

Report No.: STS2504022H01

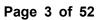
Issued for

Shenzhen Century Xinyang Tech Co., Ltd

3F, North Building, Bantian High-tech industrial Zone, No. 2 of Bell

Product Name:	AX900 WiFi Bluetooth USB Adapt	
Brand Name:	N/A	
Model Name:	WD-AX903,WD-AX906,WD-AX905	
Series Model(s):	WD-AX903, WD-AX905,WD-AX906, WD- AX907	
FCC ID:	ZNPWIFIWD-AX900	
Test Standard:	ANSI/IEEE Std. C95.1 FCC 47 CFR Part 2 (2.1093) IEEE Std. 1528-2013	
Max. Report SAR (1g)	Body: 0.915 W/kg	

The test results presented in this report relate only to the object tested. This report shall not be reproduced, except in full, without the written approval of the Shenzhen STS Test Services Co., Ltd.


TEST REPORT CERTIFICATION

Applicant's name:	Shenzhen Century Xinyang Tech Co., Ltd
Address:	3F, North Building, Bantian High-tech industrial Zone, No. 2 of Bell
	Shenzhen Century Xinyang Tech Co., Ltd
Address	3F, North Building, Bantian High-tech industrial Zone, No. 2 of Bell
Product description	
Product name:	AX900 WiFi Bluetooth USB Adapt
Brand name:	N/A
Model name:	WD-AX903,WD-AX906,WD-AX905
Series Model(s) :	WD-AX903, WD-AX905,WD-AX906, WD-AX907
Standards	ANSI/IEEE Std. C95.1 FCC 47 CFR Part 2 (2.1093) IEEE Std. 1528-2013
The device was tested by SI	henzhen STS Test Services Co., Ltd. in accordance with the

The device was tested by Shenzhen STS Test Services Co., Ltd. in accordance with the measurement methods and procedures specified in KDB 865664 The test results in this report apply only to the tested sample of the stated device/equipment. Other similar device/equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Date of Test	
Date (s) of performance of tests:	09 Apr. 2025
Date of Issue	16 Apr. 2025
Test Result:	Pass

Testing Engineer :	XinLiu
	(Xin.Liu)
Technical Manager :	Shi tan long 515 TEST SERVICES
	(Shifan. Long)
Authorized Signatory :	Provey Juney .
	(Bovey Yang)

Table	of	Contents
Iabic	U	Contonto

1. General Information	5
1.1 EUT Description	5
1.2 Test Environment	7
1.3 Test Factory	1
2. Test Standards and Limits	8
3. SAR Measurement System	9
3.1 Definition of Specific Absorption Rate (SAR)	9
3.2 SAR System	9
4. Tissue Simulating Liquids	12
4.1 Simulating Liquids Parameter Check	12
5. SAR System Validation	15
5.1 Validation System	15
5.2 Validation Result	16
6. SAR Evaluation Procedures	17
7. EUT Antenna Location Sketch	18
7.1 Hotspot mode exposure position condition	18
7.2 USB connector Orientations Implemented on Laptop Computers	19
7.3 SAR Test Exclusions Applied	20
8. Uncertainty	21
8.1 Measurement Uncertainty	21
9. Conducted Power Measurement	24
9.1 Test Result	24
10. EUT and Test Setup Photo	27
10.1 EUT Photo	27
10.2 Setup Photo	30
11. SAR Result Summary	36
11.1 Body-worn SAR Model Name: WD-AX905	36
Body-worn SAR Model Name: WD-AX906	37
Body-worn SAR Model Name: WD-AX903	38
11.2 Repeated SAR	40
11.3 Repeated SAR measurement	40
12. Equipment List	41
Appendix A. System Validation Plots	42
Appendix B. SAR Test Plots	46
Appendix C. Probe Calibration and Dipole Calibration Report	52

Revision History

Rev.	Issue Date	Report No.	Effect Page	Contents
00	16 Apr. 2025	STS2504022H01	ALL	Initial Issue

1. General Information

Environmental evaluation measurements of specific absorption rate (SAR) distributions in emulated human head and body tissues exposed to radio frequency (RF) radiation from wireless portable devices for compliance with the rules and regulations of the U.S. Federal Communications Commission (FCC).

1.1 EUT Description

	•			V	
Product Name	AX900 WiFi Bluetooth USB Adapt				
Brand Name	N/A				
Model Name	WD-AX903,WD-AX	WD-AX903,WD-AX906,WD-AX905			
Series Model	WD-AX903, WD-AX	(905,WD-AX90	06, WD-AX907		
Model Difference	N/A				
Battery	Rated Voltage: Charge Limit Voltag Capacity:	Charge Limit Voltage:			
Device Category	Portable				
Product stage	Production unit				
RF Exposure Environment	General Population	General Population / Uncontrolled			
Hardware Version	N/A				
Software Version	N/A WLAN802.11b/g/n20/ax20: 2412 MHz ~ 2462 MHz WLAN 802.11n40/ax40: 2422 MHz ~ 2452 MHz WLAN 802.11a/n20/n40/ac20/ac40/ ac40/ax20/ax40: 5725 ~ 5850 MHz BT: 2402 MHz to 2480 MHz				
Frequency Range					
	Model Name	Band	Mode	Body Worn (W/kg)	
	WD-AX905	DTS	2.4G WLAN	0.066	
Max. Reported		NII	5.8G WLAN	0.799	
SAR(1g): (Limit:1.6W/kg)		DTS	2.4G WLAN	0.073	
Test distance: Body:5mm	WD-AX906 -	NII	5.8G WLAN	0.668	
Dody.onin		DTS	2.4G WLAN	0.075	
	WD-AX903	NII	5.8G WLAN	0.915	
FCC Equipment Class	Digital Transmission System (DTS) Unlicensed National Information Infrastructure TX(NII)				

Operating Mode:	2.4G WLAN : 802.11b(DSSS):CCK,DQPSK,DBPSK 802.11g(OFDM):BPSK,QPSK,16-QAM,64-QAM 802.11n(OFDM):BPSK,QPSK,16-QAM,64-QAM 802.11ax(OFDMA): BPSK, QPSK, 16QAM, 64QAM,256QAM,1024-QAM 5G WLAN: 802.11a(OFDM):BPSK,QPSK,16-QAM,64-QAM 802.11n(OFDM):BPSK,QPSK,16-QAM,64-QAM 802.11ac(OFDM):BPSK,QPSK,16-QAM,64-QAM,256-QAM 802.11ax(OFDMA): BPSK, QPSK, 16QAM, 64QAM,256QAM,1024-QAM BT: GFSK	
Antenna Specification:	Bluetooth: Dipole Antenna WLAN: Dipole Antenna	
Hotspot Mode	Not Support	
DTM Mode	Not Support	
Note: 1. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power		

1.2 Test Environment

Ambient conditions in the SAR laboratory:

Items	Required
Temperature (°C)	18-25
Humidity (%RH)	30-70

1.3 Test Factory

ShenZhen STS Test Services Co.,Ltd.

101, Building B, Zhuoke Science Park, No.190 Chongqing Road, ZhanChengShequ, Fuhai Sub-District, Bao'an District, Shenzhen, Guang Dong, China

FCC test Firm Registration No.: 625569

IC Registration No.: 12108A

A2LA Certificate No.: 4338.01

2. Test Standards and Limits

No.	Identity	Document Title
1	47 CFR Part 2	Frequency Allocations and Radio Treaty Matters; General Rules and Regulations
2	ANSI/IEEE Std. C95.1-1992	IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz
3	IEEE Std. 1528-2013	Recommended Practice for Determining the Peak Spatial- Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
4	FCC KDB 447498 D04 v01	RF Exposure Procedures and Equipment Authorization Policies for Mobile and Portable Devices
5	FCC KDB 865664 D01 v01r04	SAR Measurement 100 MHz to 6 GHz
6	FCC KDB 865664 D02 v01r02	RF Exposure Reporting
10	FCC KDB 248227 D01 Wi-Fi SAR v02r02	SAR Considerations for 802.11 Devices

(A). Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

(B). Limits for General Population/Uncontrolled Exposure (W/kg)

Partial-Body Hands, Wrists, Feet and Ankles Whole-Body 0.08 4.0

1.6

NOTE: Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

Population/Uncontrolled Environments:

Are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Occupational/Controlled Environments:

Are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

1.6 W/kg

3. SAR Measurement System

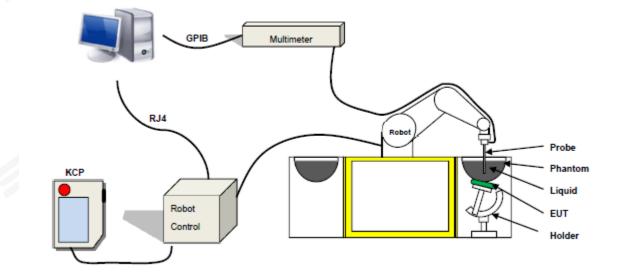
3.1 Definition of Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be related to the electrical field in the tissue by


$SAR = \frac{\sigma E^2}{\rho}$

Where: σ is the conductivity of the tissue,

 ρ is the mass density of the tissue and E is the RMS electrical field strength.

3.2 SAR System

MVG SAR System Diagram:

COMOSAR is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The COMOSAR system consists of the following items:

- Main computer to control all the system
- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Phone holder
- Head simulating tissue

The following figure shows the system.

The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The Open SAR software computes the results to give a SAR value in a 1g or 10g mass.

3.2.1 Probe

For the measurements the Specific Dosimetric E-Field Probe SN 08/21 EPGO352 with following specifications is used

- Probe Length: 330 mm
- Length of Individual Dipoles: 2 mm
- Maximum external diameter: 8 mm
- Probe Tip External Diameter: 2.5 mm
- Distance between dipole/probe extremity: 1 mm
- Dynamic range: 0.01-100 W/kg
- Probe linearity: 3%
- Axial Isotropy: < 0.10 dB
- Spherical Isotropy: < 0.10 dB
- Calibration range: 150 MHz to 6 GHz for head & body simulating liquid.
- Angle between probe axis (evaluation axis) and surface normal line: less than 30°

Figure 1-MVG COMOSAR Dosimetric E field Dipole

3.2.2 Phantom

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

Figure-SN 21/21 ELLI48

3.2.3 Device Holder

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of \pm 0.5 mm would produce a SAR uncertainty of \pm 20 %. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.4. Tissue Simulating Liquids

4. Tissue Simulating Liquids

4.1 Simulating Liquids Parameter Check

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values

The uncertainty due to the liquid conductivity and permittivity arises from two different sources. The first source of error is the deviation of the liquid conductivity from its target value (max $_5$ %) and the second source of error arises from the measurement procedures used to assess conductivity. The uncertainty shall be assessed using a rectangular probability For 1 g averaging, the maximum weighting coefficient for SAR is 0,5.

IEEE SCC-34/SC-2 RECOMMENDED TISSUE DIELECTRIC PARAMETERS

The head and body tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 have been incorporated in the following table.

Frequency	εr	σ 10g S/m
300	45.3	0.87
450	43.5	0.87
750	41.9	0.89
835	41.5	0.90
900	41.5	0.97
1450	40.5	1.20
1800 to 2000	40.0	1.40
2100	39.8	1.49
2450	39.2	1.80
2600	39.0	1.96
3000	38.5	2.40
3500	37.9	2.91
4000	37.4	3.43
4500	36.8	3.94
5000	36.2	4.45
5200	36.0	4.66
5400	35.8	4.86
5600	35.5	5.07
5800	35.3	5.27

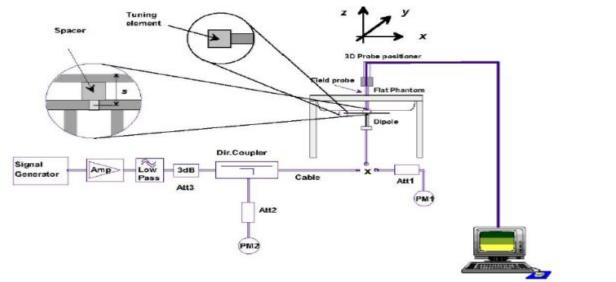
The following table gives the recipes for tissue simulating liquid and the theoretical Conductivity/Permittivity.

		He	ad (Referer	nce IEEE15	28)			-
Frequency	Water	Sugar	Cellulose	Salt	Preventol	DGBE	Conductivity	Permittivity
(MHz)	(%)	(%)	(%)	(%)	(%)	(%)	σ (S/m)	ε
750	41.1	57.0	0.2	1.4	0.2	0	0.89	41.9
835	40.3	57.9	0.2	1.4	0.2	0	0.90	41.5
900	40.3	57.9	0.2	1.4	0.2	0	0.97	41.5
1800, 1900, 2000	55.2	0	0	0.3	0	44.5	1.4	40.0
2450	55.0	0	0	0.1	0	44.9	1.80	39.2
2600	54.9	0	0	0.1	0	45.0	1.96	39.0
Frequency	Water	ŀ	lexyl Carbito	bl	Triton	X-100	Conductivity	Permittivity
(MHz)	(%)		(%)		(%	6)	σ (S/m)	3
5200	62.52		17.24		17.24		4.66	36.0
5800	62.52		17.24		17.24		5.27	35.3
		Body (F	rom instrur	nent manu	facturer)		1	
Frequency	Water	Sugar	Cellulose	Salt	Preventol	DGBE	Conductivity	Permittivity
(MHz)	(%)	(%)	(%)	(%)	(%)	(%)	σ (S/m)	ε
750	51.7	47.2	0	0.9	0.1	0	0.96	55.5
835	50.8	48.2	0	0.9	0.1	0	0.97	55.2
900	50.8	48.2	0	0.9	0.1	0	1.05	55.0
1800, 1900, 2000	70.2	0	0	0.4	0	29.4	1.52	53.3
2450	68.6	0	0	0.1	0	31.3	1.95	52.7
2600	68.2	0	0	0.1	0	31.7	2.16	52.5
			DGBE		Sa	alt	Conductivity	Permittivity
Frequency(MHz)	Water		(%)		(%	6)	σ (S/m)	ε
5200	78.60		21.40		/		5.30	49.00
5800	78.50		21.40		0.	1	6.00	48.20

Page 14 of 52

Report No.: STS2504022H01

LIQUID MEASUREMENT RESULTS


Data	Ambient		Simulating Liquid		Deremetere	Torget	Measured	Deviation	Limited
Date	Temp.	Humidity	Frequency	Temp.	Parameters	Target	Measured	%	%
	[°C]	%	(MHz)	[°C]					
2025-04-09	22.4	46	2442	22.2	Permittivity	39.27	40.48	3.09	±5
2025-04-09	22.4	40	2412	22.2	Conductivity	1.77	1.79	1.35	±5
2025 04 00	22.4	22.4 46	2450	22.2	Permittivity	39.20	40.00	2.04	±5
2025-04-09 22	22.4		2430	22.2	Conductivity	1.80	1.79	-0.56	±5
2025-04-09	22.4	46	5745	22.2	Permittivity	35.36	36.53	3.32	±5
2025-04-09	22.4	4 40	5745		Conductivity	5.21	5.14	-1.39	±5
2025 04 00	22.4	46	5795	22.2	Permittivity	35.32	36.26	2.68	±5
2025-04-09	22.4	40	5785	22.2	Conductivity	5.25	5.27	0.30	±5
2025 04 00	00.4	40	5000	00.0	Permittivity	35.30	36.02	2.04	±5
2025-04-09	22.4	46	5800	22.2	Conductivity	5.27	5.26	-0.19	±5
2025 04 00	00.4	40	5005	00.0	Permittivity	35.28	35.32	0.13	±5
2025-04-09	22.4	46	5825	22.2	Conductivity	5.30	5.29	-0.12	±5

5. SAR System Validation

5.1 Validation System

Each MVG system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the MVG software, enable the user to conduct the system performance check and system validation. System kit includes a dipole, and dipole device holder. The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system validation setup is shown as below.

5.2 Validation Result

Justification for Extended SAR Dipole Calibrations

Usage of SAR dipoles calibrated less than 3 years ago but more than 1 year ago were confirmed in maintaining retum loss (>20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB 865664 D01:

Dipole		Date of Measurement	Return Loss (dB)	Delta (%)	Impedance	Delta(ohm)
SN 30/14 DIP2G450-		2023-07-04	-26.03	/	46.3	/
335	Head Liquid	2024-07-01	-26.42	1.50	47.25	2.05
CNI 42/44 M/CA22		2023-07-04	< -8.23	/	/	/
SN 13/14 WGA32	Head Liquid	2024-07-01	-13.17	1	/	1

Comparing to the original SAR value provided by MVG, the validation data should be within its specification of 10 %.

	Frog	Power	Tested	Normalized	Torgot SAP	Tolerance	Limit
Date	Freq. Power Target SAR		TOIETANCE	Liitiit			
	(MHz)	(mW)	(W/Kg)	(W/kg)	1g(W/kg)	(%)	(%)
2025-04-09	2450	100	5.604	56.04	54.70	2.45	10
2025-04-09	5800	100	18.252	182.52	188.95	-3.40	10

Note:

1. The tolerance limit of System validation ±10%.

2. The dipole input power (forward power) was 100 mW.

3. The results are normalized to 1 W input power.

6. SAR Evaluation Procedures

The procedure for assessing the average SAR value consists of the following steps:

- Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface.

- Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.

- Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.

- Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8*4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

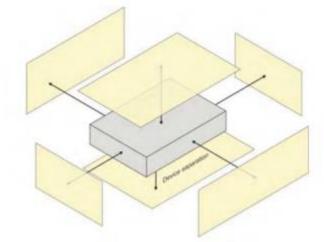
Area Scan& Zoom Scan:

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR - distribution over 10 g. Area scan and zoom scan resolution setting follows KDB 865664 D01v01r01 quoted below.

When the 1-g SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are required for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR.

7. EUT Antenna Location Sketch

According to KDB 447498 D02, USB connector orientations on laptop computers, which is tested for SAR compliance in body-worn accessory and other use configurations described in the following subsections.



7.1 Hotspot mode exposure position condition

For handsets that support hotspot mode operations, with wireless router capabilities and various web browsing function, the relevant hand and body exposure condition are tested according to the hotspot SAR procedures in KDB 941225. A test separation distance of 10 mm is required between the phantom and all surface and edges with a transmitting antenna located within 25 mm form that surface or edge.

When form factor of a handset is smaller than 9cm x 5cm, a test separation distance of 5mm (instead of 10mm)is required for testing hotspot mode. When the separate distance required for body-worn accessory testing is larger than or equal to that tested for hotspot mode, in the same wireless mode and for the same surface of the phone, the hotspot mode SAR data may be used to support body-worn accessory SAR compliance for that particular configuration (surface).

7.2 USB connector Orientations Implemented on Laptop Computers

Horizontal-Up

Horizontal-Down

Vertical-Front

Vertical-Back

Note: These are USB connector orientations on laptop computers; USB dongles have the reverse configuration for plugging into the corresponding laptop computers.

7.3 SAR Test Exclusions Applied

Standalone SAR test exclusion applies 447498 D04 Interim General Radio Frequency Exposure Guidelines v01. The available maximum time-averaged power or effective radiated power (ERP), whichever is greater, is less than or equal to the threshold Pth (mW) described in the following formula. This method shall only be used at separation distances (cm) from 0.5 centimeters to 40 centimeters and at frequencies from 0.3 GHz to 6 GHz (inclusive). Pth is given by:

$$P_{th} (mW) = \begin{cases} ERP_{20 \ cm} (d/20 \ cm)^{x} & d \le 20 \ cm \\ ERP_{20 \ cm} & 20 \ cm < d \le 40 \ cm \end{cases}$$

Where

 $x = -\log_{10}\left(\frac{60}{ERP_{20\ cm}\sqrt{f}}\right)$ and f is in GHz;

and

 $ERP_{20\ cm}\ (\text{mW}) = \begin{cases} 2040f & 0.3\ \text{GHz} \le f < 1.5\ \text{GHz} \\ \\ 3060 & 1.5\ \text{GHz} \le f \le 6\ \text{GHz} \end{cases}$

d = the separation distance (cm);

Function	Fre. (GHz)	Separation distance (cm)	Max Turn up power (dBm)	Max Turn up power (mW)	Pth (mW)
BT	2.480	0.5	0.5	1.12	2.72

Note: The Maximum power is less than the Pth, complies with the exemption requirements.

8. Uncertainty

8.1 Measurement Uncertainty

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in IEEE 1528: 2013. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

approximately the 95				y- SN 08/21					
	Measure			JT averaged		/ 10 gram			
	Medoure	Tol	Prob.			-	1g Ui (+-	10g Ui (+-	
Uncertainty Component	Sec.	(+- %)	Dist.	Div.	Ci (1g)	Ci (10g)	%)	%)	vi
Measurement System									
Probe calibration	E.2.1	5.72	Ν	1.00	1.00	1.00	5.72	5.72	8
Axial Isotropy	E.2.2	0.18	R	1.73	0.71	0.71	0.07	0.07	8
Hemispherical Isotropy	E.2.2	1.04	R	1.73	0.71	0.71	0.42	0.42	8
Boundary effect	E.2.3	0.80	R	1.73	1.00	1.00	0.46	0.46	8
Linearity	E.2.4	1.25	R	1.73	1.00	1.00	0.72	0.72	8
System detection limits	E.2.4	1.20	R	1.73	1.00	1.00	0.69	0.69	8
Modulation response	E2.5	3.42	R	1.73	1.00	1.00	1.97	1.97	80
Readout Electronics	E.2.6	0.26	N	1.00	1.00	1.00	0.26	0.26	80
Response Time	E.2.7	0.17	R	1.73	1.00	1.00	0.10	0.10	8
Integration Time	E.2.8	1.43	R	1.73	1.00	1.00	0.83	0.83	8
RF ambient conditions-Noise	E.6.1	3.51	R	1.73	1.00	1.00	2.03	2.03	8
RF ambient conditions- reflections	E.6.1	3.15	R	1.73	1.00	1.00	1.82	1.82	00
Probe positioner mechanical tolerance	E.6.2	1.20	R	1.73	1.00	1.00	0.69	0.69	80
Probe positioning with respect to phantom shell	E.6.3	1.40	R	1.73	1.00	1.00	0.81	0.81	00
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.10	R	1.73	1.00	1.00	1.21	1.21	8
			Test sam	ple Related					
Test sample positioning	E.4.2	3.10	Ν	1.00	1.00	1.00	3.10	3.10	8
Device holder uncertainty	E.4.1	3.80	N	1.00	1.00	1.00	3.80	3.80	8
Output power variation— SAR drift measurement	E.2.9	4.50	R	1.73	1.00	1.00	2.60	2.60	8
SAR scaling	E.6.5	1.80	R	1.73	1.00	1.00	1.04	1.04	8
		Pha	ntom and t	issue parar	neters				
Phantom shell uncertainty— shape, thickness, and permittivity	E.3.1	3.70	R	1.73	1.00	1.00	2.14	2.14	00
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.90	N	1.00	1.00	0.84	1.90	1.60	8
Liquid conductivity measurement	E.3.3	2.40	R	1.73	0.78	0.71	1.08	0.98	М
Liquid permittivity measurement	E.3.3	4.10	N	1.00	0.78	0.71	3.20	2.91	М
Liquid conductivity— temperature uncertainty	E.3.4	2.70	R	1.73	0.23	0.26	0.36	0.41	8
Liquid permittivity— temperature uncertainty	E.3.4	4.80	N	1.00	0.23	0.26	1.10	1.25	œ
Combined Standard Uncertainty			RSS				10.08	9.59	
Expanded Uncertainty (95% Confidence interval)			K=2				19.58	19.18	

Report No.: STS2504022H01

	System Va	lidation unc	ertainty for	DUT averag	jed over 1 gr	am / 10 gran	1.		_
Uncertainty Component	Sec.	Tol (+- %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+- %)	10g Ui (+-%)	v
Measurement System		(+- %)	Dist.				70)	(1 /0)	
Probe calibration	E.2.1	5.72	N	1.00	1.00	1.00	5.72	5.72	
	E.2.1 E.2.2						-		0
Axial Isotropy	E.2.2 E.2.2	0.18	R	1.73	1.00	1.00	0.10	0.10	_
Hemispherical Isotropy		1.04	R	1.73	0.00	0.00	0.00	0.00	0
Boundary effect	E.2.3	0.80	R	1.73	1.00	1.00	0.46	0.46	0
Linearity	E.2.4	1.25	R	1.73	1.00	1.00	0.72	0.72	0
System detection limits	E.2.4	1.20	R	1.73	1.00	1.00	0.69	0.69	0
Modulation response	E2.5	3.42	R	1.73	0.00	0.00	0.00	0.00	0
Readout Electronics	E.2.6	0.26	N	1.00	1.00	1.00	0.26	0.26	0
Response Time	E.2.7	0.17	R	1.73	0.00	0.00	0.00	0.00	0
Integration Time	E.2.8	1.43	R	1.73	0.00	0.00	0.00	0.00	o
RF ambient conditions-	E.6.1	3.51	R	1.73	1.00	1.00	2.03	2.03	0
Noise RF ambient conditions-									
reflections Probe positioner mechanical	E.6.1	3.15	R	1.73	1.00	1.00	1.82	1.82	0
tolerance	E.6.2	1.20	R	1.73	1.00	1.00	0.69	0.69	0
Probe positioning with respect to phantom shell	E.6.3	1.40	R	1.73	1.00	1.00	0.81	0.81	0
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.10	R	1.73	1.00	1.00	1.21	1.21	0
System validation source									
Deviation of experimental dipole from numerical dipole	E.6.4	4.80	Ν	1.00	1.00	1.00	4.80	4.80	0
Input power and SAR drift measurement	8,6.6.4	5.10	R	1.73	1.00	1.00	2.94	2.94	0
Dipole axis to liquid distance	8,E.6.6	2.40	R	1.73	1.00	1.00	1.39	1.39	0
Phantom and set-up									
Phantom shell uncertainty— shape, thickness, and	E.3.1	3.70	R	1.73	1.00	1.00	2.14	2.14	0
permittivity Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.90	N	1.00	1.00	0.84	1.90	1.60	0
Liquid conductivity (temperature uncertainty)	E.3.3	2.40	R	1.73	0.78	0.71	1.08	0.98	0
Liquid conductivity (measured)	E.3.3	4.10	N	1.00	0.78	0.71	3.20	2.91	P
Liquid permittivity (temperature uncertainty)	E.3.4		R	1.73	0.23	0.26	0.36	0.41	0
Liquid permittivity		2.70						+	+
(measured)	E.3.4	4.80	N	1.00	0.23	0.26	1.10	1.25	N
Combined Standard Uncertainty			RSS				9.72	9.52	
Expanded Uncertainty (95% Confidence interval)	-		K=2				19.44	19.03	

Report No.: STS2504022H01

Uncertainty Component	Sec.	Tol	Prob.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-	10g Ui	vi
Uncertainty Component	<u>Jec.</u>		Dist.	Div.	Cr (Tg)	CI (TOg)	%)	(+-%)	
		(+- %)					-		<u> </u>
Measurement System									+
Probe calibration drift	E.2.1.3	5.72	N	1.00	1.00	1.00	5.72	5.72	00
Axial Isotropy	E.2.2	0.18	R	1.73	0.00	0.00	0.00	0.00	8
Hemispherical Isotropy	E.2.2	1.04	R	1.73	0.00	0.00	0.00	0.00	00
Boundary effect	E.2.3	0.8	R	1.73	0.00	0.00	0.00	0.00	80
Linearity	E.2.4	1.25	R	1.73	0.00	0.00	0.00	0.00	00
System detection limits	E.2.4	1.20	R	1.73	0.00	0.00	0.00	0.00	8
Modulation response	E2.5	3.42	R	1.73	0.00	0.00	0.00	0.00	8
Readout Electronics	E.2.6	0.26	Ν	1.00	0.00	0.00	0.00	0.00	8
Response Time	E.2.7	0.17	R	1.73	0.00	0.00	0.00	0.00	8
Integration Time	E.2.8	1.43	R	1.73	0.00	0.00	0.00	0.00	8
RF ambient conditions- Noise	E.6.1	3.51	R	1.73	0.00	0.00	0.00	0.00	8
RF ambient conditions- reflections	E.6.1	3.15	R	1.73	0.00	0.00	0.00	0.00	00
Probe positioner mechanical tolerance	E.6.2	1.2	R	1.73	1.00	1.00	0.69	0.69	00
Probe positioning with respect to phantom shell	E.6.3	1.4	R	1.73	1.00	1.00	0.81	0.81	8
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	3.9	R	1.73	0.00	0.00	0.00	0.00	00
System check source (dipole)									
Deviation of experimental dipoles	E.6.4	4.8	Ν	1.00	1.00	1.00	4.80	4.80	00
Input power and SAR drift measurement	8,6.6.4	5.1	R	1.73	1.00	1.00	2.94	2.94	8
Dipole axis to liquid distance Phantom and tissue parameters	8,E.6.6	2.4	R	1.73	1.00	1.00	1.39	1.39	00
Phantom shell uncertainty— shape, thickness, and permittivity	E.3.1	3.7	R	1.73	1.00	1.00	2.14	2.14	00
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	Ν	1.00	1.00	0.84	1.90	1.60	00
Liquid conductivity measurement	E.3.3	2.4	R	1.73	0.78	0.71	1.08	0.98	00
Liquid permittivity measurement	E.3.3	4.1	Ν	1.00	0.78	0.71	3.20	2.91	Ν
Liquid conductivity— temperature uncertainty	E.3.4	2.7	R	1.73	0.23	0.26	0.36	0.41	00
Liquid permittivity— temperature uncertainty	E.3.4	4.8	Ν	1.00	0.23	0.26	1.10	1.25	N
Combined Standard Uncertainty			RSS				5.56	5.20	\bot
Expanded Uncertainty (95% Confidence interval)			K=2				11.12	10.41	

9. Conducted Power Measurement

9.1 Test Result

2.4G WLAN

	2.4GWIFI								
Mode	Channel Number	Frequency (MHz)	PeaK Power (dBm)	Output Power (mW)					
	1	2412	14.43	27.73					
802.11b	7	2437	13.06	20.23					
	11	2462	14.28	26.79					
	1	2412	12.96	19.77					
802.11g	7	2437	12.81	19.10					
	11	2462	12.74	18.79					
	1	2412	13.15	20.65					
802.11 n-HT20	7	2437	13.57	22.75					
	11	2462	13.23	21.04					
	3	2422	13.38	21.78					
802.11 n-HT40	6	2437	12.94	19.68					
	9	2452	13.95	24.83					
	1	2412	14.19	26.24					
802.11 ax-HEW20	7	2437	13.58	22.80					
	11	2462	13.19	20.84					
	3	2422	13.54	22.59					
802.11 ax-HEW40	6	2437	12.98	19.86					
	9	2452	14.12	25.82					

BT								
Mode	Channel Number	Frequency (MHz)	PeaK Power (dBm)	Output Power (mW)				
	0	2402	-1.07	0.78				
GFSK(1Mbps)	39	2441	0.09	1.02				
	78	2480	0.33	1.08				
	0	2402	-1.92	0.64				
π/4-QPSK(2Mbps)	39	2441	-0.75	0.84				
	78	2480	-0.52	0.89				
	0	2402	-1.9	0.65				
8DPSK(3Mbps)	39	2441	-0.78	0.84				
	78	2480	-0.52	0.89				

BLE

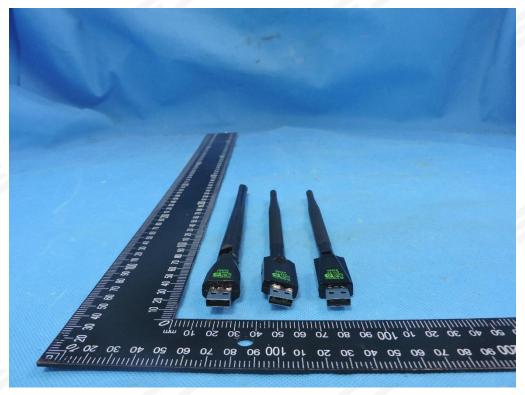
BLE							
Mode	Channel Number	Frequency (MHz)	PeaK Power (dBm)	Output Power (mW)			
	0	2402	-4.58	0.35			
GFSK(1Mbps)	19	2440	-3.34	0.46			
	39	2480	-3.27	0.47			

WLAN (5.8Gband)

5.8G WLAN							
Mode	Channel Number	Frequency (MHz)	Average Power (dBm)	Output Power (mW)			
·	149	5745	13.31	21.43			
802.11a	157	5785	12.4	17.38			
	165	5825	12.73	18.75			
	149	5745	13.49	22.34			
802.11 n-HT20	157	5785	12.19	16.56			
	165	5825	12.00	15.85			
	151	5755	13.18	20.80			
802.11 n-HT40	159	5795	12.37	17.26			
	149	5745	13.08	20.32			
802.11ac-VHT20	157	5785	12.84	19.23			
	165	5825	12.33	17.10			
000 44 \////T40	151	5755	12.33	17.10			
802.11ac-VHT40	159	5795	12.59	18.16			
802.11ac-VHT80	155	5775	13.25	21.13			
	149	5745	12.47	17.66			
802.11ax-HEW20	157	5785	12.41	17.42			
	165	5825	12.69	18.58			
	151	5755	13.12	20.51			
802.11ax-HEW40	159	5795	12.39	17.34			
802.11ax-HEW80	155	5775	13.00	19.95			

10. EUT and Test Setup Photo

10.1 EUT Photo


Back side

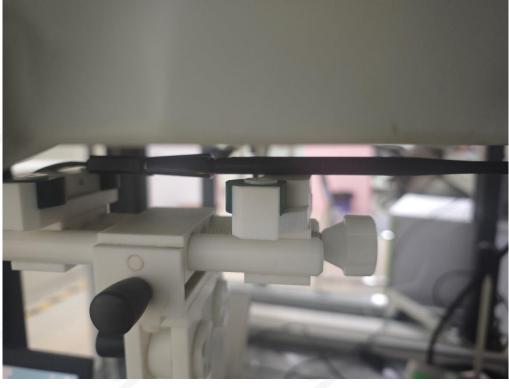
Top side



Bottom side

Left side

Right side

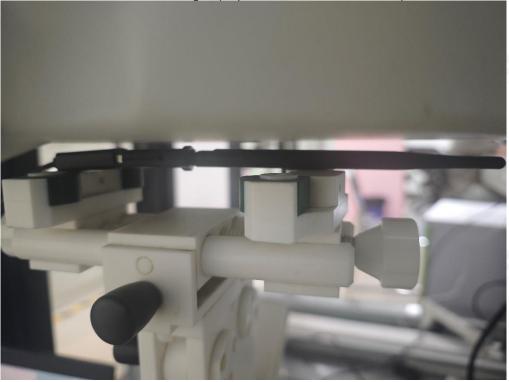

Model Name: WD-AX906 Horizontal- Up

Page 30 of 52

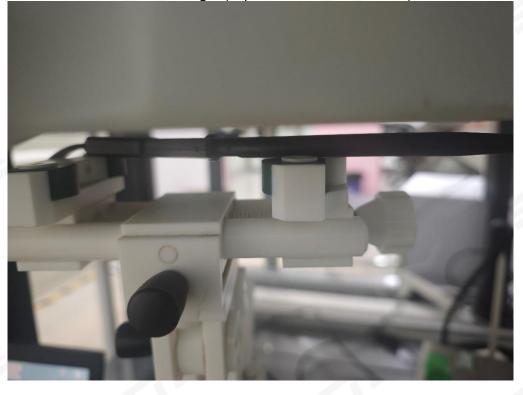
Antenna straight (separation distance is 5mm)

Model Name: WD-AX906 Horizontal- Down Antenna straight (separation distance is 5mm)

Page 31 of 52

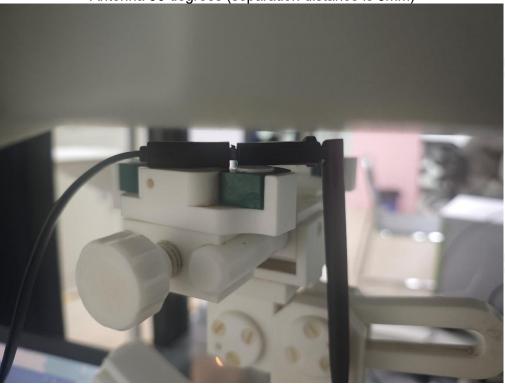

Report No.: STS2504022H01

Model Name: WD-AX906 Antenna straight Antenna 90 degrees (separation distance is 5mm)

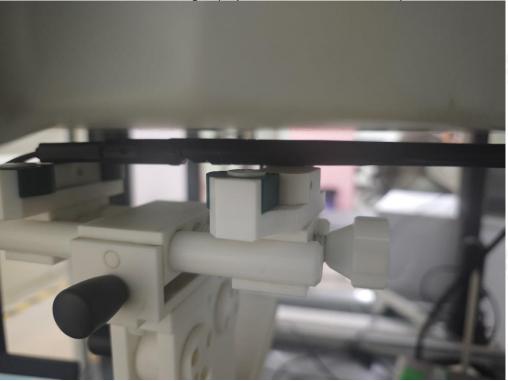


Model Name: WD-AX905 Horizontal- Up Antenna straight (separation distance is 5mm)

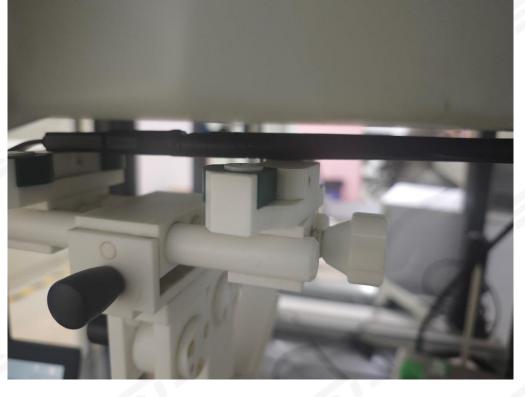
Model Name: WD-AX906 Horizontal- Down Antenna straight (separation distance is 5mm)



Page 33 of 52

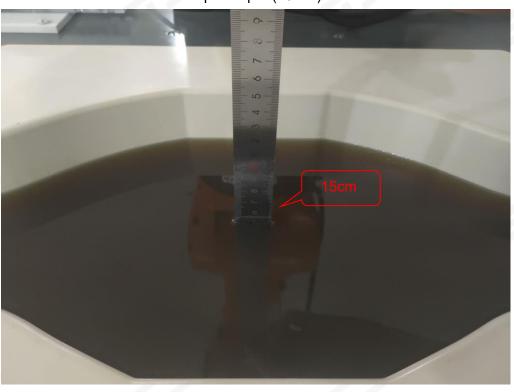

Report No.: STS2504022H01

Model Name: WD-AX905 Antenna straight Antenna 90 degrees (separation distance is 5mm)



Model Name: WD-AX903 Horizontal- Up Antenna straight (separation distance is 5mm)

Model Name: WD-AX903 Horizontal- Down Antenna straight (separation distance is 5mm)



Model Name: WD-AX903 Antenna straight Antenna 90 degrees (separation distance is 5mm)

Liquid depth (15 cm)

11. SAR Result Summary

11.1 Body-worn SAR Model Name: WD-AX905

Band	Model	Test Position	Freq.	SAR (1g) (W/kg)	Power Drift(%)	Max.Turn- up Power(dBm)	Meas.Output Power(dBm)	Scaling Factor	Scaled SAR (W/Kg)	Meas.No.
2.4GHz WLAN		Horizontal- Up Antenna straight	2412	0.065	2.19	14.50	14.43	1.016	0.066	1
	802.11b	Horizontal- Down Antenna straight	2412	0.058	-0.50	14.50	14.43	1.016	0.059	1
		Antenna straight Antenna 90 degrees	2412	0.039	-0.07	14.50	14.43	1.016	0.040	/
		Horizontal- Up Antenna straight	5745	0.797	3.90	13.50	13.49	1.002	0.799	4
	802.11 n-HT20	Horizontal- Down Antenna straight	5745	0.745	-1.62	13.50	13.49	1.002	0.747	1
		Antenna straight Antenna 90 degrees	5745	0.542	3.89	13.50	13.49	1.002	0.543	/

Page 37 of 52

Report No.: STS2504022H01

11.2 Body-worn SAR Model Name: WD-AX906

Band	Model	Test Position	Freq.	SAR (1g) (W/kg)	Power Drift(%)	Max.Turn- up Power(dBm)	Meas.Output Power(dBm)	Scaling Factor	Scaled SAR (W/Kg)	Meas.No.
		Horizontal- Up Antenna	2412	0.072	-2.72	14.50	14.43	1.016	0.073	2
2.4GHz WLAN	802.11b	straight Horizontal- Down Antenna straight	2412	0.050	2.94	14.50	14.43	1.016	0.051	
		Antenna straight Antenna 90 degrees	2412	0.036	1.49	14.50	14.43	1.016	0.037	/
		Horizontal- Up Antenna straight	5745	0.666	3.81	13.50	13.49	1.002	0.668	5
5.8GHz WLAN	802.11 n-HT20	Horizontal- Down Antenna straight	5745	0.632	3.65	13.50	13.49	1.002	0.633	ļ
		Antenna straight Antenna 90 degrees	5745	0.512	-3.09	13.50	13.49	1.002	0.513	1

Page 38 of 52

Report No.: STS2504022H01

11.3 Body-worn SAR Model Name: WD-AX903

Band	Model	Orn SAR M Test Position	Freq.	SAR (1g) (W/kg)	Power Drift(%)	Max.Turn- up Power(dBm)	Meas.Output Power(dBm)	Scaling Factor	Scaled SAR (W/Kg)	Meas.No.
		Horizontal- Up Antenna straight	2412	0.074	-1.83	14.50	14.43	1.016	0.075	3
2.4GHz WLAN	802.11b	Horizontal- Down Antenna straight	2412	0.068	-0.49	14.50	14.43	1.016	0.069	1
		Antenna straight Antenna 90 degrees	2412	0.041	-3.63	14.50	14.43	1.016	0.042	/
		Horizontal- Up Antenna straight	5745	0.913	-1.98	13.50	13.49	1.002	0.915	6
		Horizontal- Up Antenna straight	5785	0.842	-3.75	12.50	12.19	1.074	0.904	/
5.8GHz WLAN	802.11 n-HT20	Horizontal- Up Antenna straight	5825	0.803	-3.31	12.50	12.00	1.122	0.901	1
		Horizontal- Down Antenna straight	5745	0.843	-1.82	13.50	13.49	1.002	0.845	1
		Antenna straight Antenna 90 degrees	5745	0.697	3.52	13.50	13.49	1.002	0.699	1

Note: +

- 1. The test separation of all above table is 5mm.
- 2. Per KDB 447498 D04, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.

a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.

- b. For WWAN: Scaled SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor
- 3. Per KDB 248227- When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg. (The highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power was **0.072** W/Kg for Head)
- 4. Per KDB865664 D01, Repeated measurement is not required when the original highest measured SAR is <0.80 W/kg
- 5. Only full RU is supported or all RU configurations are tested, and only the worst full RU mode is recorded

11.2 Repeated SAR

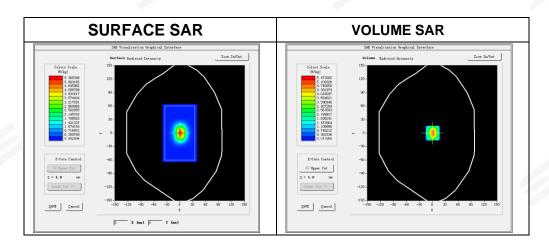
Band	Mode	Test Position	Freq.	Result 1g (W/Kg)	Power Drift(%)	Max.Turn-up Power(dBm)	Meas.Output Power(dBm)	Scaled SAR(W/Kg)	Meas. No.
		Horizontal- Up Antenna straight	5745	0.913	-1.39	13.5	13.49	0.915	-
5.8GHz WLAN	802.11 n-HT20	Horizontal- Up Antenna straight	5785	0.842	2.21	12.5	12.19	0.904	
		Horizontal- Up Antenna straight	5825	0.803	-0.19	12.5	12	0.901	-

11.3 Repeated SAR measurement

Band	Mode	Test Position	Freq.	Original Measured SAR 1g(W/kg)	1 st Repeated SAR 1g	Ratio	Original Measured SAR 1g(W/kg)	2nd Repeated SAR 1g	Ratio
					0.893	1.023	-		-
5.8GHz WLAN	802.11 n-HT20	Horizontal- Up Antenna	5745	0.913	0.838	1.005	-		-
		straight			0.802	1.001	-	-	-
				1					

12. Equipment List

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibration	Calibrated Until
2450MHzDipole	/HzDipole MVG SID2450		SN 30/14 DIP2G450-335	2023.07.04	2026.07.03
Waveguide	MVG	SWG5500	SN 13/14 WGA32	2023.07.04	2026.07.03
E-Field Probe	MVG	SSE2	SN 08/21 EPGO352	2024.09.18	2025.09.17
Dielectric Probe Kit	MVG	SCLMP	SN 32/14 OCPG67	2024.09.18	2025.09.17
Antenna	MVG	ANTA3	SN 07/13 ZNTA52	N/A	N/A
Phantom1	MVG	SAM	SN 32/14 SAM115	N/A	N/A
Phantom3	MVG	SAM	SN 21/21 ELLI48	N/A	N/A
Phone holder	MVG	N/A	SN 32/14 MSH97	N/A	N/A
Laptop holder	MVG	N/A	SN 32/14 LSH29	N/A	N/A
Attenuator	Agilent	HXT-10-8-SMA	240327017	2025-02-22	2026-02-21
Directional coupler	Xi'an Xingbo	XBOH-OA08- 20dB	211123-4-3	2025-02-22	2026-02-21
Network Analyzer	Agilent	E5071C	MY46520378	2024-09-25	2025-09-26
Multi Meter	Keithley	Multi Meter 2000	4050073	2024-09-25	2025-09-26
Signal Generator	Agilent	N5182A	MY50140530	2024-09-25	2025-09-26
Wireless Communication Test Set	Agilent	8960-E5515C	MY48360751	2025-02-22	2026-02-21
Wireless Communication Test Set	R&S	CMW500	156324	2024-09-25	2025-09-26
Power Amplifier	DESAY	ZHL-42W	9638	2024-09-25	2025-09-26
Power Meter	R&S	NRP	100510	2024-09-25	2025-09-26
Power Sensor	R&S	NRP-Z11	101919	2024-09-25	2025-09-26
Power Sensor	Keysight	U2021XA	MY56280002	2024-09-25	2025-09-26
Temperature hygrometer	SuWei	SW-108	N/A	2024.10.15	2025.10.14
Thermograph	Elitech	RC-4	S/N EF7176501537	2024.10.15	2025.10.14

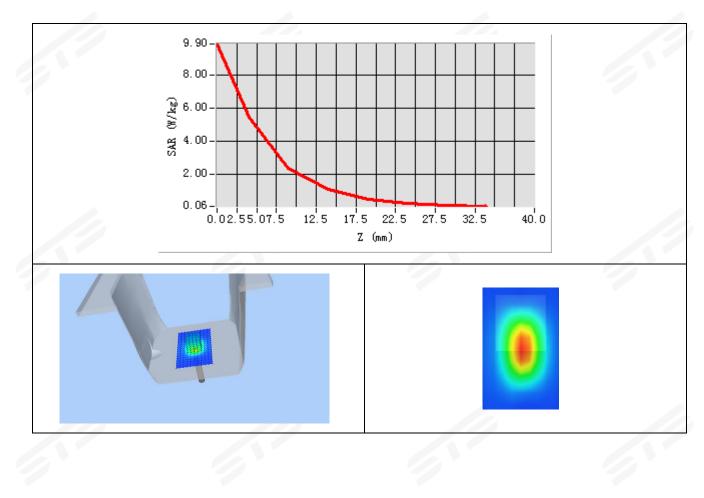

Appendix A. System Validation Plots

System Performance Check Data (2450MHz)

Type: Phone measurement (Complete) Area scan resolution: dx=8mm, dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2025-04-09

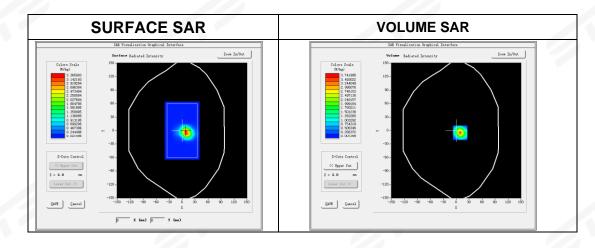
Experimental conditions.

Device Position	Validation plane		
Band	2450 MHz		
Channels	-		
Signal	CW		
Frequency (MHz)	2450		
Relative permittivity	40.00		
Conductivity (S/m)	1.79		
Probe	SN 08/21 EPGO352		
ConvF	1.80		
Crest factor:	1:1		


Maximum location: X=1.00, Y=0.00

SAR 10g (W/Kg)	2.387060
SAR 1g (W/Kg)	5.604443

Page 43 of 52

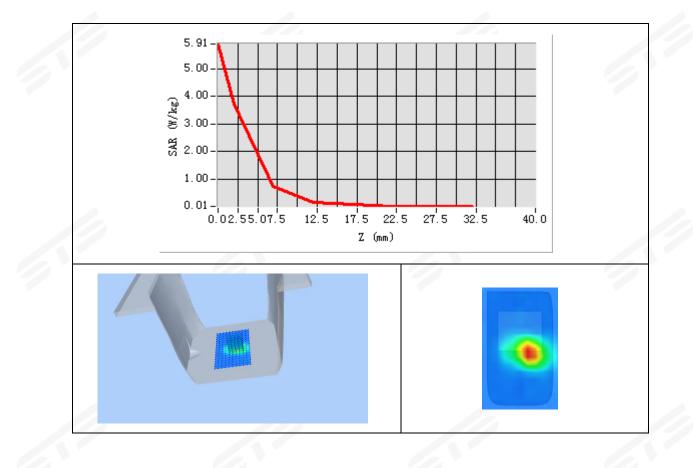


System Performance Check Data (5800MHz)

Type: Dipole measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2025-04-09

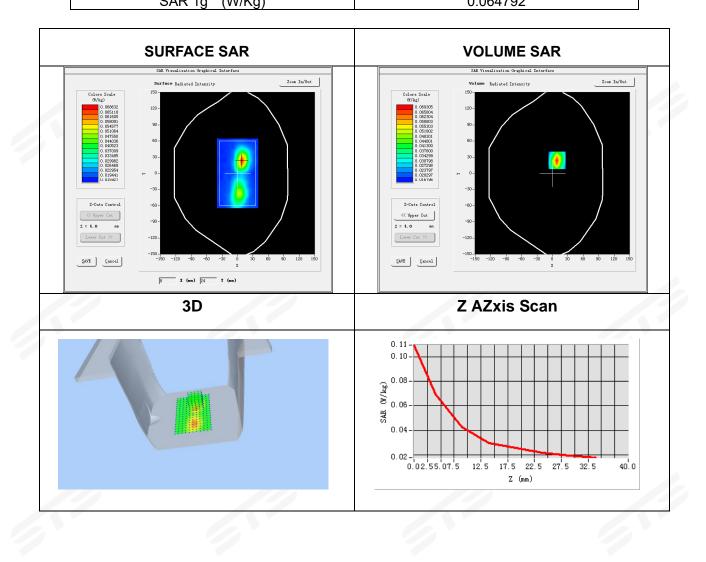
Experimental conditions.

Device Position	Validation plane
Band	5800 MHz
Channels	-
Signal	CW
Frequency (MHz)	5800
Relative permittivity	36.02
Conductivity (S/m)	5.26
Probe	SN 08/21 EPGO352
ConvF	1.35
Crest factor:	1:1


Maximum location: X=7.00, Y=2.00

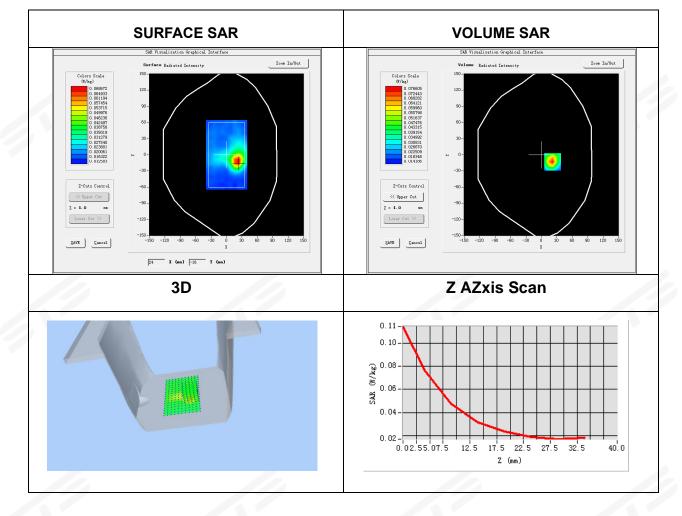
SAR 10g (W/Kg)	6.285202
SAR 1g (W/Kg)	18.251863

Page 45 of 52

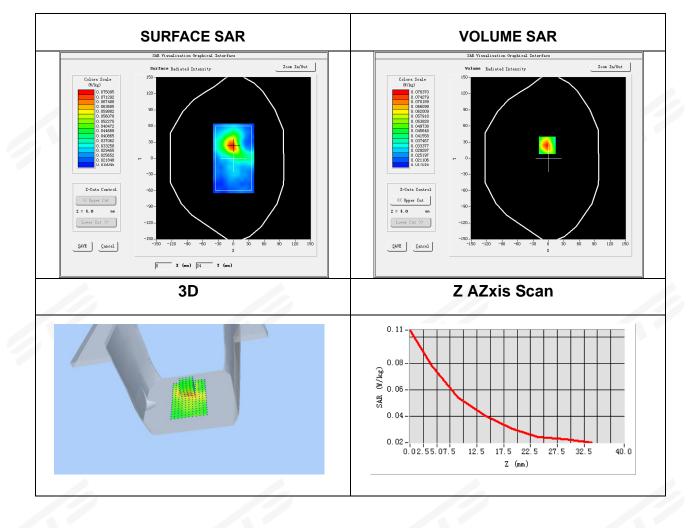


Appendix B. SAR Test Plots

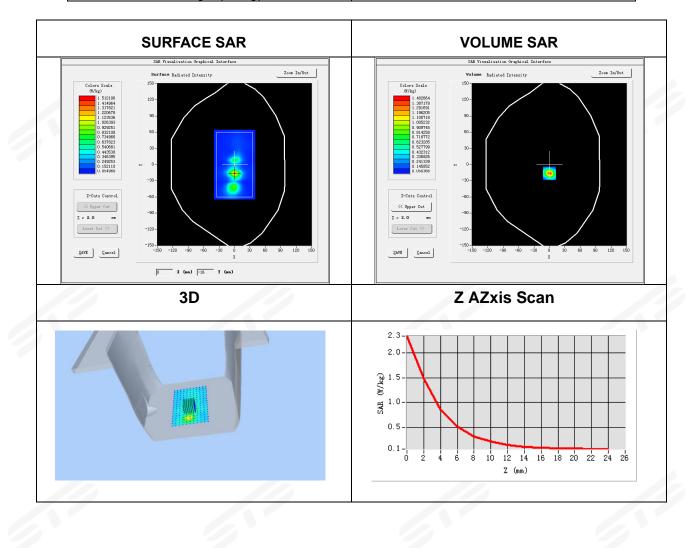
Plot 1: DUT: AX900 WiFi Bluetooth USB Adapt; EUT Model:,WD-AX905


Test Date	2025-04-09		
Probe	SN 08/21 EPGO352		
Area Scan	dx=8mm, dy=8mm, h= 5.00 mm		
Zoom Scan	5x5x7, dx=8mm, dy=8mm, dz=5mm		
Phantom	Validation plane		
Device Position	Horizontal- Up Antenna straight		
Band	IEEE 802.11b ISM		
Signal	IEEE802.b (Crest factor: 1.0)		
Frequency (MHz)	2412		
Relative permittivity (real part)	40.48		
Conductivity (S/m)	1.79		
Maximum location	on: X=9.00, Y=24.00		
SAR Pea	ak: 0.11 W/kg		
SAR 10g (W/Kg)	0.038251		
SAR 1g (W/Kg)	0.064792		

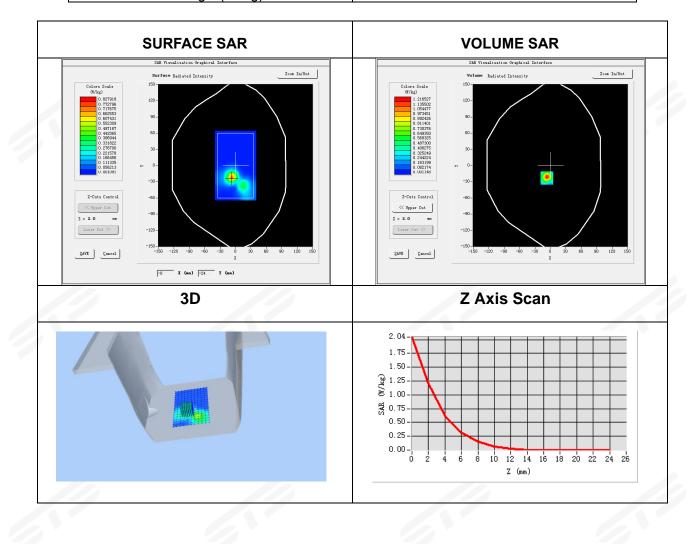
Plot 2: DUT: AX900 WiFi Bluetooth USB Adapt; EUT Model:,WD-AX906


	•		
Test Date	2025-04-09		
Probe	SN 08/21 EPGO352		
Area Scan	dx=8mm, dy=8mm, h= 5.00 mm		
Zoom Scan	5x5x7, dx=8mm, dy=8mm, dz=5mm		
Phantom	Validation plane		
Device Position	Horizontal- Up Antenna straight		
Band	IEEE 802.11b ISM		
Signal	IEEE802.b (Crest factor: 1.0)		
Frequency (MHz)	2412		
Relative permittivity (real part)	40.48		
Conductivity (S/m)	1.79		
Maximum location	n: X=22.00, Y=-13.00		
SAR Pea	ak: 0.11 W/kg		
SAR 10g (W/Kg)	0.040698		
SAR 1g (W/Kg)	0.071538		

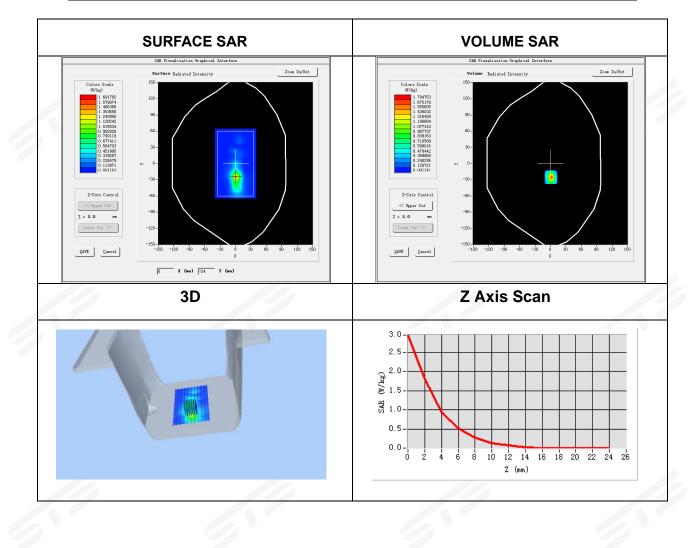
Plot 3: DUT: AX900 WiFi Bluetooth USB Adapt; EUT Model:,WD-AX903


	 • • • • • • • • • • • • • • • • • • •		
Test Date	2025-04-09		
Probe	SN 08/21 EPGO352		
Area Scan	dx=8mm, dy=8mm, h= 5.00 mm		
Zoom Scan	5x5x7, dx=8mm, dy=8mm, dz=5mm		
Phantom	Validation plane		
Device Position	Horizontal- Up Antenna straight		
Band	IEEE 802.11b ISM		
Signal	IEEE802.b (Crest factor: 1.0)		
Frequency (MHz)	2412		
Relative permittivity (real part)	40.48		
Conductivity (S/m)	1.79		
Maximum locati	on: X=-2.00, Y=24.00		
SAR Pe	ak: 0.11 W/kg		
SAR 10g (W/Kg)	0.047582		
SAR 1g (W/Kg)	0.073727		

Plot 4: DUT: AX900 WiFi Bluetooth USB Adapt; EUT Model: WD-AX905


	• •
Test Date	2025-04-09
Probe	SN 08/21 EPGO352
Area Scan	dx=8mm, dy=8mm, h= 5.00 mm
Zoom Scan	7x7x12, dx=4mm, dy=4mm, dz=2mm,
Phantom	Validation plane
Device Position	Horizontal- Up Antenna straight
Band	802.11 n-HT20
Signal	n20 (Crest factor: 1.0)
Frequency (MHz)	5745
Relative permittivity (real part)	36.53
Conductivity (S/m)	5.14
Maximum location	: X=0.00, Y=-16.00
SAR Peak	: 2.43 W/kg
SAR 10g (W/Kg)	0.269249
SAR 1g (W/Kg)	0.796977

Plot 5: DUT: AX900 WiFi Bluetooth USB Adapt; EUT Model: WD-AX906


	• *
Test Date	2025-04-09
Probe	SN 08/21 EPGO352
Area Scan	dx=8mm, dy=8mm, h= 5.00 mm
Zoom Scan	7x7x12, dx=4mm, dy=4mm, dz=2mm,
Phantom	Validation plane
Device Position	Horizontal- Up Antenna straight
Band	802.11 n-HT20
Signal	n20 (Crest factor: 1.0)
Frequency (MHz)	5745
Relative permittivity (real part)	36.53
Conductivity (S/m)	5.14
Maximum locatio	n: X=-7.00, Y=-23.00
SAR Pea	ak: 2.20 W/kg
SAR 10g (W/Kg)	0.202472
SAR 1g (W/Kg)	0.666399

Plot 6: DUT: AX900 WiFi Bluetooth USB Adapt; EUT Model: WD-AX903

2025-04-09
SN 08/21 EPGO352
dx=8mm, dy=8mm, h= 5.00 mm
7x7x12, dx=4mm, dy=4mm, dz=2mm,
Validation plane
Horizontal- Up Antenna straight
802.11 n-HT20
n20 (Crest factor: 1.0)
5745
36.53
5.14
X=1.00, Y=-25.00
3.11 W/kg
0.252149
0.912658

Appendix C. Probe Calibration and Dipole Calibration Report

Refer the appendix Calibration Report.

******END OF THE REPORT****