

TEST REPORT

EUT Description WLAN and BT, 2x2 PCle M.2 1216 adapter card

Brand Name Intel®

Model Name BE201D2WP

FCC/IC ID PD9BE201D2P; 1000M-BE201D2P

Date of Test Start/End 2024-01-24 / 2024-01-24

Features 2x2 Wi-Fi - Bluetooth®

(see section 5)

Applicant Intel Corporation SAS

Address 425 Rue de Goa – Le Cargo B6 – 06600 Antibes, FRANCE

Contact Person Benjamin Lavenant

Telephone/Fax/ Email Benjamin.lavenant@intel.com

FCC CFR Title 47 Part 15E Reference Standards RSS-247 issue 3

(see section 1)

Test Report identification 240521-02.TR15

Rev. 00

Revision Control This test report revision replaces any previous test report revision

(see section 8)

The test results relate only to the samples tested.

Reference to accreditation shall be used only by full reproduction of test report.

Issued by Reviewed by

Cedric REQUIN (Test Engineer Lead)

Zayd OUACHICHA (Technical Manager)

Intel Corporation S.A.S – WRF Lab
425 rue de Goa – Le Cargo B6 - 06600, Antibes, France
Tel. +33493001400 / Fax +33493001401

Table of Contents

1. St	tandards, reference documents and applicable test methods	3
2. G	eneral conditions, competences and guarantees	3
3. Er	nvironmental Conditions	3
4. Te	est samples	4
5. EU	UT Features	5
6. Re	emarks and comments	5
7. Te	est Verdicts summary	6
7.1.	DYNAMIC FREQUENCY SELECTION	6
8. Do	ocument Revision History	6
Annex	A. Test & System Description	7
A.1	MEASUREMENT SYSTEM	
A.2	TEST EQUIPMENT LIST	8
A.3	MEASUREMENT UNCERTAINTY EVALUATION	9
Annex	c B. Test Results	10
B.1	TEST CONDITIONS	10
B.2	TEST RESULTS FOR DYNAMIC FREQUENCY SELECTION (DFS)	
Annex	c C. Photographs	12
C.1	TEST SAMPLE	12

1. Standards, reference documents and applicable test methods

FCC	 FCC Title 47 CFR part 15 - Subpart E – Unlicensed National Information Infrastructure Devices. 2023-10-01 Edition FCC OET KDB 905462 D02 v02 - UNII DFS Compliance Procedures New Rules – Compliance Measurement procedures for Unlicensed-National Information Infrastructure Devices Operating in the 5250-5350 MHz and 5470-5725 MHz Bands Incorporating Dynamic Frequency Selection. ANSI C63.10-2013 American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.
ISED	 RSS-247 Issue 3 – Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSS) and License-Exempt Local Area Network (LE-LAN) Devices FCC OET KDB 905462 D02 v02 - UNII DFS Compliance Procedures New Rules – Compliance Measurement procedures for Unlicensed-National Information Infrastructure Devices Operating in the 5250-5350 MHz and 5470-5725 MHz Bands Incorporating Dynamic Frequency Selection. ANSI C63.10-2020 American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

2. General conditions, competences and guarantees

- ✓ Tests performed under FCC standards identified in section 1 are covered by A2LA accreditation.
- ✓ Tests performed under ISED standards identified in section 1 are covered by Cofrac accreditation.
- ✓ Intel Corporation SAS Wireless RF Lab (Intel WRF Lab) is an ISO/IEC 17025:2017 laboratory accredited by the American Association for Laboratory Accreditation (A2LA) with the certificate number 3478.01.
- ✓ Intel Corporation SAS Wireless RF Lab (Intel WRF Lab) is an Accredited Test Firm recognized by the FCC, with Designation Number FR0011.
- ✓ Intel Corporation SAS Wireless RF Lab (Intel WRF Lab) is an ISO/IEC 17025:2017 testing laboratory accredited by the French Committee for Accreditation (Cofrac) with the certificate number 1-6736.
- ✓ Intel Corporation SAS Wireless RF Lab (Intel WRF Lab) is a Registered Test Site listed by ISED, with ISED company number 1000Y and CAB identifier FR0005.
- ✓ Intel WRF Lab only provides testing services and is committed to providing reliable, unbiased test results and interpretations.
- ✓ Intel WRF Lab is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test.
- ✓ Intel WRF Lab has developed calibration and proficiency programs for its measurement equipment to ensure correlated and reliable results to its customers.
- ✓ This report is only referred to the item that has undergone the test.
- ✓ This report does not imply an approval of the product by the Certification Bodies or competent Authorities.

3. Environmental Conditions

✓ At the site where the measurements were performed the following limits were not exceeded during the tests:

Temperature	20.1°C ± 0.4°C
Humidity	60.2% ± 1.0%

4. Test samples

Sample	Control #	Description	Model	Serial #	Date of receipt	Note
	231120-05.S04	WIFI 7 Module	BE201D2WP	WFM:60452EB8A42F	2024-01-05	
#1	230528-03.S50	Extender	PCB00862-00_A	2305108150	2023-11-10	RF Conducted
	200702-02.S03	Laptop	HP(HSN-I41C-5)	00095002JP	2020-07-10	

5. EUT Features

The herein information is provided by the customer

Intel WRF Lab declines any responsibility for the accuracy of the stated customer provided information, especially if it has any impact on the correctness of test results presented in this report

Brand Name	Intel®				
Model Name	BE201D2WP				
Software Version	DRTU.05726.99.0.86				
Driver Version	99.0.86.3				
Prototype / Production	Production				
Supported Radios	802.11b/g/n/ac/ax/be 2.4GHz 802.11a/n/ac/ax/be 5.2GHz 5.6GHz 5.8GHz 802.11ax/be 6.0GHz Bluetooth 2.4GHz				
	Transmitter	Chain A (1)	Chain B (2)		
	Manufacturer	Intel WRF Lab	Intel WRF Lab		
	Antenna type	PIFA / Slot / Monopole	PIFA / Slot / Monopole		
Antenna Information	Part number	ANT24-P855-00 / ANT24-S855-00 / ANT24-M855-00	ANT24-P855-00 / ANT24-S855-00 / ANT24-M855-00		
	Max declared antenna gain (dBi) - 5 GHz	+8.07	+8.07		

6. Remarks and comments

- 1. No deviations were made from the test methods listed in section 1 of this report
- 2. The operating mode of the sample is client only without radar detection.
- 3. Conducted tests have been performed using the maximum antenna gain between the PIFA, Monopole and Slot antennas

7. Test Verdicts summary

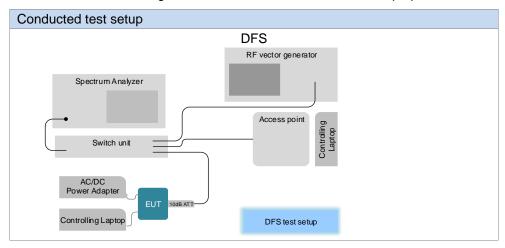
The statement of conformity to applicable standards in the table below are based on the measured values, without taking into account the measurement uncertainties.

7.1. Dynamic frequency selection

FCC part	RSS part	Test name	
		Non Occupancy Period	Р
		DFS Detection Threshold	NA
	RSS-247 part 6.3	Channel Availability Check Time	NA
15.407 (h) (2)		Uniform Spreading	NA
		U-NII Detection Bandwidth	NA
		Channel Closing Transmission Time	Р
		Channel Move Time	Р

8. Document Revision History

Revision #	Modified by	Revision Details
Rev. 00	C.Requin	First Issue



Annex A. Test & System Description

A.1 Measurement System

Measurements were performed using the following setups, made in accordance to the general provisions of FCC KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02.

The EUT was installed in a test fixture and this test fixture is connected to a laptop computer and AC/DC power adapter. A second computer was used to configure the access point on the DFS channels; a channel was selected randomly by the access point. To enable channel loading, data is streamed between the EUT laptop and the second computer.

A.2 Test Equipment List

Conducted Setup

ID#	Device	Type/Model	Serial #	Manufacturer	Cal. Date	Cal. Due Date
017-015	Switch unit	OSP 120	101172	Rohde & Schwarz	2022-04-29	2024-04-29
481-000	Access point 802.11n	AIR-CAP3502E-A-K9	FTX1438S6P4	Cisco	N/A	N/A
017-036	Access Point 802.11be	BE800	Y2340P6000367	TP-Link	N/A	N/A
017-003	DC Power supply	E3640A	MY40006885	Agilent	N/A	N/A
133-000	Oscilloscope	RTE1052	101135	Rohde & Schwarz	2022-03-25	2024-03-25
311-000	Climatic chamber	SLT34/40	56746020930010	Secasi	2023-12-20	2025-12-20
134-000	Spectrum analyzer	FSV30	103308	Rohde & Schwarz	2023-07-26	2025-07-26
273-000	Spectrum analyzer	FSV30	103309	Rohde & Schwarz	2023-02-01	2025-02-01
503-000	Spectrum analyzer	FSVA3013	102318	Rohde & Schwarz	2023-08-09	2025-08-09
017-000	Measurement Software	WMS32 V11.40	200226	Rohde & Schwarz	N/A	N/A
412-000	Measurement Software	DRTU Power Finder V2	N/A	WRF Lab	N/A	N/A
363-000	Temp & Humidity Logger	RA12E-TH1-RAS	RA12-D0EB1A	AVTECH	2023-09-28	2025-09-28
237-000	10dB directional coupler	MC2047-10	01-062	Fairview	2023-03-03	2024-03-03
017-005	RF Cable 0.5m	PE3CA1039	-	Pasternack	2023-03-03	2024-03-03
017-006	RF Cable 1.2m	PE3C0666	-	Pasternack	2023-03-03	2024-03-03
017-007	Cable SMA Male to ML51-P	HRMP-ML51LP	DTR178-100RS	Hirose	2023-03-03	2024-03-03
017-008	Cable SMA Male to ML51-P	HRMP-ML51LP	DTR178-100RS	Hirose	2023-03-03	2024-03-03
281-000	Thermometer	t3000FC	46320036	Fluke	2022-03-03	2024-03-03
017-011	RF Cable 2m	0900670672000PJ	1936949	Radiall	2023-03-03	2024-03-03
017-012	RF Cable 2m	0900670672000PJ	1936947	Radiall	2023-03-03	2024-03-03
017-019	10dB attenuator	-	-	Pasternack	2023-03-03	2024-03-03
017-020	10dB attenuator	-	-	Pasternack	2023-03-03	2024-03-03
008-025	Power Sensor	NRP-Z57	101280	Rohde & Schwarz	2022-04-22	2024-04-22

N/A: Not applicable

A.3 Measurement Uncertainty Evaluation

The system uncertainty evaluation is shown in the table below with a coverage factor of k = 2 to indicate a 95% level of confidence:

Measurement type	Uncertainty	Unit
Timing	±1	ms

Annex B. Test Results

The herein test results were performed by:

Test case measurement		Test Personnel
DFS		Thomas GAMAIN

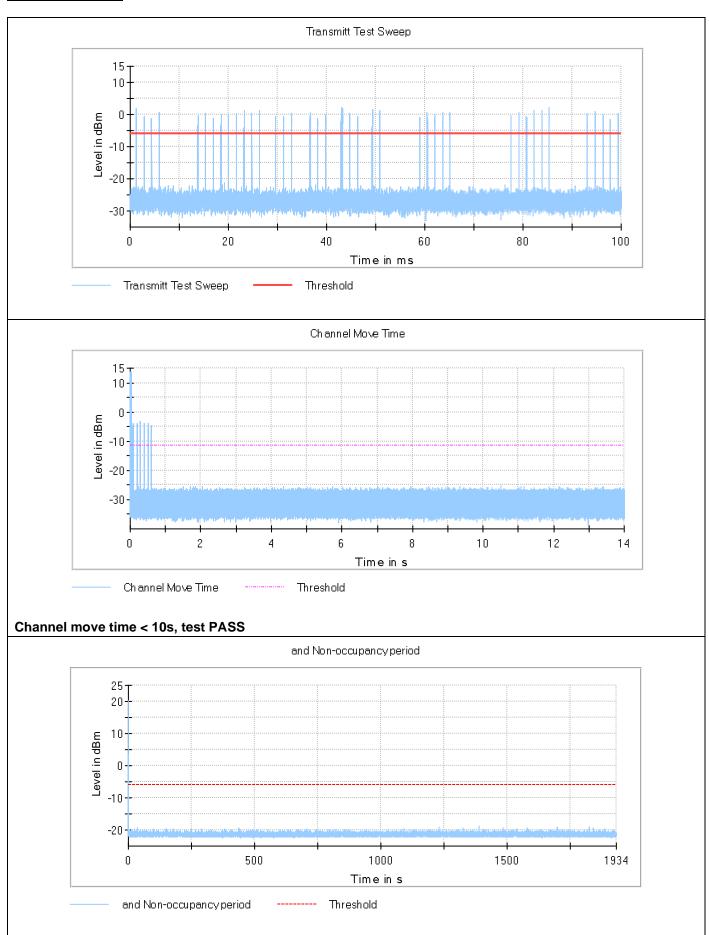
B.1 Test Conditions

The EUT power supply was provided by the Extender test board, $V_{nominal} = 3.3 V_{DC}$. The software PROSet/Wireless was used to set the EUT in normal operation mode.

B.2 Test results for Dynamic Frequency Selection (DFS)

Test procedure

The conducted setup shown on *Section A.1* was used to measure the Channel Closing Transmission Time and Channel Move Time.


The Client Device (UUT) is set up to associate with the Master Device. Data is streamed between the Master Device and the Client Device. Radar test waveforms generated with the vector signal generator are injected into the Master on the operating channel above the DFS detection threshold. Observations are done on the transmissions of the UUT at the end of the radar burst on the Operating Channel for a duration greater than 10 seconds. We measured the transmissions from the UUT during the observation time, after radar detection occurs the Channel Move Time and Channel Closing Transmission Time are recorded.

Results tables

Tested Channel: 64, Frequency: 5320 MHz

Test item	Results	Limit
Transmit Test Duty Cycle	1.740%	-
Channel Closing Transmission Time	<25.400ms	200 ms + an aggregate of 60ms over remaining 10 seconds period.
Channel Move Time	609 ms	10 seconds
Non-Occupancy Period	32 minutes	Minimum 30 minutes

Results Screenshot

No transmission of any type has occurred for 30 minutes, test PASS