

FCC TEST REPORT

Product Name: Smart Tablet Computer

Trade Mark:

BLUEBIRD A TSC Company

Model No.: T10

Report Number: 24122015364RFM-3

Test Standards: FCC 47 CFR Part 90 Subpart R

FCC ID: SS4T10F1

Test Result: PASS

Date of Issue: January 23, 2025

Prepared for:

Bluebird Inc.

3F, 115, Irwon-ro, Gangnam-gu, Seoul, Republic of Korea


Prepared by:

Shenzhen UnionTrust Quality and Technology Co., Ltd.

16/F, Block A, Building 6th, Baoneng Science and Technology Park,
Longhua Street, Longhua District, Shenzhen, China

TEL: +86-755-2823 0888 FAX: +86-755-2823 0886

Prepared by:	Parid Chen	Reviewed by:	Any h
_	David Chen		Henry Lu
	Senior Project Engineer		Team Leader
Approved by:	Robben chen	Date:	January 23, 2025
	Robben Chen		
	Assistant Manager		

Version

Version No.	Date	Description
V1.0	January 23, 2025	Original

CONTENTS

1.	GENE	ERAL INFORMATION	4
	1.1	CLIENT INFORMATION	4
	1.2	EUT INFORMATION	
		1.2.1 GENERAL DESCRIPTION OF EUT	4
		1.2.2 DESCRIPTION OF ACCESSORIES	
	1.3	PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD	
	1.4	DESCRIPTION OF SUPPORT UNITS	6
	1.5	TEST LOCATION	6
	1.6	TEST FACILITY	7
	1.7	DEVIATION FROM STANDARDS	
	1.8	ABNORMALITIES FROM STANDARD CONDITIONS	7
	1.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER	7
	1.10	MEASUREMENT UNCERTAINTY	7
2.	TECT	SUMMARY	
2. 3.		PMENT LIST	
ა. 4.		CONFIGURATION	
4.	IESI		
	4.1	ENVIRONMENTAL CONDITIONS FOR TESTING	
	4.2	TEST SETUP	11
		4.2.1 FOR RADIATED EMISSIONS TEST SETUP	11
		4.2.2 FOR CONDUCTED RF TEST SETUP	13
	4.3	TEST CHANNELS	14
	4.4	SYSTEM TEST CONFIGURATION	.14
	4.5	PRE-SCAN	15
_	DADI	O TECHNICAL REQUIREMENTS SPECIFICATION	46
ъ. 	KADI		
	5.1	REFERENCE DOCUMENTS FOR TESTING	16
	5.2	CONDUCTED OUTPUT POWER AND ERP	16
	5.3	99%&26DB BANDWIDTH	
	5.4	EMISSION MASK	21
	5.5	SPURIOUS EMISSIONS AT ANTENNA TERMINALS	26
	5.6	FIELD STRENGTH OF SPURIOUS RADIATION	33
	5.7	FREQUENCY STABILITY	
	5.8	PEAK-TO-AVERAGE RATIO	
A D:	DENIE:	X 1 PHOTOS OF TEST SETUP	
		X 1 PHOTOS OF FLIT CONSTRUCTIONAL RETAILS	

1. GENERAL INFORMATION 1.1 CLIENT INFORMATION

Applicant:	Bluebird Inc.	
Address of Applicant:	3F, 115, Irwon-ro, Gangnam-gu, Seoul, Republic of Korea	
Manufacturer:	Bluebird Inc.	
Address of Manufacturer:	3F, 115, Irwon-ro, Gangnam-gu, Seoul, Republic of Korea	

Report No.: 24122015364RFM-3

1.2 EUT INFORMATION

1.2.1 General Description of EUT

.2.1 General Description of EU1				
Product Name:	Smart Tablet Computer			
Model No.:	T10			
Trade Mark:	BLUEBIRD A TSC Company			
DUT Stage:	Identical Prototype			
	GSM Bands:	GSM850 /PCS 1900		
	UTRA Bands:	TRA Bands: WCDMA Band II/IV/V		
	E-UTRA Bands:	FDD Band 2/4/5/7/12/13/1	4/17/66	
	E-UTRA Ballus.	TDD Band 38		
	2.4 GHz ISM Band:	IEEE 802.11b/g/n		
EUT Supports Function:	2.4 GHZ ISIVI Ballu.	Bluetooth V5.0		
(Provided by the customer)		5 150 MHz to 5 250 MHz	IEEE 802.11a/n/ac	
	5 GHz U-NII Bands:	5 250 MHz to 5 350 MHz	IEEE 802.11a/n/ac	
		5 470 MHz to 5 725 MHz	IEEE 802.11a/n/ac	
		5 725 MHz to 5 850 MHz	IEEE 802.11a/n/ac	
	RNSS Band:	1559 MHz to 1610 MHz	GPS/ BDS/ GLONASS/ Galileo/ SBAS	
	NFC:	13.553 MHz to 13.567 MHz		
Software Version:	R1.00 (Provided by the customer)			
Hardware Version:	REV_C (Provided by the customer)			
Sample Received Date:	November 29, 2024			
Sample Tested Date:	January 2, 2025 to January 13, 2025			
Remark: The above EUT's information was provided by customer. Please refer to the specifications or user's manual for more detailed description.				

1.2.2 Description of Accessories

Adapter			
Model No.: ICP20-050-3000B			
Input: 100-240V~50/60Hz 0.6A			
Output:	5.0V===3.0A		

Battery			
Model No.: BAT-800001			
Battery Type: Lithium-ion Polymer Battery			
Rated Voltage:	3.8Vdc		
Limited Charge Voltage:	4.35Vdc		
Rated Capacity:	8000mAh		

Cable				
Description:	USB Type-C to USB 3.0 Type A Cable			
Connector:	USB Type-C / USB 3.0 Type A			
Cable Type:	Shielded without ferrite			
Length:	1 Meter			

Page 6 of 41 Report No.: 24122015364RFM-3

1.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD

Support Networks:	upport Networks: LTE		
Type of Modulation:	LTE Band 14:		QPSK, 16QAM
Eregueney Benge	LTE Band 14 (Channel Bandwidth: 5 MHz):		790.5-795.5 MHz
Frequency Range:	LTE Band 14 (Channel Bandwidth: 10 MHz):	793 MHz
Max BE Quitaut Bower	LTE Band 14 (Channel Bandwidth: 5 MHz):	23.21 dBm
Max RF Output Power:	LTE Band 14 (Channel Bandwidth: 10 MHz):	23.36 dBm
	LTE Band 14	Channel Bandwidth: 5 MHz	4M50G7D
Type of Emission:	QPSK	Channel Bandwidth: 10 MHz	8M97G7D
Type of Emission:	LTE Band 14	Channel Bandwidth: 5 MHz	4M50W7D
	16QAM	Channel Bandwidth: 10 MHz	8M98W7D
Sample No.:	Radiated: S202411294756-ZJA09/9		
Campic Ito.	Conducted: S202411294756-ZJA05/9		
Antenna Type: (Provided by the customer)	PIFA Antenna		
Antenna Gain: (Provided by the customer)	1 -1 1 (B)		
Normal Test Voltage:	3.8 Vdc		
Extreme Test Voltage: 3.7 to 4.35 Vdc			
Extreme Test Temperature:	-30 ℃ to +50 ℃		

1.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested with associated equipment below.

1) Support Equipment

Description	Manufacturer	Model No.	Serial Number	Supplied by
Dummy battery	Bluebird	N/A	S202411294756-PJA09	Bluebird

2) Support Cable

Cable No.	Description	Connector	Length	Supplied by
1	Antenna Cable	SMA	0.3 Meter	UnionTrust

1.5 TEST LOCATION

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6th, Baoneng Science and Technology Park, Longhua Street, Longhua District,

Shenzhen, China

Telephone: +86 (0) 755 2823 0888 Fax: +86 (0) 755 2823 0886 Page 7 of 41 Report No.: 24122015364RFM-3

1.6 TEST FACILITY

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L9069

The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable under the ISO/IEC 17025 to international or national standards. Equipment has been calibrated by accredited calibration laboratories.

A2LA-Lab Certificate No.: 4312.01

Shenzhen UnionTrust Quality and Technology Co., Ltd. has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

ISED Wireless Device Testing Laboratories

CAB identifier: CN0032

FCC Accredited Lab.

Designation Number: CN1194

Test Firm Registration Number: 259480

1.7 DEVIATION FROM STANDARDS

None.

1.8 ABNORMALITIES FROM STANDARD CONDITIONS

None.

1.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER

None.

1.10 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Measurement Uncertainty
1	Conducted Output Power	±0.7 dB
2	99%&26dB Bandwidth	±1.86 %
3	Emission Mask	±2.7 dBm
4	Spurious emissions at antenna terminals	±2.7 dBm
5	Field strength of spurious radiation	30 MHz-1 GHz: ±4.9 dB 1 GHz-18 GHz: ±4.8 dB 18 GHz-40 GHz: ±5.1 dB
6	Frequency stability	±6.5 x 10 ⁻⁸
7	Humidity	±3.9 %
8	Temperature	±0.62 ℃
9	DC Voltages	±0.68 %

2. TEST SUMMARY

	FCC 47 CFR Part 90 Sub	ppart R Test Cases	
Test Item	Test Requirement	Test Method	Result
Effective Radiated Power (ERP)	FCC 47 CFR Part 2.1046 & FCC 47 CFR Part 90.542(a)(7)	KDB 412172 D01	PASS
Conducted Output Power	FCC 47 CFR Part 2.1046	ANSI C63.26-2015, Clause 5.2	PASS
99%&26dB Bandwidth	FCC 47 CFR Part 2.1049	ANSI C63.26-2015, Clause 5.4	PASS
Emission Mask	FCC 47 CFR Part 2.1051 & FCC 47 CFR Part 90.543	ANSI C63.26-2015, Clause 5.7	PASS
Spurious emissions at antenna terminals	FCC 47 CFR Part 2.1051 & FCC 47 CFR Part 90.543	ANSI C63.26-2015, Clause 5.7	PASS
Field strength of spurious radiation	FCC 47 CFR Part 2.1053 & FCC 47 CFR Part 90.543	ANSI C63.26-2015, Clause 5.5	PASS
Frequency stability	FCC 47 CFR Part 2.1055 & FCC 47 CFR Part 90.539	ANSI C63.26-2015, Clause 5.6	PASS
Peak-to-average power ratio (PAPR)	N/A	ANSI C63.26-2015, Clause 5.2.3.4	PASS

Disclaimer and Explanations:

The declared of product specification and data (e.g. antenna gain, RF specification, etc) for EUT presented in the report are provided by the customer, and the customer takes all the responsibilities for the accuracy of product specification.

3. EQUIPMENT LIST

		Radiated Er	nission Test E	Equipment List		
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date	Cal. Due date
Ø	3m SAC	ETS-LINDGREN	3M	Euroshiedpn- CT001270-13 17	11-Nov-2023	10-Nov-2026
\square	Receiver	R&S	ESIB26	100114	25-Oct-2024	24-Oct-2025
	Loop Antenna	ETS-LINDGREN	6502	00202525	28-Oct-2024	27-Oct-2025
	Broadband Antenna	ETS-LINDGREN	3142E	00201566	29-Oct-2024	28-Oct-2025
Ø	6dB Attenuator	Talent	RA6A5-N- 18	18103001	29-Oct-2024	28-Oct-2025
	Preamplifier	HP	8447F	2805A02960	25-Oct-2024	24-Oct-2025
Ø	Double-Ridged Waveguide Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3117-PA	00201541	01-Apr-2024	31-Mar-2025
\square	Pre-amplifier	ETS-LINDGREN	00118385	00201874	01-Apr-2024	31-Mar-2025
V	Double-Ridged Waveguide Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3116C-PA	00202652	28-Oct-2024	27-Oct-2025
	Pre-amplifier	ETS-LINDGREN	00118384	00202652	28-Oct-2024	27-Oct-2025
V	Multi device Controller	ETS-LINDGREN	7006-001	00160105	N/A	N/A
\square	Test Software	Audix	e3	Sof	tware Version: 9.160	0323

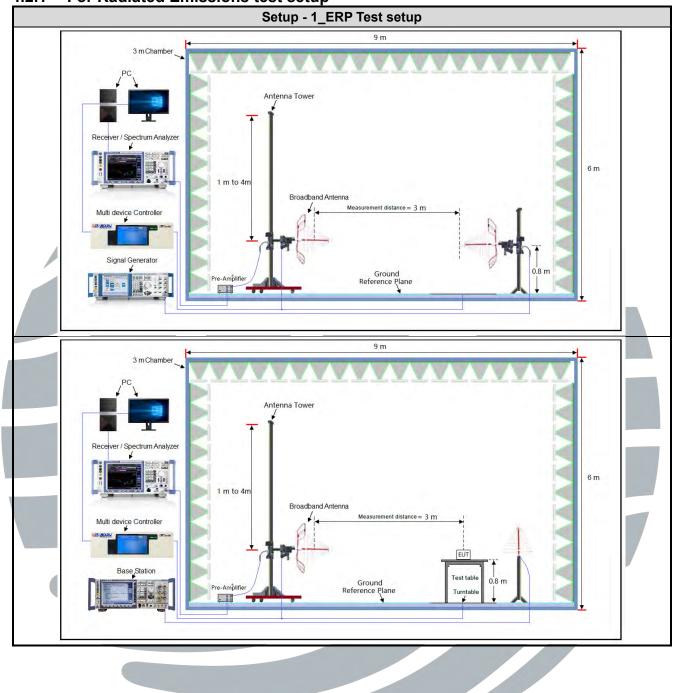
		RF Con	ducted Test Eq	uipment List		
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date	Cal. Due date
Ø	EXA Spectrum Analyzer	KEYSIGHT	N9020A	MY51286807	25-Oct-2024	24-Oct-2025
\square	DC Source	KIKUSUI	PWR400L	LK003024	19-Jul-2024	18-Jul-2025
Ø	Digital multimeter	FLUKE	15B+	30701460WS 15	29-Oct-2024	28-Oct-2025
	Temp & Humidity chamber	Votisch	VT4002	58566133290 020	29-Mar-2024	28-Mar-2025
☑	Wideband Radio Communication Tester	R&S	CMW500	119583	29-Mar-2024	28-Mar-2025
	Wideband Radio Communication Tester	R&S	CMW500	120932	29-Mar-2024	28-Mar-2025
Ø	JS1120 RF					

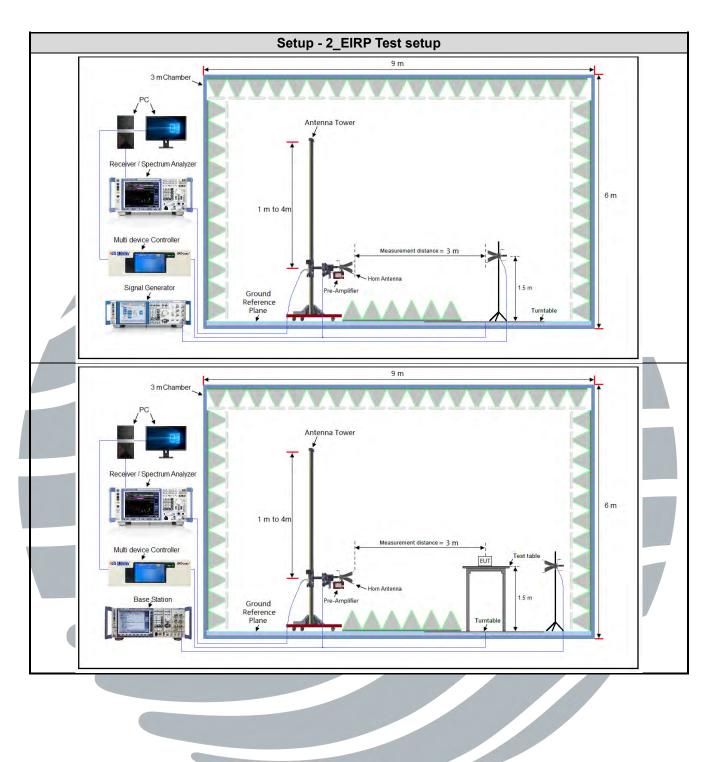
4. TEST CONFIGURATION

4.1 ENVIRONMENTAL CONDITIONS FOR TESTING

Test Environment	Selected Values During Tests							
Toot Condition	Ambient							
Test Condition	Temperature (°C)	Voltage (V)	Relative Humidity (%)					
TN/VN	+15 to +35	3.8	20 to 75					
TL/VL	-30	3.7	20 to 75					
TH/VL	+50	3.7	20 to 75					
TL/VH	-30	4.35	20 to 75					
TH/VH	+50	4.35	20 to 75					

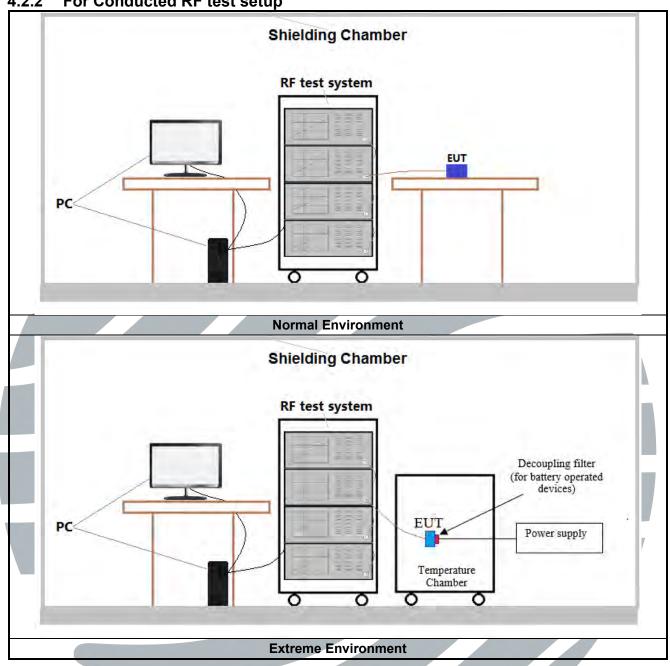
Remark:


- 1) The EUT just work in such extreme temperature of -30 °C to +50 °C and the extreme voltage of 3.7 V to 4.35 V, so here the EUT is tested in the temperature of -30 °C to +50 °C and the voltage of 3.7 V to 4.35 V.
- 2) VN: Normal Voltage; TN: Normal Temperature;
 - TL: Low Extreme Test Temperature; TH: High Extreme Test Temperature;
 - VL: Low Extreme Test Voltage; VH: High Extreme Test Voltage.



4.2TEST SETUP

4.2.1 For Radiated Emissions test setup



For Conducted RF test setup

Page 14 of 41 Report No.: 24122015364RFM-3

4.3 TEST CHANNELS

Band	Test Frequency ID	Bandwidth (MHz)	Number [UL]	Frequency of Uplink (MHz)
	Low Panga	5	23305	790.5
	Low Range	10	23330	793
TX: 788 MHz to 798 MHz	Middle Range	5/10	23330	793
	High Dangs	5	23355	795.5
	High Range	10	23330	793

4.4 SYSTEM TEST CONFIGURATION

For emissions testing, the equipment under test (EUT) setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, radiated emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario. It was powered by a 3.8V battery. Only the worst-case data were recorded in this test report.

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, X/Y/Z axis, and antenna ports.

All readings are extrapolated back to the equivalent three-meter reading using inverse scaling with distance. Analyzer resolution is 100 kHz or greater for frequencies below 1000MHz. The resolution is 1 MHz or greater for frequencies above 1000MHz. The spurious emissions more than 20 dB below the permissible value are not reported.

Radiated emission measurement were performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

4.5 PRE-SCAN

During all testing, EUT is in link mode with base station emulator at maximum power level. LTE worse case mode applicability and tested channel detail as below:

Item	Cha	nnel	Band	lwidtl	h (MF	łz)	ı	Modulation	1		RB#		Test Channel		
	1.4	3	5	10	15	20	QPSK	16QAM	64QAM	1	Half	Full	L	М	Н
LTE Band 14															
Conducted output power			\boxtimes	\boxtimes				\boxtimes	\boxtimes	\boxtimes	\boxtimes		\boxtimes	\boxtimes	\boxtimes
Peak-to-average ratio				\boxtimes								\boxtimes		\boxtimes	
99%&26dB Bandwidth			X	\boxtimes									\boxtimes	\boxtimes	\boxtimes
Band Edge at antenna terminals	D			\boxtimes									\boxtimes		\boxtimes
Spurious emissions at antenna terminals			\boxtimes	\boxtimes						\boxtimes			\boxtimes	\boxtimes	\boxtimes
Field strength of spurious radiation	O		\boxtimes	\boxtimes				0					\boxtimes	\boxtimes	\boxtimes
Frequency stability				\boxtimes		Ø								\boxtimes	
The mark "□" mea															

Page 16 of 41 Report No.: 24122015364RFM-3

5. RADIO TECHNICAL REQUIREMENTS SPECIFICATION 5.1 REFERENCE DOCUMENTS FOR TESTING

No.	Identity	Document Title							
1	FCC 47 CFR Part 2	Frequency allocations and radio treaty matters; general rules and regulations							
2	FCC 47 CFR Part 90	Private Land Mobile Radio Services							
3	ANSI C63.26-2015	American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services							
4	KDB 412172 D01 Determining ERP and EIRP v01r01	Guidelines for determining the effective radiated power (ERP) and isotropically radiated power (EIRP) of an RF transmitting system							

5.2 CONDUCTED OUTPUT POWER AND ERP

Test Requirement: FCC 47 CFR Part 2.1046
Test Method: ANSI C63.26-2015, Clause 5.2

Limit:

• Conducted Output Power: No Limit

• **Effective Radiated Power (ERP):** Portable stations (hand-held devices) transmitting in the 758-768 MHz band and the 788-798 MHz band are limited to 3 watts ERP.

Test Procedure:

Conducted Output Power: The EUT was set up for the maximum power with CMW500, and LTE link
data modulation and link up with simulator. Set the EUT to transmit under low, middle and high channel
and record the power level shown on simulator.

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

Effective Radiated Power (ERP)

According to KDB 412172 D01 Power Approach,

- ➤ ERP or EIRP = P_T + G_T L_C
- > ERP = EIRP -2.15

where

- > **P**_T = transmitter output power, expressed in dBW, dBm, or PSD;
- ➤ **G**_T = gain of the transmitting antenna, in dBd (ERP) or dBi (EIRP);
- > L_c = signal attenuation in the connecting cable between the transmitter and antenna, in dB.

Test Setup: Refer to section 4.2.2 for details. **Instruments Used:** Refer to section 3 for details

Test Mode: Link mode
Test Results: Pass

Conducted Output Power:

			Cor	nducted Power	(dBm)			
	Modulation			QPSK			16QAM	
Ban	Bandwidth	RB	5305	5330	5355	5305	5330	5355
d	(MHz)	KD	790.5 MHz	793 MHz	795.5 MHz	790.5 MHz	793 MHz	795.5 MHz
		1@0	23.00	23.12	23.19	22.06	21.85	21.42
		1@12	23.08	22.93	23.21	22.05	21.98	22.57
		1@24	23.03	23.14	23.11	22.04	22.05	21.79
14	5	12@0	22.05	22.00	22.04	21.07	21.02	21.06
		12@7	22.05	22.00	22.05	21.06	21.02	21.07
		12@13	22.08	22.05	22.08	21.03	21.00	21.24
		25@0	22.01	22.07	22.01	21.18	21.10	20.93
Ban	Bandwidth	DD.		5330			5330	
d	(MHz)	RB		793 MHz	-		793 MHz	
		1@0		23.23			21.92	
		1@25		23.26			22.25	
		1@49		23.36			22.07	
14	10	25@0		22.10			21.08	
		25@12		22.04			20.91	
		25@25		22.03			20.90	
		50@0		22.08			21.06	

ERP, $(G_T - L_C) = -1.1 \text{ dB}$

Channel	LTE Band	14 Maximum E	RP (dBm)	LTE Band	Result					
Citatillei	QPSK 16QAM		Limit	QPSK	16QAM	Limit	Result			
Channel Bandwidth: 5MHz										
Lowest	19.83	18.81	34.77	0.0962	0.0760	3	Pass			
Middle	19.89	18.80	34.77	0.0975	0.0759	3	Pass			
Highest	19.96	19.32	34.77	0.0991	0.0855	3	Pass			
Channel Bandwidth: 10MHz										
Middle	20.11	19.00	34.77	0.1026	0.0794	3	Pass			

Note: The maximum ERP is calculated from max output power and antenna gain, the antenna gain provided by the customer, and the customer takes all the responsibilities for the accuracy of antenna gain.

Page 18 of 41 Report No.: 24122015364RFM-3

5.399%&26DB BANDWIDTH

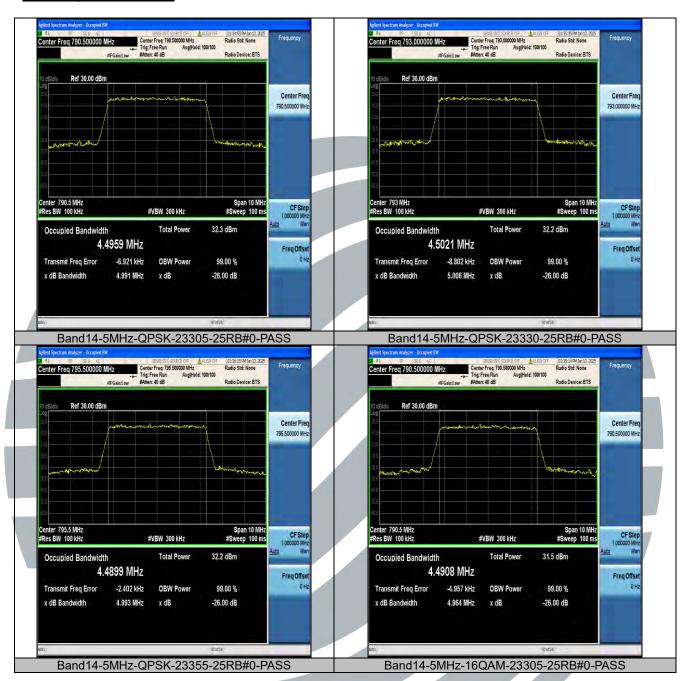
Test Requirement: FCC 47 CFR Part 2.1049 **Test Method:** ANSI C63.26-2015, Clause 5.4

Limit: No Limit

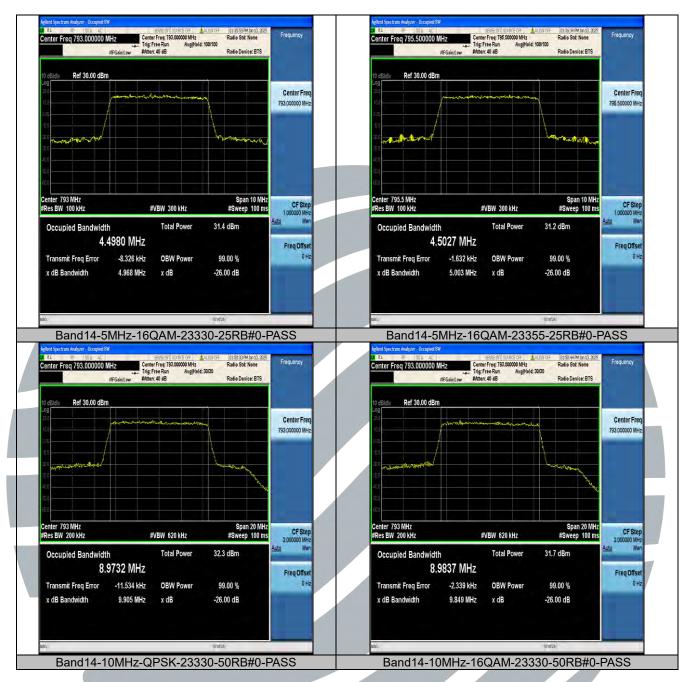
Test Procedure:

The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer. The occupied bandwidth was measured with the spectrum analyzer at the low, middle and high channel in each band. The 99% and -26dB bandwidths was also measured and recorded.

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.


Test Setup: Refer to section 4.2.2 for details. **Instruments Used:** Refer to section 3 for details

Test Mode: Link mode
Test Results: Pass


Band	Bandwidth	Modulation	Channel	RB Configuration	Occupied Bandwidth (MHz)	26dB Bandwidth (MHz)	Verdict
Band14	5MHz	QPSK	23305	25RB#0	4.4959	4.991	PASS
Band14	5MHz	QPSK	23330	25RB#0	4.5021	5.006	PASS
Band14	5MHz	QPSK	23355	25RB#0	4.4899	4.993	PASS
Band14	5MHz	16QAM	23305	25RB#0	4.4908	4.964	PASS
Band14	5MHz	16QAM	23330	25RB#0	4.4980	4.968	PASS
Band14	5MHz	16QAM	23355	25RB#0	4.5027	5.003	PASS
Band14	10MHz	QPSK	23330	50RB#0	8.9732	9.905	PASS
Band14	10MHz	16QAM	23330	50RB#0	8.9837	9.849	PASS

The test plot as follows:

Page 21 of 41 Report No.: 24122015364RFM-3

5.4 EMISSION MASK

Test Requirement: FCC 47 CFR Part 2.1051 & FCC 47 CFR Part 90.691

Test Method: ANSI C63.26-2015, Clause 5.7

Limit:

- (e) For operations in the 758-768 MHz and the 788-798 MHz bands, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:
- (2) On all frequencies between 769-775 MHz and 799-805 MHz, by a factor not less than 65 + 10 log (P) dB in a 6.25 kHz band segment, for mobile and portable stations.
- (3) On any frequency between 775-788 MHz, above 805 MHz, and below 758 MHz, by at least 43 + 10 log (P) dB.
- (4) Compliance with the provisions of paragraphs (e)(1) and (2) of this section is based on the use of measurement instrumentation such that the reading taken with any resolution bandwidth setting should be adjusted to indicate spectral energy in a 6.25 kHz segment.
- (5) Compliance with the provisions of paragraph (e)(3) of this section is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. However, in the 100 kHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of 30 kHz may be employed.
- (f) For operations in the 758-775 MHz and 788-805 MHz bands, all emissions including harmonics in the band 1559-1610 MHz shall be limited to −70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and −80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.

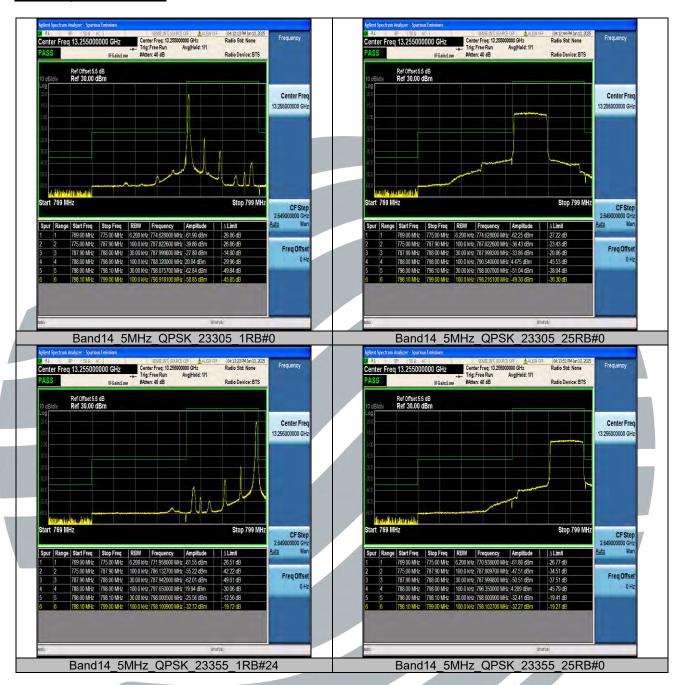
Test Procedure:

The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer.

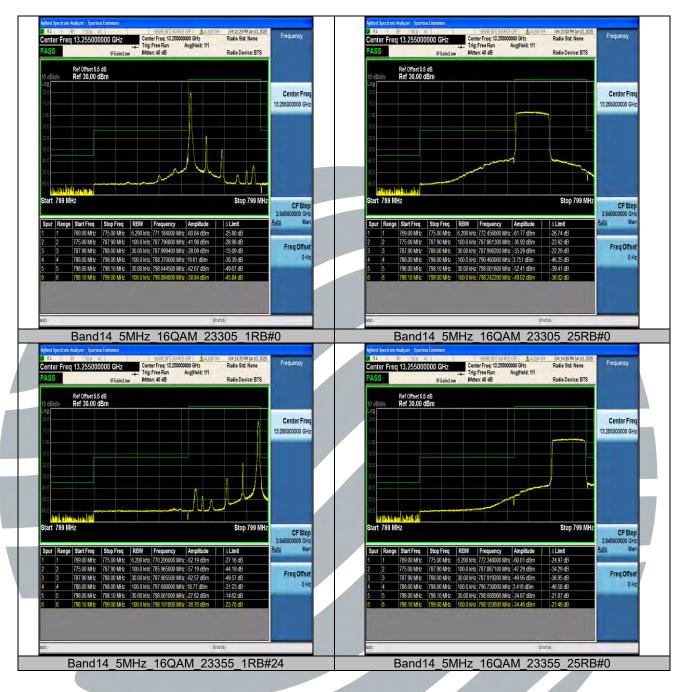
For each band edge measurement:

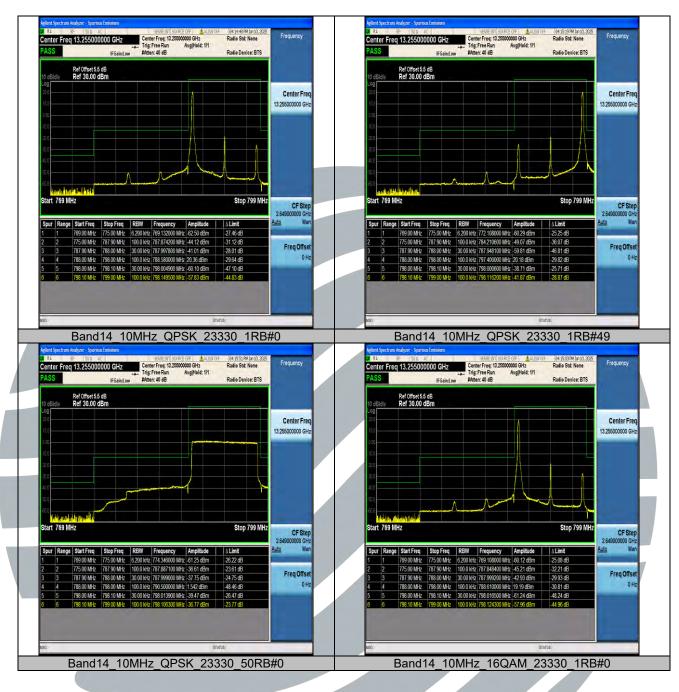
- 1) Set the spectrum analyzer span to include the low or high channels.
- 2) Set the emissions mask of low or high channels.
- 3) Set resolution bandwidth to at least 1% of emission bandwidth and the VBW set 3 times of RBW.

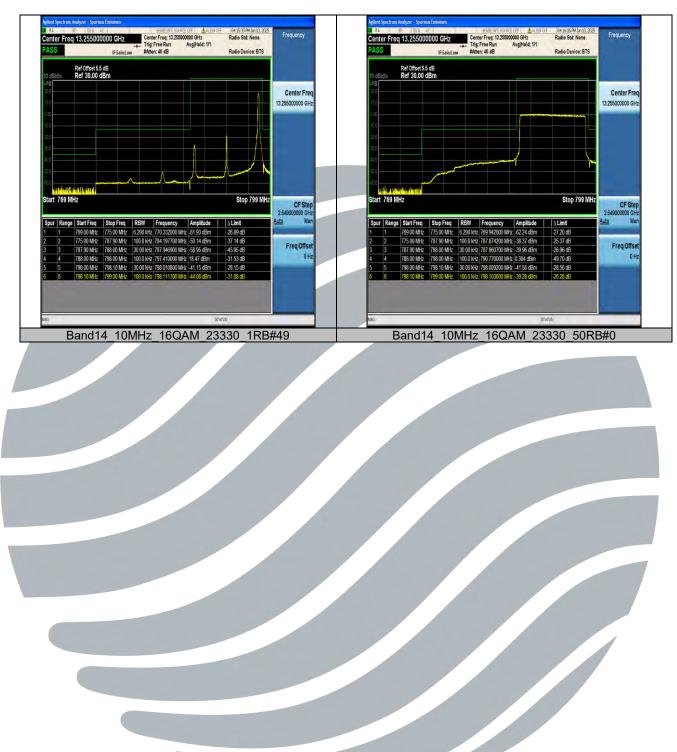
Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.


Test Setup: Refer to section 4.2.2 for details. **Instruments Used:** Refer to section 3 for details

Test Mode: Link mode
Test Results: Pass


Band	Bandwidth	Modulation	Channel	RB Configuration	Result (dBm)	Verdict
Band14	5MHz	QPSK	23305	1RB#0	-27.80	PASS
Band14	5MHz	QPSK	23305	25RB#0	-33.86	PASS
Band14	5MHz	QPSK	23355	1RB#24	-25.56	PASS
Band14	5MHz	QPSK	23355	25RB#0	-32.27	PASS
Band14	5MHz	16QAM	23305	1RB#0	-28.09	PASS
Band14	5MHz	16QAM	23305	25RB#0	-35.29	PASS
Band14	5MHz	16QAM	23355	1RB#24	-27.62	PASS
Band14	5MHz	16QAM	23355	25RB#0	-34.46	PASS
Band14	10MHz	QPSK	23330	1RB#0	-62.50	PASS
Band14	10MHz	QPSK	23330	1RB#49	-60.29	PASS
Band14	10MHz	QPSK	23330	50RB#0	-36.61	PASS
Band14	10MHz	16QAM	23330	1RB#0	-60.12	PASS
Band14	10MHz	16QAM	23330	1RB#49	-61.93	PASS
Band14	10MHz	16QAM	23330	50RB#0	-38.37	PASS


The test plot as follows:



Page 26 of 41 Report No.: 24122015364RFM-3

5.5 SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Test Requirement: FCC 47 CFR Part 2.1051 & FCC 47 CFR Part 90.543

Test Method: ANSI C63.26-2015, Clause 5.7

Limit:

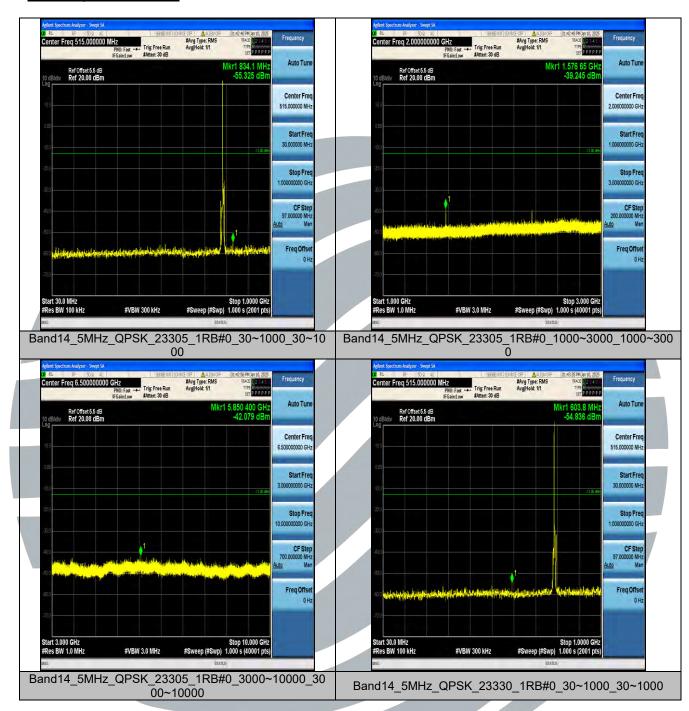
The minimum permissible attenuation level of any spurious emissions is 43 + 10 log (P) dB where transmitting power (P) in Watts.

Test Procedure:

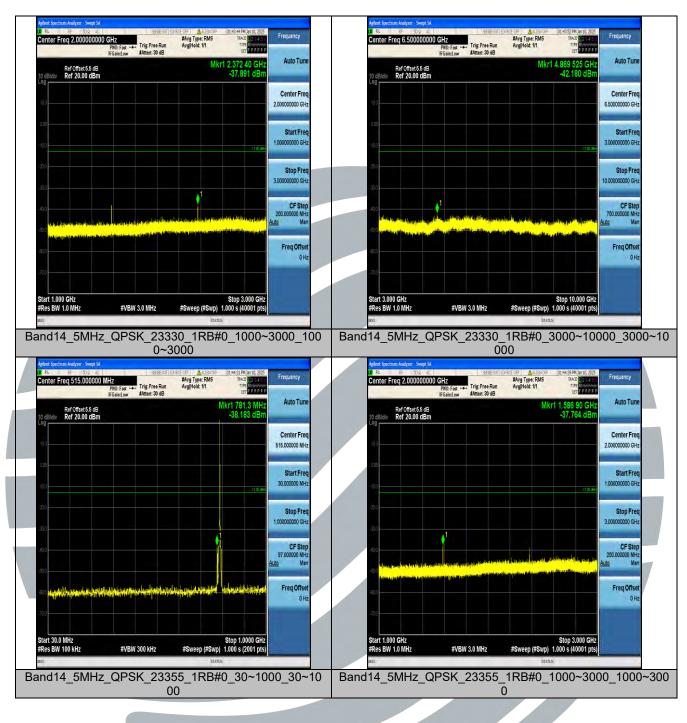
The EUT makes a phone call to the communication simulator. All measurements were done at low, middle and high operational frequency range. b. Measuring frequency range is from 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower. Set RBW & VBW to 100 kHz for the measurement below 1 GHz, and 1 MHz for the measurement above 1 GHz.

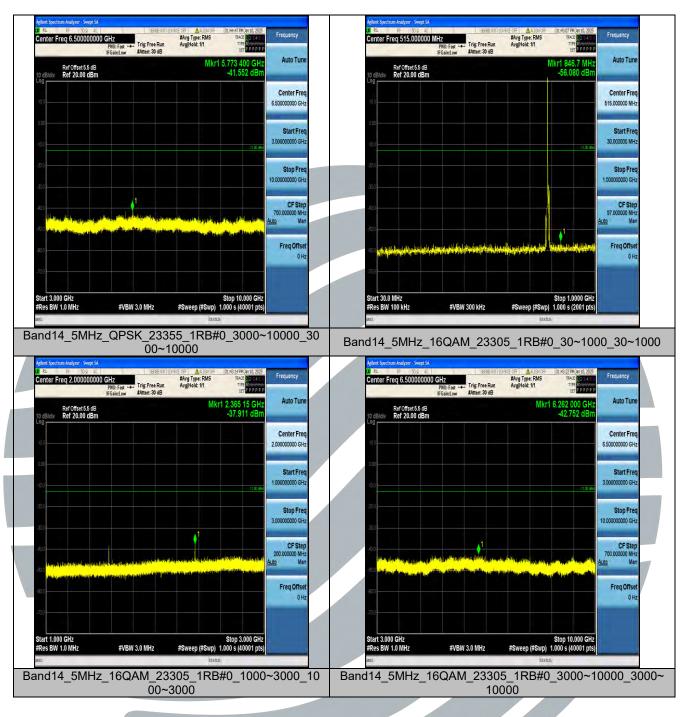
Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

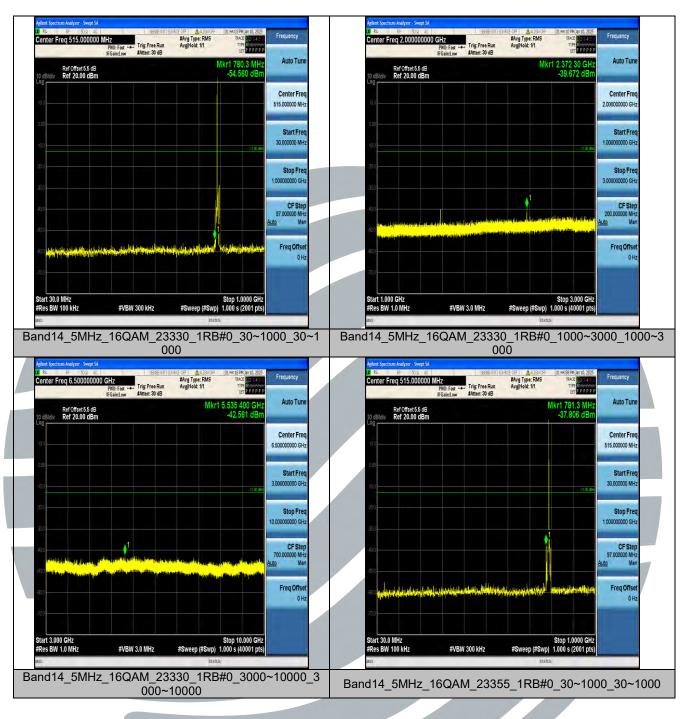
Test Setup: Refer to section 4.2.2 for details. **Instruments Used:** Refer to section 3 for details

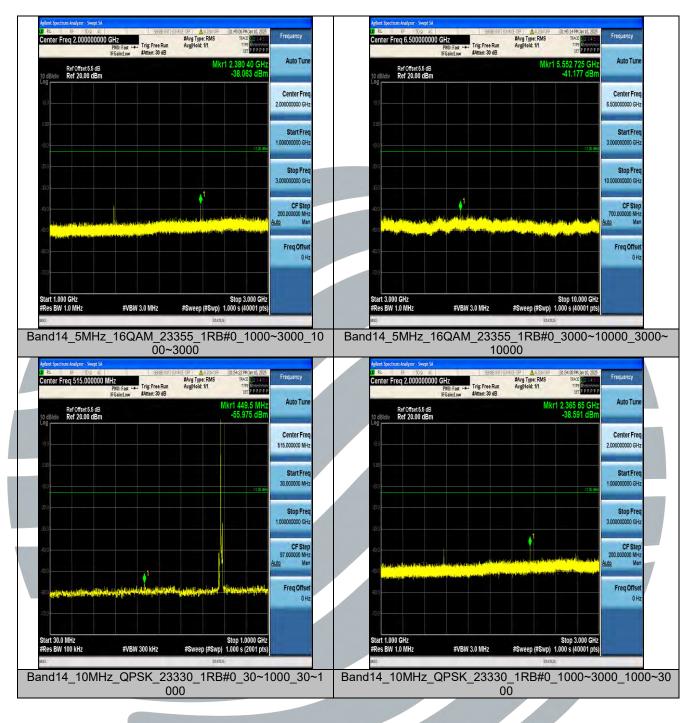

Test Mode: Link mode
Test Results: Pass

Test Data: Please refer to Appendix A


Band	Bandwidth	Modulation	Channel	RB Configuration	Frequency Range (MHz)	Result (dBm)	Verdict
Band14	5MHz	QPSK	23305	1RB#0	30~1000	-55.33	PASS
Band14	5MHz	QPSK	23305	1RB#0	1000~3000	-39.25	PASS
Band14	5MHz	QPSK	23305	1RB#0	3000~10000	-42.08	PASS
Band14	5MHz	QPSK	23330	1RB#0	30~1000	-54.84	PASS
Band14	5MHz	QPSK	23330	1RB#0	1000~3000	-37.89	PASS
Band14	5MHz	QPSK	23330	1RB#0	3000~10000	-42.18	PASS
Band14	5MHz	QPSK	23355	1RB#0	30~1000	-38.18	PASS
Band14	5MHz	QPSK	23355	1RB#0	1000~3000	-37.76	PASS
Band14	5MHz	QPSK	23355	1RB#0	3000~10000	-41.55	PASS
Band14	5MHz	16QAM	23305	1RB#0	30~1000	-56.08	PASS
Band14	5MHz	16QAM	23305	1RB#0	1000~3000	-37.91	PASS
Band14	5MHz	16QAM	23305	1RB#0	3000~10000	-42.75	PASS
Band14	5MHz	16QAM	23330	1RB#0	30~1000	-54.56	PASS
Band14	5MHz	16QAM	23330	1RB#0	1000~3000	-39.67	PASS
Band14	5MHz	16QAM	23330	1RB#0	3000~10000	-42.56	PASS
Band14	5MHz	16QAM	23355	1RB#0	30~1000	-37.81	PASS
Band14	5MHz	16QAM	23355	1RB#0	1000~3000	-38.06	PASS
Band14	5MHz	16QAM	23355	1RB#0	3000~10000	-41.18	PASS
Band14	10MHz	QPSK	23330	1RB#0	30~1000	-55.98	PASS
Band14	10MHz	QPSK	23330	1RB#0	1000~3000	-38.59	PASS
Band14	10MHz	QPSK	23330	1RB#0	3000~10000	-40.37	PASS
Band14	10MHz	16QAM	23330	1RB#0	30~1000	-55.26	PASS
Band14	10MHz	16QAM	23330	1RB#0	1000~3000	-37.27	PASS
Band14	10MHz	16QAM	23330	1RB#0	3000~10000	-42.48	PASS
						4	


The test plot as follows:





Note: Radiated data in section 5.6 compliance with narrowband limits for GPS 1559-1610MHz band.

Page 33 of 41 Report No.: 24122015364RFM-3

5.6 FIELD STRENGTH OF SPURIOUS RADIATION

Test Requirement: FCC 47 CFR Part 2.1051 & FCC 47 CFR Part 90.543

Test Method: ANSI C63.26-2015, Clause 5.5

Limits:

(e) (3) On any frequency between 775-788 MHz, above 805 MHz, and below 758 MHz, by at least 43 + 10 log (P) dB.

(f) For operations in the 758-775 MHz and 788-805 MHz bands, all emissions including harmonics in the band 1559-1610 MHz shall be limited to −70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and −80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.

Test Setup: Refer to section 4.2.1 for details.

Test Procedures:

- 1. Scan up to 10th harmonic, find the maximum radiation frequency to measure.
- 2. The technique used to find the Spurious Emissions of the transmitter was the antenna substitution method. Substitution method was performed to determine the actual ERP/EIRP emission levels of the EUT.

Test procedure as below:

- 1) The EUT was powered ON and placed on a 0.8/1.5m high table at a 3 meter semi/fully Anechoic Chamber. The antenna of the transmitter was extended to its maximum length. Modulation mode and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- 2) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- 3) The disturbance of the transmitter was maximized on the test receiver display by raising and lowering from 1m to 4m the receive antenna and by rotating through 360° the turntable. After the fundamental emission was maximized, a field strength measurement was made.
- 4) Steps 1) to 3) were performed with the EUT and the receive antenna in both vertical and horizontal polarization.
- 5) The transmitter was then removed and replaced with another antenna. The center of the antenna was approximately at the same location as the center of the transmitter.
- 6) A signal at the disturbance was fed to the substitution antenna by means of a non-radiating cable. With both the substitution and the receive antennas horizontally polarized, the receive antenna was raised and lowered to obtain a maximum reading at the test receiver. The level of the signal generator was adjusted until the measured field strength level in step 3) is obtained for this set of conditions.
- 7) The output power into the substitution antenna was then measured.
- 8) Steps 6) and 7) were repeated with both antennas polarized.
- 9) Calculate power in dBm by the following formula:

ERP(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dBd)EIRP(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dBi)

EIRP=ERP+2.15dB

where:

Pg is the generator output power into the substitution antenna.

- 10) Test the EUT in the lowest channel, the middle channel the Highest channel
- 11) The radiation measurements are performed in X, Y, Z axis positioning for EUT operation mode, and found the Y axis positioning which it is worse case.
- 1) Repeat above procedures until all frequencies measured was complete.

Equipment Used: Refer to section 3 for details.

Test Result: Pass

The measurement data as follows:

No.	Frequency (MHz)	Reading (dBm)	Correction factor (dB/m)	Result (dBm)	Limit (dBm)	Margin (dB)	Ant. Pol.					
LTE	LTE Band 14 / 10 MHz / QPSK_ Middle Channel											
1	703.731	-87.41	40.52	-46.89	-13.00	-33.89	Horizontal					
2	815.635	-87.28	42.02	-45.26	-13.00	-32.26	Horizontal					
3	893.656	-87.23	43.01	-44.22	-13.00	-31.22	Horizontal					
4	1559-1610				-40.00	>15	Horizontal					
5	4758.000	-47.42	9.65	-37.77	-13.00	-24.77	Horizontal					
6	5551.000	-48.69	10.97	-37.72	-13.00	-24.72	Horizontal					
7	708.694	-87.69	40.55	-47.14	-13.00	-34.14	Vertical					
8	856.760	-87.44	42.54	-44.90	-13.00	-31.90	Vertical					
9	945.334	-86.43	43.55	-42.88	-13.00	-29.88	Vertical					
10	1559-1610	1			-40.00	>15	Vertical					
11	4758.000	-34.82	9.65	-25.17	-13.00	-12.17	Vertical					
12	5551.000	-40.01	10.97	-29.04	-13.00	-16.04	Vertical					

Note: Emissions in the GPS band were wideband emissions therefore the -40 dBm/MHz limit was used.

Page 35 of 41 Report No.: 24122015364RFM-3

5.7 FREQUENCY STABILITY

Test Requirement: FCC 47 CFR Part 2.1055, FCC 47 CFR Part 90.539

Test Method: ANSI C63.26-2015, Clause 5.6

Limits:

The frequency stability of mobile, portable and control transmitters operating in the wideband segment must be 1.25 parts per million or better when AFC is locked to a base station, and 5 parts per million or better when AFC is not locked.

Test Setup: Refer to section 4.2.2 for details.

Test Procedures:

- 1) Use CMW 500 with Frequency Error measurement capability.
 - a) Temp. $=-30^{\circ}$ to $+50^{\circ}$ C
 - b) Voltage = low voltage, 3.7 Vdc, Normal, 3.8 Vdc and High voltage, 4.35 Vdc.
- 2) Frequency Stability vs Temperature:

The EUT is place inside a temperature chamber. The temperature is set to 20°C and allowed to stabilize. After sufficient soak time, the transmitting frequency error is measured. The temperature is increased by 10 degrees, allowed to stabilize and soak, and then the measurement is repeated. This is repeated until +50°C is reached.

3) Frequency Stability vs Voltage:

The peak frequency error is recorded (worst-case).

Equipment Used: Refer to section 3 for details.

Test Result: Pass

- 60												
1	Voltage											
	Band	Bandwidth	Modulation	Ch.	RB Configure	Voltage [Vdc]	Temperat ure (°C)	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Verdict	
	Band14	10MHz	QPSK	23330	50RB#0	VN	NT	1.66	0.002093	±1.5	PASS	
	Band14	10MHz	QPSK	23330	50RB#0	VL	NT	2.86	0.003607	±1.5	PASS	
	Band14	10MHz	QPSK	23330	50RB#0	VH	NT	2.19	0.002762	±1.5	PASS	

Temperature										
Band	Bandwidth	Modulation	Ch.	RB Configure	Voltage [Vdc]	Temperat ure (°C)	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Verdict
Band14	10MHz	QPSK	23330	50RB#0	NV	-30	3.93	0.004956	±1.5	PASS
Band14	10MHz	QPSK	23330	50RB#0	NV	-20	2.85	0.003594	±1.5	PASS
Band14	10MHz	QPSK	23330	50RB#0	NV	-10	1.34	0.001690	±1.5	PASS
Band14	10MHz	QPSK	23330	50RB#0	NV	0	3.30	0.004161	±1.5	PASS
Band14	10MHz	QPSK	23330	50RB#0	NV	10	1.20	0.001513	±1.5	PASS
Band14	10MHz	QPSK	23330	50RB#0	NV	20	3.56	0.004489	±1.5	PASS
Band14	10MHz	QPSK	23330	50RB#0	NV	30	4.38	0.005523	±1.5	PASS
Band14	10MHz	QPSK	23330	50RB#0	NV	40	3.22	0.004061	±1.5	PASS
Band14	10MHz	QPSK	23330	50RB#0	NV	50	2.47	0.003115	±1.5	PASS

Page 36 of 41 Report No.: 24122015364RFM-3

5.8 PEAK-TO-AVERAGE RATIO

Test Method: ANSI C63.26-2015, Clause 5.2.3.4

Limit: In measuring transmissions in this band using an average power technique, the

peak-to-average ratio (PAR) of the transmission may not exceed 13 dB

Test Procedure:

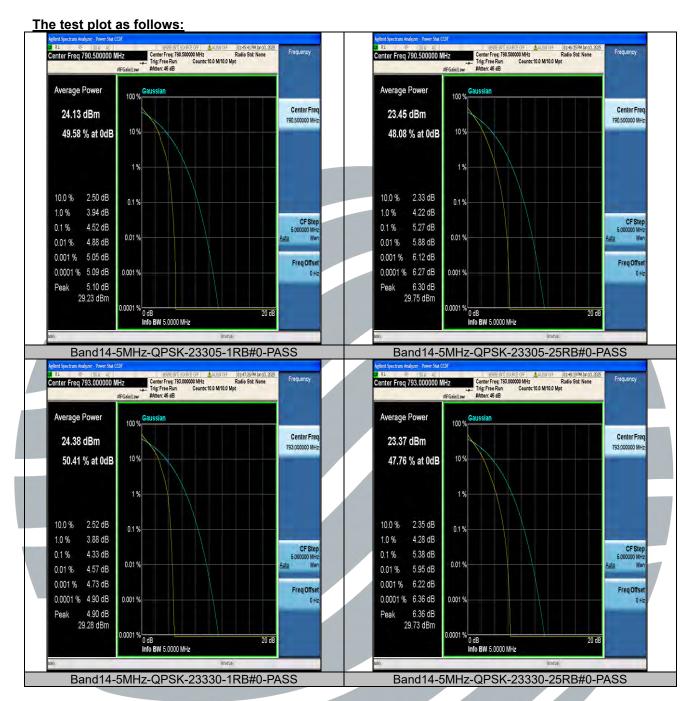
The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer.

a) Set resolution/measurement bandwidth ≥ signal's occupied bandwidth

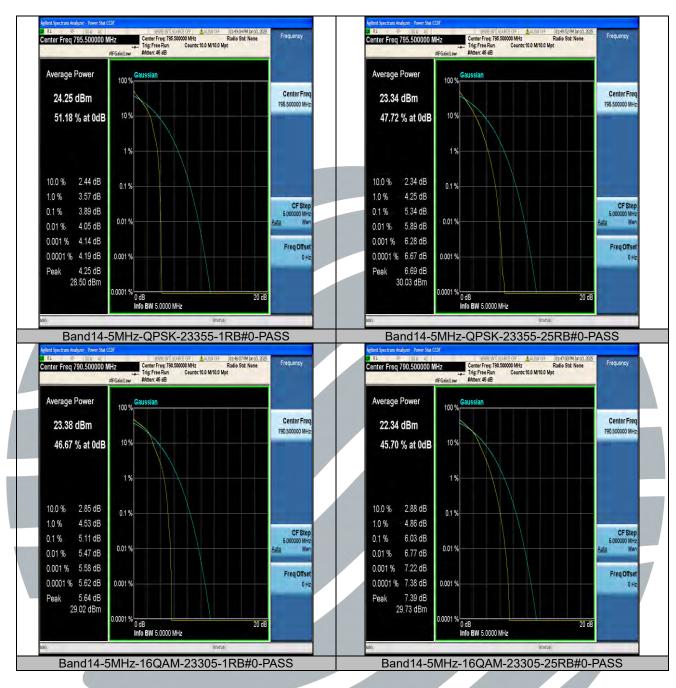
b) Set the number of counts to a value that stabilizes the measured CCDF curve

Record the maximum PAPR level associated with a probability of 0.1 %

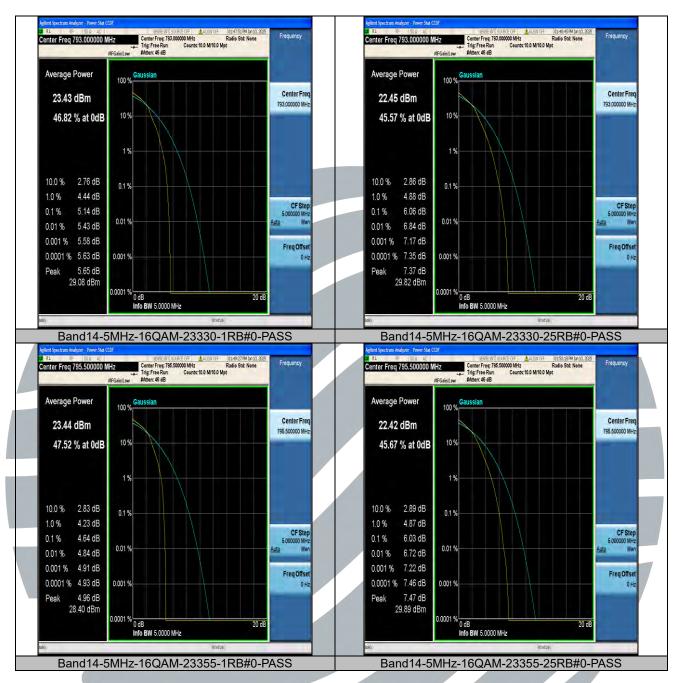
Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

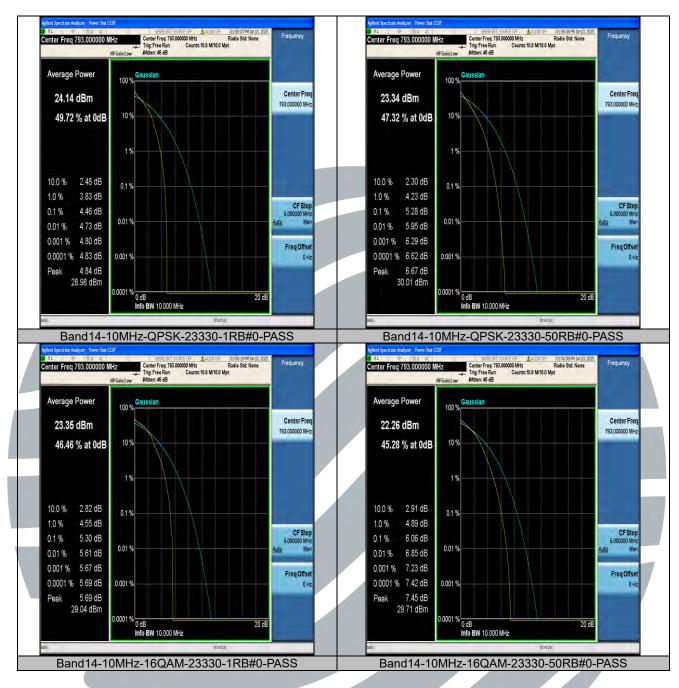

Test Setup: Refer to section 4.2.2 for details. **Instruments Used:** Refer to section 3 for details

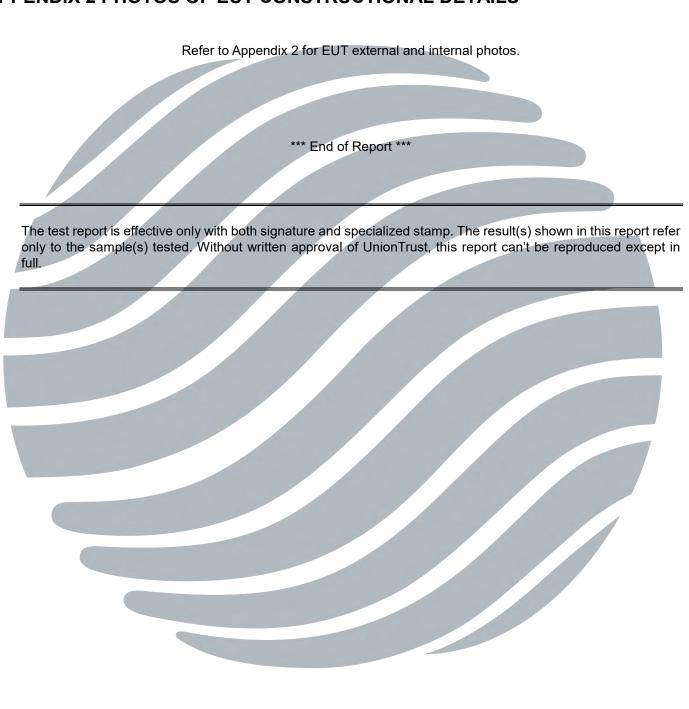
Test Mode: Link mode


Test Results: Pass

Band	Bandwidth	Modulation	Ch.	RB Configuration	Result(dB)	Limit(dB)	Verdict
Band14	5MHz	QPSK	23305	1RB#0	4.52	13	PASS
Band14	5MHz	QPSK	23305	25RB#0	5.27	13	PASS
Band14	5MHz	QPSK	23330	1RB#0	4.33	13	PASS
Band14	5MHz	QPSK	23330	25RB#0	5.38	13	PASS
Band14	5MHz	QPSK	23355	1RB#0	3.89	13	PASS
Band14	5MHz	QPSK	23355	25RB#0	5.34	13	PASS
Band14	5MHz	16QAM	23305	1RB#0	5.11	13	PASS
Band14	5MHz	16QAM	23305	25RB#0	6.03	13	PASS
Band14	5MHz	16QAM	23330	1RB#0	5.14	13	PASS
Band14	5MHz	16QAM	23330	25RB#0	6.06	13	PASS
Band14	5MHz	16QAM	23355	1RB#0	4.64	13	PASS
Band14	5MHz	16QAM	23355	25RB#0	6.03	13	PASS
Band14	10MHz	QPSK	23330	1RB#0	4.46	13	PASS
Band14	10MHz	QPSK	23330	50RB#0	5.28	13	PASS
Band14	10MHz	16QAM	23330	1RB#0	5.30	13	PASS
Band14	10MHz	16QAM	23330	50RB#0	6.06	13	PASS







APPENDIX 1 PHOTOS OF TEST SETUP

See test photos attached in Appendix 1 for the actual connections between Product and support equipment.

Report No.: 24122015364RFM-3

APPENDIX 2 PHOTOS OF EUT CONSTRUCTIONAL DETAILS

