
 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

Page 8 of 8

ANNEX I: D1900V2 Dipole Calibration Certificate

the state of the second s	Shanghai)	www.chinattl.cn	rtificate No:	Z20-60297	
CALIBRATION C	ERTIFICAT	E		1 1	
Object	D1900	V2 - SN: 5d060			
Calibration Procedure(s)	FF-Z11	-003-01			
200	Calibra	tion Procedures for dipo	le validation kits		
Calibration date:	August	27, 2020			
pages and are part of the c All calibrations have beer			facility: environm	ent temperatur	e(22±3)°C and
All calibrations have beer humidity<70%.	ertificate.	the closed laboratory f	facility: environm	ent temperatur	re(22±3)°C and
All calibrations have beer humidity<70%. Calibration Equipment used	ertificate. n conducted in d (M&TE critical f	the closed laboratory f or calibration) Cal Date(Calibrated b	y, Certificate No.		e(22±3)°C and
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2	ertificate. n conducted in d (M&TE critical f ID # 106276	the closed laboratory f or calibration) Cal Date(Calibrated b 12-May-20 (CTTL, No.	y, Certificate No. J20X02965)) Schedule	d Calibration May-21
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A	ertificate. n conducted in d (M&TE critical f ID # 106276 101369	the closed laboratory f or calibration) Cal Date(Calibrated b 12-May-20 (CTTL, No. 12-May-20 (CTTL, No.	y, Certificate No. J20X02965) J20X02965)) Schedule M	d Calibration May-21 May-21
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2	ertificate. n conducted in d (M&TE critical f ID # 106276 101369	the closed laboratory f or calibration) Cal Date(Calibrated b 12-May-20 (CTTL, No.	y, Certificate No. J20X02965) J20X02965) EX3-3617_Jan20) Schedule M D) .	d Calibration May-21
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A Reference Probe EX3DV4	ertificate. n conducted in d (M&TE critical f ID # 106276 101369 & SN 3617	the closed laboratory f or calibration) Cal Date(Calibrated b 12-May-20 (CTTL, No. 12-May-20 (CTTL, No. 30-Jan-20(SPEAG,No.	y, Certificate No. J20X02965) J20X02965) EX3-3617_Jan20 AG,No.Z20-6001) Schedule M D) . 7) F	d Calibration May-21 May-21 Jan-21
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A Reference Probe EX3DV4 DAE4	ertificate. n conducted in d (M&TE critical f ID # 106276 101369 SN 3617 SN 771 ID # ID # ID # ID #	the closed laboratory f or calibration) Cal Date(Calibrated b 12-May-20 (CTTL, No. 12-May-20 (CTTL, No. 30-Jan-20(SPEAG,No. 10-Feb-20(CTTL-SPE/ Cal Date(Calibrated by	y, Certificate No. J20X02965) J20X02965) EX3-3617_Jan20 AG,No.Z20-6001 c, Certificate No.) J20X00516)) Schedule N D) . 7) F Schedule	d Calibration May-21 May-21 Jan-21 Feb-21
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	ertificate. n conducted in d (M&TE critical f ID # 106276 101369 SN 3617 SN 771 ID # ID # ID # ID #	the closed laboratory f or calibration) Cal Date(Calibrated b 12-May-20 (CTTL, No. 12-May-20 (CTTL, No. 30-Jan-20(SPEAG,No. 10-Feb-20(CTTL-SPE/ Cal Date(Calibrated by 25-Feb-20 (CTTL, No.	y, Certificate No. J20X02965) J20X02965) EX3-3617_Jan20 AG,No.Z20-6001 7, Certificate No.) J20X00516)) Schedule M D) . 7) F Schedule	d Calibration May-21 May-21 Jan-21 Feb-21 d Calibration Feb-21
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	ertificate. n conducted in d (M&TE critical f 106276 101369 SN 3617 SN 771 ID # MY49071430 MY46110673	the closed laboratory f or calibration) Cal Date(Calibrated b 12-May-20 (CTTL, No. 12-May-20 (CTTL, No. 30-Jan-20(SPEAG,No. 10-Feb-20(CTTL-SPE/ Cal Date(Calibrated by 25-Feb-20 (CTTL, No. 10-Feb-20 (CTTL, No.	y, Certificate No. J20X02965) J20X02965) EX3-3617_Jan20 AG,No.Z20-6001 , Certificate No.) J20X00516) J20X00515)) Schedule M D) . 7) F Schedule	d Calibration May-21 May-21 Jan-21 Feb-21 d Calibration Feb-21 Feb-21
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	ertificate. n conducted in d (M&TE critical f 10 # 106276 101369 SN 3617 SN 771 ID # MY49071430 MY46110673 Name	the closed laboratory f or calibration) Cal Date(Calibrated b 12-May-20 (CTTL, No. 12-May-20 (CTTL, No. 30-Jan-20(SPEAG,No. 10-Feb-20(CTTL-SPE/ Cal Date(Calibrated by 25-Feb-20 (CTTL, No. 10-Feb-20 (CTTL, No. Function	y, Certificate No. J20X02965) J20X02965) EX3-3617_Jan20 AG,No.Z20-6001 c, Certificate No.) J20X00516) J20X00515)) Schedule M D) . 7) F Schedule	d Calibration May-21 May-21 Jan-21 Feb-21 d Calibration Feb-21 Feb-21

Certificate No: Z20-60297

Page 1 of 8

Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

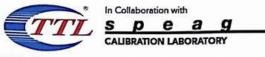
TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook


Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z20-60297

Page 2 of 8

E-mail: cttl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.1 ± 6 %	1.40 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.82 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.5 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.04 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.2 W/kg ± 18.7 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.5 ± 6 %	1.51 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.89 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	39.8 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.13 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.6 W/kg ± 18.7 % (k=2)

Certificate No: Z20-60297

Page 3 of 8

E-mail: cttl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.5Ω+ 6.58jΩ	
Return Loss	- 23.3dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.0Ω+ 6.72jΩ	
Return Loss	- 22.9dB	_

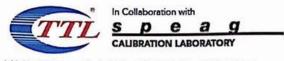
General Antenna Parameters and Design

Electrical Delay (one direction)	1.061 ns	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

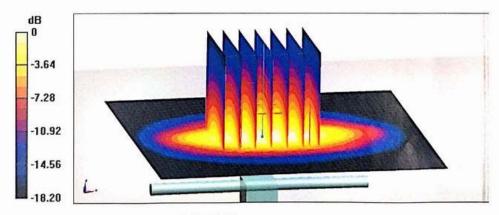

Manufactured by	SPEAG	
	UT LAG	

Certificate No: Z20-60297

Page 4 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China

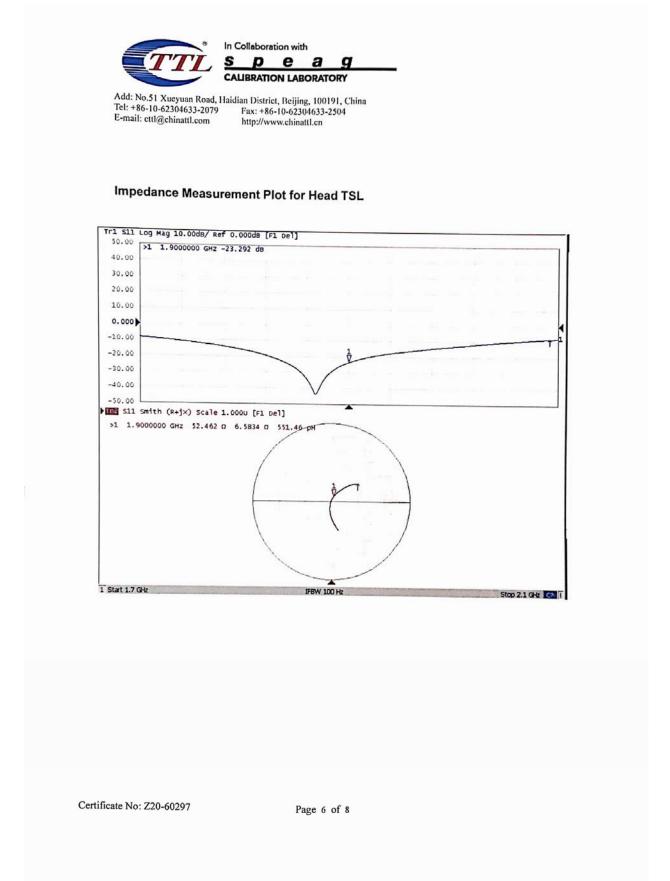

Date: 08.27.2020

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.404 \text{ S/m}$; $\varepsilon_r = 41.12$; $\rho = 1000 \text{ kg/m3}$ Phantom section: Center Section

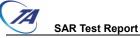
DASY5 Configuration:

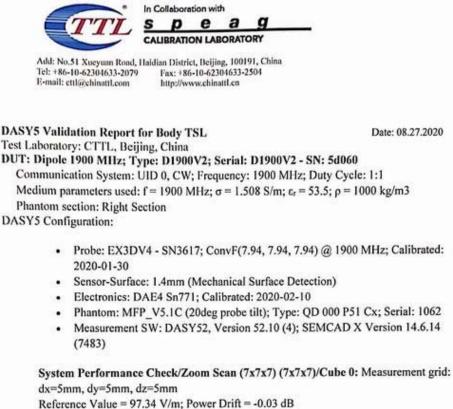
- Probe: EX3DV4 SN3617; ConvF(8.14, 8.14, 8.14) @ 1900 MHz; Calibrated: 2020-01-30
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn771; Calibrated: 2020-02-10
- Phantom: MFP V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

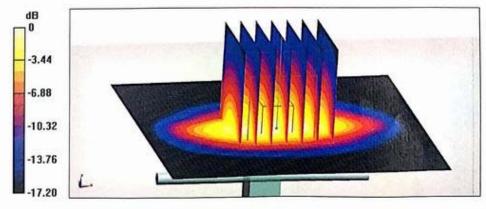
System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 100.3 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 19.0 W/kg SAR(1 g) = 9.82 W/kg; SAR(10 g) = 5.04 W/kgSmallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 51.9% Maximum value of SAR (measured) = 15.6 W/kg



0 dB = 15.6 W/kg = 11.93 dBW/kg


Certificate No: Z20-60297

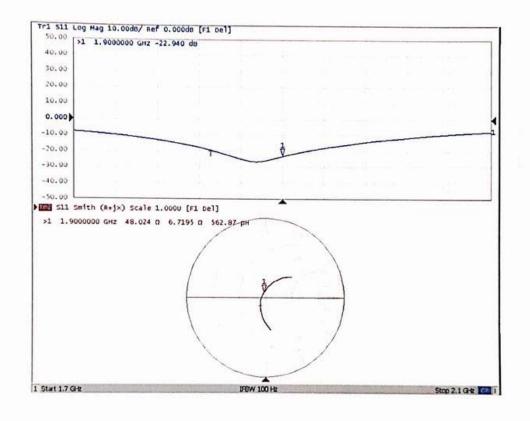

Page 5 of 8



Date: 08.27.2020

Peak SAR (extrapolated) = 18.2 W/kg SAR(1 g) = 9.89 W/kg; SAR(10 g) = 5.13 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 55.4% Maximum value of SAR (measured) = 15.3 W/kg

0 dB = 15.3 W/kg = 11.85 dBW/kg


Certificate No: Z20-60297

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: Z20-60297

Page 8 of 8

ANNEX J: D2450V2 Dipole Calibration Certificate

Tel: +86-10-623046.	33-2079 Fax: +	rict. Beijing, 100191, China	C	ALIBRATION
E-mail: cttl@chinatt Client TA(SI	Lcom http:// nanghai)	www.chinattl.cn Certificate No:	Z20-60298	
CALIBRATION CE	The second second	E		
Dbject	D2450	/2 - SN: 786		
	02400	- SN. 700		
Calibration Procedure(s)		-003-01 tion Procedures for dipole validation kit	ts	
Calibration date:	August	27, 2020		
pages and are part of the ce	rtificate.	the uncertainties with confidence prob		
pages and are part of the ce	rtificate.	the closed laboratory facility: environ		
bages and are part of the ce All calibrations have been humidity<70%. Calibration Equipment used	rtificate.	the closed laboratory facility: environ	nment temperature(22:	⊧3)℃ and
ages and are part of the ce MI calibrations have been numidity<70%. Calibration Equipment used	rtificate. conducted in (M&TE critical f	the closed laboratory facility: enviror or calibration)	nment temperature(22:	⊧3)°C and
Pages and are part of the ce NI calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A	rtificate. conducted in (M&TE critical f ID # 106276 101369	the closed laboratory facility: enviror or calibration) Cal Date(Calibrated by, Certificate N 12-May-20 (CTTL, No.J20X02965) 12-May-20 (CTTL, No.J20X02965)	nment temperature(22: lo.) Scheduled Ca May-2 May-2	H3)°C and Hibration 21 21
Pages and are part of the ce All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2	rtificate. conducted in (M&TE critical f ID # 106276 101369	the closed laboratory facility: environ or calibration) Cal Date(Calibrated by, Certificate N 12-May-20 (CTTL, No.J20X02965)	nment temperature(22: No.) Scheduled Ca May-2 May-2 n20) Jan-2	libration 21 21
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A Reference Probe EX3DV4 DAE4	rtificate. conducted in (M&TE critical fr ID # 106276 101369 SN 3617 SN 771	the closed laboratory facility: environ or calibration) Cal Date(Calibrated by, Certificate N 12-May-20 (CTTL, No.J20X02965) 12-May-20 (CTTL, No.J20X02965) 30-Jan-20(SPEAG,No.EX3-3617_Jan 10-Feb-20(CTTL-SPEAG,No.Z20-60	nment temperature(22: No.) Scheduled Ca May-2 n20) Jan-2 017) Feb-2	Hibration 21 21 21
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A Reference Probe EX3DV4 DAE4 Secondary Standards	rtificate. conducted in (M&TE critical fr ID # 106276 101369 SN 3617	the closed laboratory facility: environ or calibration) Cal Date(Calibrated by, Certificate N 12-May-20 (CTTL, No.J20X02965) 12-May-20 (CTTL, No.J20X02965) 30-Jan-20(SPEAG,No.EX3-3617_Jan	nment temperature(22: No.) Scheduled Ca May-2 n20) Jan-2 017) Feb-2	libration 21 21 21 21
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A Reference Probe EX3DV4 DAE4	rtificate. conducted in (M&TE critical fr ID # 106276 101369 SN 3617 SN 771 ID #	the closed laboratory facility: environ or calibration) Cal Date(Calibrated by, Certificate N 12-May-20 (CTTL, No.J20X02965) 12-May-20 (CTTL, No.J20X02965) 30-Jan-20(SPEAG,No.EX3-3617_Jan 10-Feb-20(CTTL-SPEAG,No.Z20-60) Cal Date(Calibrated by, Certificate No 25-Feb-20 (CTTL, No.J20X00516)	nment temperature(22: No.) Scheduled Ca May-2 n20) Jan-2 017) Feb-2 o.) Scheduled Ca	Hibration 21 21 21 21 21 21 21
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	rtificate. conducted in (M&TE critical fr 106276 101369 SN 3617 SN 771 ID # MY49071430 MY46107873	the closed laboratory facility: environ or calibration) Cal Date(Calibrated by, Certificate N 12-May-20 (CTTL, No.J20X02965) 12-May-20 (CTTL, No.J20X02965) 30-Jan-20(SPEAG,No.EX3-3617_Jan 10-Feb-20(CTTL-SPEAG,No.Z20-60) Cal Date(Calibrated by, Certificate No 25-Feb-20 (CTTL, No.J20X00516) 10-Feb-20 (CTTL, No.J20X00515)	nment temperature(22: No.) Scheduled Ca May-2 May-2 017) Jan-2 017) Feb-2 o.) Scheduled Ca Feb-2	libration 21 21 21 21 21 21 21 21 21 21 21
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	rtificate. conducted in (M&TE critical fr 106276 101369 SN 3617 SN 771 ID # ID # ID #	the closed laboratory facility: environ or calibration) Cal Date(Calibrated by, Certificate N 12-May-20 (CTTL, No.J20X02965) 12-May-20 (CTTL, No.J20X02965) 30-Jan-20(SPEAG,No.EX3-3617_Jan 10-Feb-20(CTTL-SPEAG,No.Z20-60) Cal Date(Calibrated by, Certificate No 25-Feb-20 (CTTL, No.J20X00516)	nment temperature(22: No.) Scheduled Ca May-2 May-2 017) Jan-2 017) Feb-2 0.) Scheduled Ca Feb-3 Feb-3	libration 21 21 21 21 21 21 21 21 21 21 21
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	rtificate. conducted in (M&TE critical fi 106276 101369 SN 3617 SN 771 ID # MY49071430 MY46107873 Name	the closed laboratory facility: environ or calibration) Cal Date(Calibrated by, Certificate N 12-May-20 (CTTL, No.J20X02965) 12-May-20 (CTTL, No.J20X02965) 30-Jan-20(SPEAG,No.EX3-3617_Jan 10-Feb-20(CTTL-SPEAG,No.Z20-60) Cal Date(Calibrated by, Certificate No 25-Feb-20 (CTTL, No.J20X00516) 10-Feb-20 (CTTL, No.J20X00515) Function	nment temperature(22: No.) Scheduled Ca May-2 May-2 017) Jan-2 017) Feb-2 0.) Scheduled Ca Feb-3 Feb-3	libration 21 21 21 21 21 21 21 21 21 21 21

Certificate No: Z20-60298

Page 1 of 8

Glossan

Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

tissue simulating liquid
sensitivity in TSL / NORMx,y,z
not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", September 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z20-60298

Page 2 of 8

spea CALIBRATION LABORATORY

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

g

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.5 ± 6 %	1.79 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	S	

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.0 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.3 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.99 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.0 W/kg ± 18.7 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.1 ± 6 %	1.94 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

SAR for nominal Body TSL parameters	normalized to 1W	24.3 W/kg ± 18.7 % (k=2)
SAR measured	250 mW input power	6.08 W/kg
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR for nominal Body TSL parameters	normalized to 1W	52.4 W/kg ± 18.8 % (k=2)
SAR measured	250 mW input power	13.1 W/kg
SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	

Certificate No: Z20-60298

Page 3 of 8

Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

an District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.5Ω+ 1.44 jΩ	
Return Loss	- 26.9dB	

Antenna Parameters with Body TSL

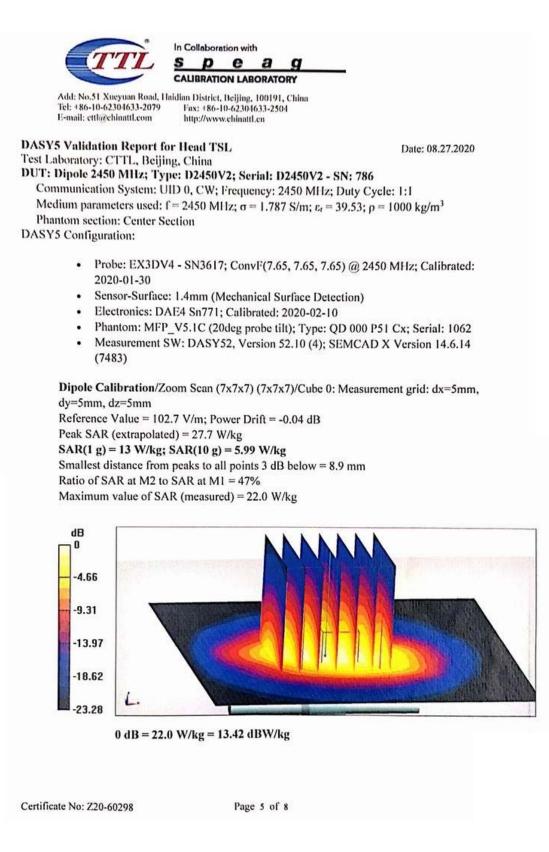
Impedance, transformed to feed point	50.9Ω+ 5.09 jΩ	
Return Loss	- 25.8dB	

General Antenna Parameters and Design

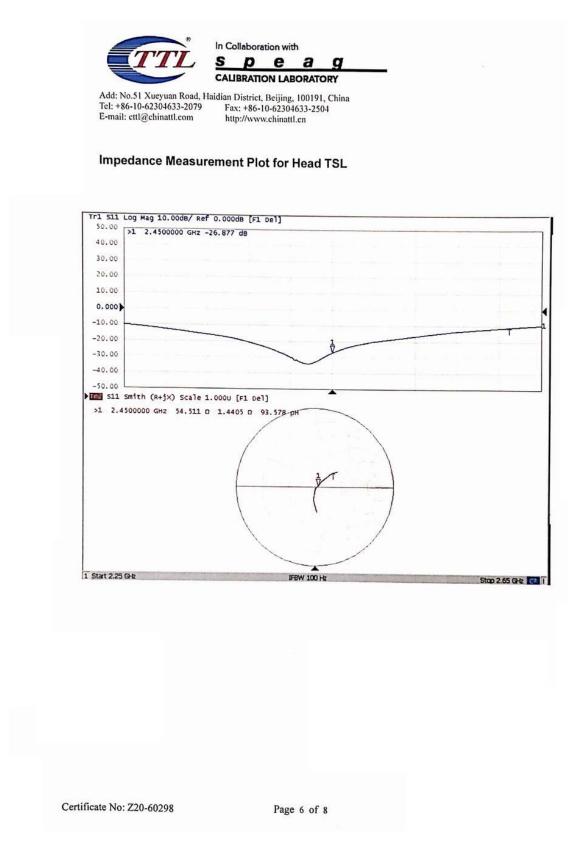
Electrical Delay (one direction)	1.018 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

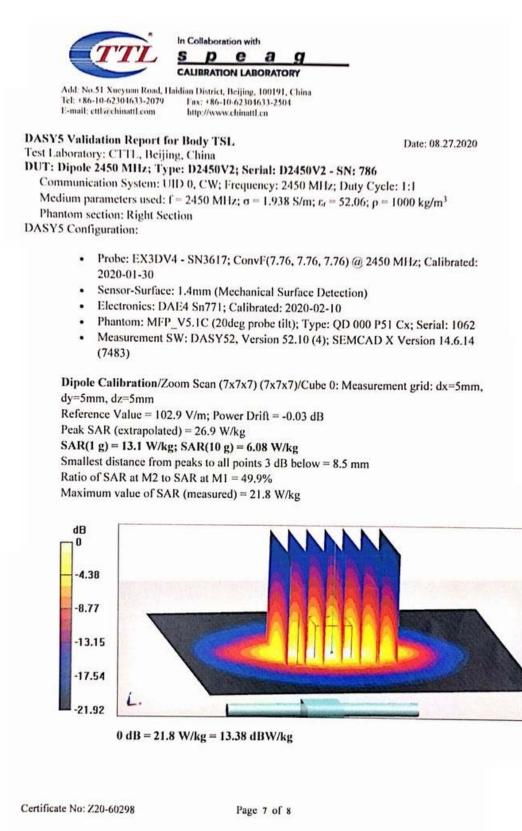
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

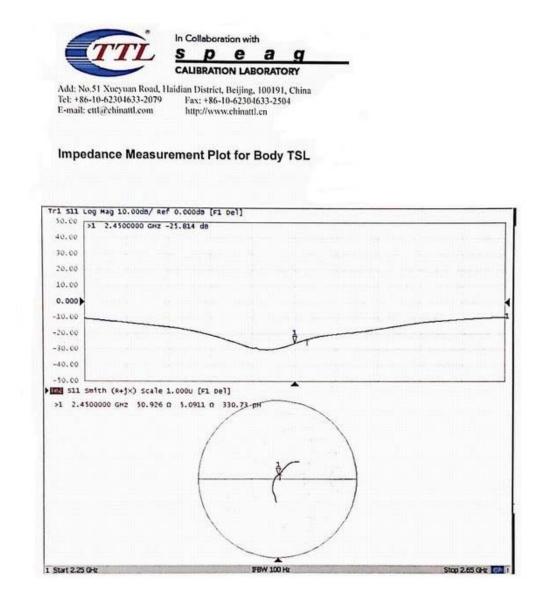

Additional EUT Data

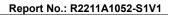
Manufactured by	SPEAG
-----------------	-------


Certificate No: Z20-60298

Page 4 of 8







Certificate No: Z20-60298

Page 8 of 8

ANNEX K: D2600V2 Dipole Calibration Certificate

	CALIBRAT		いないなな権
Add: No.52 HuaYua Tel: +86-10-623046 E-mail: cttl@chinatt	33-2079 Fax: +	District, Beijing, 100191, Chi 86-10-62304633-2504 www.chinattl.en	CALIBRATIC CNAS L057
Client TA(SI	hanghai)	Certificate No: Z	21-60156
CALIBRATION CE	ERTIFICAT	E	
Object	D2600	/2 - SN: 1025	
Calibration Procedure(s)	FF-Z11	-003-01	
	Calibra	tion Procedures for dipole validation kits	
Calibration date:	April 23	3, 2021	
All calibrations have been	conducted in t	he closed laboratory facility: environment	temperature (22±3)°C and
humidity<70%.		he closed laboratory facility: environment or calibration)	temperature (22±3)°C an
humidity<70%. Calibration Equipment used			temperature (22±3)°C an Scheduled Calibration
numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2	I (M&TE critical fr ID # 106276	Cal Date(Calibrated by, Certificate No.) 12-May-20 (CTTL, No.J20X02965)	
numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A	I (M&TE critical fo ID # 106276 101369	Cal Date(Calibrated by, Certificate No.) 12-May-20 (CTTL, No.J20X02965) 12-May-20 (CTTL, No.J20X02965)	Scheduled Calibration May-21 May-21
numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2	I (M&TE critical fo ID # 106276 101369	Cal Date(Calibrated by, Certificate No.) 12-May-20 (CTTL, No.J20X02965)	Scheduled Calibration May-21
numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A Reference Probe EX3DV4 DAE4	I (M&TE critical fi ID # 106276 101369 SN 3617 SN 777	Cal Date(Calibrated by, Certificate No.) 12-May-20 (CTTL, No.J20X02965) 12-May-20 (CTTL, No.J20X02965) 27-Jan-21(SPEAG,No.EX3-3617_Jan21) 08-Jan-21(CTTL-SPEAG,No.Z21-60003)	Scheduled Calibration May-21 May-21 Jan-22 Jan-22
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A Reference Probe EX3DV4 DAE4 Secondary Standards	I (M&TE critical fi 106276 101369 SN 3617 SN 777 ID #	Cal Date(Calibrated by, Certificate No.) 12-May-20 (CTTL, No.J20X02965) 12-May-20 (CTTL, No.J20X02965) 27-Jan-21(SPEAG,No.EX3-3617_Jan21) 08-Jan-21(CTTL-SPEAG,No.Z21-60003) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration May-21 May-21 Jan-22 Jan-22 Scheduled Calibration
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A Reference Probe EX3DV4 DAE4	I (M&TE critical fi 106276 101369 SN 3617 SN 777 ID # MY49071430	Cal Date(Calibrated by, Certificate No.) 12-May-20 (CTTL, No.J20X02965) 12-May-20 (CTTL, No.J20X02965) 27-Jan-21(SPEAG,No.EX3-3617_Jan21) 08-Jan-21(CTTL-SPEAG,No.Z21-60003) Cal Date(Calibrated by, Certificate No.) 01-Feb-21 (CTTL, No.J21X00593)	Scheduled Calibration May-21 May-21 Jan-22 Jan-22
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	I (M&TE critical fi 106276 101369 SN 3617 SN 777 ID # MY49071430	Cal Date(Calibrated by, Certificate No.) 12-May-20 (CTTL, No.J20X02965) 12-May-20 (CTTL, No.J20X02965) 27-Jan-21(SPEAG,No.EX3-3617_Jan21) 08-Jan-21(CTTL-SPEAG,No.Z21-60003) Cal Date(Calibrated by, Certificate No.) 01-Feb-21 (CTTL, No.J21X00593)	Scheduled Calibration May-21 May-21 Jan-22 Jan-22 Scheduled Calibration Jan-22
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C	I (M&TE critical fi 106276 101369 SN 3617 SN 777 ID # MY49071430 MY46110673	Cal Date(Calibrated by, Certificate No.) 12-May-20 (CTTL, No.J20X02965) 12-May-20 (CTTL, No.J20X02965) 27-Jan-21(SPEAG,No.EX3-3617_Jan21) 08-Jan-21(CTTL-SPEAG,No.Z21-60003) Cal Date(Calibrated by, Certificate No.) 01-Feb-21 (CTTL, No.J21X00593) 14-Jan-21 (CTTL, No.J21X00232)	Scheduled Calibration May-21 May-21 Jan-22 Jan-22 Scheduled Calibration Jan-22 Jan-22
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C Calibrated by:	I (M&TE critical fi ID # 106276 101369 SN 3617 SN 777 ID # MY49071430 MY46110673 Name	Cal Date(Calibrated by, Certificate No.) 12-May-20 (CTTL, No.J20X02965) 12-May-20 (CTTL, No.J20X02965) 27-Jan-21(SPEAG,No.EX3-3617_Jan21) 08-Jan-21(CTTL-SPEAG,No.Z21-60003) Cal Date(Calibrated by, Certificate No.) 01-Feb-21 (CTTL, No.J21X00593) 14-Jan-21 (CTTL, No.J21X00232) Function	Scheduled Calibration May-21 May-21 Jan-22 Jan-22 Scheduled Calibration Jan-22 Jan-22
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	I (M&TE critical fi ID # 106276 101369 SN 3617 SN 777 ID # MY49071430 MY46110673 Name Zhao Jing	Cal Date(Calibrated by, Certificate No.) 12-May-20 (CTTL, No.J20X02965) 12-May-20 (CTTL, No.J20X02965) 27-Jan-21(SPEAG,No.EX3-3617_Jan21) 08-Jan-21(CTTL-SPEAG,No.Z21-60003) Cal Date(Calibrated by, Certificate No.) 01-Feb-21 (CTTL, No.J21X00593) 14-Jan-21 (CTTL, No.J21X00232) Function SAR Test Engineer	Scheduled Calibration May-21 May-21 Jan-22 Jan-22 Scheduled Calibration Jan-22 Jan-22

Certificate No: Z21-60156

Page 1 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices. Part 1: Device used and be approximately and and be approximately approxima
- communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z21-60156

Page 2 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.9 ± 6 %	1.94 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.9 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	56.1 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.10 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.5 W/kg ± 18.7 % (k=2)

Certificate No: Z21-60156

Page 3 of 6

·	In Ca	ollabora	tion wit	h	
TTL	S	p	е	а	g
	CAL	BRATI	ON LAB	ORATO	DRY
Add: No.52 HuaYuanBei Road, Tel: +86-10-62304633-2079 E-mail: ettl@chinattl.com	Fa	x: +86-1	rict, Beij 0-62304 .chinattl	633-250	191, China 14

Appendix(Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.1Ω- 7.19jΩ	
Return Loss	- 22.9dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.055 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

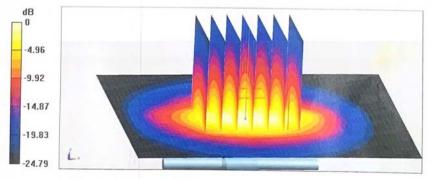
Additional EUT Data

Manufactured by		SPEAG	
cate No: Z21-60156			
cate 180: 2.21-00156	Page 4 of 6		

Date: 04.23.2021

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1025

Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; σ = 1.944 S/m; ϵ_r = 39.94; ρ = 1000 kg/m³


Phantom section: Center Section

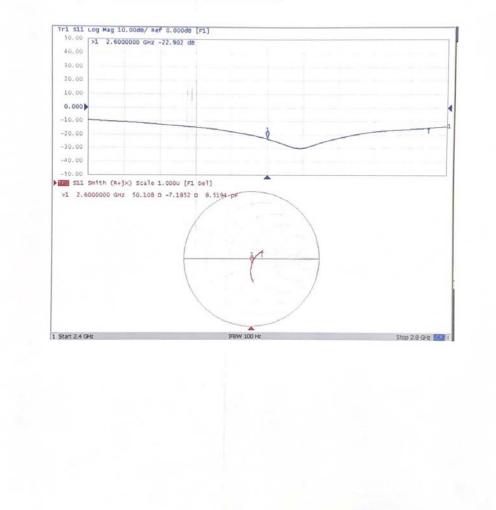
Test Laboratory: CTTL, Beijing, China

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(7.55, 7.55, 7.55) @ 2600 MHz; Calibrated: 2021-01-27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 2021-01-08
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 101.1 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 31.5 W/kg SAR(1 g) = 13.9 W/kg; SAR(10 g) = 6.1 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 44% Maximum value of SAR (measured) = 24.4 W/kg

0 dB = 24.4 W/kg = 13.87 dBW/kg


Certificate No: Z21-60156

Page 5 of 6

Impedance Measurement Plot for Head TSL

Certificate No: Z21-60156

Page 6 of 6

ANNEX L: DAE4 Calibration Certificate (SN: 1692)

Engineering AG eughausstrasse 43, 8004 Zu	Ory of		 S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service
Accredited by the Swiss Accred The Swiss Accreditation Sen Multilateral Agreement for th	vice is one of the signatories	s to the EA	tation No.: SCS 0108
Client TA-SH (Aude			nte No: DAE4-1692_Oct21
CALIBRATION	CERTIFICATE		
Object	DAE4 - SD 000 D	004 BO - SN: 1692	
Calibration procedure(s)	QA CAL-06.v30 Calibration proces	dure for the data acquisition	electronics (DAE)
Calibration date:	October 04, 2021		
All calibrations have been conc	certainties with confidence pro	nal standards, which realize the physic obability are given on the following page r facility: environment temperature (22 :	es and are part of the certificate.
All calibrations have been conc Calibration Equipment used (M Primary Standards	certainties with confidence pro	obability are given on the following page	es and are part of the certificate. t 3)°C and humidity < 70%. Scheduled Calibration
the measurements and the un	ucted in the closed laboratory &TE critical for calibration)	bability are given on the following page facility: environment temperature (22 : <u>Cal Date (Certificate No.)</u> 31-Aug-21 (No:31368)	es and are part of the certificate. ± 3)°C and humidity < 70%. <u>Scheduled Calibration</u> Aug-22
All calibrations have been conc Calibration Equipment used (M Primary Standards Keithley Multimeter Type 2001	Uncted in the closed laboratory #TE critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001	obability are given on the following page r facility: environment temperature (22 : Cal Date (Certificate No.)	es and are part of the certificate. t 3)°C and humidity < 70%. Scheduled Calibration
All calibrations have been conc Calibration Equipment used (M Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit	Uncted in the closed laboratory #TE critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001	obability are given on the following page (facility: environment temperature (22 : <u>Cal Date (Certificate No.)</u> 31-Aug-21 (No:31368) <u>Check Date (in house)</u> 07-Jan-21 (in house check)	es and are part of the certificate. ± 3)°C and humidity < 70%. <u>Scheduled Calibration</u> Aug-22 <u>Scheduled Check</u> In house check: Jan-22
All calibrations have been conc Calibration Equipment used (M Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit	Arme	Cal Date (Certificate No.) 31-Aug-21 (No:31368) Check Date (in house) 07-Jan-21 (in house check) 07-Jan-21 (in house check)	es and are part of the certificate. ± 3)°C and humidity < 70%. <u>Scheduled Calibration</u> Aug-22 <u>Scheduled Check</u> In house check: Jan-22
All calibrations have been conc Calibration Equipment used (M Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1	Arte critical for calibration) ATE critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002	obability are given on the following page facility: environment temperature (22 : Cal Date (Certificate No.) 31-Aug-21 (No:31368) Check Date (in house) 07-Jan-21 (in house check) 07-Jan-21 (in house check)	es and are part of the certificate. ± 3)°C and humidity < 70%. Scheduled Calibration Aug-22 Scheduled Check In house check: Jan-22 In house check: Jan-22
All calibrations have been conc Calibration Equipment used (M Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1	Arme	Cal Date (Certificate No.) 31-Aug-21 (No:31368) Check Date (in house) 07-Jan-21 (in house check) 07-Jan-21 (in house check)	es and are part of the certificate. £ 3)°C and humidity < 70%. Scheduled Calibration Aug-22 Scheduled Check In house check: Jan-22 In house check: Jan-22

TA Technology (Shanghai) Co., Ltd.TA-MB-05-003SPage 259 of 272This report shall not be reproduced except in full, without the written approval of TA Technology (Shanghai) Co., Ltd.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

С

s

Schweizerischer Kalibrierdienst Service suisse d'étaionnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE Connector angle

data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-1692_Oct21

Page 2 of 5

DC Voltage Measurement A/D - Converter Resolution nominal

High Range:	1LSB =	6.1μV,	full range =	-100+300 mV
Low Range:	1LSB =	61nV,	full range =	-1+3mV
DASY measurement	parameters: Aut	o Zero Time: 3	sec; Measuring	time: 3 sec

Calibration Factors	x	Y	Z
High Range	404.451 ± 0.02% (k=2)	404.531 ± 0.02% (k=2)	404.388 ± 0.02% (k=2)
	3.95023 ± 1.50% (k=2)		

Connector Angle

Connector Angle to be used in DASY system	334.5°±1°
---	-----------

Certificate No: DAE4-1692_Oct21

Page 3 of 5

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	199998.31	2.10	0.00
Channel X + Input	20004.35	2.07	0.01
Channel X - Input	-19997.45	4.22	-0.02
Channel Y + Input	199996.63	0.87	0.00
Channel Y + Input	20001.14	-1.08	-0.01
Channel Y - Input	-20002.28	-0.47	0.00
Channel Z + Input	199998.12	1.98	0.00
Channel Z + Input	20002.54	0.26	0.00
Channel Z - Input	-20001.19	0.53	-0.00

Appendix (Additional assessments outside the scope of SCS0108)

Low Range Reading (µV) Difference (µV) Error (%) Channel X + Input 2001.64 0.32 0.02 Channel X + Input 202.20 0.58 0.29 Channel X - Input -197.54 0.78 -0.39 Channel Y + Input 1999.35 -1.87 -0.09 Channel Y + Input 200.36 -1.25 -0.62 Channel Y - Input -199.29 -0.98 0.49 Channel Z + Input 2000.89 -0.32 -0.02 Channel Z + Input 200.91 -0.59 -0.29 Channel Z - Input -199.57 -1.16 0.58

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (µV)
Channel X	200	15.85	13.56
	- 200	-12.16	-14.19
Channel Y	200	21.51	20.97
	- 200	-24.04	-24.35
Channel Z	200	-6.87	-7.13
	- 200	6.28	5.75

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (µV)	Channel Z (µV)
Channel X	200		-0.88	-2.39
Channel Y	200	6.27	-	2.31
Channel Z	200	8.86	3.02	

Certificate No: DAE4-1692_Oct21

```
Page 4 of 5
```


4. AD-Converter Values with Inputs shorted

DASY measurement parameters: Auto Zoro Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15949	15587
Channel Y	15899	16465
Channel Z	15625	15999

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	1.24	-0.39	2.50	0.44
Channel Y	-0.70	-1.86	0.77	0.48
Channel Z	-0.23	-1.42	0.54	0.37

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)	
Channel X	200	200	
Channel Y	200	200	
Channel Z	200	200	

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE4-1692_Oct21

ANNEX M: DAE4 Calibration Certificate (SN: 1291)

Client :	A(Shanghai)	Certific	ate No: Z22-60098
CALIBRATION			
Object	DAE4 - 5	SN: 1291	
Calibration Procedure(FF-Z11-0	002-01 on Procedure for the Data Ad	equisition Electronics
Calibration date:	March 24	4, 2022	
pages and are part of the	he certificate.		probability are given on the following nvironment temperature(22±3)°C and
Calibration Equipment	used (M&TE critical for	calibration)	
Primary Standards	ID # Cal [Date(Calibrated by, Certificate N	o.) Scheduled Calibration
		Date(Calibrated by, Certificate No 5-Jun-21 (CTTL, No.J21X04465	
Process Calibrator 753	1971018 1 Name	5-Jun-21 (CTTL, No.J21X04465	
Primary Standards Process Calibrator 753 Calibrated by:	1971018 1	5-Jun-21 (CTTL, No.J21X04465) Jun-22
Process Calibrator 753	1971018 1 Name	5-Jun-21 (CTTL, No.J21X04465) Jun-22
Process Calibrator 753 Calibrated by:	1971018 1 Name Yu Zongying	5-Jun-21 (CTTL, No.J21X04465 Function SAR Test Engineer) Jun-22
Process Calibrator 753 Calibrated by: Reviewed by: Approved by:	1971018 1 Name Yu Zongying Lin Hao Qi Dianyuan	5-Jun-21 (CTTL, No.J21X04465 Function SAR Test Engineer SAR Test Engineer) Jun-22 Signature
Process Calibrator 753 Calibrated by: Reviewed by: Approved by:	1971018 1 Name Yu Zongying Lin Hao Qi Dianyuan	5-Jun-21 (CTTL, No.J21X04465 Function SAR Test Engineer SAR Test Engineer SAR Project Leader) Jun-22 Signature

SAR Test Report

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn E-mail: cttl@chinattl.com

In Collaboration with

е CALIBRATION LABORATORY

p

S

Glossary:

DAE Connector angle

data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY . system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the . angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate	No:	Z22-600	98

Page 2 of 3

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn

DC Voltage Measurement

A/D - Converter Res	olution nomin	nal			
High Range:	1LSB =	6.1µV,	full range =	-100+300 mV	
Low Range:	1LSB =	61nV,	full range =	-1+3mV	
DASY measurement	parameters:	Auto Zero	Time: 3 sec; Meas	uring time: 3 sec	

Calibration Factors	x	Y	z
High Range	402.577 ± 0.15% (k=2)	403.249 ± 0.15% (k=2)	$403.164 \pm 0.15\%$ (k=2)
Low Range	3.97371 ± 0.7% (k=2)	3.97778 ± 0.7% (k=2)	3.97281 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system					1679	'±1°
		40.7			I	
		1.5.1.1				
		10.00				
		3.1				
		- h-				1
		1.				
			the state			
		1.2				
		1.				
11-11-11-11-11-11-11-11-11-11-11-11-11-		1.				
		in the				
		1247				
		1				
				1 14		
		10		11.141		
		E.				
ertificate No: Z22-60	0.08		Develop			
anneate No: 222-00	090	See 1	Page 3 of 3			

ANNEX N: The EUT Appearance

The EUT Appearance are submitted separately.

ANNEX O: Test Setup Photos

The Test Setup Photos are submitted separately.

ANNEX P: Product Change Description (Variant 1)

ANNEX Q: Product Change Description (Variant 2)

ANNEX R: Product Change Description (Variant 3)

ANNEX S: Product Change Description (Variant 4)