V1.0 Page 57 of 80 Report No.: JTT201612022 ### 6.3. D5GHzV2 Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio avizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 S D5GHzV2-1185 Aug14 | ALIBITATION | ERTIFICATE | ANSWERS STEEL | | |---|---|---|--| | Object | D5GHzV2 - SN: 1 | 185 | | | Calibration procedure(s) | QA CAL-22.v2
Calibration proces | dure for dipole validation kits betw | ween 3-6 GHz | | | | | | | Calibration dele: | August 22, 2014 | | | | All calibrations have been conduc | sted in the closed laborator | cobability are given on the following pages and y facility: environment temperature $(22 \pm 3)^4$ C | | | Calibration Equipment used (M5) | TE critical for calibration) | | 0.000 | | | ID # | Cal Date (Certificate No.) | Scheduled Calibration | | Primary Standards | ID #
GB37480704 | 09-Oct-13 (No. 217-01827) | Oct-14 | | Primary Standards Power mater EPM-442A | ID #
GB37480704
US37292783 | 09-Oct-13 (No. 217-01827)
09-Oct-13 (No. 217-01827) | Oct-14
Oct-14 | | Primary Standards
Power meter EPM-442A
Power sensor HP 8481A
Power sensor HP 8481A | ID#
GB37480704
US37292783
MY41092317 | 09-Oct-13 (No. 217-01827)
09-Oct-13 (No. 217-01827)
09-Oct-13 (No. 217-01828) | Oct-14
Oct-14
Oct-14 | | Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Heference 20 dB Attenuator | ID #
GB37480704
US37292783
MY41092317
SN: 5058 (20k) | 09-Oct-13 (No. 217-01827)
09-Oct-13 (No. 217-01827)
09-Oct-13 (No. 217-01828)
03-Apr-14 (No. 217-01918) | Oct-14
Oct-14
Oct-14
Apr-15 | | Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Heference 20 dB Attenuator Type-N mismatch combination | ID #
GB37480704
US37292783
MY41092317
SN: 5058 (20k)
SN: 5047.2 / 06327 | 09-Oct-13 (No. 217-01827)
09-Oct-13 (No. 217-01827)
09-Oct-13 (No. 217-01828)
03-Apr-14 (No. 217-01918)
03-Apr-14 (No. 217-01921) | Oct-14
Oct-14
Oct-14
Apr-15
Apr-15 | | Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Heference 20 dB Attenuator Type N mismatch combination Reference Probe EX3DV4 | ID #
GB37480704
US37292783
MY41092317
SN: 5058 (20k) | 09-Oct-13 (No. 217-01827)
09-Oct-13 (No. 217-01827)
09-Oct-13 (No. 217-01828)
03-Apr-14 (No. 217-01918) | Oct-14
Oct-14
Oct-14
Apr-15 | | Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Heterence 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 | ID #
GB37480704
US37292783
MY41092317
SN: 5056 (20k)
SN: 5047.2 / 06327
SN: 3503
SN: 601 | 09-Oct-13 (No. 217-01827)
09-Oct-13 (No. 217-01827)
09-Oct-13 (No. 217-01828)
03-Apr-14 (No. 217-01918)
03-Apr-14 (No. 217-01921)
30-Dec-13 (No. EX3-3503_Dec13) | Oct-14
Oct-14
Oct-14
Apr-15
Apr-15
Dec-14 | | Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Heference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards | ID #
GB37480704
US37292783
MY41092317
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 3503 | 09-Oct-13 (No. 217-01827)
09-Oct-13 (No. 217-01827)
09-Oct-13 (No. 217-01828)
03-Apr-14 (No. 217-01918)
03-Apr-14 (No. 217-01921)
30-Dec-13 (No. EX3-3503_Dec13)
18-Aug-14 (No. DAE4-601_Aug14) | Oct-14
Oct-14
Oct-14
Apr-15
Apr-15
Dec-14
Aug-15 | | Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Heference 20 dB Attenuator Type N mismatch combination Reference Probe EX3DV4 | ID #
GB37480704
US37292783
MY41092317
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 3503
SN: 601 | 09-Oct-13 (No. 217-01827)
09-Oct-13 (No. 217-01827)
09-Oct-13 (No. 217-01828)
03-Apr-14 (No. 217-01918)
03-Apr-14 (No. 217-01921)
30-Dec-13 (No. EX3-3503_Dec13)
18-Aug-14 (No. DAE4-601_Aug14)
Check Dato (in house) | Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Aug-15 Scheduled Check | | RF generator R&S SMT-06 | ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # 100005 US37390585 S4206 | 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. EX3-3503_Dec13) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-13) | Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Aug-15 Scheduled Check In house check: Oct-16 | | Primary Standards Power mater EPM-442A Power sensor HP 8481A Power sensor HP 8481A Heterence 20 dB Attenuator Type N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator R&S SMT-06 | ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # | 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. EX3-3503_Dec13) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) | Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-14 | | Primary Standards Power mater EPM-442A Power sensor HP 8481A Power sensor HP 8481A Heference 20 dB Attenuator Type N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E | ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # 100005 US37390585 S4206 | 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. EX3-3503_Dec13) 18-Aug-14 (No. DAE4-601_Aug14) Check Dato (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-13) | Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-14 | Report No.: JTT201612022 Calibration Laboratory of Schmid & Partner Engineering AG Engineering AG Zeughausstrasse 43, 8004 Zurlch, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", March 2010 - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" - c) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 #### Additional Documentation: d) DASY4/5 System Handbook Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### Measurement Conditions | DASY Version | DASY5 | V52.8.8 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5200 MHz ± 1 MHz
5300 MHz ± 1 MHz
5500 MHz ± 1 MHz
5600 MHz ± 1 MHz
5800 MHz ± 1 MHz | | # Head TSL parameters at 5200 MHz The following parameters and calculations were applied. | ne following parameters and carculations were appli | Temperature | Permittivity | Conductivity | |-----------------------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 36.0 | 4.66 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.7 ± 6 % | 4.48 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | **** | 2 | #### SAR result with Head TSL at 5200 MHz | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |-------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW Input power | 7.89 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 78.2 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.27 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.4 W/kg ± 19.5 % (k=2) | ### Head TSL parameters at 5300 MHz The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.76 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.5 ± 6 % | 4.57 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | **** | **** | #### SAR result with Head TSL at 5300 MHz | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |-------------------------------------------|--------------------|----------------------------| | SAR measured | 100 mW input power | 8.42 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 83.4 W / kg ± 19.9 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | condition | | |---------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.42 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.9 W/kg ± 19.5 % (k=2) | #### Head TSL parameters at 5500 MHz The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22,0 °C | 35.6 | 4.98 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.3 ± 6 % | 4.76 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | 3000 | #### SAR result with Head TSL at 5500 MHz | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |-------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.60 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 85.2 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | condition | | |---------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.47 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.4 W/kg ± 19.5 % (k=2) | ### Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | ne following parameters and calculations were appearance | Temperature | Permittivity | Conductivity | |----------------------------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.1 ± 6 % | 4,86 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | **** | #### SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |-------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.43 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 83,4 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.40 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.7 W/kg ± 19.5 % (k=2) | # Head TSL parameters at 5800 MHz The following parameters and calculations were applied. | ne tollowing parameters and calculations were appli | Temperature | Permittivity | Conductivity | |-----------------------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.3 | 5.27 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 33.9 ± 6 % | 5.06 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | **** | **** | #### SAR result with Head TSL at 5800 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.96 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 78.8 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | condition | | |---------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.26 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.3 W/kg ± 19.5 % (k=2) | Report No.: JTT201612022 Head TSL parameters at MHz The following parameters and calculations were applied. | to touthing parenters and disease. | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|--------------| | Nominal Head TSL parameters | 22.0 °C | | mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | ±6% | mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | **** | **** | #### SAR result with Head TSL at MHz | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |-------------------------------------------|------------------|---------------------| | SAR measured | mW input power | W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | condition | | |---------------------------------------------|------------------|---------------------| | SAR measured | mW input power | W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | W/kg ± 19.5 % (k=2) | Body TSL parameters at 5200 MHz | The following parameters and | colordations were applied. | |--------------------------------|----------------------------| | The following parallelers allo | Calculations were approve. | | he following parameters and calculations were appli | Temperature | Permittivity | Conductivity | |-----------------------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 49.0 | 5.30 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 47.0 ± 6 % | 5.32 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | (***** | **** | # SAR result with Body TSL at 5200 MHz | SAR averaged over 1 cm3 (1 g) of Body TSL | Condition | | |-------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.63 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 75.7 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.12 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.0 W/kg ± 19.5 % (k=2) | Body TSL parameters at 5300 MHz The following parameters and calculations were applied. | he following parameters and calculations were appro- | Temperature | Permittivity | Conductivity | |------------------------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.9 | 5.42 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.8 ± 6 % | 5.45 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL at 5300 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.90 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 78.3 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Body TSL | condition | | |---------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.22 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 22.0 W/kg ± 19.5 % (k=2) | # Body TSL parameters at 5500 MHz The following parameters and calculations were applied. | he following parameters and calculations were apprin | Temperature | Permittivity | Conductivity | |------------------------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.6 | 5.65 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.5 ± 6 % | 5.71 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | •••• | **** | # SAR result with Body TSL at 5500 MHz | SAR averaged over 1 cm ² (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.25 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 81.8 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Body TSL | condition | | |---------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.29 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 22.6 W/kg ± 19.5 % (k=2) | ### Body TSL parameters at 5600 MHz The following parameters and calculations were applied. | he following parameters and calculations were appli | Temperature | Permittivity | Conductivity | |-----------------------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.5 | 5.77 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.3 ± 6 % | 5.84 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | **** | ***** | # SAR result with Body TSL at 5600 MHz | SAR averaged over 1 cm3 (1 g) of Body TSL | Condition | | |-------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.41 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 83.3 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Body TSL | condition | | |---------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.33 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 23.0 W/kg ± 19.5 % (k=2) | Body TSL parameters at 5800 MHz The following parameters and calculations were applied. | he following parameters and calcolations were appro- | Temperature | Permittivity | Conductivity | |------------------------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.2 | 6.00 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.0 ± 6 % | 6.12 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | **** | **** | # SAR result with Body TSL at 5800 MHz | SAR averaged over 1 cm3 (1 g) of Body TSL | Condition | | |-------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.75 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 76.8 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.15 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.3 W/kg ± 19.5 % (k=2) | Body TSL parameters at MHz The following parameters and calculations were applied. | ne tollowing parameters and calculations were appro- | Temperature | Permittivity | Conductivity | |------------------------------------------------------|-----------------|--------------|--------------| | Nominal Body TSL parameters | 22.0 °C | | mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | ±6% | mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | **** | #### SAR result with Body TSL at MHz | SAR averaged over 1 cm3 (1 g) of Body TSL | Condition | | |-------------------------------------------|------------------|---------------------| | SAR measured | mW input power | W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---------------------------------------------------------|------------------|---------------------| | SAR measured | mW input power | W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | W/kg ± 19.5 % (k=2) | #### Report No.: JTT201612022 # Appendix (Additional assessments outside the scope of SCS108) ### Antenna Parameters with Head TSL at 5200 MHz | Impedance, transformed to feed point | 48.8 Ω - 7.5 jΩ | |--------------------------------------|-----------------| | Return Loss | - 22,3 dB | ### Antenna Parameters with Head TSL at 5300 MHz | Impedance, transformed to feed point | 51.1 Ω - 2.5]Ω | |--------------------------------------|-----------------| | Return Loss | - 31.4 dB | ### Antenna Parameters with Head TSL at 5500 MHz | Impedance, transformed to feed point | 50.5 Ω + 0.5]Ω | |--------------------------------------|-----------------| | Impedance, dansionned to read point | - 43.1 dB | | Return Loss | - 43.1 002 | ### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | 53.2 Ω - 1.6 βΩ | |--------------------------------------|-----------------| | Return Loss | - 29,3 dB | #### Antenna Parameters with Head TSL at 5800 MHz | Impedance, transformed to feed point | $55.9 \Omega + 0.6 J\Omega$ | |--------------------------------------|-----------------------------| | | - 25.0 dB | | Return Loss | - E010 W | ### Antenna Parameters with Body TSL at 5200 MHz | Impedance, transformed to feed point | 49.0 Ω - 6.4 Ω | |--------------------------------------|-----------------| | Return Loss | - 23.7 dB | # Antenna Parameters with Body TSL at 5300 MHz | Impedance, transformed to feed point | 51.3 Ω - 2.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 30.4 dB | # Antenna Parameters with Body TSL at 5500 MHz | Impedance, transformed to feed point | 50.4 Ω + 0.5 jΩ | |--------------------------------------|-----------------| | Return Loss | - 43.7 dB | ### Antenna Parameters with Body TSL at 5600 MHz | | The state of s | |--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Impedance, transformed to feed point | 54.2 Ω + 0.0 jΩ | | Return Loss | - 27.9 dB | | Heldin coss | | ### Antenna Parameters with Body TSL at 5800 MHz | Impedance, transformed to feed point | 56.9 Ω + 2.2 Ω | | |--------------------------------------|-----------------|--| | | - 23,4 dB | | | Return Loss | 6017 00 | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.205 ns | |----------------------------------|----------| | Lieutinum Grand (erro arrow) | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | | |-----------------|----------------|--| | Manufactured on | April 01, 2014 | | V1.0 Page 68 of 80 Report No.: JTT201612022 #### DASY5 Validation Report for Head TSL Date: 20.08.2014 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1185 Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.48$ S/m; $\epsilon_r = 34.7$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5300 MHz; $\sigma = 4.57$ S/m; $\varepsilon_f = 34.5$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 1000$ kg/m³ 4.76 S/m; $\varepsilon_r = 34.3$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: f = 5600 MHz; $\sigma = 4.86 \text{ S/m}$; $\varepsilon_r = 34.1$; $\rho = 4.86 \text{ S/m}$; $\varepsilon_r = 34.1$ 34.$ 1000 kg/m^3 , Medium parameters used: f = 5800 MHz; $\sigma = 5.06 \text{ S/m}$; $\epsilon_r = 33.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.52, 5.52, 5.52); Calibrated: 30.12.2013, ConvF(5.2, 5.2, 5.2); Calibrated: 30.12.2013, ConvF(5.01, 5.01, 5.01); Calibrated: 30.12.2013, ConvF(4.86, 4.86, 4.86); Calibrated: 30.12.2013, ConvF(4.91, 4.91, 4.91); Calibrated: 30.12.2013; - Sensor-Surface: I.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 18.08.2014 - Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 - DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 66.54 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 28.0 W/kg SAR(1 g) = 7.89 W/kg; SAR(10 g) = 2.27 W/kg Maximum value of SAR (measured) = 17.8 W/kg # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.97 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 31.1 W/kg SAR(1 g) = 8.42 W/kg; SAR(10 g) = 2.42 W/kg Maximum value of SAR (measured) = 19.0 W/kg # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.14 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 33.0 W/kg SAR(1 g) = 8.6 W/kg; SAR(10 g) = 2.47 W/kg Maximum value of SAR (measured) = 19.8 W/kg # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.77 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 33.1 W/kg SAR(1 g) = 8.43 W/kg; SAR(10 g) = 2.4 W/kg Maximum value of SAR (measured) = 20.0 W/kg # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 63.39 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 32.5 W/kg. SAR(1 g) = 7.96 W/kg; SAR(10 g) = 2.26 W/kg ### Impedance Measurement Plot for Head TSL V1.0 Page 71 of 80 Report No.: JTT201612022 #### DASY5 Validation Report for Body TSL Date: 22.08.2014 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1185 Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 5.32$ S/m; $\epsilon_r = 47$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5300 MHz; $\sigma = 5.45$ S/m; $\epsilon_r = 46.8$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 5.71$ S/m; $\epsilon_r = 46.5$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 5.84$ S/m; $\epsilon_r = 46.3$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 6.12$ S/m; $\epsilon_r = 46$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.01, 5.01, 5.01); Calibrated: 30.12.2013, ConvF(4.76, 4.76, 4.76); Calibrated: 30.12.2013, ConvF(4.52, 4.52, 4.52); Calibrated: 30.12.2013, ConvF(4.3, 4.3, 4.3); Calibrated: 30.12.2013, ConvF(4.47, 4.47, 4.47); Calibrated: 30.12.2013; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 18.08.2014 - Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 - DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) ### Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 59.57 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 29.9 W/kg SAR(1 g) = 7.63 W/kg; SAR(10 g) = 2.12 W/kg Maximum value of SAR (measured) = 17.8 W/kg # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 60.58 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 31.9 W/kg SAR(1 g) = 7.9 W/kg; SAR(10 g) = 2.22 W/kg Maximum value of SAR (measured) = 19.0 W/kg # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 60.71 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 35.5 W/kg SAR(1 g) = 8.25 W/kg; SAR(10 g) = 2.29 W/kg Maximum value of SAR (measured) = 20.3 W/kg # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 60.71 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 37.2 W/kg SAR(1 g) = 8.41 W/kg; SAR(10 g) = 2.33 W/kg Maximum value of SAR (measured) = 20.8 W/kg # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 56.97 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 36.1 W/kg SAR(1 g) = 7.75 W/kg; SAR(10 g) = 2.15 W/kg Maximum value of SAR (measured) = 19.6 W/kg 0 dB = 19.6 W/kg = 12.92 dBW/kg #### Impedance Measurement Plot for Body TSL V1.0 Page 74 of 80 Report No.: JTT201612022 #### 6.4. DAE4 Calibration Certificate Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn CIQ(Shenzhen) Certificate No: Z16-97120 #### CALIBRATION CERTIFICATE Object DAE4 - SN: 1315 Calibration Procedure(s) Client : FD-Z11-2-002-01 Calibration Procedure for the Data Acquisition Electronics Calibration date: July 26, 2016 This calibration Certificate documents the traceability to national standards, which realize the physical units c measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) **Primary Standards** ID# Cal Date(Calibrated by, Certificate No.) Scheduled Calibration Process Calibrator 753 1971018 27-June-16 (CTTL, No:J16X04778) June-17 Calibrated by: Name Function Signature Yu Zongying SAR Test Engineer Reviewed by: Qi Dianyuan SAR Project Leader Approved by: Lu Bingsong Deputy Director of the laboratory Issued: Vuly 27, 2016 This calibration certificate shall not be reproduced except in full without written approval of the laboratory Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn Glossary: DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X Report No.: JTT201612022 to the robot coordinate system. #### Methods Applied and Interpretation of Parameters: - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The report provide only calibration results for DAE, it does not contain other performance test results. Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 Http://www.chinattl.cn #### DC Voltage Measurement A/D - Converter Resolution nominal High Range: $1LSB = 6.1\mu V$, full range = -100...+300 m Low Range: 1LSB = 61nV, full range = -1.....+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec -100...+300 mV -1.....+3mV | Calibration Factors | x | Υ | z | |---------------------|-----------------------|-----------------------|----------------------| | High Range | 405.179 ± 0.15% (k=2) | 405.018 ± 0.15% (k=2) | 404.98 ± 0.15% (k=2) | | Low Range | | | 3.98861 ± 0.7% (k=2) | #### **Connector Angle** | Connector Angle to be used in DASY system | 20.5° ± 1 ° | |-------------------------------------------|-------------| |-------------------------------------------|-------------| #### Acceptable Conditions for SAR Measurements Using Probes and Dipoles Calibrated under the SPEAG-CTTL Dual-Logo Calibration Program to Support FCC Equipment Certification The acceptable conditions for SAR measurements using probes, dipoles and DAEs calibrated by CTTL (China Telecommunication Technology Labs), under the Dual-Logo Calibration Certificate program and quality assurance (QA) protocols established between SPEAG (Schmid & Partner Engineering AG, Switzerland) and CTTL, to support FCC (U.S. Federal Communications Commission) equipment certification are defined and described in the following. The conditions in this KDB are valid until December 31, 2015. - The agreement established between SPEAG and CTTL is only applicable to calibration services performed by CTTL where its clients (companies and divisions of such companies) are headquartered in the Greater China Region, including Taiwan and Hong Kong. CTTL shall inform the FCC of any changes or early termination to the agreement. - Only a subset of the calibration services specified in the SPEAG-CTTL agreement, while it remains valid, are applicable to SAR measurements performed using such equipment for supporting FCC equipment certification. These are identified in the following. - a) Calibration of dosimetric (SAR) probes EX3DVx, ET3DVx and ES3DVx. - Free-space E-field and H-field probes, including those used for HAC (hearing aid compatibility) evaluation, temperature probes, other probes or equipment not identified in this document, when calibrated by CTTL, are excluded and cannot be used for measurements to support FCC equipment certification. - ii) Signal specific and bundled probe calibrations based on PMR (probe modulation response) characteristics or probe sensor model based linearization methods that are not fully described in SAR standards are excluded and cannot be used for measurements to support FCC equipment certification. - b) Calibration of SAR system validation dipoles, excluding HAC dipoles. - c) Calibration of data acquisition electronics DAE3Vx, DAE4Vx and DAEasyVx. - d) For FCC equipment certification purposes, the frequency range of SAR probe and dipole calibrations is limited to 700 MHz - 6 GHz and provided it is supported by the equipment identified in the CTTL QA protocol (a separate attachment to this document). - e) The identical system and equipment setup, measurement configurations, hardware, evaluation algorithms, calibration and QA protocols, including the format of calibration certificates and reports used by SPEAG shall be applied by CTTL. Equivalent test equipment and measurement configurations may be considered only when agreed by both SPEAG and the FCC. - f) The calibrated items are only applicable to SPEAG DASY 4 and DASY 5 systems or higher version systems that satisfy the requirements of this KDB. - The SPEAG-CTTL agreement includes specific protocols identified in the following to ensure the quality of calibration services provided by CTTL under this SPEAG- # 7. Test Setup Photos Photograph of the depth in the Body Phantom (2450MHz, 15.4cm depth) Photograph of the depth in the Body Phantom (5200MHz, 15.3cm depth) Photograph of the depth in the Body Phantom (5800MHz, 15.4cm depth) Test Position 1 - Body-worn, the rear side of the EUT towards phantom (The distance was 0mm) Test Position 2 - Body-worn, the left side of the EUT towards ground (The distance was 0mm) V1.0 Page 80 of 80 Report No.: JTT201612022 # 8. External Photos of the EUT AntennaEnd of Report.....