

Report No.: TB-FCC184528 Page: 1 of 30

FCC Radio Test Report FCC ID:2ANPS-KS-SF30R

Report No.	0	TB-FCC184528
Applicant	:	Shenzhen King-Serry Electronics Co.,Ltd
Equipment Under	Те	st (EUT)
EUT Name	-	Wireless Welcome Doorbell
Model No.	:	KS-SF30R
Series Model No.	:	KS-SF20R, KS-WLS10, KS-SF20R MP3, KS-WLS10Waterproof
Brand Name		
Sample ID	:	20211012-06_02-03
Receipt Date	1.	2021-10-13
Test Date	:	2021-10-13 to 2021-11-04
Issue Date	8	2021-11-04
Standards	:	FCC Part 15, Subpart C (15.231(a))
Test Method		ANSI C63.10:2013
Conclusions	1	PASS
		In the configuration tested, the EUT complied with the standards specified above,

In the configuration tested, the EUT complied with the standards specific The EUT technically complies with the FCC requirements

Caurolle Li

WAN SU fory Loi. C.HNO

Camille L

IVAN SU

Ray

Test/Witness Engineer

Engineer Supervisor

Engineer Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Contents

CON	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	
	1.5 Description of Test Mode	6
	1.6 Description of Test Software Setting	7
	1.7 Measurement Uncertainty	7
	1.8 Test Facility	8
2.	TEST SUMMARY	8
3.	TEST SOFTWARE	8
4.	TEST EQUIPMENT	
5.	CONDUCTED EMISSION TEST	
	5.1 Test Standard and Limit	
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 Deviation From Test Standard	
	5.5 Test Data	
6.	RADIATED EMISSION TEST	
0.	6.1 Test Standard and Limit	
	6.2 Test Setup	
	6.3 Test Procedure	
	6.4 Deviation From Test Standard	
	6.5 EUT Operating Condition	
	6.6 Test Data	
7.	BANDWIDTH	
	7.1 Test Standard and Limit	
	7.2 Test Setup	
	7.3 Test Procedure	
	7.4 Deviation From Test Standard	
	7.5 EUT Operating Condition	
	7.6 Test Data	
8.	RELEASE TIME MEASUREMENT	
0.	8.1 Test Standard and Limit	
	8.2 Test Setup	
	8.3 Test Procedure	
	8.4 Deviation From Test Standard	
	8.5 EUT Operating Condition	
	8.6 Test Data	

TOBY

9.	DUTY CYCLE	
	9.1 Test Standard and Limit	
	9.2 Test Setup	
	9.3 Test Procedure	
	9.4 Deviation From Test Standard	
	9.5 EUT Operating Condition	
	9.6 Test Data	
10.	ANTENNA REQUIREMENT	19
	10.1 Standard Requirement	
	10.1 Deviation From Test Standard	
	10.2 Antenna Connected Construction	19
ATT	ACHMENT A CONDUCTED EMISSION TEST DATA	
	ACHMENT B RADIATED EMISSION TEST DATA	
ATT	ACHMENT CBANDWIDTH DATA	
	ACHMENT D RELEASE TIME MEASUREMENT DATA	
	ACHMENT EDUTY CYCLE DATA	
/ . / .		

Revision History

Report No.	Version	Description	Issued Date
TB-FCC184528	Rev.01	Initial issue of report	2021-11-04
1031 (TOB)		TOBI LODI	a TOPP
and a	C CON		TO TOTAL
	1019	TOUS TO	
S CODS	B		3 000
TOBI	TOBE	TI TIME TO THE	r OBL
TOD:	THE LE	MOBY NOBY	TOP2
Jube may	mB		C P
	TBU	TOD TO TO	TRI LINE
MARY	1002		MINE I
	A CONTRACT	The second	

1. General Information about EUT

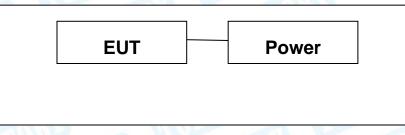
1.1 Client Information

TOBY

Applicant	:	Shenzhen King-Serry Electronics Co.,Ltd		
Address : Floor 5th.Block T, Nanlian Hengyu science park, NO.1 Ruiji Roa Longgang Distrect, Shenzhen, China				
Manufacturer : Shenzhen King-Serry Electronics Co.,Ltd		Shenzhen King-Serry Electronics Co.,Ltd		
Address : Floor 5th.Block T, Nanlian Hengyu science park, NO. Longgang Distrect, Shenzhen, China		Floor 5th.Block T, Nanlian Hengyu science park, NO.1 Ruiji Road, Longgang Distrect, Shenzhen, China		

1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	Wireless Welcome Doorbell		
Models No.	3	KS-SF30R, KS-SF20R, KS-WLS10, KS-SF20R MP3, KS-WLS10Waterproof		
	2 2 6	Operation Frequency:	433.92 MHz	
Product		Output Power:	76.34 dBuV/m (PK Max.) 56.22dBuV/m (AV Max.)	
Description		Antenna Type:	Spring Antenna	
S TON		Antenna Gain:	0dBi	
		Modulation Type:	ООК	
Power Rating	:	TX: by 3*AAA battery TX: Input: DC 5V		
Software Version	2	N/A		
Hardware Version	6	N/A		
Remark		The antenna gain provided by the applicant, the verified for the RF conduction test provided by TOBY test lab.		


Note:

- (1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (2) Antenna description

Brand	Model Name	Туре	Antenna Gain(dBi)	
N/A	N/A	PCB Ant.	0	

1.3 Block Diagram Showing the Configuration of System Tested

TX Mode

1.4 Description of Support Units

The EUT has been test as an independent unit.

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

Test Items	Note
Conducted Emission	Continuously transmitting
Radiated Emission	Continuously transmitting
Bandwidth	Continuously transmitting
Duty Cycle	Continuously transmitting
Release Time	Normal Mode

Note:

- (1) During the testing procedure, the continuously transmitting mode was programmed by the customer.
- (2) The EUT is considered a Mobile unit, and it was pre-tested on the positioned of each 3 axis: X axis, Y axis and Z axis. The worst case was found positioned on Z-plane. There for only the test data of this Z-plane were used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of transmitting mode.

RF Power Setting in Test SW:	DEF

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.50 dB ±3.10 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.20 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

TOBY

1.8 Test Facility

The testing was performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at: 1/F.,Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351 Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A.

Standard Section	FCC Part 15 Subpart (15.		
FCC	Test Item	Judgment	Remark
15.203	Antenna Requirement	PASS	N/A
15.207	Conducted Emission	PASS	N/A
A REAL	Release Time	PASS	N/A
15 004	Radiation Emission	PASS	N/A
15.231	20 dB Bandwidth	PASS	N/A
and be	Duty Cycle	PASS	N/A

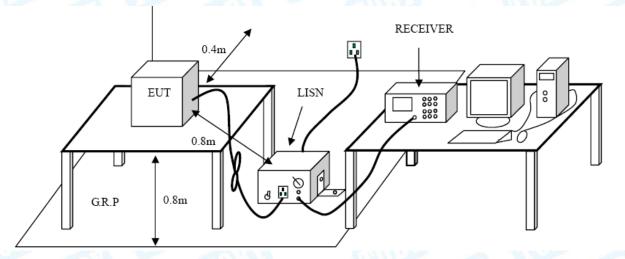
2. Test Summary

3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE

4. Test Equipment

Conducted Emission	Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 02, 2021	Jul. 01, 2022
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 02, 2021	Jul. 01, 2022
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 02, 2021	Jul. 01, 2022
LISN	Rohde & Schwarz	ENV216	101131	Jul. 02, 2021	Jul. 01, 2022
Radiation Emission T	est	-	-		-
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 02, 2021	Jul. 01, 2022
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 02, 2021	Jul. 01, 2022
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar.01, 2020	Feb. 28, 2022
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.01, 2020	Feb. 28, 2022
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 06, 2021	Jul. 05, 2022
Pre-amplifier	Sonoma	310N	185903	Feb. 25, 2021	Feb. 24, 2022
Pre-amplifier	HP	8449B	3008A00849	Feb. 25, 2021	Feb. 24, 2022
Cable	HUBER+SUHNER	100	SUCOFLEX	Feb. 25, 2021	Feb. 24, 2022
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna Conducted	Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 02, 2021	Jul. 01, 2022
Spectrum Analyzer	Rohde & Schwarz	ESPI	100010/007	Jul. 02, 2021	Jul. 01, 2022
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 10, 2021	Sep. 09, 2022
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep. 10, 2021	Sep. 09, 2022
Analog Signal Generator	Agilent	N5181A	MY50141953	Sep. 10, 2021	Sep. 09, 2022
	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO26	Sep. 10, 2021	Sep. 09, 2022
	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO29	Sep. 10, 2021	Sep. 09, 2022
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO31	Sep. 10, 2021	Sep. 09, 2022
	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO33	Sep. 10, 2021	Sep. 09, 2022


5. Conducted Emission Test

- 5.1 Test Standard and Limit
 - 5.1.1Test Standard FCC 15.207
 - 5.1.2 Test Limit

Contraction of the	Maximum RF Line Voltage (dBμV)			
Frequency	Quasi-peak Level	Average Level		
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *		
500kHz~5MHz	56	46		
5MHz~30MHz	60	50		

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.
- 5.2 Test Setup

5.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

The EUT must be tested for all available U.S. voltages and frequencies (such as a nominal 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz) for which the device is capable of operation.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

5.4 Deviation From Test Standard

No deviation

5.5 Test Data

Please refer to the Attachment A inside test report.

6. Radiated Emission Test

6.1 Test Standard and Limit

- 6.1.1 Test Standard
 - FCC 15.231
- 6.1.2 Test Limit

According to FCC 15.231(a) requirement:

In addition to the provisions of Section 15.205, the field strength of emissions from intentional radiators operated under this Section shall not exceed the following:

Fundamental Frequency (MHz)	Field Strength of Fundamental (microvolt/meter) at 3m	Field Strength of Spurious Emissions (microvolt/meter) at 3m
40.66~40.70	2250	225
70~130	1250	125
130~174	1250 to 3750(**)	125 to 375(**)
174~260	3750	375
260~470	3750 to 12500(**)	375 to 1250(**)
Above 470	12500	1250

** Linear interpolations, the formulas for calculating the maximum permitted fundamental field strengths are as follows:

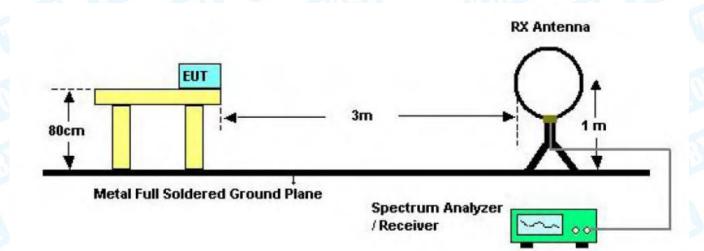
(1) for the band 130~174 MHz, uV/m at 3 meters= 56.81818(F)-6136.3636;

(2) for the band 260~470 MHz, uV/m at 3 meter= 41.6667(F)-7083.3333.

(3) The maximum permitted unwanted emissions level is 20 dB below the maximum permitted fundamental level. In addition field strength of any emissions which appear inside of the restriction band shall not exceed the general radiated emissions limits in FCC Part15.209.

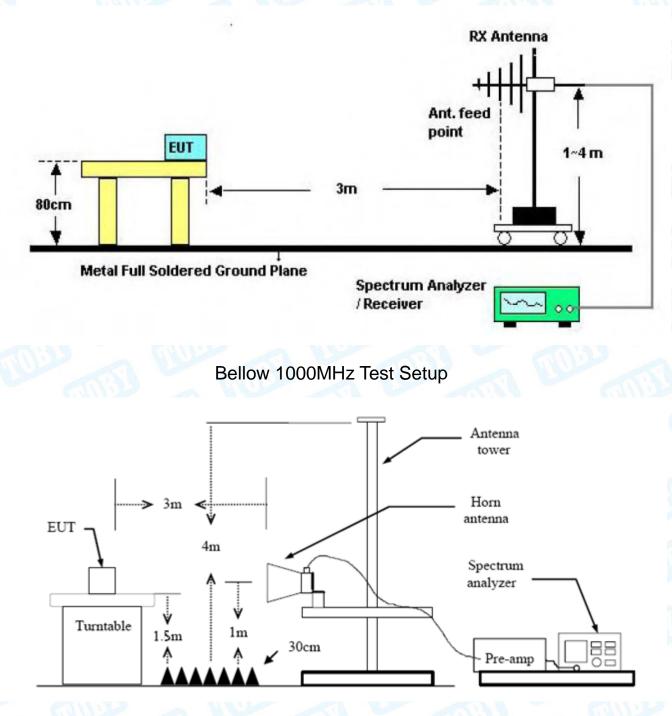
Frequency (MHz)	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	216~960 200	
Above 960	500	3

Note:


- (1) The tighter limit applies at the band edges.
- (2) For above 30MHz:

Emission Level(dBuV/m)=20log Emission Level(uV/m) For 0.009~0.490MHz: Emission Level(dBuV/m)=20log Emission Level(uV/m) +40log(300/3) For 0.049~30MHz: Emission Level(dBuV/m)=20log Emission Level(uV/m) +40log(30/3)

So the field strength of emission limits have been calculated in below table.


Fundamental Frequency (MHz)	Field Strength of Fundamental (microvolt/meter) at 3m		
433.92 MHz	80.82 (Average)		
433.92 MHz	100.82 (Peak)		

6.2 Test Setup

Below 30MHz Test Setup

Above 1GHz Test Setup

6.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz. The EUT was placed on a rotating 0.8m high above the ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.
- 6.4 Deviation From Test Standard

No deviation

6.5 EUT Operating Condition

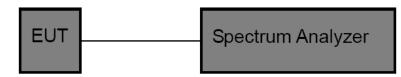
The Equipment Under Test was set to Continual Transmitting in maximum power.

6.6 Test Data

Please refer to the Attachment B.

TOBY

7. Bandwidth


7.1 Test Standard and Limit

- 7.1.1 Test Standard FCC 15.231
- 7.1.2 Test Limit

The 99%bandwidth of the emissions shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. So the emission bandwidth limits have been calculated in below table.

1	Fundamental Frequency	20 dB Bandwidth Limits (MHz)
	433.92MHz	1.0848

7.2 Test Setup

7.3 Test Procedure

- Set Spectrum Analyzer Center Frequency= Fundamental Frequency, RBW=10 kHz, VBW= 30 kHz, Span= 1 MHz.
- (2) Measured the spectrum width with power higher than 20 dB below carrier.

7.4 Deviation From Test Standard

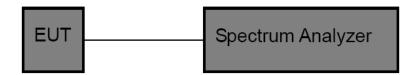
No deviation

7.5 EUT Operating Condition

The Equipment Under Test was Programmed to be in continuously transmitting mode.

7.6 Test Data

Please refer to the Attachment C.



8. Release Time Measurement

- 8.1 Test Standard and Limit
 - 8.1.1 Test Standard FCC 15.231
 - 8.1.2 Test Limit

According to FCC 15.231a, A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

8.2 Test Setup

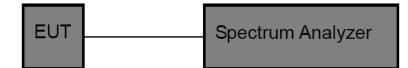
8.3 Test Procedure

- (1) Setup the EUT as show in the block diagram above.
- (2) Set Spectrum Analyzer Centre Frequency= Fundamental Frequency, RBW=100 kHz, VBW= 300 kHz, Span= 0 Hz. Sweep Time= 5 Seconds.
- (3) Setup the EUT as normal operation and press Transmitter button.
- (4) Set Spectrum Analyzer View, Delta Mark time.
- 8.4 Deviation From Test Standard

No deviation

8.5 EUT Operating Condition

The EUT was set to work in transmitting mode.


8.6 Test Data

Please refer to the Attachment D.

TOBY

9. Duty Cycle

- 9.1 Test Standard and Limit
 - 9.1.1 Test Standard FCC 15.231
- 9.2 Test Setup

9.3 Test Procedure

- (1) The EUT was placed on a turntable which is 0.8m above ground plane.
- (2) Set EUT operating in continuous transmitting mode.
- (3) Set the Spectrum Analyzer to the transmitter carrier frequency, and set the spectrum analyzer resolution bandwidth (RBW) to 100 kHz and video bandwidth (VBW) to 300 kHz, Span was set to 0 Hz.
- (4) The Duty Cycle was measured and recorded.
- 9.4 Deviation From Test Standard

No deviation

9.5 EUT Operating Condition

The EUT was programmed to be in transmitting mode.

9.6 Test Data

Please refer to the Attachment E.

10. Antenna Requirement

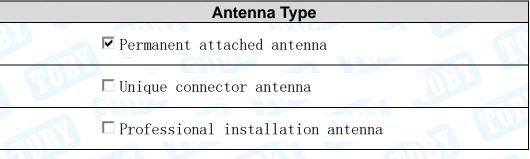
10.1 Standard Requirement

10.1.1 Standard

FCC Part 15.203

10.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


10.1 Deviation From Test Standard

No deviation

10.2 Antenna Connected Construction

The gains of the antenna used for transmitting is 0 dBi, and the antenna connector is de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

The EUT antenna is an Internal Antenna. It complies with the standard requirement.

Attachment A-- Conducted Emission Test Data

mperature:	22.5℃	Relat	ive Humidity:	42%	ARA.
st Voltage:	AC 120V/60Hz				
rminal:	Line	GUUS			and i
st Mode:	Mode 1		2005		NOR
emark:	Only worse case i	s reported.	6	O	
80.0 dBu¥					
				QP: AVG:	_
30					
30 ×	×	~	× ×		
	millimentulanaplanaple	holman Multunal was	x ×	horson down	Andriddon, ym peak
	mtriller July an and marked	helen marken and		horpor de the	And Marken AVG
	mtriller July an and marked	in the second		holpon do the	peak
	mtriller July an and marked	in the second		let providence the	peak

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.2340	1.30	10.27	11.57	62.30	-50.73	QP
2		0.2340	-3.29	10.27	6.98	52.30	-45.32	AVG
3		0.4220	0.14	10.21	10.35	57.41	-47.06	QP
4		0.4220	-4.83	10.21	5.38	47.41	-42.03	AVG
5		1.8020	-0.51	9.79	9.28	56.00	-46.72	QP
6	*	1.8020	-5.09	9.79	4.70	46.00	-41.30	AVG
7		6.4340	-0.40	9.76	9.36	60.00	-50.64	QP
8		6.4340	-4.98	9.76	4.78	50.00	-45.22	AVG
9		8.4300	-0.70	9.79	9.09	60.00	-50.91	QP
10		8.4300	-5.42	9.79	4.37	50.00	-45.63	AVG
11		18.6259	1.97	9.73	11.70	60.00	-48.30	QP
12		18.6259	-2.79	9.73	6.94	50.00	-43.06	AVG

TOBY

Remark: 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)

2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

emperature:	22.5 ℃	Relative Humidity:	42%
est Voltage:	AC 120V/60Hz		189
erminal:	Neutral	U A U	
est Mode:	Mode 1	and by	2 1100
emark:	Only worse case is re	ported.	
80.0 dBuV			QP: —
			AVG:
30 MMM		information and the second	M-M/M/M/M-M-M-MANA

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.2700	2.45	10.28	12.73	61.12	-48.39	QP
2		0.2700	-3.33	10.28	6.95	51.12	-44.17	AVG
3		0.4300	2.90	10.23	13.13	57.25	-44.12	QP
4		0.4300	-4.53	10.23	5.70	47.25	-41.55	AVG
5		1.1500	1.02	10.09	11.11	56.00	-44.89	QP
6	*	1.1500	-4.90	10.09	5.19	46.00	-40.81	AVG
7		1.4860	1.87	9.90	11.77	56.00	-44.23	QP
8		1.4860	-4.88	9.90	5.02	46.00	-40.98	AVG
9		2.1099	0.97	9.61	10.58	56.00	-45.42	QP
10		2.1099	-4.57	9.61	5.04	46.00	-40.96	AVG
11		3.0579	1.15	9.65	10.80	56.00	-45.20	QP
12		3.0579	-4.84	9.65	4.81	46.00	-41.19	AVG

Remark: 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB) 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Attachment B-- Radiated Emission Test Data

9 KHz to 30 MHz

TOBY

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

30MHz-1GHz

AC 120V/60Hz							
Horizontal							
FX Mode							
No report for the emission prescribed limit.	which more than 10 dB below	the					
	1						
		iation X jin -6 dB					
	A And burger and	maria					
whome when the second when the second s	with the second se						
		700 1000.000					
	Horizontal TX Mode No report for the emission prescribed limit.	Horizontal TX Mode No report for the emission which more than 10 dB below prescribed limit. (RFFCC 15C 3M Radi Marg					

N	o. M	k. Freq.			Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBu∀/m	dB	Detector
1	*	434.0651	88.51	-12.17	76.34	46.00	30.34	peak
2	Х	869.1300	60.67	-4.65	56.02	46.00	10.02	peak

Emission Level= Read Level+ Correct Factor

	Fundamental and Harmonics Result										
Freq(MHz)	Peak Level (dBµV/m)	AV Factor(dBμV/m) (see Attachment D)	Average Level (dBμV/m)	Limit(dBµV/m) (average)	Limit(dBµV/m) (Peak)	Conclusion					
434.0651	88.51	-32.29	56.22	80.80	100.80	PASS					
869.1300	60.67	-32.29	28.38	60.80	80.80	PASS					

emperature:	23.9 ℃			Relati	ve Humidity	/: 44	%
est Voltage:	AC 120	AC 120V/60Hz					
nt. Pol.	Vertical		GUL				12.7
est Mode:	TX Mode						
emark:	No repo prescrib		emission w	nich more tha	an 10 dB bel	ow the	a
80.0 dBuV/m							
					1 X		
					(RFJFCC 15C 3M		
						Margin -6 df	2
		<u> </u>					×
30							form
					I. when	whoman	
Mathin	Why	mm	and a star water and a start of the start of	mutherenter			
	WWWW						
20							
-20 30.000 40 5	60 60 70 80		(MHz)	300	400 500 6	00 700	1000.000
	D	eading	Correct	Measure-			
		cauling					
No. Mk.		Level	Factor	ment	Limit (Over	
No. Mk.				ment dBuV/m	Limit (dBuV/m	Over dB	Detect
	Freq. MHz	Level	Factor		dBuV/m		Detect

Emission Level= Read Level+ Correct Factor

		Fundam	ental and Harmonics Re	esult		
Freq(MHz)	Peak Level (dBµV/m)	AV Factor(dBµV/m) (see Attachment D)	Average Level (dBµV/m)	Limit(dBµV/m) (average)	Limit(dBµV/m) (Peak)	Conclusion
434.0651	84.38	-32.29	52.09	80.80	100.80	PASS
869.1302	47.89	-32.29	15.60	60.80	80.80	PASS

TOBY

1GHz -6GHz

Temperature:	23.	.9℃				Relative	e Hum	idity:	44%
Test Voltage:	AC	120V/6	OHz		_ <	AUP	20	27	
Ant. Pol.	Но	rizontal	Jul -		5.0	Contraction of the second	GI	112	
Test Mode:	ТХ	Mode		ann	she -	-	V		-
Remark:	Th	e peak v	alue <a< td=""><td>/erage li</td><td>mit, So d</td><td>only sho</td><td>w the</td><td>peak v</td><td>alue.</td></a<>	/erage li	mit, So d	only sho	w the	peak v	alue.
	80.0 dBuV/m			3					
						(RF) FCC PAF	T 15C (PEAK)		
			4 ×	x X	7 X	9			
	1	2 X			1 Junior	(ITF) FCC PA	RT 15C (AVG)	<u> </u>	
	×	- I much	mannon	humm					
	30	~							
	30								
								_	
	-20								
	1000.000 1500	.00 2000.00	2500.00 3000	.00 3500.00	4000.00 4500	0.00 5000.00	600	0.00 MHz	
			Reading	Correct	Measure-				
	No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	No. Mk.	Freq. MHz				Limit dBuV/m	Over dB	Detector	
	No. Mk.		Level	Factor	ment			Detector peak	
		MHz	Level dBuV	Factor dB/m	ment dBuV/m	dBuV/m	dB		
	1 2	MHz 1300.000 1730.000	Level dBuV 50.08 51.90	Factor dB/m -4.28 -2.35	ment dBuV/m 45.80 49.55	dBuV/m 74.00 74.00	dB -28.20 -24.45	peak peak	
	1 2 3	MHz 1300.000 1730.000 2170.000	Level dBuV 50.08 51.90 51.19	Factor dB/m -4.28 -2.35 1.09	ment dBuV/m 45.80 49.55 52.28	dBuV/m 74.00 74.00 74.00	dB -28.20 -24.45 -21.72	peak peak peak	
	1 2 3 4	MHz 1300.000 1730.000 2170.000 2600.000	Level dBuV 50.08 51.90 51.19 57.73	Factor dB/m -4.28 -2.35 1.09 3.03	ment dBuV/m 45.80 49.55 52.28 60.76	dBuV/m 74.00 74.00 74.00 74.00	dB -28.20 -24.45 -21.72 -13.24	peak peak peak peak	
	1 2 3 4 5	MHz 1300.000 1730.000 2170.000 2600.000 3040.000	Level dBuV 50.08 51.90 51.19 57.73 59.42	Factor dB/m -4.28 -2.35 1.09 3.03 5.05	ment dBuV/m 45.80 49.55 52.28 60.76 64.47	dBuV/m 74.00 74.00 74.00 74.00 74.00	dB -28.20 -24.45 -21.72 -13.24 -9.53	peak peak peak peak	
	1 2 3 4 5 6 *	MHz 1300.000 1730.000 2170.000 2600.000 3040.000 3470.000	Level dBuV 50.08 51.90 51.19 57.73 59.42 58.21	Factor dB/m -4.28 -2.35 1.09 3.03 5.05 6.54	ment dBuV/m 45.80 49.55 52.28 60.76 64.47 64.75	dBuV/m 74.00 74.00 74.00 74.00 74.00 74.00	dB -28.20 -24.45 -21.72 -13.24 -9.53 -9.25	peak peak peak peak peak peak	
	1 2 3 4 5 6 7	MHz 1300.000 1730.000 2170.000 2600.000 3040.000 3470.000 3910.000	Level dBuV 50.08 51.90 51.19 57.73 59.42 58.21 49.09	Factor dB/m -4.28 -2.35 1.09 3.03 5.05 6.54 9.21	ment dBuV/m 45.80 49.55 52.28 60.76 64.47 64.75 58.30	dBuV/m 74.00 74.00 74.00 74.00 74.00 74.00 74.00	dB -28.20 -24.45 -21.72 -13.24 -9.53 -9.25 -15.70	peak peak peak peak peak peak	
	1 2 3 4 5 6 7	MHz 1300.000 1730.000 2170.000 2600.000 3040.000 3470.000	Level dBuV 50.08 51.90 51.19 57.73 59.42 58.21	Factor dB/m -4.28 -2.35 1.09 3.03 5.05 6.54	ment dBuV/m 45.80 49.55 52.28 60.76 64.47 64.75	dBuV/m 74.00 74.00 74.00 74.00 74.00 74.00	dB -28.20 -24.45 -21.72 -13.24 -9.53 -9.25	peak peak peak peak peak peak	

Emission Level= Read Level+ Correct Factor

verage Value	:					
Frequency (MHz)	Peak Level (dBuV/m)	Duty cycle factor	Average value (dBuV/m)	Limit Line (dBuV/m)	Over limit (dB)	Polarization
1300.000	50.08	-32.29	17.79	54.00	-36.21	Horizontal
1730.000	51.90	-32.29	19.61	54.00	-34.39	Horizontal
2170.000	51.19	-32.29	18.90	54.00	-35.10	Horizontal
2600.000	57.73	-32.29	25.44	54.00	-28.56	Horizontal
3040.000	59.42	-32.29	27.13	54.00	-26.87	Horizontal
3470.000	58.21	-32.29	25.92	54.00	-28.08	Horizontal
3910.000	49.09	-32.29	16.80	54.00	-37.20	Horizontal
4340.000	53.08	-32.29	20.79	54.00	-33.21	Horizontal
4780.000	45.97	-32.29	13.68	54.00	-40.32	Horizontal

Temperature:	23.9 ℃		Relative Hum	idity: 44
Test Voltage:	AC 120V/60Hz		13.00	
Ant. Pol.	Vertical	anis.		J. P. P.
Test Mode:	TX Mode			6.11
Remark:	The peak value <	average limit,	So only show the	peak value.
80.0 dBuV/m				
			(RF) FCC PART 15	SC (PEAK)
		4		
	2 X	3 X	5 (RF) FCC PART 1	15C (AVG)
	1 X	and and the second	malanin	
m	m from Marino			
and the	~			
30				
-20				
1000.000 150	0.00 2000.00 2500.00 3000	D.00 3500.00 4000.	00 4500.00 5000.00	6000.00 MHz
	Reading	Correct Mea	asure-	
No. M			ient Limit C	lver
	MHz dBuV	dB/m dE	BuV/m dBuV/m	dB Detecto
4	1780.000 49.66	-2.32 4	7.34 74.00 -2	26.66 peak
1				
2	2600.000 51.62	3.03 5	4.65 74.00 -1	19.35 peak
				19.35 peak 18.76 peak
2	2600.000 51.62	5.05 5	5.24 74.00 -1	

Emission Level= Read Level+ Correct Factor

verage Value	:		1			
Frequency (MHz)	Peak Level (dBuV/m)	Duty cycle factor	Average value (dBuV/m)	Limit Line (dBuV/m)	Over limit (dB)	Polarization
1780.000	49.66	-32.29	17.37	54.00	-36.63	Vertical
2600.000	41.62	-32.29	9.33	54.00	-44.67	Vertical
3040.000	50.19	-32.29	17.90	54.00	-36.10	Vertical
3910.000	52.08	-32.29	19.79	54.00	-34.21	Vertical
4340.000	44.79	-32.29	12.50	54.00	-41.50	Vertical

Other harmonics emissions are lower than 20dB below the allowable limit.

- Note: (1) All Readings are Peak Value and AV. And AV is calculated by the following: Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection. Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values.
 - Average Values=Peak Values+20log (Duty Cycle)
 - (2) Emission Level= Reading Level + Probe Factor +Cable Loss
 - (3) Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Pulse Desensitization Correction Factor

Note: 1)The Smallest Pulse Width (PW)= 0.400ms

(2) 2/PW=2/0.400(ms)= 5kHz<100 kHz

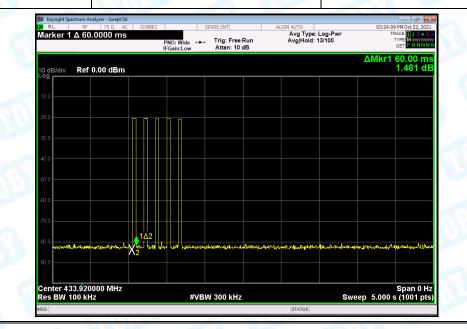
Because 2/PW<RBW, so the PDCF is not needed.

Attachment C--Bandwidth Data

TOBY

-	25 ℃
:	65 %
•	1010 hPa
2	AC 120V/60Hz

Frequency	20 dBc Bandwidth	Limit	Result
(MHz)	(kHz)	(kHz)	Result
433.92	24.95	1084.8	PASS
	Keysight Spectrum Analyzer - Occupied BW W RL RF 75 Ω AC CORREC SENSE:INT ALIGN AUTO	09:52:25 AM Oct 21, 2021	

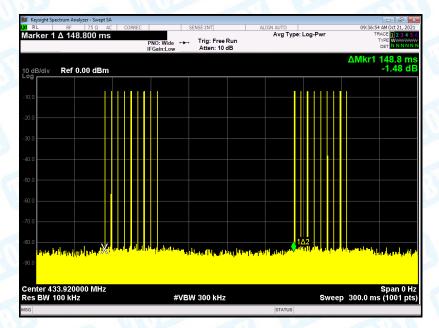


Attachment D-- Release Time Measurement Data

TOBY

Temperature	:	25 ℃
Relative Humidity	1	65 %
Pressure		1010 hPa
Test Power	6	AC 120V/60Hz

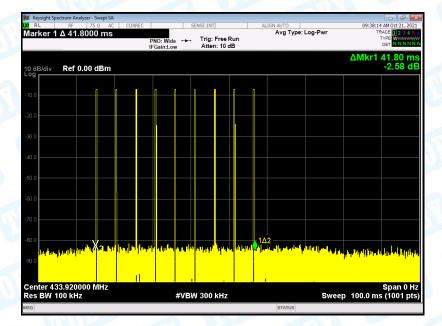
Release Time(s)	Limit (s)	Result
0.00027	5	PASS


Attachment E--Duty Cycle Data

Please refer the following pages:

Plot 1/Plot 2: transmit once in 100ms, and each cycle is 41.80 ms there are two kinds of pulse in each cycle, the pulses total 9.

Plot 3: one large pulse in a time period of 1.0 ms **Plot 4:** one middle pulse in a time period of 0.4 ms


Duty Cycle=ON/Total= (0.27*9)/100=2.43/100=2.43% 20log (Duty Cycle) =-32.29 Average=Peak Value+ 20log (Duty Cycle), AV=PK-32.29

Plot 1

Plot 2

Plot 3

🎉 Keysight Spectrum Analyzer - S					- 0 -
Marker 1 Δ 270.000		SENSE:INT	ALIGN AUTO Avg Type	: Log-Pwr	09:39:16 AM Oct 21, 2021 TRACE 1 2 3 4 5 6
	PNO:	Wide ⊶⊶ Trig: Free F n:Low Atten: 10 d	tun	•	DET NNNNN
10 dB/div Ref 0.00 d	4Dm			Δ	Mkr1 270.0 µs 2.44 dB
	ы				2.11 40
, I.I.,	a				,
-10.0					
-20.0					
-20.0					
-30.0					
-40.0					
-50.0					
-60.0					
-60.0					
-70.0					
-80.0			· · · · · · · · · · · · · · · · · · ·	1Δ2	
والأفاقل ويعدا وأفاته	Last, Mile, phillips	MARINE AND A DURING MARINE		John Manager	li la de la Calebra d'Ale
-90.0		1.1.1			
i de la de la cara de la c	din It m hite d	his ditta din sila			l, i di kati i ski
Center 433.920000 MHz Span 0 Hz					
Res BW 100 kHz		#VBW 300 kHz		Sweep 30	.00 ms (1001 pts)
MSG			STATUS		

-----END OF REPORT-----