

* CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

** DELTA = SPEC LIMIT - CORRECTED READING

PAGE 3 of PAGE 10

COMPANY		Universal H	Flootnoni	96											DATE		7/17/03	
EUT		8 in 1 Kam			to Findor	Cat N	. 15 012	9T							DATE DUTY C	IVCLE	22.1	%
MODEL		Cat No. 15		05 Kellio	te rinder	, Cat IN	0.15-215	01							PEAK T		-13.112154	
-		N/A	-21381															
S/N TEST ENGINE	ED	N/A MICHAEI	CUDIS	TENCE	λŢ.										TEST D	151.	3	Meters
1E51 ENGINE	£K	MICHAEI		IENSEI	N										LAD		A	
Frequency	Peak	Average (A)	Antenna	Antenna	EUT	EUT	EUT	Antenna	Cable	Amplifier	Distance	Mixer	*Corrected	Delta	Spec			
	Reading		Polar.	Height			Тх	Factor	Loss	Gain	Factor	Factor	Reading	**	Limit			
MHz	(dBuV)	Peak (QP)	1		(degrees)			(dB)	(dB)	(dB)	(dB)	(dB)	(dBuV/m)	(dB)	(dBuV/m)		Comments	
1397.2000	65.2	52.1 A	Н	2.0	270	Х	LOW	28.7	3.1	31.8	0.0	0.0	52.1	-1.9	54.0			
1397.2000	58.3	45.2 A	Н	2.5	180	Y	LOW	28.7	3.1	31.8	0.0	0.0	45.2	-8.8	54.0			
1397.2000	63.6	50.5 A																
1397.2000	61.4	48.3 A	8.3 A V 1.5 270 X LOW 28.7 3.1 31.8 0.0 0.0 48.3 -5.7															
1397.2000	64.0	50.9 A																
1397.2000	65.0	51.9 A	V	1.5	180	Z	LOW	28.7	3.1	31.8	0.0	0.0	51.9	-2.1	54.0			
				ļ														

* CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

** DELTA = SPEC LIMIT - CORRECTED READING

PAGE 4 of PAGE 10

EUT 8 in 1 Kameleon 2003 Remote Finder, Cat No. 15-2138T DUTY CYCLE 22.1 % MODEL Cat No. 15-2138T PEAK TO AVG -13.1121545 dB	COMPANY		Universal	Flootroni	06											DATE		7/17/03	
MODEL Cat No. 15-2138T PEAK TO AVG -13.1121545 dB S/N N/A TEST BAGINEER MICHAEL CHRISTENSEN TEST DIST. 3 M TEST ENGINEER MICHAEL CHRISTENSEN EUT EUT Antenna Visit Cat No. 15-2138T LAB A Frequency Peak (dBuV) Average (A) or Quasi- (dBuV) Antenna Polar. (V or H) EUT EUT Antenna Factor (dB) Cable (dB) Amplifier (dB) Distance (dB) Mixer (dB) *Corrected (dB) Delta (dB) Spec (dB) Spec (dB) </th <th> ·</th> <th></th> <th></th> <th></th> <th></th> <th>to Findor</th> <th>Cat N</th> <th>0 15 212</th> <th>8T</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th></th> <th></th> <th>0/_</th>	·					to Findor	Cat N	0 15 212	8T							-			0/_
S/N N/A TEST DIST. 3 M TEST ENGINEER MICHAEL CHRISTENSEN LAB A Frequency Peak (QP) Average (A) or Quasi- or Quasi- peak (QP) Antenna Polar. EUT Height EUT Azimuth EUT Axis EUT Tx Factor (dB) Cable (dB) Amplifier (dB) Distance (dB) Mixer (dB) *Corrected (dB) Delta (dB) Spec (dB) Spec (dB) LAB Comments 1746.5000 63.0 49.9 A H 1.0 270 X LOW 30.8 6.4 31.3 0.0 0.0 55.7 -1.7 57.4 57.4 1746.5000 59.0 45.9 A H 1.0 90 Z LOW 30.8 6.4 31.3 0.0 0.0 55.7 -1.7 57.4 1746.5000 62.4 49.3 A H 1.0 90 Z LOW 30.8 6.4 31.3 0.0 0.0 55.1 -2.3 57.4 1746.5000 59.7 46.6 V 2.0 180 X LOW 30.8					05 Kellio	te rinder	, Cat IN	0.15-215	01										
TEST ENGINE R MICHAEL CHRISTENSEN LAB A Frequency Peak (dBuV) Average (A) or Quasi- (dBuV) Antenna Polar. (V or H) EUT (meters) EUT (degrees) EUT (X,Y,Z) Factor (dB) Cable (dB) Mixer (dB) Factor (dB) Mixer (dB) *Corrected (dB) Delta (*** (dB) Spec Limit (dB) Spec Limit (dB) *** (dB) Mixer (dB) *** (dB) Delta (*** (dB) Spec (dB) *** (dB) Delta (*** (dB) Spec (dB) *** (dB) Spec (dB) *** (dB) Delta (*** (dB) Spec (dB) *** (dB) Spec (dB) *** (dB) T Delta (*** (dB) Spec (dB) *** (dB) Spec (dB) *** (dB) Spec (dB) *** (dB) T Delta (dB) Spec (dB) *** (dB) Spec (dB) *** (dB) T	-			-21381															
Frequency MHz Peak (dBuV) Average (A) or Quasi- Peak (QP) Antenna Vor H) EUT Meight EUT Azimuth EUT Axis Fut Tx Factor (dB) Distance (dB) Mixer (dB) *Corrected (dB) Delta Reading (dB) Spec Limit (dB) Limit (dB) Comments 1746.5000 63.0 49.9 A H 1.0 270 X LOW 30.8 6.4 31.3 0.0 0.0 55.7 -1.7 57.4 1746.5000 59.0 45.9 A H 2.5 180 Y LOW 30.8 6.4 31.3 0.0 0.0 55.7 -1.7 57.4 1746.5000 62.4 49.3 A H 1.0 90 Z LOW 30.8 6.4 31.3 0.0 0.0 55.1 -2.3 57.4 1746.5000 59.7 46.6 A V 2.0 180 X LOW 30.8 6.4 31.3 0.0 0.0 55.1 -2.3 57.4		ED		CUDE		λ.Τ.											181.		Meters
NHz Average (A) or Quasi- (dBuV) Polar. Peak (QP) Height (w or H) Azimuth (degrees) Axis (X,Y,Z) Tx Channel Factor (dB) Loss (dB) Gain (dB) Factor (dB) Factor (dB) Reading (dB) ** Limit (dB) Imit (dB) Comments 1746.5000 63.0 49.9 A H 1.0 270 X LOW 30.8 6.4 31.3 0.0 0.0 55.7 -1.7 57.4 1746.5000 59.0 45.9 A H 2.5 180 Y LOW 30.8 6.4 31.3 0.0 0.0 55.1 -5.7 57.4 1746.5000 62.4 49.3 A H 1.0 90 Z LOW 30.8 6.4 31.3 0.0 0.0 55.1 -2.3 57.4 1746.5000 59.7 46.6 A V 2.0 180 X LOW 30.8 6.4 31.3 0.0 0.0 52.4 -5.0 57.4 <	IESI ENGINE	EK	MICHAEI	L CHRIS	IENSEI	N										LAB		A	
Reading (dBuV) or Quasi- Peak (QP) Polar. (V or H) Height (meters) Azimuth (degrees) Kxis (X,Y,Z) Tx Channel Factor (dB) Gain (dB) Factor (dB) Factor (dB) Factor (dB) Reading (dB) ** Limit (dBUV/m) Limit (dB) Comments 1746.5000 63.0 49.9 A H 1.0 270 X LOW 30.8 6.4 31.3 0.0 0.0 55.7 -1.7 57.4 1746.5000 59.0 45.9 A H 2.5 180 Y LOW 30.8 6.4 31.3 0.0 0.0 51.7 -5.7 57.4 1746.5000 62.4 49.3 A H 1.0 90 Z LOW 30.8 6.4 31.3 0.0 0.0 55.1 -2.3 57.4 1746.5000 59.7 46.6 A V 2.0 180 X LOW 30.8 6.4 31.3 0.0 0.0 52.4 -5.0 57.4 <th>Frequency</th> <th>Peak</th> <th>Average (A)</th> <th>Antenna</th> <th>Antenna</th> <th>EUT</th> <th>EUT</th> <th>EUT</th> <th>Antenna</th> <th>Cable</th> <th>Amplifier</th> <th>Distance</th> <th>Mixer</th> <th>*Corrected</th> <th>Delta</th> <th>Spec</th> <th></th> <th></th> <th></th>	Frequency	Peak	Average (A)	Antenna	Antenna	EUT	EUT	EUT	Antenna	Cable	Amplifier	Distance	Mixer	*Corrected	Delta	Spec			
1746.5000 63.0 49.9 A H 1.0 270 X LOW 30.8 6.4 31.3 0.0 0.0 55.7 -1.7 57.4 1746.5000 59.0 45.9 A H 2.5 180 Y LOW 30.8 6.4 31.3 0.0 0.0 55.7 -1.7 57.4 1746.5000 62.4 49.3 A H 1.0 90 Z LOW 30.8 6.4 31.3 0.0 0.0 55.7 -1.7 57.4 1746.5000 62.4 49.3 A H 1.0 90 Z LOW 30.8 6.4 31.3 0.0 0.0 55.1 -2.3 57.4 1746.5000 59.7 46.6 A V 2.0 180 X LOW 30.8 6.4 31.3 0.0 0.0 55.1 -2.3 57.4 1746.5000 59.7 46.6 A V 2.0 180 X LOW 30.8 6.4 31.3 0.0 0.0 53		Reading	or Quasi-	Polar.	0				Factor	Loss	Gain	Factor	Factor	Reading	**	Limit			
1746.5000 59.0 45.9 A H 2.5 180 Y LOW 30.8 6.4 31.3 0.0 0.0 51.7 -5.7 57.4 1746.5000 62.4 49.3 A H 1.0 90 Z LOW 30.8 6.4 31.3 0.0 0.0 55.1 -2.3 57.4 1746.5000 59.7 46.6 A V 2.0 180 X LOW 30.8 6.4 31.3 0.0 0.0 55.1 -2.3 57.4 1746.5000 59.7 46.6 A V 2.0 180 X LOW 30.8 6.4 31.3 0.0 0.0 52.4 -5.0 57.4 1746.5000 60.8 47.7 A V 1.0 180 Y LOW 30.8 6.4 31.3 0.0 0.0 53.5 -3.9 57.4	MHz	(dBuV)	Peak (QP)	(V or H)	(meters)	(degrees)	(X,Y,Z)	Channel	(dB)	(dBuV/m)	(dB)	(dBuV/m)		Comments					
1746.5000 62.4 49.3 A H 1.0 90 Z LOW 30.8 6.4 31.3 0.0 0.0 55.1 -2.3 57.4 1746.5000 59.7 46.6 A V 2.0 180 X LOW 30.8 6.4 31.3 0.0 0.0 55.1 -2.3 57.4 1746.5000 59.7 46.6 A V 2.0 180 X LOW 30.8 6.4 31.3 0.0 0.0 52.4 -5.0 57.4 1746.5000 60.8 47.7 A V 1.0 180 Y LOW 30.8 6.4 31.3 0.0 0.0 53.5 -3.9 57.4	1746.5000	63.0	49.9 A	Н	1.0	270	Х	LOW	30.8	6.4	31.3	0.0	0.0	55.7	-1.7	57.4			
1746.5000 59.7 46.6 A V 2.0 180 X LOW 30.8 6.4 31.3 0.0 0.0 52.4 -5.0 57.4 1746.5000 60.8 47.7 A V 1.0 180 Y LOW 30.8 6.4 31.3 0.0 0.0 53.5 -3.9 57.4	1746.5000	59.0	45.9 A	Н	2.5	180	Y	LOW	30.8	6.4	31.3	0.0	0.0	51.7	-5.7	57.4			
1746.5000 60.8 47.7 A V 1.0 180 Y LOW 30.8 6.4 31.3 0.0 0.0 53.5 -3.9 57.4	1746.5000	62.4	49.3 A																
	1746.5000	59.7	46.6 A																
1746.5000 58.9 45.8 A V 1.0 270 Z LOW 30.8 6.4 31.3 0.0 0.0 51.6 -5.8 57.4 Image: Constraint of the stress of the str	1746.5000	60.8	47.7 A																
Image: Second state of the	1746.5000	58.9	45.8 A	V	1.0	270	Z	LOW	30.8	6.4	31.3	0.0	0.0	51.6	-5.8	57.4			
Image: Sector of the sector																			
Image: Second state of the second s																			
Image: Second																			
Image: state of the state																			
	<u> </u>																		

* CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

** DELTA = SPEC LIMIT - CORRECTED READING

PAGE 5 of PAGE 10

COMPANY		Universa	l Ele	ectronic	s											DATE		7/17/03	
EUT		8 in 1 Ka	mel	leon 200	3 Remo	te Finder	, Cat No	b. 15-213	8T							DUTY (CYCLE	22.1	%
MODEL		Cat No. 1	15-2	2138T												PEAK T	TO AVG	-13.1121545	5 dB
S/N		N/A														TEST D	DIST.	3	Meters
TEST ENGINE	ER	MICHA	EL (CHRIST	FENSE	N										LAB		Α	
Frequency	Peak			Antenna	Antenna	EUT	EUT	EUT	Antenna	Cable	Amplifier	Distance	Mixer	*Corrected	Delta	Spec			
requency	Reading	Average (A)		Height	Azimuth	Axis	Тх	Factor	Loss	Gain	Factor	Factor	Reading	**	Limit			
MHz	(dBuV)		Veak (QP) (V or H) (meters) (degrees) (X,Y,Z) Channel (dB) (dB)													(dBuV/m)		Comments	
2095.8000																57.4	NO EMISS	SION FOUND	
2095.8000																57.4	NO EMISS	SION FOUND	
2095.8000			A H Z LOW 32.4 4.2 30.9 0.0												57.4	NO EMISS	SION FOUND		
2095.8000	45.1												57.4						
2095.8000	45.9	32.8	A	V	2.5	90	Y	LOW	32.4	4.2	30.9	0.0	0.0	38.5	-19.0	57.4			
2095.8000	45.4		A	V	1.0	180	Z	LOW	32.4	4.2	30.9	0.0	0.0	38.0	-19.5	57.4			
20/210000	15.1	52.5		,	1.0	100		Lon	52.1	2	50.9	0.0	0.0	2010	1710				
															-				
			_																
			_																
4		1				1			I		1					1	1		

* CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

** DELTA = SPEC LIMIT - CORRECTED READING

PAGE 6 of PAGE 10

COMPANY		Universal F	lectronic	cs											DATE		7/17/03	
EUT		8 in 1 Kam	eleon 200)3 Remo	te Finder	, Cat N	o. 15-213	8T							DUTY (CYCLE	22.1	%
MODEL		Cat No. 15-													PEAK T	CO AVG	-13.1121545	dB
S/N		N/A													TEST D	IST.	3	Meters
TEST ENGINE	ER	MICHAEL	CHRIS	TENSE	N										LAB		A	
Frequency	Peak		A	Antenna	EUT	EUT	EUT	Antenna	Cable	Amplifier	Distance	Mixer	*Corrected	Delta	Spec			
Frequency	Reading	Average (A) or Quasi-	Polar.	Height	Azimuth	Axis	Тх	Factor	Loss	Gain	Factor	Factor	Reading	**	Limit			
MHz	(dBuV)		(V or H)	0	(degrees)		Channel	(dB)	(dB)	(dB)	(dB)	(dB)	(dBuV/m)	(dB)	(dBuV/m)		Comments	
2445.1000		А	Н			Х	LOW	32.3	4.6	30.6	0.0				57.4	NO EMISS	SION FOUND	
2445.1000		А															SION FOUND	
2445.1000		А														NO EMISS	SION FOUND	
2445.1000		A N Z LOW 32.3 4.0 50.0 0.0 A V X LOW 32.3 4.6 30.6 0.0												57.4	NO EMISS	SION FOUND		
2445.1000		А	v			Y	LOW	32.3	4.6	30.6	0.0				57.4	NO EMISS	SION FOUND	
2445.1000		А	V			Z	LOW	32.3	4.6	30.6	0.0				57.4	NO EMISS	SION FOUND	
							2011	0210		2010	0.0							

* CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

** DELTA = SPEC LIMIT - CORRECTED READING

PAGE 7 of PAGE 10

COMPANY		Universal F	niversal Electronics														7/17/03	
EUT		8 in 1 Kam	eleon 200)3 Remo	te Finder	, Cat N	o. 15-213	8T							DUTY C	CYCLE	22.1	%
MODEL		Cat No. 15-	-2138T												PEAK TO AVG		-13.1121545	dB
S/N		N/A															3	Meters
TEST ENGINE	ER	MICHAEL CHRISTENSEN															Α	
Frequency	Peak Average (A) Antenna Antenna EUT EUT EUT Antenna Cable Amplifier Distance Mixer *Corrected Delta									Delta	Spec							
Frequency	Reading	Average (A) or Quasi-	Polar.	Height	Azimuth	Axis	Tx	Factor	Loss	Gain	Factor	Factor	Reading	**	Limit			
MHz	(dBuV)	or gamer	(V or H)	0	(degrees)		Channel	(dB)	(dB)	(dB)	(dB)	(dB)	(dBuV/m)	(dB)	(dBuV/m)		Comments	
2794.4000		А	Н			Х	LOW	31.8	5.2	30.5	0.0				54.0	NO EMISS	SION FOUND	
2794.4000		А	Н			Y	LOW	31.8	5.2	30.5	0.0				54.0	NO EMISS	SION FOUND	
2794.4000		А	Н			Z	LOW	31.8	5.2	30.5	0.0				54.0	NO EMISS	SION FOUND	
2794.4000		А	V			Х	LOW	31.8	5.2	30.5	0.0				54.0	NO EMISS	SION FOUND	
2794.4000		А	v			Y	LOW	31.8	5.2	30.5	0.0				54.0	NO EMISS	SION FOUND	
2794.4000		A	v			Z	LOW	31.8	5.2	30.5	0.0						SION FOUND	
2794.4000		Λ	v			L	LOW	51.0	5.2	50.5	0.0				34.0			

* CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

** DELTA = SPEC LIMIT - CORRECTED READING

PAGE 8 of PAGE 10

COMPANY		Universal F	lectronic	cs											DATE		7/17/03	
EUT		8 in 1 Kam	eleon 200)3 Remo	te Finder	, Cat N	o. 15-213	8T							DUTY (CYCLE	22.1	%
MODEL		Cat No. 15-	2138T												PEAK TO AVG		-13.1121545	dB
S/N		N/A	N/A														3	Meters
TEST ENGINE	ER	MICHAEL CHRISTENSEN															Α	
Frequency Peak Average (A) Antenna Antenna EUT EUT EU								Antenna	Cable	Amplifier	Distance	Mixer	*Corrected	Delta	Spec			
Frequency	Reading	Average (A) or Quasi-	Polar.	Height	Azimuth	Axis	Tx	Factor	Loss	Gain	Factor	Factor	Reading	**	Limit			
MHz	(dBuV)	or gamer	(V or H)	0	(degrees)		Channel	(dB)	(dB)	(dB)	(dB)	(dB)	(dBuV/m)	(dB)	(dBuV/m)		Comments	
3143.7000		А	Н			Х	LOW	31.5	5.7	30.4	0.0				57.4	NO EMISS	SION FOUND	
3143.7000		А	Н			Y	LOW	31.5	5.7	30.4	0.0				57.4	NO EMISS	SION FOUND	
3143.7000		А	Н			Ζ	LOW	31.5	5.7	30.4	0.0				57.4	NO EMISS	SION FOUND	
3143.7000		А	v			Х	LOW	31.5	5.7	30.4	0.0				57.4	NO EMISS	SION FOUND	
3143.7000		А	v			Y	LOW	31.5	5.7	30.4	0.0				57.4	NO EMISS	SION FOUND	
3143.7000		A	v			Z	LOW	31.5	5.7	30.4	0.0						SION FOUND	
5145.7000		21	v			L	LOW	51.5	5.7	50.4	0.0				57.4			
		-														-		

* CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

** DELTA = SPEC LIMIT - CORRECTED READING

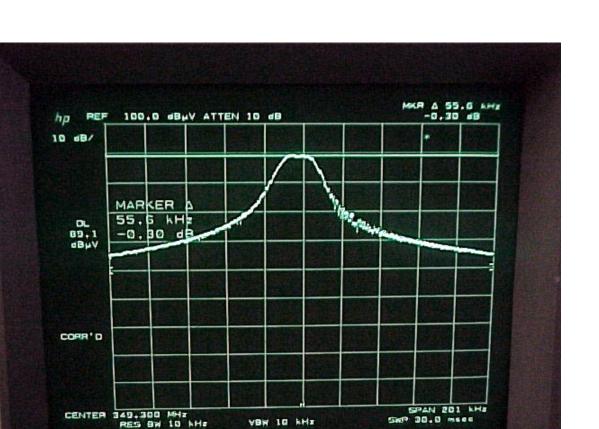
PAGE 9 of PAGE 10

COMPANY		Universal F	lectronic	cs											DATE		7/17/03	
EUT		8 in 1 Kam	eleon 200)3 Remo	te Finder	, Cat N	b. 15-213	8T							DUTY (CYCLE	22.1	%
MODEL		Cat No. 15-	2138T												PEAK TO AVG		-13.1121545	dB
S/N		N/A															3	Meters
TEST ENGINE	ER	MICHAEL CHRISTENSEN													LAB		Α	
Frequency	y Peak Average (A) Antenna Antenna EUT EUT EUT Antenna Cable Amplifier Distance Mixer *Corrected Delt									Delta	Spec							
requency	Reading	Average (A) or Quasi-	Polar.	Height	Azimuth	Axis	Тх	Factor	Loss	Gain	Factor	Factor	Reading	**	Limit			
MHz	(dBuV)		(V or H)		(degrees)	(X , Y , Z)	Channel	(dB)	(dB)	(dB)	(dB)	(dB)	(dBuV/m)	(dB)	(dBuV/m)			
3493.0000		А	Н			Х	LOW	31.8	6.8	30.0	0.0				57.4	NO EMISS	SION FOUND	
3493.0000		А	Н			Y	LOW	31.8	6.8	30.0	0.0				57.4	NO EMISS	SION FOUND	
3493.0000		А	Н			Z	LOW	31.8	6.8	30.0	0.0				57.4	NO EMISS	SION FOUND	
3493.0000		А	V			Х	LOW	31.8	6.8	30.0	0.0				57.4	NO EMISS	SION FOUND	
3493.0000		А	v			Y	LOW	31.8	6.8	30.0	0.0				57.4	NO EMISS	SION FOUND	
3493.0000		A	v			Z	LOW	31.8	6.8	30.0	0.0					NO EMISS	SION FOUND	
3493.0000		21	v			L	LOW	51.0	0.0	50.0	0.0				57.4			
L			1	1						I			1		1			

* CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

** DELTA = SPEC LIMIT - CORRECTED READING

PAGE 10 of PAGE 10



-20 dB BANDWIDTH

DATA SHEET

