

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.231

Report Reference No...... CTA24112600804

FCC ID.....: 2A7KU-SA9

Compiled by

(position+printed name+signature)..: File administrators Xudong

Zhang

Supervised by

(position+printed name+signature)..: Project Engineer Zoey Cao

Approved by

(position+printed name+signature)..: RF Manager Eric Wang

Date of issue...... Dec. 06, 2024

Testing Laboratory Name Shenzhen CTA Testing Technology Co., Ltd.

Address....... Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community,

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name...... Shen zhen jian pai mao yi you xian gong si

Address Room 404, De Zhong Dian Shang Chan Ye Yuan, Ban Tian, Long

Gang, Shenzhen, China

Test specification:

Standard FCC Part 15.231

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purpses as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Equipment Weather Station

Trade Mark N/A

Manufacturer Shen zhen jian pai mao yi you xian gong si

Result...... PASS

Report No.: CTA24112600804 Page 2 of 20

TEST REPORT

Equipment under Test Weather Station

Model /Type SA9

Listed Models N/A

Shen zhen jian pai mao yi you xian gong si **Applicant**

Room 404, De Zhong Dian Shang Chan Ye Yuan, Ban Tian, Long Address

Gang, Shenzhen, China

Shen zhen jian pai mao yi you xian gong si Manufacturer

CTA TESTING Room 404, De Zhong Dian Shang Chan Ye Yuan, Ban Tian, Long

Gang, Shenzhen, China

	STILL
Test Result:	PASS
25 000	C C

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test CTA TESTING laboratory.

Page 3 of 20 Report No.: CTA24112600804

Contents

		-ESTING COI	ntents	
	J.C. W	TATE		
	1	TEST STANDARDS	<u> </u>	4
	2) usquiri	CIA CIA		_
	<u>2</u>	SUMMARY	<u></u>	5
	2.1	General Remarks		5
	2.2	Product Description		5
	2.3	Equipment Under Test		5 5
	2.4	Short description of the Equipment under	r Test (EUT)	5
	2.5	Block Diagram of Test Setup		5
	2.6	Special Accessories		6
CIL	2.7	Related Submittal(s) / Grant (s)		6
5 1	2.8	Modifications		6
		CTA		
	<u>3</u>	TEST ENVIRONMENT		7
	<u> </u>	TEGI ENVIRONMENT	- A	IM.
			CTATES	2111
	3.1	Address of the test laboratory	TATE	7
	3.2	Test Facility	CIL	7
	3.3	Environmental conditions		7
	3.4	Summary of measurement results		•
	3.5	Statement of the measurement uncertain	xy	8
	3.6	Equipments Used during the Test		9
		TES!		
	4	TEST CONDITIONS AND RESU	LTS	10
		/5		
		TES		
	4.1	AC Power Conducted Emission		10
	4.2	Radiated Emission		13
	4.3	20dB Bandwidth		16
	4.4	Deactivation Time		17
	4.5	Antenna Requirement	CTATESTING	18
	5	TEST SETUD BUOTOS OF THE	EUT	19
	5 NG	TEST SETUP PHOTOS OF THE	EUI	. 19
CTA	<u>6</u>	PHOTOS OF THE EUT		20
CTATE		PHOTOS OF THE EUT3		
			CTATESTING	

Report No.: CTA24112600804 Page 4 of 20

TEST STANDARDS 1

The tests were performed according to following standards:

FCC Rules Part 15.231: Periodic operation in the band 40.66-40.70 MHz and above 70 MHz. ANSI C63.10:2013: American National Standard for Testing Unlicensed Wireless Devices GIA TES

Report No.: CTA24112600804 Page 5 of 20

SUMMARY

General Remarks

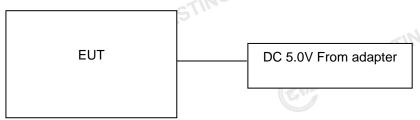
2.1 General Remarks		
Date of receipt of test sample	1000	Nov. 26, 2024
Testing commenced on		Nov. 26, 2024
Testing concluded on	:	Dec. 06, 2024

2.2 Product Description

Testing commenced on :	: Nov. 26, 2024					
Testing concluded on :	: Dec. 06, 2024	CTAT				
2.2 Product Description						
Product Description:	Weather Station					
Model/Type reference:	SA9					
Power supply:	DC 4.5V From battery and DC 5.0V From external circuit					
Adapter information:	Model: CZH008N050100USWP Input: AC 100-240V 50/60Hz 0.2A Max Output: DC 5V 1A	3				
Hardware version:	V1.0					
Software version:	V1.0					
Testing sample ID:	CTA241126008-1# (Engineer sample) CTA241126008-2# (Normal sample)					
Modulation:	FSK					
Operation frequency:	433.90MHz					
Channel number:	115 TESTING					
Antenna type:	Internal antenna					
Antenna gain:	0.00 dBi	TAT				

2.3 Equipment Under Test

Power supply system utilised 6


Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz		
C. C.		0	12 V DC	0	24 V DC	1	
		•	Other (specified in blank be	low		NG.	
DC 4.5V From battery and DC 5.0V From external circuit							
2.4 Short description of the Equipment under Test (EUT)							
This is a Weather Station.							

DC 4.5V From battery and DC 5.0V From external circuit

2.4 Short description of the Equipment under Test (EUT)

For more details, refer to the user's manual of the EUT.

Block Diagram of Test Setup

Report No.: CTA24112600804 Page 6 of 20

2.6 **Special Accessories**

Follow auxiliary equipment(s) test with EUT that provided by the manufacturer or laboratory is listed as follow:

Description	Manufacturer	Model	Technical Parameters	Certificate	Provided by
/	/		/	E3 /	/
/	/	/	1 6	/	/
/	/	/	1	/	(0.40
1	/	/	/	/	10.10

2.7 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for the device filing to comply with Section 15.231 of the FCC Part 15, Subpart C Rules.

2.8 **Modifications**

No modifications were implemented to meet testing criteria.

Page 7 of 20 Report No.: CTA24112600804

3 TEST ENVIRONMENT

Address of the test laboratory 3.1

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

Industry Canada Registration Number. Is: 27890 CAB identifier: CN0127

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

3.3 **Environmental conditions**

During the measurement the environmental conditions were within the listed ranges: CTA TESTING

Temperature:	15-35 ° C
Humidity:	30-60 %
Atmospheric pressure:	950-1050mbar

Summary of measurement results

FCC and IC Requirements		
FCC Part 15.207	Conducted Emission	PASS
FCC Part 15.231(e)	Automatically Deactivate	PASS
FCC Part 15.231(e)	Electric Field Strength of Fundamental Emission	PASS
FCC Part 15.205 &15.209& 15.231(e)	Electric Field Strength of Spurious Emission	PASS
FCC Part 15.231(c)	-20dB bandwidth	PASS

Remark: The measurement uncertainty is not included in the test result.

Report No.: CTA24112600804 Page 8 of 20

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. CTATES

Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

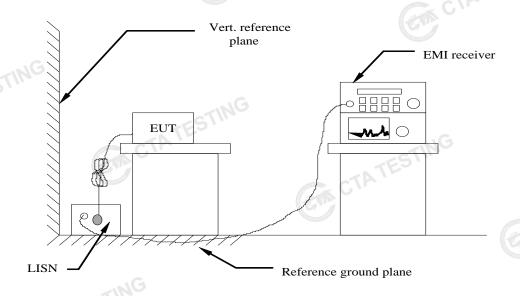
Test	Range	Measurement Uncertainty	Notes	
Radiated Emission	9KHz~30MHz	3.02 dB	(1)	
Radiated Emission	30~1000MHz	4.06 dB	(1)	
Radiated Emission	1~18GHz	5.14 dB	(1)	
Radiated Emission	18-40GHz	5.38 dB	(1)	
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)	-ING
Output Peak power	30MHz~18GHz	0.55 dB	(1)	-ESTI
Power spectral density	1	0.57 dB	(1)	11
Spectrum bandwidth	/	1.1%	(1)	
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)	
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)	
Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)	

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% -410 CTATESTING confidence level using a coverage factor of k=2.

Page 9 of 20 Report No.: CTA24112600804

3.6 **Equipments Used during the Test**

	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
	LISN	R&S	ENV216	CTA-308	2024/08/03	2025/08/02
	LISN	R&S	ENV216	CTA-314	2024/08/03	2025/08/02
	EMI Test Receiver	R&S	ESPI	CTA-307	2024/08/03	2025/08/02
	EMI Test Receiver	R&S	ESCI	CTA-306	2024/08/03	2025/08/02
	Spectrum Analyzer	Agilent	N9020A	CTA-301	2024/08/03	2025/08/02
	Spectrum Analyzer	R&S	FSU	CTA-337	2024/08/03	2025/08/02
CTATE	Vector Signal generator	Agilent	N5182A	CTA-305	2024/08/03	2025/08/02
1	Analog Signal Generator	R&S	SML03	CTA-304	2024/08/03	2025/08/02
	WIDEBAND RADIO COMMUNICATION TESTER	CMW500	R&S	CTA-302	2024/08/03	2025/08/02
G	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2024/08/03	2025/08/02
G	Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2026/10/16
	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2026/10/12
	Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2026/10/16
(Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2023/10/17	2026/10/16
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2024/08/03	2025/08/02
	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2024/08/03	2025/08/02
	Directional coupler	NARDA	4226-10	CTA-303	2024/08/03	2025/08/02
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2024/08/03	2025/08/02
	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2024/08/03	2025/08/02
CTATE	Automated filter bank	Tonscend	JS0806-F	CTA-404	2024/08/03	2025/08/02
CIL	Power Sensor	Agilent	U2021XA	CTA-405	2024/08/03	2025/08/02
1	Amplifier	Schwarzbeck	BBV9719	CTA-406	2024/08/03	2025/08/02
	GAN	U.		ESTIN'		T


Test Equip	ment	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date
EMI Test So	oftware	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A
EMI Test So	oftware	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A
RF Test Sc	ftware	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A
RF Test Sc	ftware	Tonscend	TS®JS1120	3.1.46	N/A	N/A
CIA CTA	ESTIN	, C	TATESTING		TING	

Report No.: CTA24112600804 Page 10 of 20

TEST CONDITIONS AND RESULTS

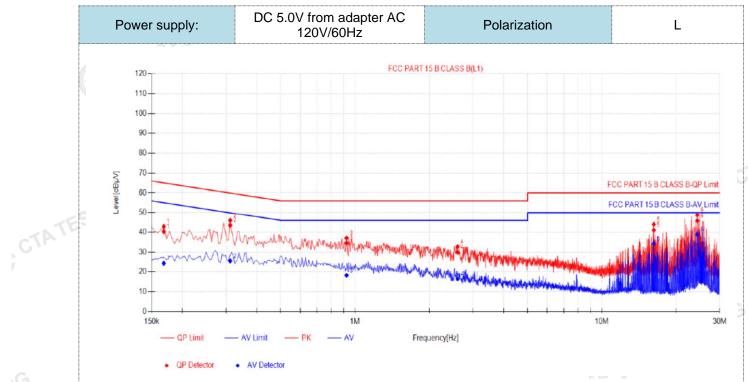
AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received DC 12V power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

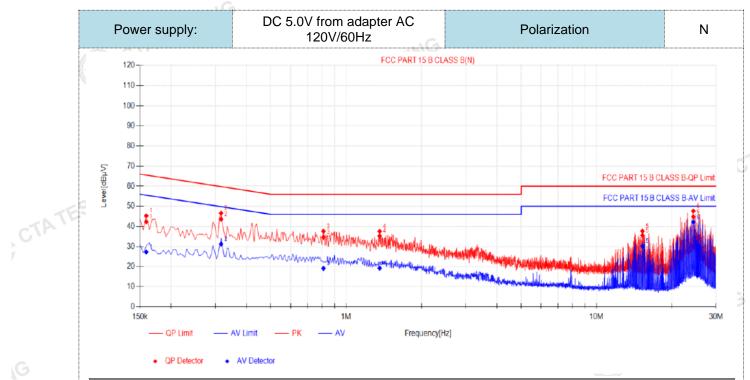

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Eroguanov rango (MHz)	Limit (c	dBuV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50
* Decreases with the logarithm of the frequency	ency.	16

TEST RESULTS

Remark:1: Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst

Report No.: CTA24112600804 Page 11 of 20



$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fina No.	Freq.	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	ΑV Limit [dBμV]	AV Margin [dB]	Verdict	
3 0.924 10.00 24.56 34.56 56.00 21.44 8.27 18.27 46.00 27.73 PASS 4 2.6025 10.09 19.83 29.92 56.00 26.08 6.42 16.51 46.00 29.49 PASS 5 16.2285 10.33 30.69 41.02 60.00 18.98 23.90 34.23 50.00 15.77 PASS 6 24.351 10.50 35.32 45.82 60.00 14.18 28.47 38.97 50.00 11.03 PASS ote:1).QP Value (dBμV)= QP Reading (dBμV)+ Factor (dB)	1 0.168 9.95 30.39 40.34 65.06 24.72 14.39 24.34 55.06 30.72 PASS												
4 2.6025 10.09 19.83 29.92 56.00 26.08 6.42 16.51 46.00 29.49 PASS 5 16.2285 10.33 30.69 41.02 60.00 18.98 23.90 34.23 50.00 15.77 PASS 6 24.351 10.50 35.32 45.82 60.00 14.18 28.47 38.97 50.00 11.03 PASS ote:1).QP Value (dBμV)= QP Reading (dBμV)+ Factor (dB)	2 0.312 9.93 33.55 43.48 59.92 16.44 15.62 25.55 49.92 24.37 P										PASS		
5 16.2285 10.33 30.69 41.02 60.00 18.98 23.90 34.23 50.00 15.77 PASS 6 24.351 10.50 35.32 45.82 60.00 14.18 28.47 38.97 50.00 11.03 PASS ote:1).QP Value (dBμV)= QP Reading (dBμV)+ Factor (dB)	3 0.924 10.00 24.56 34.56 56.00 21.44 8.27 18.27 46.00 27.73										PASS		
6 24.351 10.50 35.32 45.82 60.00 14.18 28.47 38.97 50.00 11.03 PASS ote:1).QP Value (dBµV)= QP Reading (dBµV)+ Factor (dB)	4 2.6025 10.09 19.83 29.92 56.00 26.08 6.42 16.51 46.00 29.49 F										PASS		
ote:1).QP Value (dBµV)= QP Reading (dBµV)+ Factor (dB)	5 16.2285 10.33 30.69 41.02 60.00 18.98 23.90 34.23 50.00 15.77 PAS										PASS		
ote:1).QP Value (dBµV)= QP Reading (dBµV)+ Factor (dB)	6 24.351 10.50 35.32 45.82 60.00 14.18 28.47 38.97 50.00 11.03 PASS												
3). QPMargin(dB) = QP Limit (dB μ V) - QP Value (dB μ V)													

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
 - 4). $AVMargin(dB) = AV Limit (dB\mu V) AV Value (dB\mu V)$

CTATES

Report No.: CTA24112600804 Page 12 of 20

Final Data List												
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBμV]	AV Value [dΒμV]	ΑV Limit [dBμV]	AV Margin [dB]	Verdict	
1	0.159	10.03	32.28	42.31	65.52	23.21	17.25	27.28	55.52	28.24	PASS	
2 0.3165 9.86 33.77 43.63 59.80 16.17 21.36 31.22 49.80 18.58										PASS		
3	0.8115	10.14	24.53	34.67	56.00	21.33	8.98	19.12	46.00	26.88	PASS	
4 1.3605 10.15 25.14 35.29 56.00 20.71 9.08 19.23 46.00 26.77										PASS		
5	15.252	10.43	25.17	35.60	60.00	24.40	19.70	30.13	50.00	19.87	PASS	
6	24.351	10.68	34.13	44.81	60.00	15.19	31.49	42.17	50.00	7.83	PASS	
Note:1).QP Value (dBµV)= QP Reading (dBµV)+ Factor (dB) 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)										3 (A		

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). $AVMargin(dB) = AV Limit (dB\mu V) AV Value (dB\mu V)$

Report No.: CTA24112600804 Page 13 of 20

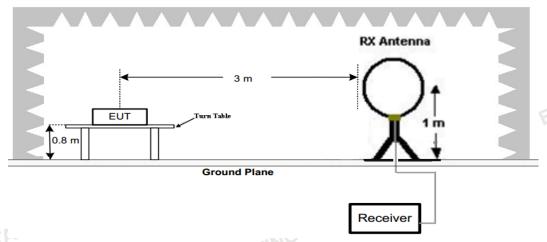
Radiated Emission 4.2

Limit

For intentional device, according to 15.209(a) the general requirement of field strength of radiated emission

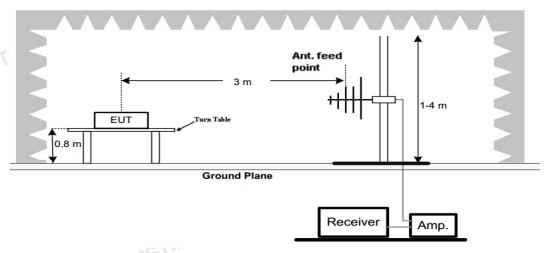
from intentional radiators at a distance of 3 meters shall not exceed the following table.

	Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
	0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
	0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
	1.705-30	3	20log(30)+ 40log(30/3)	30
	30-88	3	40.0	100
CTAIL	88-216	3.116	43.5	150
	216-960	TE3	46.0	200
	Above 960	3	54.0	500

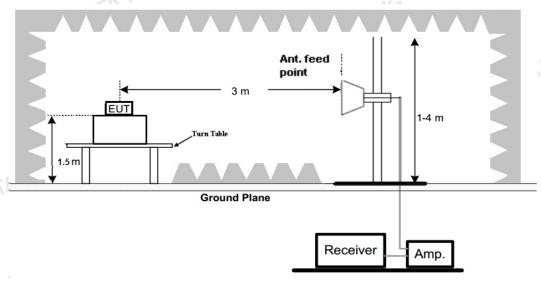

In addition to the provisions of 15.231(e) and RSS 210-A.1.4, the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emission (microvolts/meter)
40.66-40.70	1,000	100
70-130	500	50
130-174	500 to 1,500 ¹	50 to 150 ¹
174-260	1,500	150
260-470	1,500 to 5,000 ¹	150 to 500 ¹
Above 470	5,000	500

[Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows: for the band 260-470 MHz, µV/m at 3 meters =41.6667(F) - 7083.3333. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.]


TEST CONFIGURATION

(A) Radiated Emission Test Set-Up, Frequency Below 30MHz



(B) Radiated Emission Test Set-Up, Frequency below 1000MHz CTA TESTING

Page 14 of 20 Report No.: CTA24112600804

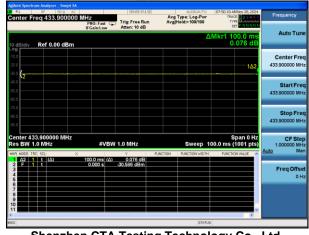
(C) Radiated Emission Test Set-Up, Frequency above 1000MHz

Test Procedure

- Below 1GHz measurement the EUT is placed on a turntable which is 0.8m above ground plane, and above 1GHz measurement EUT was placed on a low permittivity and low loss tangent turn table which is 1.5m above ground plane.
- Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT
- And also, each emission was to be maximized by changing the polarization of receiving antenna both 3. horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed. 4.

Report No.: CTA24112600804 Page 15 of 20

TEST RESULTS

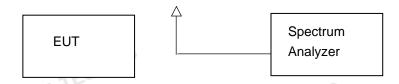

The emissions from 30MHz to 5GHz are measured peak and average level, below 1 GHz measured QP level, detailed test data please see below. Besides, we tested 3 directions and recorded the worst data.

	Emission Styles	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	PK Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Direction (H/V)
	Fundamental	433.90	77.06	-10.19	66.87	92.87	26.00	PK	Н
	Spurious	435.75	48.97	-10.16	38.81	46	7.19	PK	H
	Harmonics	867.80	51.33	-3.2	48.13	72.87	24.74	PK	H
TES	Harmonics	1301.70	65.45	-20.17	45.28	72.87	27.59	PK	Н
CTATES			GTING						
1	Fundamental	433.90	72.94	-10.19	62.75	92.87	30.12	PK	V
	Spurious	435.75	49.18	-10.16	39.02	46	6.98	PK	V
	Harmonics	867.80	49.33	-3.2	46.13	72.87	26.74	PK	V
	Harmonics	1301.70	63.65	-20.17	43.48	72.87	29.39	PK	V
				1000			(CIL	

	Emission Styles	Frequency (MHz)	PK Level (dBuV/m)	AV Factor (dB/m)	AV Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Direction (H/V)	
	Fundamental	433.90	66.87	ESO	66.87	72.87	6.00	Н	
	Harmonics	867.80	48.13	0	48.13	52.87	4.74	Н	
	Harmonics	1301.70	45.28	0	45.28	52.87	7.59	Н	
		1			-	<u> </u>			
	Fundamental	433.90	62.75	0	62.75	72.87	10.12	V std	:TA
	Harmonics	867.80	46.13	0	46.13	52.87	6.74	V	
TES	Harmonics	1301.70	43.48	0	43.48	52.87	9.39	V	
TATES			-ING						

Note:

- AV Level (dBuV/m)= PK Level (dBuV/m)+ AV Factor(dB)
- Duty Cycle= 100% AV Factor=20*log(Duty Cycle)=20*log(100%)=0 (The plot of Duty Cycle See the follow page)


Report No.: CTA24112600804 Page 16 of 20

4.3 20dB Bandwidth

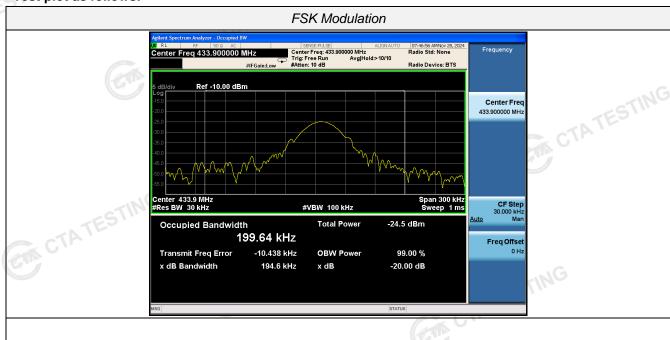
Limit

According to 47 CFR 15.231(c) The bandwidth of the emission shall be no wider than 0.25% of the centre frequency for devices operating above 70MHz and below 900MHz. Bandwidth is determined at the points 20dB down from the modulated carrier.

Test Configuration

Test Procedure

The 20dB bandwidth and 99% bandwidth is measured with a spectrum analyzer connected via a receive antenna placed near the EUT while the EUT is operating in transmission mode.

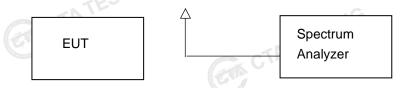

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

The occupied bandwidth (OBW), that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission.

Test Results

radiated by a gi	ven emission.		TESTING		
Modulation	Channel Frequency (MHz)	99% OBW (KHz)	20dB bandwidth (KHz)	Limit (KHz)	Result
ASK	433.90	199.64	194.60	0.25%*433.90*1000=1084.75	Pass

Test plot as follows:

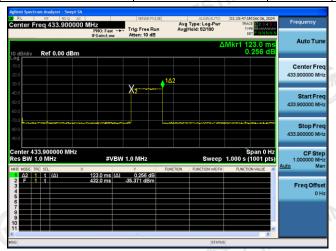

Report No.: CTA24112600804 Page 17 of 20

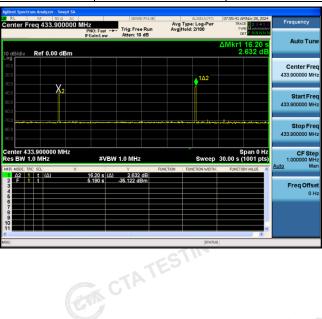
Deactivation Time

Limit

According to FCC §15.231(e), devices operated under the provisions of this paragraph shall be provided with a means for automatically limiting operation so that the duration of each transmission shall not be greater than one second and the silent period between CTATE transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds...

Test Configuration


Test Procedure


- The EUT was placed on a wooded table which is 0.8m height and close to receiver antenna of spectrum
- 2. The spectrum analyzer resolution bandwidth was set to 3 MHz and video bandwidth was set to 3 MHz to encompass all significant spectral components during the test. The spectrum analyzer was operated in linear scale and zero span mode after tuning to the transmitter carrier frequency.

TEST RESULTS

Note: The transmitter was automatically activated, and the carrier frequency 433.90Hz:

	Frequency (MHz)	Transmission time (S)	Limit (S)	Silent time (S)	Limit (S)	Result
CTATE	433.90	0.1230	1	16.20	30 times Transmission time; no less than 10s	Pass
	Agilent Spectrum Analyzer - Swept SA			Agilent Spectrum Analyzer - Swept SA		

Report No.: CTA24112600804 Page 18 of 20

4.5 **Antenna Requirement**

Standard Applicable

According to FCC Part 15C 15.203

- An intentional radiator shall be de-signed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.
- The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to CTATESTING intentional radiators that must be professionally installed.

Antenna Connected Construction

The antenna used in this product is a Internal Antenna, The directional gains of antenna used for transmitting CTATESTING is 0.00 dBi.

Report No.: CTA24112600804 Page 19 of 20

5 Test Setup Photos of the EUT

Report No.: CTA24112600804 Page 20 of 20

6 Photos of the EUT

Reference to the test report No. CTA24112600801. CTATES!