

FCC PART 15.249 TEST REPORT

For

Qingdao Magene Intelligence Technology Co., Ltd.

HaoQiGongChang No. 512, Xuzhou Road No. 79, Shinan District, Qingdao, Shandong, China

FCC ID:2ALZG-P325CS

Report Type: Original Report		Product Type: Crank Power Meter		
Project Engineer:	Jack Jiao		Julk Jiao	
Report Number:	RKSA2012	18001-00C		
Report Date:	2021-01-11			
Reviewed By:	Oscar Ye EMC Mana	ger	Oscar. Ye	
Test Laboratory:	No.248 Che Tel: +86-05	ngĥu Road,Kunsh 12-86175000 12-88934268	ntories Corp. (Kunshan) nan,Jiangsu province,China	

TABLE OF CONTENTS

Report No.: RKSA201218001-00C

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	3
Objective	3
RELATED SUBMITTAL(S)/GRANT(S)	3
TEST METHODOLOGY	
Measurement Uncertainty	
TEST FACILITY	4
SYSTEM TEST CONFIGURATION	5
JUSTIFICATION	5
EUT Exercise Software	5
SUPPORT EQUIPMENT LIST AND DETAILS	
BLOCK DIAGRAM OF TEST SETUP	5
SUMMARY OF TEST RESULTS	7
TEST EQUIPMENT LIST	8
FCC§15.203 - ANTENNA REQUIREMENT	9
APPLICABLE STANDARD	9
ANTENNA CONNECTOR CONSTRUCTION	9
FCC§15.205, §15.209&§15.249- RADIATED EMISSIONS& OUT OF BAND EMISSION	14
APPLICABLE STANDARD	14
EUT SETUP	14
TEST EQUIPMENT SETUP	15
TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST RESULTS SUMMARY	
TEST DATA	16
FCC §15.215(C) – 20 DB BANDWIDTH TESTING	21
APPLICABLE STANDARD	21
TEST PROCEDURE	21
TEST DATA	21

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Applicant	Qingdao Magene Intelligence Technology Co., Ltd.
Tested Model	P325 CS
Series Model	P325 CSL, P325 L
Model Difference	See product similarity declaration letter
Product Type	Crank Power Meter
Power Supply	DC 3.8V from rechargeable Li-ion battery or DC 5V charging from external power supply
RF Function	ANT+
Operating Band/Frequency	2457 MHz
Channel Number	1
Modulation Type	GFSK
Antenna Type	PCB antenna
*Antenna Gain	-2.0 dBi

Report No.: RKSA201218001-00C

Note*: The Maximum Antenna Gain was provided by manufacturer.

All measurement and test data in this report was gathered from production sample serial number: RKSA201218001-1. (Assigned by the BACL. The EUT supplied by the applicant was received on 2020-12-18)

Objective

This type approval report is prepared on behalf of *Qingdao Magene Intelligence Technology Co., Ltd.* in accordance with Part 2-Subpart J, and Part 15-Subparts A and C of the Federal Communications Commission rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Related Submittal(s)/Grant(s)

FCC Part15.247 DTS submissions with FCC ID:2ALZG-P325CS

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All radiated and conducted emissions measurement was performed at Bay Area Compliance Lab Corp. (Kunshan). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

FCC Part 15.249 Page 3 of 23

Measurement Uncertainty

Item		Uncertainty
AC Power Lin	es Conducted Emissions	3.19 dB
RF conduct	ed test with spectrum	0.9dB
RF Output Po	ower with Power meter	0.5dB
	30MHz~1GHz	6.11dB
D 11 (1	1GHz~6GHz	4.45dB
Radiated emission	6GHz~18GHz	5.23dB
	18GHz~40GHz	5.65dB
Occupied Bandwidth		0.5kHz
Temperature		1.0°C
Humidity		6%

Report No.: RKSA201218001-00C

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Kunshan) to collect test data is located on the No.248 Chenghu Road, Kunshan, Jiangsu province, China.

Bay Area Compliance Laboratories Corp. (Kunshan) Lab is accredited to ISO/IEC 17025 by A2LA (Lab code: 4323.01) and the FCC designation No. CN1185 under the FCC KDB 558074 D01 and CAB identifier CN0004 under the ISED requirement. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

FCC Part 15.249 Page 4 of 23

SYSTEM TEST CONFIGURATION

Justification

Channel list:

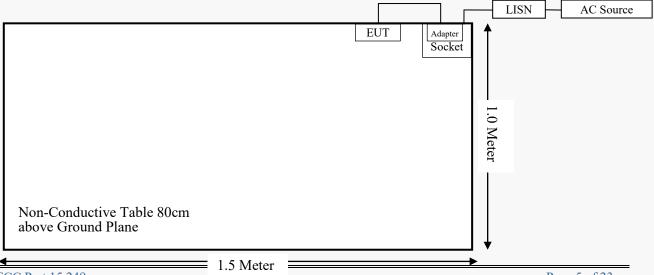
Channel	Frequency (MHz)
1	2457

Report No.: RKSA201218001-00C

EUT Exercise Software

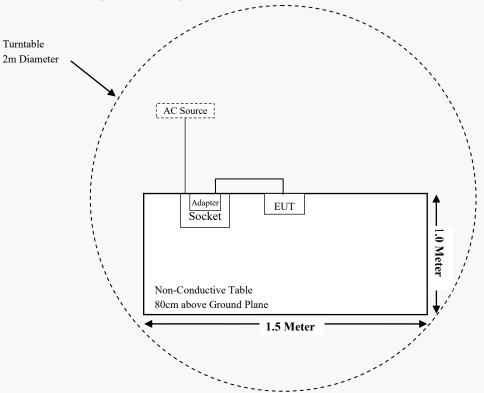
RF Test Tool: QRCT3

Support Equipment List and Details

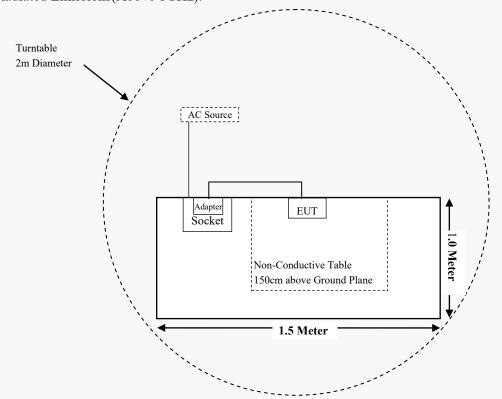

Manufacturer Description		Model	Serial Number	
/	Adapter	/	/	

External I/O Cable

Cable Description Length (m)		From Port	То
Power Cable 1	1.2	EUT	Adapter
Power Cable 2	1.5	Socket	LISN/AC Source


Block Diagram of Test Setup

For Conducted Emissions:



FCC Part 15.249 Page 5 of 23

For Radiated Emissions(Below 1GHz):

For Radiated Emissions(Above 1GHz):

FCC Part 15.249 Page 6 of 23

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.203	Antenna Requirement	Compliant
§15.207(a)	Conduction Emissions	Compliant
15.205, §15.209, §15.249	Radiated Emissions& Out of Band Emission	Compliant
§15.215 (c)	20 dB Bandwidth	Compliant

Report No.: RKSA201218001-00C

FCC Part 15.249 Page 7 of 23

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date			
Radiated Emission Test (Chamber 1#)								
Rohde & Schwarz	EMI Test Receiver	ESCI	100195	2020-11-27	2021-11-26			
Sunol Sciences	Broadband Antenna	JB3	A090314-1	2020-08-05	2023-08-04			
Sonoma Instrunent	Pre-amplifier	310N	171205	2020-08-14	2021-08-13			
Rohde & Schwarz	Auto Test Software	EMC32	100361	N/A	N/A			
MICRO-COAX	Coaxial Cable	Cable-8	008	2020-08-15	2021-08-14			
MICRO-COAX	Coaxial Cable	Cable-9	009	2020-08-15	2021-08-14			
MICRO-COAX	Coaxial Cable	Cable-10	010	2020-08-15	2021-08-14			
	Radiat	ed Emission Test (Char	mber 2#)					
Rohde & Schwarz	EMI Test Receiver	ESU40	100207	2020-04-01	2021-03-31			
ETS-LINDGREN	Horn Antenna	3115	6229	2020-01-07	2023-01-06			
ETS-LINDGREN	Horn Antenna	3116	2516	2020-01-07	2023-01-06			
A.H.Systems,inc	Amplifier	PAM-0118P	512	2020-02-20	2021-02-19			
EM Electronics Corporation	Amplifier	EM18G40G	060726	2020-03-22	2021-03-21			
MICRO- TRONICS	Notch filter	BRM50702	G024	2020-08-05	2021-08-04			
Narda	Attenuator/10dB	10dB	010	2020-08-15	2021-08-14			
Rohde & Schwarz	Auto Test Software	EMC32	100361	N/A	N/A			
MICRO-COAX	Coaxial Cable	Cable-6	006	2020-08-15	2021-08-14			
MICRO-COAX	Coaxial Cable	Cable-11	011	2020-08-15	2021-08-14			
MICRO-COAX	Coaxial Cable	Cable-12	012	2020-08-15	2021-08-14			
MICRO-COAX	Coaxial Cable	Cable-13	013	2020-08-15	2021-08-14			
		RF Conducted Test						
Rohde & Schwarz	Signal Analyzer	FSIQ26	100048/027	2020-11-27	2021-11-26			
Narda	Attenuator	10dB	010	2020-08-15	2021-08-14			
Qingdao Magene	RF Cable	Qingdao Magene C01	C01	Each Time	N/A			
		Conducted Emission To	est					
Rohde & Schwarz	EMI Test Receiver	ESR	1316.3003K03- 101746-zn	2020-08-05	2021-08-04			
Rohde & Schwarz	LISN	ENV216	101115	2020-11-27	2021-11-26			
Audix	Test Software	e3	V9	N/A	N/A			
Rohde & Schwarz	Pulse limiter	ESH3-Z2	0357.8810.54	2020-08-10	2021-08-09			
MICRO-COAX	Coaxial Cable	Cable-15	015	2020-08-15	2021-08-14			

Report No.: RKSA201218001-00C

FCC Part 15.249 Page 8 of 23

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC§15.203 - ANTENNA REQUIREMENT

Applicable Standard

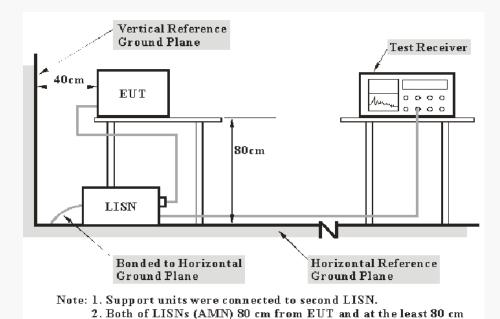
For intentional device, according to §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used.

Report No.: RKSA201218001-00C

Antenna Connector Construction

The EUT has a PCB antenna for ANT+ which was permanently attached and the antenna gain is -2.00dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliant.


FCC Part 15.249 Page 9 of 23

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a)

EUT Setup

Report No.: RKSA201218001-00C

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207.

from other units and other metal planes support units.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	<u>IF B/W</u>
<u>150 kHz – 30 MHz</u>	<u>9 kHz</u>

FCC Part 15.249 Page 10 of 23

Test Procedure

ANSI C63.10-2013 clause 6.2

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

Factor & Over Limit Calculation

The Corrected Factor is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Report No.: RKSA201218001-00C

Factor (dB) = LISN VDF (dB) + Cable Loss (dB) + Transient Limiter Attenuation (dB)

The "Over Limit" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an over limit of 7 dB means the emission is 7 dB above the limit. The equation for over limit calculation is as follows:

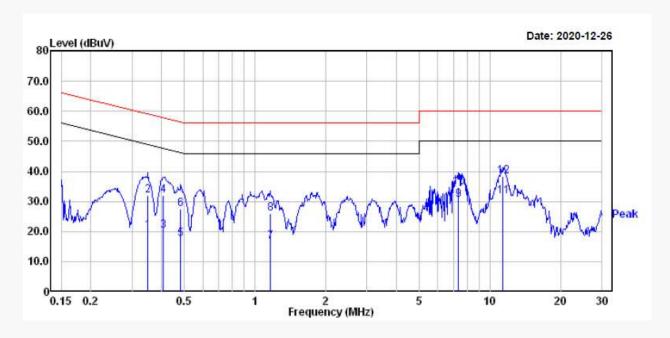
Over Limit (dB) = Read level (dB μ V) + Factor (dB) - Limit (dB μ V)

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Part 15.207.

Test Data

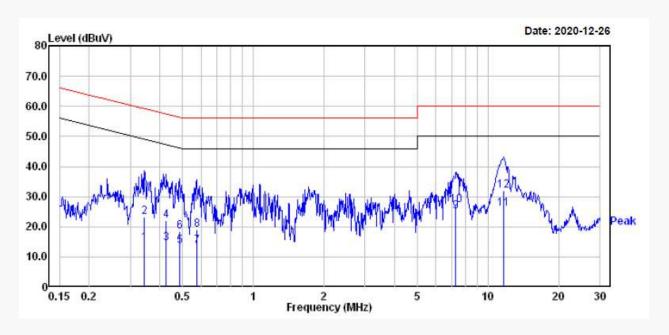
Environmental Conditions


Temperature:	23.5 ℃		
Relative Humidity:	53 %		
ATM Pressure:	101.4 kPa		

The testing was performed by Jack Jiaoon 2020-12-26.

EUT operation mode: Transmitting

FCC Part 15.249 Page 11 of 23


AC 120V/60 Hz, Line

		Read			Limit	0ver	
	Freq	Level	Factor	Level	Line	Limit	Remark
-							
	MHz	dBuV	dB	dBuV	dBuV	dB	
1	0.350	0.50	19.81	20.31	48.96	-28.65	Average
2	0.350	12.30	19.81	32.11	58.96	-26.85	QP
3	0.408	0.60	19.74	20.34	47.68	-27.34	Average
4	0.408	12.40	19.74	32.14	57.68	-25.54	QP
5	0.484	-2.20	19.76	17.56	46.27	-28.71	Average
6	0.484	7.70	19.76	27.46	56.27	-28.81	QP
7	1.160	-3.10	19.81	16.71	46.00	-29.29	Average
8	1.160	6.20	19.81	26.01	56.00	-29.99	QP
9	7.368	11.10	19.52	30.62	50.00	-19.38	Average
10	7.368	15.20	19.52	34.72	60.00	-25.28	QP
11	11.377	12.10	19.58	31.68	50.00	-18.32	Average
12	11.377	18.90	19.58	38.48	60.00	-21.52	QP

FCC Part 15.249 Page 12 of 23

AC 120V/60 Hz, Neutral

	Freq	Read Level	Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	——dB	dBuV	dBuV	——dB	
1	0.345	-5.20	19.81	14.61	49.09	-34.48	Average
2	0.345	3.50	19.81	23.31	59.09	-35.78	QP
3	0.426	-5.40	19.75	14.35	47.33	-32.98	Average
4	0.426	2.20	19.75	21.95	57.33	-35.38	QP
5	0.486	-6.30	19.76	13.46	46.23	-32.77	Average
6	0.486	-1.30	19.76	18.46	56.23	-37.77	QP
7	0.576	-6.30	19.75	13.45	46.00	-32.55	Average
8	0.576	-0.60	19.75	19.15	56.00	-36.85	QP
9	7.290	5.40	19.52	24.92	50.00	-25.08	Average
10	7.290	7.50	19.52	27.02	60.00	-32.98	QP
11	11.621	6.40	19.58	25.98	50.00	-24.02	Average
12	11.621	12.40	19.58	31.98	60.00	-28.02	QP

Note:

- 1) Factor (dB) = LISN VDF (dB) + Cable Loss (dB) + Transient Limiter Attenuation (dB)
- 2) Over Limit (dB) = Read level (dB μ V) + Factor (dB) Limit (dB μ V)

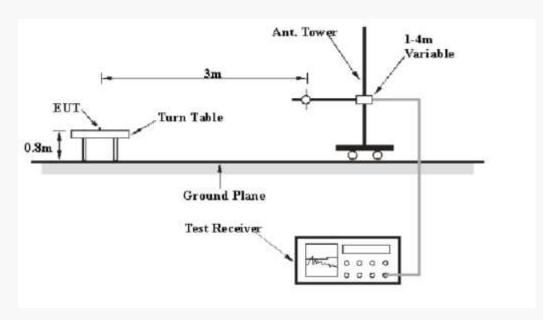
FCC Part 15.249 Page 13 of 23

FCC§15.205, §15.209&§15.249- RADIATED EMISSIONS& OUT OF BAND EMISSION

Report No.: RKSA201218001-00C

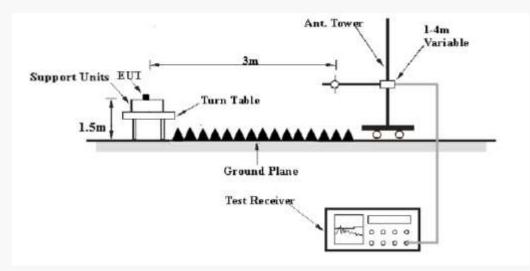
Applicable Standard

As per FCC§15.249 (a), except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:


Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)
902–928 MHz	50	500
2400–2483.5 MHz	50	500
5725–5875 MHz	50	500
24.0–24.25 GHz	250	2500

As per FCC§15.249 (c), Field strength limits are specified at a distance of 3 meters.

(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.


EUT Setup

Below 1 GHz:

FCC Part 15.249 Page 14 of 23

Above 1 GHz:

Report No.: RKSA201218001-00C

The radiated emission and out of band emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209/15.205 and FCC 15.249 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

Test Equipment Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver Setup was set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Detector
30 MHz – 1000 MHz	120 kHz	300 kHz	120 kHz	QP
Above 1CHr	1MHz	3 MHz	/	Peak
Above 1GHz	1MHz	3 MHz	1MHz	AVG

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1 GHz.

FCC Part 15.249 Page 15 of 23

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Report No.: RKSA201218001-00C

Corrected Amplitude ($dB\mu V/m$) = Meter Reading ($dB\mu V$) + Antenna Factor (dB/m) + Cable Loss (dB) - Amplifier Gain (dB)

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin (dB) = Limit (dB μ V/m) – Corrected Amplitude (dB μ V/m)

Test Results Summary

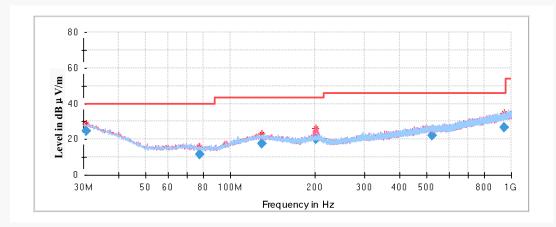
According to the data in the following table, the EUT complied with the FCC Part 15.209 &15.205 & 15.249.

Test Data

Environmental Conditions

Temperature:	23.5-25°C		
Relative Humidity:	50-53 %		
ATM Pressure:	101.2-102 kPa		

The testing was performed by Jack Jiaofrom 2020-12-23 to 2021-01-08.


Test Mode: Transmitting

FCC Part 15.249 Page 16 of 23

Spurious Emission Test:

30MHz-1GHz

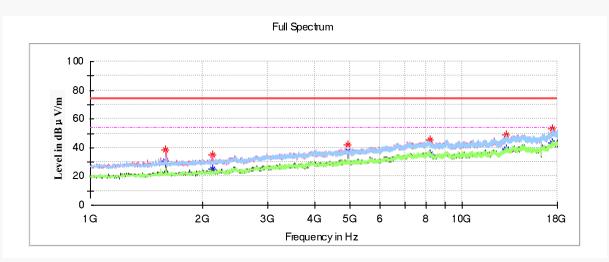
(Pre-scan in the X,Y and Z axes of orientation, the worst case **Z-axis of orientation** was recorded)

Report No.: RKSA201218001-00C

Frequency	Corrected Amplitude	Rx Antenna		Turntable	Corrected	Limit	Margin
(MHz)	Quasi-peak (dBμV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
30.560250	24.61	100.0	V	8.0	-4.2	40.00	15.39
78.028850	11.58	199.0	V	180.0	-16.9	40.00	28.42
129.266350	17.45	100.0	V	169.0	-10.6	43.50	26.05
201.165000	20.23	100.0	V	34.0	-10.9	43.50	23.27
520.835500	22.03	100.0	V	283.0	-5.3	46.00	23.97
942.032750	26.65	200.0	Н	100.0	1.8	46.00	19.35

FCC Part 15.249 Page 17 of 23

1GHz-18GHz

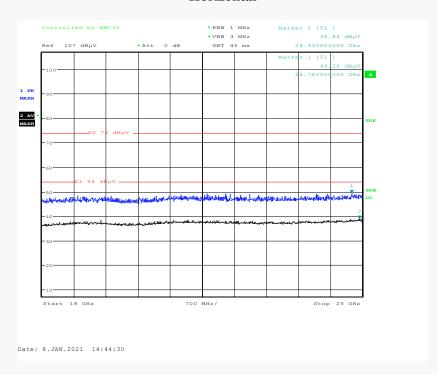

(Pre-scan in the X,Y and Z axes of orientation, the worst case **Z-axis of orientation** was recorded.)

Note:

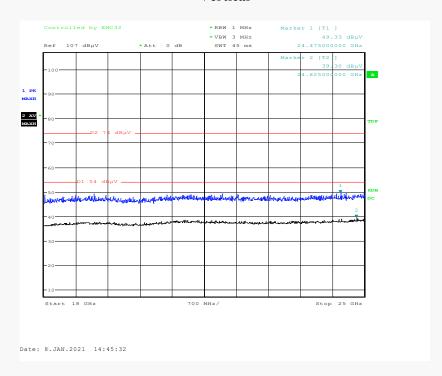
- 1. This test was performed with the 2.4-2.5GHz notch filter.
- 2. Corrected Factor (dB/m) = Antenna factor (RX) (dB/m) + Cable Loss (dB) Amplifier Factor (dB) Corrected Amplitude (dB μ V/m) = Corrected Factor (dB/m) + Reading (dB μ V) Margin (dB) = Limit (dB μ V/m) Corrected Amplitude (dB μ V/m)

Channel Frequency: 2457MHz

Report No.: RKSA201218001-00C


Frequency	Corrected	Amplitude	Rx Antenna		Turntable	Corrected	Limit	Margin
(MHz)	MaxPeak (dBμV/m)	Average (dBμV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
1593.300000		30.99	150.0	V	143.0	-16.0	54.00	23.01
1593.300000	38.20		150.0	V	143.0	-16.0	74.00	35.80
2130.500000		25.07	200.0	V	172.0	-13.9	54.00	28.93
2130.500000	35.07		200.0	V	172.0	-13.9	74.00	38.93
4914.000000	42.12		200.0	V	64.0	-5.4	74.00	31.88
4914.000000		37.60	200.0	V	64.0	-5.4	54.00	16.40
8209.700000		35.56	150.0	V	0.0	1.6	54.00	18.44
8209.700000	45.15		150.0	V	0.0	1.6	74.00	28.85
13156.700000		38.92	200.0	Н	70.0	5.4	54.00	15.08
13156.700000	48.98		200.0	Н	70.0	5.4	74.00	25.02
17488.300000		43.14	200.0	V	257.0	8.8	54.00	10.86
17488.300000	52.84		200.0	V	257.0	8.8	74.00	21.16

FCC Part 15.249 Page 18 of 23


(Pre-scan in the X,Y and Z axes of orientation, the worst case **Z-axis of orientation** was recorded)

Horizontal

Report No.: RKSA201218001-00C

Vertical

FCC Part 15.249 Page 19 of 23

Fundamental Test & Restricted Bands Emissions Test:

(Pre-scan in the X, Y and Z axes of orientation, the worst case **Z-axis of orientation** was recorded.)

Note:

1. Corrected Factor (dB/m) = Antenna factor (RX) (dB/m) + Cable Loss (dB) – Amplifier Factor (dB) Corrected Amplitude (dB μ V/m) = Corrected Factor (dB/m) + Reading (dB μ V) Margin (dB) = Limit (dB μ V/m) – Corrected Amplitude (dB μ V/m)

	Corrected Amplitude		Rx Antenna			Corrected		
Frequency (MHz)	MaxPeak (dBμV /m)	Average (dBµV/m)	Height (cm)	Polar (H/V)	Turntable Degree	Factor (dB/m)	Limit (dBµV/m)	Margin (dB)
		Ch	annel Fre	quency: 24	57MHz			
2400.000000	46.37		200.0	Н	75.0	-2.9	74.00	27.63
2400.000000		41.34	200.0	Н	75.0	-2.9	54.00	12.66
2457.000000		78.09	200.0	V	4.0	-2.8	114.00	35.91
2457.000000	78.15		200.0	V	4.0	-2.8	94.00	15.85
2457.000000		78.79	200.0	V	357.0	-2.5	114.00	35.21
2457.000000	79.01		200.0	V	357.0	-2.5	94.00	14.99
2483.500000	45.68		200.0	V	162.0	-2.5	74.00	28.32
2483.500000		41.23	200.0	V	162.0	-2.5	54.00	12.77

Report No.: RKSA201218001-00C

FCC Part 15.249 Page 20 of 23

FCC §15.215(c) – 20 dB BANDWIDTH TESTING

Applicable Standard

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

Report No.: RKSA201218001-00C

Test Procedure

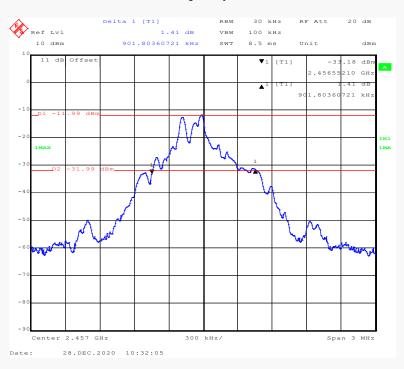
- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT on the test table without connection to measurement instrument. Turn on the EUT. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Data

Environmental Conditions

Temperature:	23.9 °C
Relative Humidity:	52 %
ATM Pressure:	101.3 kPa

The testing was performed by Jack Jiao on 2020-12-28.


Test Result: Compliant

FCC Part 15.249 Page 21 of 23

Channel	Frequency (MHz)	20 dB Bandwidth (MHz)
1	2457	0.902

Report No.: RKSA201218001-00C

Channel Frequency: 2457MHz

FCC Part 15.249 Page 22 of 23

Declarations

Report No.: RKSA201218001-00C

- 1: BACL is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data.
- 2: Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.
- 3: Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.
- 4: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval.
- 5: This report cannot be reproduced except in full, without prior written approval of the Company.
- 6: This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

***** END OF REPORT *****

FCC Part 15.249 Page 23 of 23