

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A,B,C,D	modulation dependent linearization parameters
Polarization Φ	Φ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i θ =0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
 frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the
 probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No:Z20-60434

Page 2 of 9

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7621

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m) ²) ^A	0.72	0.72	0.55	±10.0%
DCP(mV) ^B	109.7	109.6	112.2	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (<i>k</i> =2)	
0 CW	CW	Х	0.0	0.0	1.0	0.00	221.7	±2.1%	
			Y	0.0	0.0	1.0		222.7	
		Z	0.0	0.0	1.0		188.9		

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 4).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No:Z20-60434

Page 3 of 9

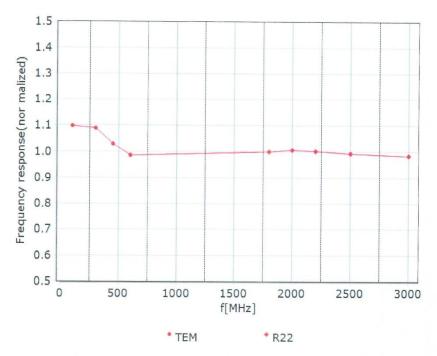
DASY/EASY – Parameters of Probe: EX3DV4 – SN:7621

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (<i>k</i> =2)
750	41.9	0.89	10.88	10.88	10.88	0.40	0.75	±12.1%
1640	40.3	1.29	9.19	9.19	9.19	0.33	0.86	±12.1%
1900	40.0	1.40	8.77	8.77	8.77	0.27	1.02	±12.1%
2100	39.8	1.49	8.81	8.81	8.81	0.24	1.10	±12.1%
2300	39.5	1.67	8.40	8.40	8.40	0.53	0.71	±12.1%
2450	39.2	1.80	8.01	8.01	8.01	0.43	0.86	±12.1%
2600	39.0	1.96	7.84	7.84	7.84	0.52	0.76	±12.1%
3700	37.7	3.12	6.87	6.87	6.87	0.40	1.15	±13.3%
3900	37.5	3.32	7.03	7.03	7.03	0.40	1.30	±13.3%
4100	37.2	3.53	7.02	7.02	7.02	0.40	1.15	±13.3%
4400	36.9	3.84	6.81	6.81	6.81	0.35	1.33	±13.3%
4600	36.7	4.04	6.61	6.61	6.61	0.40	1.40	±13.3%
4800	36.4	4.25	6.56	6.56	6.56	0.40	1.41	±13.3%
4950	36.3	4.40	6.29	6.29	6.29	0.45	1.30	±13.3%
5250	35.9	4.71	5.97	5.97	5.97	0.45	1.30	±13.3%
5600	35.5	5.07	5.43	5.43	5.43	0.55	1.15	±13.3%
5750	35.4	5.22	5.38	5.38	5.38	0.55	1.20	±13.3%

Calibration Parameter Determined in Head Tissue Simulating Media

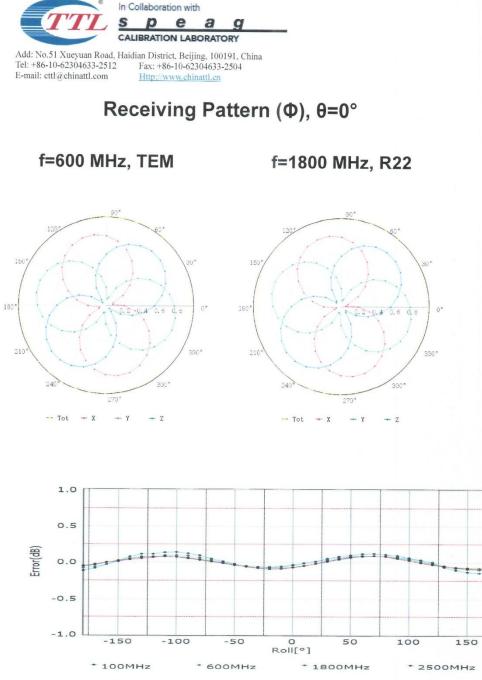
^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Certificate No:Z20-60434

Page 4 of 9

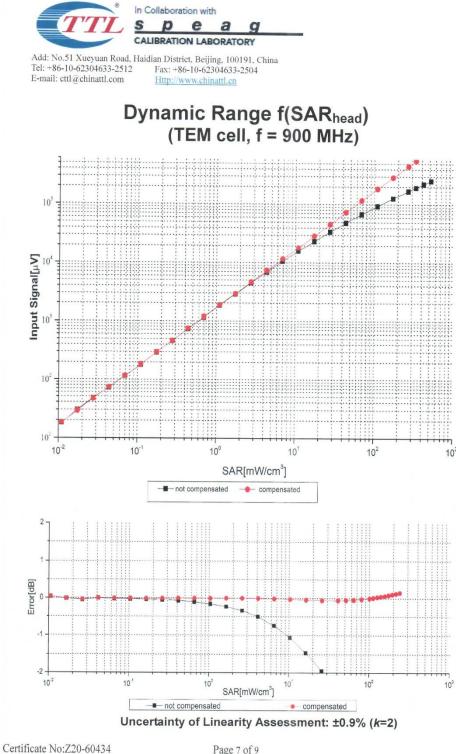
Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

Certificate No:Z20-60434

Page 5 of 9

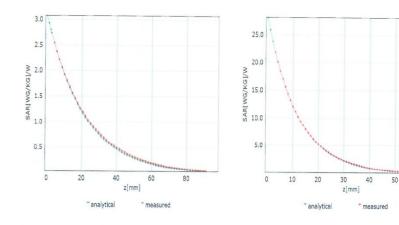


Uncertainty of Axial Isotropy Assessment: ±1.2% (k=2)

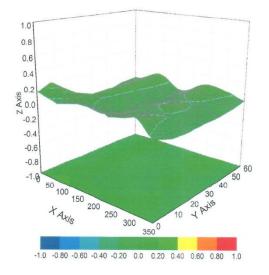
Certificate No:Z20-60434

Page 6 of 9

Page 7 of 9



Conversion Factor Assessment


f=750 MHz,WGLS R9(H_convF)

f=1900 MHz,WGLS R22(H_convF)

60

Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2)

Certificate No:Z20-60434

Page 8 of 9

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7621

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	96.6
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	10mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Certificate No:Z20-60434

Page 9 of 9

Probe EX3DV4-SN: 7621 Calibration Certificate (2020-10-05)

Calibration Laborat Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 zu		S C S	Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
Accredited by the Swiss Accred The Swiss Accreditation Serv Multilateral Agreement for the	ice is one of the signatories	to the EA	reditation No.: SCS 0108
Client CTTL-SZ (Au	den)	Certificate No:	EX3-7621_Oct20
CALIBRATION	CERTIFICATE		
Object	EX3DV4 - SN:762	21	
Calibration procedure(s)		A CAL-14.v6, QA CAL-23.v5, QA Jure for dosimetric E-field probes	CAL-25.v7
Calibration date:	October 5, 2020		
All calibrations have been cond Calibration Equipment used (M		facility: environment temperature (22 \pm 3)°C a	and humidity < 70%.
Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	01-Apr-20 (No. 217-03100/03101)	Apr-21
Power sensor NRP-Z91	SN: 103244	01-Apr-20 (No. 217-03100)	Apr-21
Power sensor NRP-Z91	SN: 103245	01-Apr-20 (No. 217-03101)	Apr-21
Reference 20 dB Attenuator	SN: CC2552 (20x)	31-Mar-20 (No. 217-03106)	Apr-21
DAE4	SN: 660	27-Dec-19 (No. DAE4-660_Dec19)	Dec-20
Reference Probe ES3DV2	SN: 3013	31-Dec-19 (No. ES3-3013_Dec19)	Dec-20
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-20)	In house check: Jun-22
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-21
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	Millese
Approved by:	Katja Pokovic	Technical Manager	delles
This calibration certificate shall	not be reproduced except in fi	ull without written approval of the laboratory.	Issued: October 6, 2020
Certificate No: EX3-7621_Oc	t20	Page 1 of 9	

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage

- C Service suisse d'étalonnage Servizio svizzero di taratura
 - Swiss Calibration Service

Accreditation No : SCS 0108

S

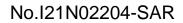
Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating liquid TSL NORMx,y,z sensitivity in free space sensitivity in TSL / NORMx,y,z ConvF DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization ϕ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:


- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices."
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx.y.z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-7621_Oct20

Page 2 of 9

EX3DV4 - SN:7621

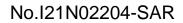
October 5, 2020

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7621

Basic Calibration Parameters

<u> </u>	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.71	0.68	0.56	± 10.1 %
DCP (mV) ^B	108.2	106.8	108.9	- 10.1 70

Calibration Results for Modulation Response


UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Max dev.	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	157.3	± 3.0 %	±4.7 %
		Y	0.0	0.0	1.0		148.5		
		Z	0.0	0.0	1.0		155.4		

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 5).
^B Numerical linearization parameter: uncertainty not required.
^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

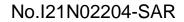
Certificate No: EX3-7621_Oct20

Page 3 of 9

EX3DV4- SN:7621

October 5, 2020

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7621


Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-84.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

Certificate No: EX3-7621_Oct20

Page 4 of 9

EX3DV4-SN:7621

October 5, 2020

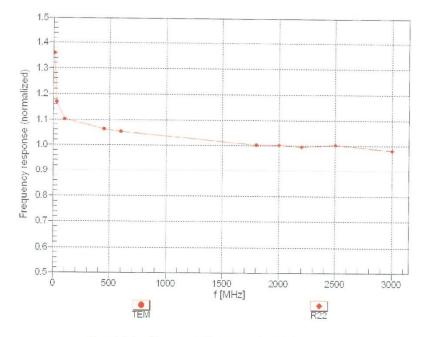
DASY/EASY - Parameters of Probe: EX3DV4 - SN:7621

Calibration Parameter	Determined i	n Head	Tissue	Simulating	Media
-----------------------	--------------	--------	--------	------------	-------

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
900	41.5	0.97	10.35	10.35	10.35	0.52	0.80	± 12.0 %
1750	40.1	1.37	9.14	9.14	9.14	0.38	0.80	± 12.0 %
3500	37.9	2.91	7.26	7.26	7.26	0.35	1.30	± 13.1 %

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 8 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^{*} A frequencies below 3 GHz, the validity of tissue parameters (s and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^{*} Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-7621_Oct20

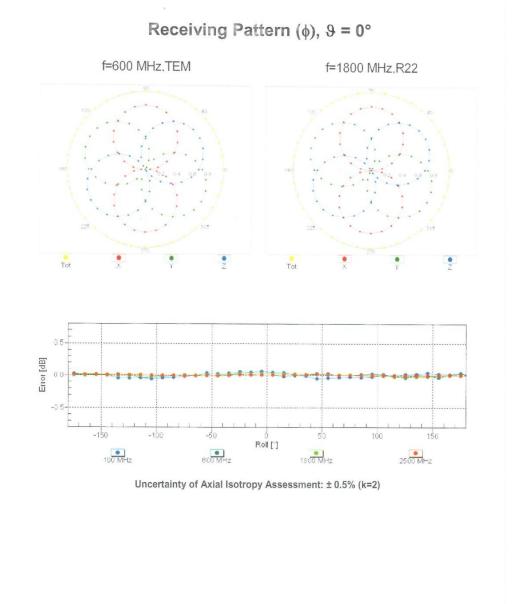

Page 5 of 9

EX3DV4- SN:7621

October 5, 2020

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

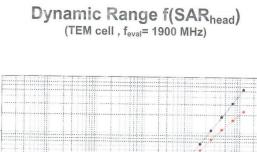
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

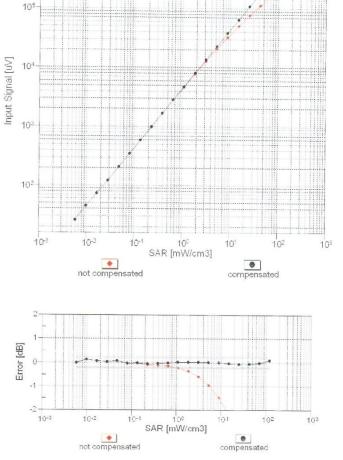

Certificate No: EX3-7621_Oct20

Page 6 of 9

EX3DV4- SN:7621

October 5, 2020

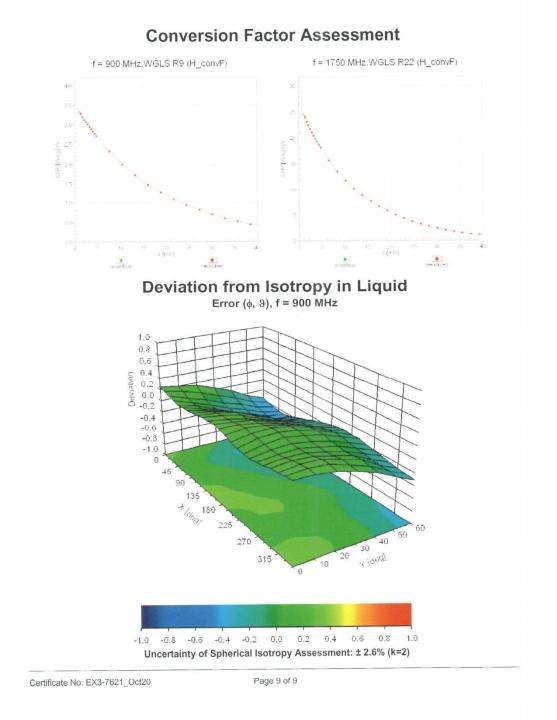

Certificate No: EX3-7621_Oct20


Page 7 of 9

EX3DV4-SN:7621

October 5, 2020

Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Certificate No: EX3-7621_Oct20

Page 8 of 9

EX3DV4- SN:7621

October 5, 2020

ANNEX I: Dipole Calibration Certificate

750MHz Dipole Calibration Certificate

TI	<u>Ľs</u> p	ration with e a g TION LABORATORY	中国认可国际互认
Add: No.51 Xueyua Tel: +86-10-623046 E-mail: ettl @chinati	33-2079 Fax: +	trict, Beijing, 100191, China 86-10-62304633-2504 www.chinattl.en	CALIBRATION CNAS L0570
Client CTT	L(South Bran	ch) Certificate No:	Z19-60291
CALIBRATION CE	RTIFICAT	E	
OALIDITATION OL			
Object	D750V	3 - SN: 1163	
Calibration Procedure(s)	FF-Z11 Calibra	-003-01 tion Procedures for dipole validation kits	
Calibration date:	Septer	ber 3, 2019	
pages and are part of the ce All calibrations have been humidity<70%.	rtificate. conducted in	the uncertainties with confidence probabi the closed laboratory facility: environm	
Calibration Equipment used	(IVI& I E Critical to	or calibration)	
Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106276	11-Apr-19 (CTTL, No.J19X02605)	Apr-20
Power sensor NRP6A	101369	11-Apr-19 (CTTL, No.J19X02605)	Apr-20
Reference Probe EX3DV4	SN 3617	31-Jan-19(SPEAG,No.EX3-3617_Jan19) Jan-20
DAE4	SN 1555	22-Aug-19(CTTL-SPEAG,No.Z19-60295	5) Aug-20
Secondary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430		Jan-20
NetworkAnalyzer E5071C	MY46110673	24-Jan-19 (CTTL, No.J19X00547)	Jan-20
	Name	Function	Signature
Calibrated by:			A M
Camprated by:	Zhao Jing	SAR Test Engineer	In the XAL
Reviewed by:	Lin Hao	SAR Test Engineer	- 15-76
Approved by:	Qi Dianyuan	SAR Project Leader	20-a
This calibration certificate sh	nall not be repro	Issued: Se duced except in full without written approv	eptember 6, 2019 al of the laboratory.

Certificate No: Z19-60291

Page 1 of 8

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: ettl@chinattl.com
 http://www.chinattl.cn

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z19-60291

Page 2 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn E-mail: cttl@chinattl.com

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.6 ± 6 %	0.90 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.16 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.53 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.44 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.70 W/kg ± 18.7 % (k=2)

Body TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.9 ± 6 %	0.94 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

SAR averaged over 1 Cm^3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.16 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.78 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.45 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.87 W/kg ±18.7 % (k=2)

Certificate No: Z19-60291

Page 3 of 8

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.5Ω- 4.53jΩ
Return Loss	- 26.9dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.5Ω- 3.38jΩ	
Return Loss	- 28.5dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	0.900 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Certificate No: Z19-60291

Page 4 of 8

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

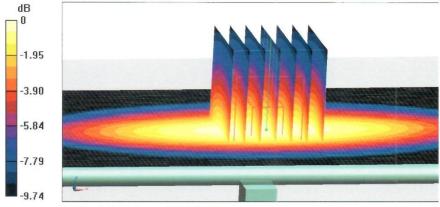
 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 http://www.chinattl.cn

DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China

Date: 09.03.2019

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1163 Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1


Medium parameters used: f = 750 MHz; σ = 0.904 S/m; ϵ_r = 41.62; ρ = 1000 kg/m3 Phantom section: Right Section

DASY5 Configuration:

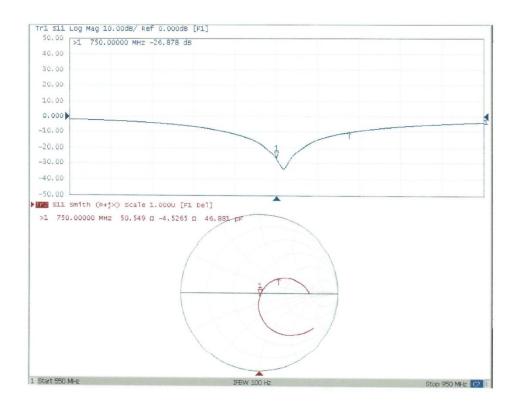
- Probe: EX3DV4 SN3617; ConvF(10.03, 10.03, 10.03) @ 750 MHz; Calibrated: 1/31/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/22/2019
- Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/**Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

```
Reference Value = 55.16 V/m; Power Drift = -0.02 dB
Peak SAR (extrapolated) = 3.11 W/kg
SAR(1 g) = 2.16 W/kg; SAR(10 g) = 1.44 W/kg
Maximum value of SAR (measured) = 2.81 W/kg
```


0 dB = 2.81 W/kg = 4.49 dBW/kg

Certificate No: Z19-60291


Page 5 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

Certificate No: Z19-60291

Page 6 of 8

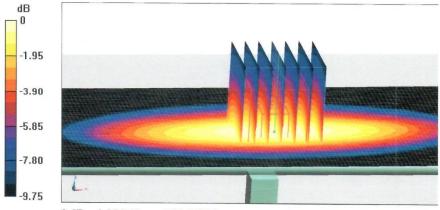
 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 http://www.chinattl.cn

DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1163

Date: 09.03.2019


Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 750 MHz; $\sigma = 0.942$ S/m; $\varepsilon_r = 55.87$; $\rho = 1000$ kg/m3 Phantom section: Center Section

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(9.85, 9.85, 9.85) @ 750 MHz; Calibrated: 1/31/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/22/2019
- Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

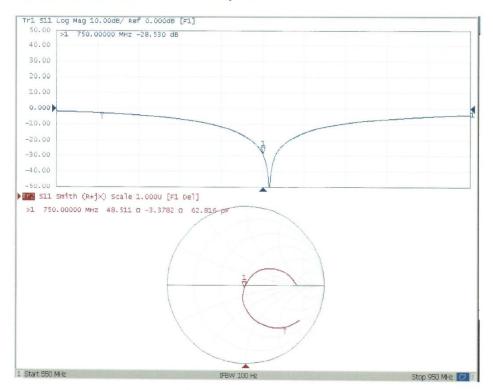
Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/**Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 52.88 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 3.20 W/kg SAR(1 g) = 2.16 W/kg; SAR(10 g) = 1.45 W/kg Maximum value of SAR (measured) = 2.85 W/kg

0 dB = 2.85 W/kg = 4.55 dBW/kg

Certificate No: Z19-60291

Page 7 of 8



 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 http://www.ehinattl.cn

Impedance Measurement Plot for Body TSL

Certificate No: Z19-60291

Page 8 of 8

835 MHz Dipole Calibration Certificate

Add: No.51 Xueyua Tel: +86-10-623046		+86-10-62304633-2504	CNAS L0570
E-mail: cttl@chinat	ttl.com http://	/www.chinattl.cn	
	(South Branc		8-60385
CALIBRATION CE	ERTIFICAT	E	
Object	D835V	2 - SN: 4d057	
Calibration Procedure(s)	FF-711	-003-01	
		tion Procedures for dipole validation kits	
Calibration date:	Octobe	er 9, 2018	
measurements(SI). The mea	asurements and	the uncertainties with confidence probability a	are given on the following
pages and are part of the ce All calibrations have been humidity<70%.		the closed laboratory facility: environment	temperature(22±3)°C and
All calibrations have been humidity<70%. Calibration Equipment used	conducted in (M&TE critical fo	or calibration)	
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards	Conducted in (M&TE critical for ID #	or calibration) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD	Conducted in (M&TE critical for ID # 102083	or calibration) Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756)	Scheduled Calibration Oct-18
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5	conducted in (M&TE critical for ID # 102083 100542	Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756)	Scheduled Calibration Oct-18 Oct-18
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD	Conducted in (M&TE critical for ID # 102083	or calibration) Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756)	Scheduled Calibration Oct-18
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4	Conducted in (M&TE critical fe ID # 102083 100542 SN 7514	Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756) 27-Aug-18(SPEAG,No.EX3-7514_Aug18)	Scheduled Calibration Oct-18 Oct-18 Aug-19
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4	Conducted in (M&TE critical for ID # 102083 100542 SN 7514 SN 1555	Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756) 27-Aug-18(SPEAG,No.EX3-7514_Aug18) 20-Aug-18(SPEAG,No.DAE4-1555_Aug18)	Scheduled Calibration Oct-18 Oct-18 Aug-19 Aug-19
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Secondary Standards	Conducted in (M&TE critical for 10 # 102083 100542 SN 7514 SN 1555 ID #	Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756) 27-Aug-18(SPEAG,No.EX3-7514_Aug18) 20-Aug-18(SPEAG,No.DAE4-1555_Aug18) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration Oct-18 Oct-18 Aug-19 Aug-19 Scheduled Calibration
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	conducted in (M&TE critical fe 102083 100542 SN 7514 SN 1555 ID # MY49071430 MY46110673	Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756) 27-Aug-18(SPEAG,No.EX3-7514_Aug18) 20-Aug-18(SPEAG,No.DAE4-1555_Aug18) Cal Date(Calibrated by, Certificate No.) 23-Jan-18 (CTTL, No.J18X00560) 24-Jan-18 (CTTL, No.J18X00561)	Scheduled Calibration Oct-18 Oct-18 Aug-19 Aug-19 Scheduled Calibration Jan-19 Jan-19
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	conducted in (M&TE critical for 1D # 102083 100542 SN 7514 SN 1555 ID # MY49071430 MY46110673 Name	Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756) 27-Aug-18(SPEAG,No.EX3-7514_Aug18) 20-Aug-18(SPEAG,No.DAE4-1555_Aug18) Cal Date(Calibrated by, Certificate No.) 23-Jan-18 (CTTL, No.J18X00560) 24-Jan-18 (CTTL, No.J18X00561) Function	Scheduled Calibration Oct-18 Oct-18 Aug-19 Aug-19 Scheduled Calibration Jan-19
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	conducted in (M&TE critical fe 102083 100542 SN 7514 SN 1555 ID # MY49071430 MY46110673	Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756) 27-Aug-18(SPEAG,No.EX3-7514_Aug18) 20-Aug-18(SPEAG,No.DAE4-1555_Aug18) Cal Date(Calibrated by, Certificate No.) 23-Jan-18 (CTTL, No.J18X00560) 24-Jan-18 (CTTL, No.J18X00561)	Scheduled Calibration Oct-18 Oct-18 Aug-19 Aug-19 Scheduled Calibration Jan-19 Jan-19 Jan-19
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	conducted in (M&TE critical for 1D # 102083 100542 SN 7514 SN 1555 ID # MY49071430 MY46110673 Name	Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756) 27-Aug-18(SPEAG,No.EX3-7514_Aug18) 20-Aug-18(SPEAG,No.DAE4-1555_Aug18) Cal Date(Calibrated by, Certificate No.) 23-Jan-18 (CTTL, No.J18X00560) 24-Jan-18 (CTTL, No.J18X00561) Function	Scheduled Calibration Oct-18 Oct-18 Aug-19 Aug-19 Scheduled Calibration Jan-19 Jan-19 Signature

Certificate No: Z18-60385

Page 1 of 8

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 http://www.chinattl.cn

Glossary:

TSLtissue simulating liquidConvFsensitivity in TSL / NORMx,y,zN/Anot applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z18-60385

Page 2 of 8