

Page 1 of 68 JQA File No. : KL80150533 Issue Date : November 13, 2015

TEST REPORT

Applicant	:	SHARP CORPORATION, Consumer Electronics Company, Communication Systems Division	
Address	:	2-13-1, Iida Hachihonmatsu, Higashi-Hiroshima City, Hiroshima, 739-0192, Japan	
Products	:	Smart Phone	
Model No.	:	HR229	
Serial No.	:	004401115636231	
		004401115636223	
FCC ID	:	APYHRO00229	
Test Standard	:	CFR 47 FCC Rules and Regulations Part 15	
Test Results	:	Passed	
Date of Test	:	October 22 ~ October 30, 2015	

Kousei Shibata Manager Japan Quality Assurance Organization KITA-KANSAI Testing Center SAITO EMC Branch 7-3-10, Saito-asagi, Ibaraki-shi, Osaka 567-0085, Japan

- The measurement values stated in Test Report was made with traceable to National Institute of Advanced Industrial Science and Technology (AIST) of Japan and National Institute of Information and Communications Technology (NICT) of Japan.
- The applicable standard, testing condition and testing method which were used for the tests are based on the request of the applicant.
- The test results presented in this report relate only to the offered test sample.
- The contents of this test report cannot be used for the purposes, such as advertisement for consumers.
- This test report shall not be reproduced except in full without the written approval of JQA.
- VLAC does not approve, certify or warrant the product by this test report.

JAPAN QUALITY ASSURANCE ORGANIZATION

Page 2 of 68

TABLE OF CONTENTS

Page

1	Description of the Equipment Under Test	3
2	Summary of Test Results	4
	Test Procedure	
4	Test Location	5
5	Recognition of Test Laboratory	5
6	Description of Test Setup	6
7	Test Requirements	
	-	

DEFINITIONS FOR ABBREVIATION AND SYMBOLS USED IN THIS TEST REPORT

- $\textbf{EUT} \quad : \textbf{Equipment Under Test}$
- **AE** : Associated Equipment
- N/A : Not Applicable
- N/T : Not Tested

- **EMC** : Electromagnetic Compatibility
- **EMI** : Electromagnetic Interference
- **EMS** : Electromagnetic Susceptibility
- $\ensuremath{\boxtimes}$ $\ensuremath{$ indicates that the listed condition, standard or equipment is applicable for this report.
- \Box indicates that the listed condition, standard or equipment is not applicable for this report.

Page 3 of 68

1 Description of the Equipment Under Test

1.	Manufacturer	:	SHARP CORPORATION, Consumer Electronics Company,Communication Systems Division2-13-1, Iida Hachihonmatsu, Higashi-Hiroshima City, Hiroshima,739-0192, Japan
2.	Products	:	Smart Phone
3.	Model No.	:	HR229
4.	Serial No.	:	004401115636231
			004401115636223
5.	Product Type	:	Pre-production
6.	Date of Manufacture	:	September, 2015
7.	Power Rating	:	4.0VDC (Lithium-ion Battery 1UAF375986Z 2810mAh)
8.	Grounding	:	None
9.	Transmitting Frequency	:	2402.0 MHz(00CH) – 2480.0MHz(78CH)
10.	Receiving Frequency	:	2402.0 MHz(00CH) – 2480.0MHz(78CH)
11.	Max. RF Output Power	:	5.06dBm(Measure Value)
12.	Antenna Type	:	Inverted-L Type Antenna (Integral)
13.	Antenna Gain	:	0 dBi
14.	Category	:	Spread Spectrum Transmitter(FHSS)
15.	EUT Authorization	:	Certification
16.	Received Date of EUT	:	October 20, 2015

17. Channel Plan

The carrier spacing is 1 MHz.

The carrier frequency is designated by the absolute frequency channel number (ARFCN). The carrier frequency is expressed in the equation shown as follows:

Normal Mode: Transmitting Frequency (in MHz) = 2402.0 + nReceiving Frequency (in MHz) = 2402.0 + nwhere, n : channel number ($0 \le n \le 78$)

Page 4 of 68

2 Summary of Test Results

Applied Standard : CFR 47 FCC Rules and Regulations Part 15 Subpart C – Intentional Radiators

The EUT described in clause 1 was tested according to the applied standard shown above. Details of the test configuration is shown in clause 6.

The conclusion for the test items of which are required by the applied standard is indicated under the test result.

 \boxdot - The test result was **passed** for the test requirements of the applied standard.

 \Box - The test result was **failed** for the test requirements of the applied standard.

 \Box - The test result was **not judged** the test requirements of the applied standard.

In the approval of test results,

- Determining compliance with the limits in this report was based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.
- No deviations were employed from the applied standard.
- No modifications were conducted by JQA to achieve compliance to the limitations.

Reviewed by:

Shigeru Kinoshita Assistant Manager JQA KITA-KANSAI Testing Center SAITO EMC Branch

Tested by:

higen Osawa

Shigeru Osawa Deputy Manager JQA KITA-KANSAI Testing Center SAITO EMC Branch

Page 5 of 68

3 Test Procedure

Test Requirements	:	§15.247, §15.207 and §15.209
Test Procedure	:	ANSI C63.10–2013 Testing unlicensed wireless devices.

FCC Public Notice DA 00-705, released March 30, 2000.

4 Test Location

Japan Quality Assurance Organization (JQA) KITA-KANSAI Testing Center 7-7, Ishimaru, 1-chome, Minoh-shi, Osaka, 562-0027, Japan SAITO EMC Branch 7-3-10, Saito-asagi, Ibaraki-shi, Osaka 567-0085, Japan

5 Recognition of Test Laboratory

JQA KITA-KANSAI Testing Center SAITO EMC Branch is accredited under ISO/IEC 17025 by following accreditation bodies and the test facility is registered by the following bodies.

VLAC Accreditation No.	:	VLAC-001-2 (Expiry date : March 30, 2016)
VCCI Registration No.	:	A-0002 (Expiry date : March 30, 2016)
BSMI Registration No.	:	SL2-IS-E-6006, SL2-IN-E-6006, SL2-R1/R2-E-6006, SL2-A1-E-6006
		(Expiry date : September 14, 2016)
IC Registration No.	:	2079E-3, 2079E-4 (Expiry date : July 16, 2017)

Accredited as conformity assessment body for Japan electrical appliances and material law by METI. (Expiry date : February 22, 2016)

Page 6 of 68

6 Description of Test Setup

6.1 Test Configuration

The equipment under test (EUT) consists of :

	Item	Manufacturer	Model No.	Serial No.	FCC ID
А	Smart Phone	Sharp	HR229	004401115636231 *1) 004401115636223 *2)	APYHRO00229
В	AC Adapter	Hosiden	04	HS-SKA	N/A
С	Earphone	Softbank Mobile	ZTCAA1		N/A

*1) Used for AC Powerline Conducted Emission and Field Strength of Spurious Emission

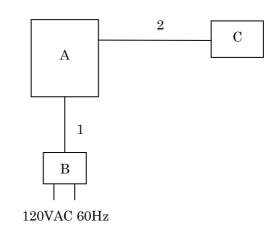
*2) Used for Antenna Conducted Emission

The auxiliary equipment used for testing :

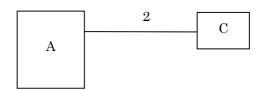
None

Type of Cable:

No.	Description	Identification (Manu. etc.)	Connector Shielded	Cable Shielded	Ferrite Core	Length (m)
1	USB conversion cable			NO	NO	1.5
2	Earphone Cable			NO	NO	0.5


Page 7 of 68

6.2 Test Arrangement (Drawings)


a) Single Unit

b) AC Adapter used

c) Earphone used

Page 8 of 68

6.3 Operating Condition

Power Supply Voltage	4.0 VDC (for Battery) 120 VAC, 60 Hz (For AC Adapter)
Transmitting/Receiving Bluetooth 4.0 + EDR + L	-
Transmitting frequency Receiver frequency	: 2402.0 MHz(0CH) – 2480.0 MHz(78CH) : 2402.0 MHz(0CH) – 2480.0 MHz(78CH)

The test were carried under 2 mode shown as follows:

1) BDR

2) EDR

In Spurious Emissions(Conducted) and Radiated Emissions, the worst case is BDR mode.

Modulation Type 1. DH1/ DH3/ DH5 Packet (Modulation Type : GFSK) 2. 2DH1/ 2DH3/ 2DH5 Packet (Modulation Type : pi/4-DQPSK) 3. 3DH1/ 3DH3/ 3DH5 Packet (Modulation Type : 8DPSK)

Other Clock Frequency 19.2MHz, 48MHz, 12MHz, 27.12MHz

The EUT was rotated through three orthogonal axis (X, Y and Z axis) in radiated measurement. The EUT with temporary antenna port was used in conducted measurement.

The test were carried out using the following test program supplied by applicant;

- Software Name: HR229_WLAN_BT Manual test mode operation_ver0.3

- Software Version: Version 0.3
- Storage Location: Controller PC(supplied by applicant)

Page 9 of 68

7 Test Requirements

7.0 Summary of the Test Results

Test Item	FCC Specification	Reference of the Test Report	Results	Remarks
Antenna Requirement	Section 15.203	Section 1.12	Passed	-
Channel Separation	Section 15.247(a)(1)	Section 7.1	Passed	-
Minimum Hopping Channel	Section 15.247(a)(1)(iii)	Section 7.2	Passed	-
Occupied Bandwidth	Section 15.247(a)(1)	Section 7.3	Passed	-
Dwell Time	Section 15.247(a)(1)(iii)	Section 7.4	Passed	-
Peak Output Power	Section 15.247(b)(1)	Section 7.5	Passed	-
(Conduction)				
Peak Power Density	Section 15.247(e)	-	-	-
(Conduction)				
Spurious Emissions	Section 15.247(d)	Section 7.7	Passed	-
(Conduction)				
AC Powerline Conducted	Section 15.207	Section 7.8	Passed	-
Emission				
Radiated Emission	Section 15.247(d)	Section 7.9	Passed	-

Page 10 of 68

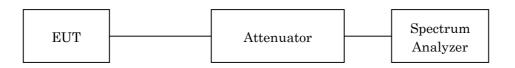
7.1 Channel Separation

For the requirements, \square - Applicable [\square - Tested. \square - Not tested by applicant request.] \square - Not Applicable

7.1.1 Test Results

For the standard,	\square - Passed	\Box - Failed	\Box - Not judged	
Channel Separation i Channel Separation (<u>1.000</u> MHz <u>2.000</u> MHz	
Uncertainty of Measu	arement Results			± 0.9 %(2 σ)

Remarks :


7.1.2 Test Instruments

	Shielded Room S4						
Туре	Model	Serial No. (ID)	Manufacturer	Cal. Due			
Spectrum Analyzer	E4446A	US44300388 (A-39)	Agilent	2016/08/11			
Attenuator	54A-10	W5675 (D-28)	Weinschel	2016/08/16			
RF Cable	SUCOFLEX102	14253/2 (C-52)	HUBER+SUHNER	2016/08/16			

NOTE : The calibration interval of the above test instruments is 12 months.

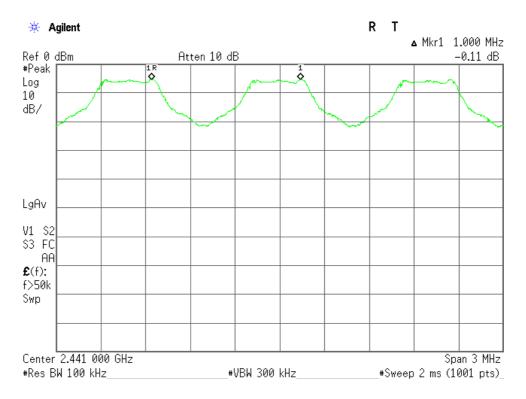
7.1.3 Test Method and Test Setup (Diagrammatic illustration)

The test system is shown as follows:

The setting of the spectrum analyzer are shown as follows:

Res. Bandwidth	$100 \mathrm{kHz}$
Video Bandwidth	$300 \mathrm{kHz}$
Span	3 MHz / 5 MHz
Sweep Time	AUTO
Trace	Maxhold

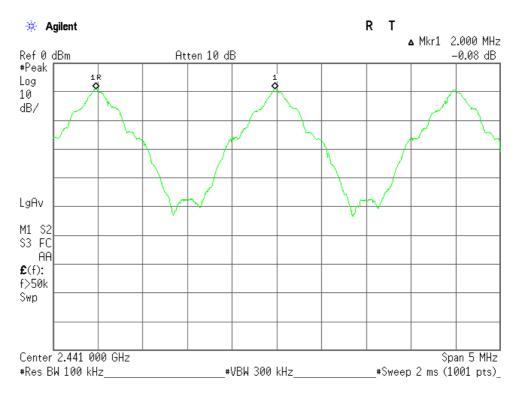
Page 11 of 68


7.1.4 Test Data

Test Date : October 22, 2015 Temp.:25°C, Humi:50%

Mode of EUT	Channel Separation (MHz)	Limit* (MHz)
Hopping	1.000	0.864
Inquiry	2.000	0.558

Note: Two-thirds of the maximum 20 dB bandwidth of the hopping channel or 25 kHz (whichever is greater). Refer to the section 7.3.


Mode of EUT : Hopping

Mode of EUT : Inquiry

Page 12 of 68

Page 13 of 68

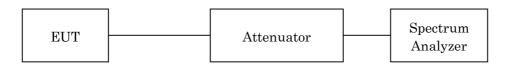
7.2 Minimum Hopping Channel

For the requirements, \square - Applicable [\square - Tested. \square - Not tested by applicant request.] \square - Not Applicable

7.2.1 Test Results

For the standard,	\square - Passed	\Box - Failed	\Box - Not judged
Number of Channel i		79	
Number of Channel	32		
Number of Channel	AFH) is		20

Remarks :


7.2.2 Test Instruments

	Shielded Room S4					
Туре	Model	Serial No. (ID)	Manufacturer	Cal. Due		
Spectrum Analyzer	E4446A	US44300388 (A-39)	Agilent	2016/08/11		
Attenuator	54A-10	W5675 (D-28)	Weinschel	2016/08/16		
RF Cable	SUCOFLEX102	14253/2 (C-52)	HUBER+SUHNER	2016/08/16		

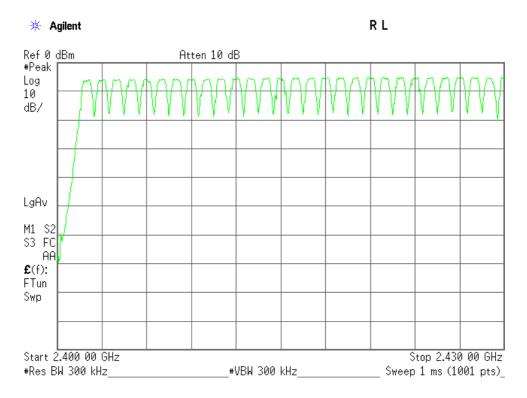
NOTE : The calibration interval of the above test instruments is 12 months.

7.2.3 Test Method and Test Setup (Diagrammatic illustration)

The test system is shown as follows:

The setting of the spectrum analyzer are shown as follows:

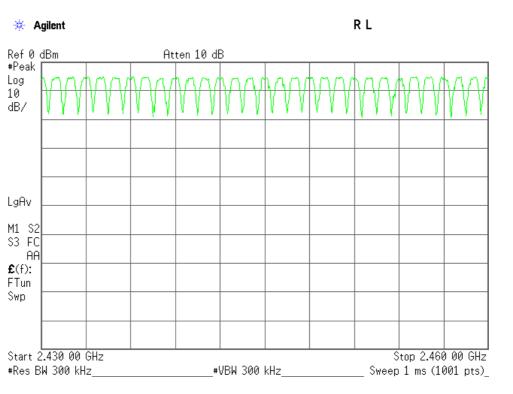
Res. Bandwidth	300 kHz
Video Bandwidth	300 kHz
Span	$30 \mathrm{~MHz}$
Sweep Time	AUTO
Trace	Maxhold

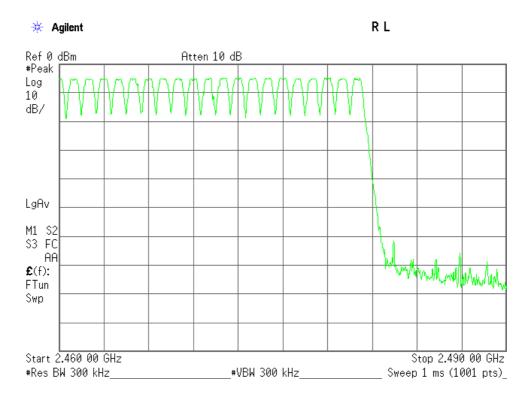

Page 14 of 68

7.2.4 Test Data

<u>Test Date : October 22, 2015</u> <u>Temp.:25°C, Humi:50%</u>

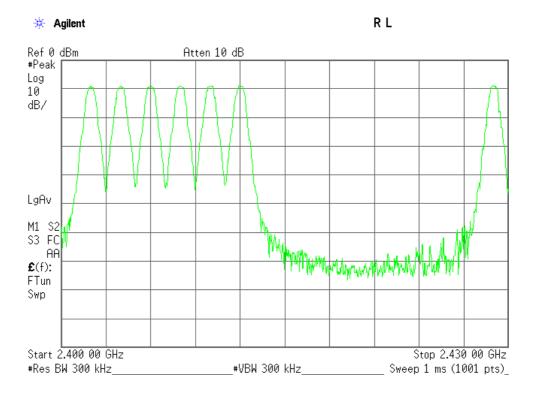
Mode of EUT	Minimum Hopping Channel	Limit
Hopping	79	15
Inquiry	32	15
AFH(minimum)	20	15

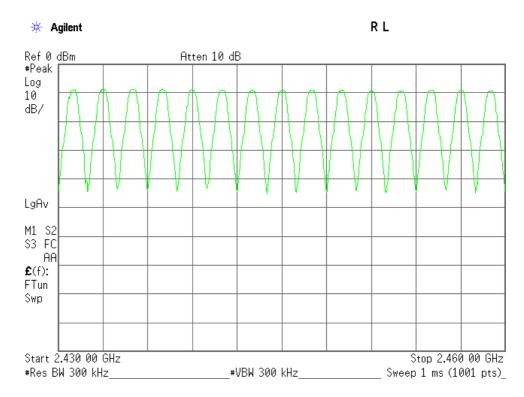

Mode of EUT : Hopping(1/3)



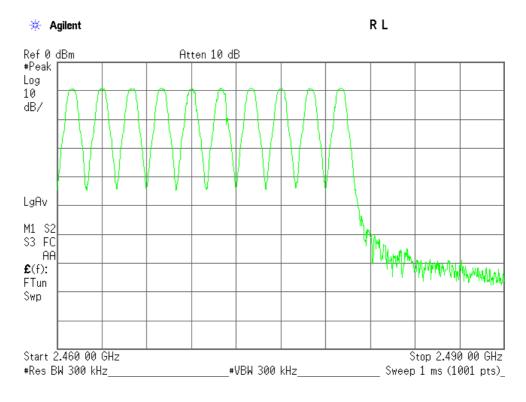
Page 15 of 68

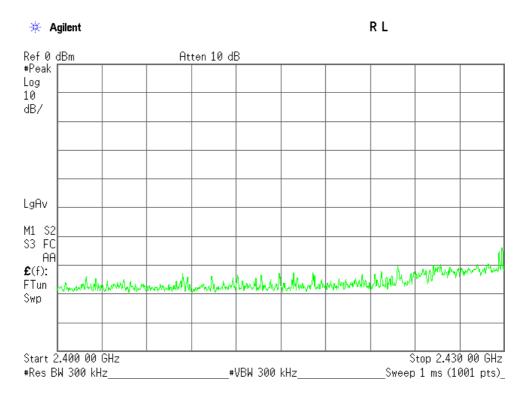
Mode of EUT : Hopping(2/3)


Mode of EUT : Hopping(3/3)



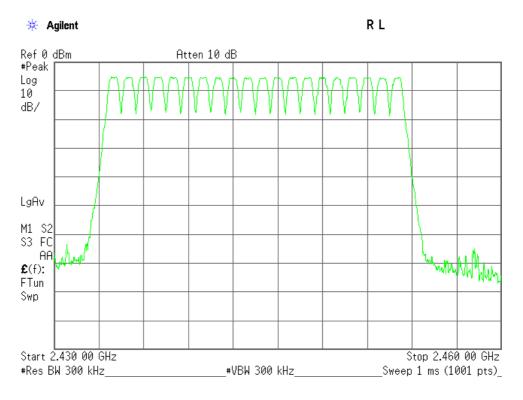
Mode of EUT : Inquiry(1/3)

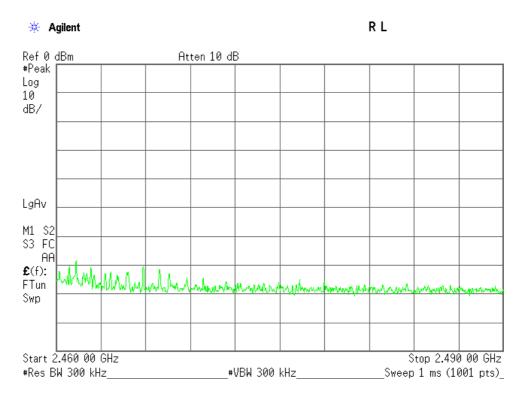

Mode of EUT : Inquiry(2/3)



Mode of EUT : Inquiry(3/3)

Page 17 of 68


Mode of EUT : AFH(minimum)(1/3)



Mode of EUT : AFH(minimum) (2/3)

Page 18 of 68

Mode of EUT : AFH(minimum) (3/3)

Page 19 of 68

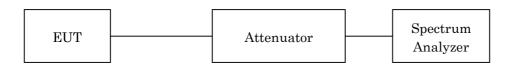
7.3 Occupied Bandwidth

For the requirements, \square - Applicable [\square - Tested. \square - Not tested by applicant request.] \square - Not Applicable

7.3.1 Test Results

For the standard,	\square - Passed	\Box - Failed	\Box - Not judged			
The 99% Bandwidth is The 20dB Bandwidth i		-	<u>1180.9</u> kHz 1296.0 kHz	at at	$\begin{array}{r} \underline{2441.0}\\ \underline{2441.0}\end{array}$	MHz MHz
Uncertainty of Measur	ement Results				± 0.9	_ %(2σ)

Remarks :


7.3.2 Test Instruments

Shielded Room S4					
Туре	Model	Serial No. (ID)	Manufacturer	Cal. Due	
Spectrum Analyzer	E4446A	US44300388 (A-39)	Agilent	2016/08/11	
Attenuator	54A-10	W5675 (D-28)	Weinschel	2016/08/16	
RF Cable	SUCOFLEX102	14253/2 (C-52)	HUBER+SUHNER	2016/08/16	

NOTE : The calibration interval of the above test instruments is 12 months.

7.3.3 Test Method and Test Setup (Diagrammatic illustration)

The test system is shown as follows:

The setting of the spectrum analyzer are shown as follows:

Res. Bandwidth	30 kHz
Video Bandwidth	100 kHz
Span	2 MHz / 3 MHz
Sweep Time	AUTO
Trace	Maxhold

Page 20 of 68

7.3.4 Test Data

Mode of EUT : BDR+EDR

Test Date : October 22, 2015

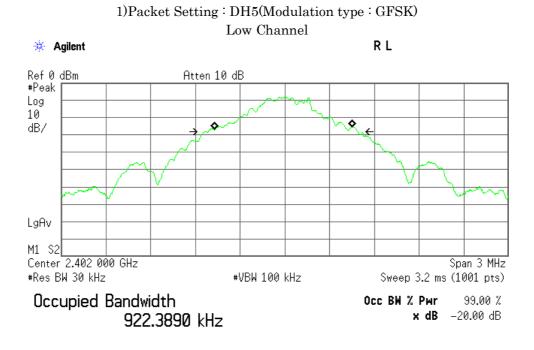
Temp.:25°C, Humi:50%

The resolution bandwidth was set to about 1% of emission bandwidth, -20dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

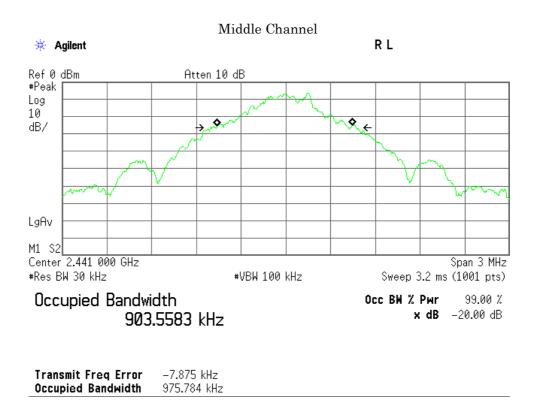
1/1 6	1/1 acket Setting · D115(Wodulation type · OFSK)					
Cl	hannel	Frequency (MHz)	99% Bandwidth (kHz)	-20dBc Bandwidth (kHz)	Two-thirds of the 20 dB bandwidth (kHz)	
	00	2402.0	922.4	1029.0	686.0	
	39	2441.0	903.6	975.8	650.5	
	78	2480.0	922.2	991.9	661.3	

1)Packet Setting : DH5(Modulation type : GFSK)

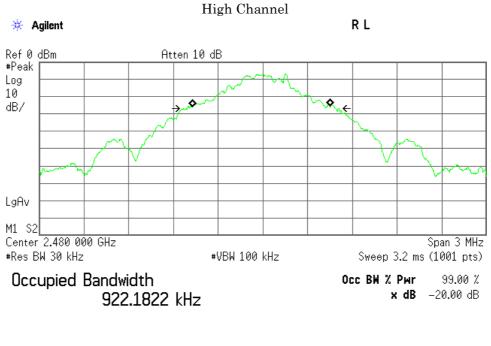
2)Packet Setting : 2DH5(Modulation type : pi/4-DQPSK)


Channel	Frequency (MHz)	99% Bandwidth (kHz)	-20dBc Bandwidth (kHz)	Two-thirds of the 20 dB bandwidth (kHz)
00	2402.0	1176.4	1281.0	854.0
39	2441.0	1180.9	1281.0	854.0
78	2480.0	1175.5	1282.0	854.7

3)Packet Setting : 3DH5(Modulation type : 8DPSK)

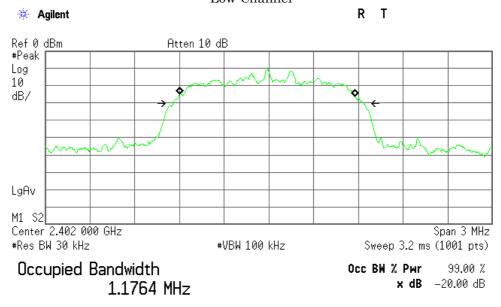

Channel	Frequency (MHz)	99% Bandwidth (kHz)	-20dBc Bandwidth (kHz)	Two-thirds of the 20 dB bandwidth (kHz)
00	2402.0	1177.7	1288.0	858.7
39	2441.0	1178.5	1296.0	864.0
78	2480.0	1178.4	1284.0	856.0

Page 21 of 68

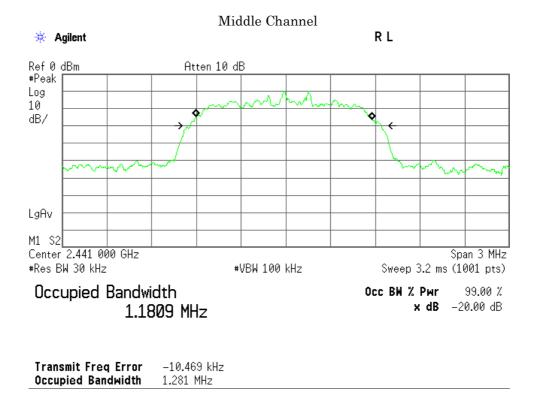


Transmit Freq Error -8.365 kHz Occupied Bandwidth 1.029 MHz

Page 22 of 68

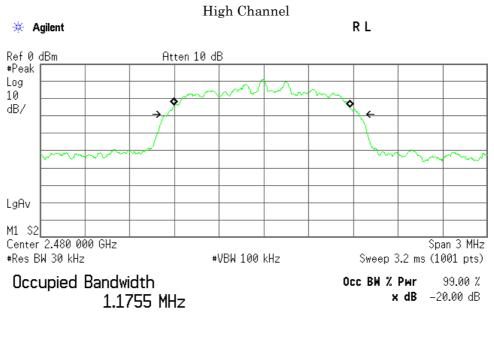


Transmit Freq Error	-11.047 kHz
Occupied Bandwidth	991.875 kHz



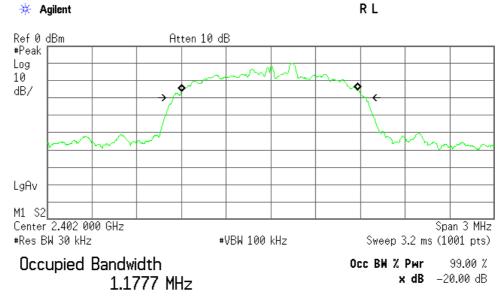
Page 23 of 68

2)Packet Setting : 2DH5(Modulation type : pi/4-DQPSK) Low Channel

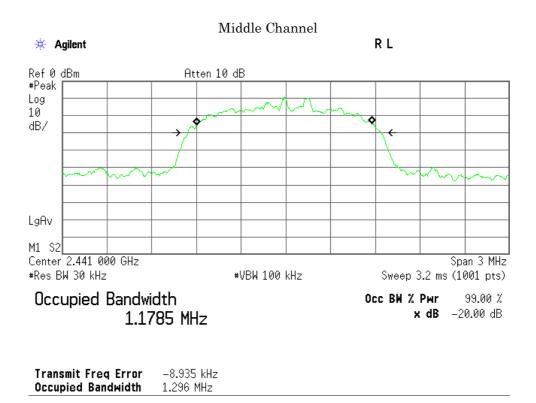


Transmit Freq Error	-10.092 kHz
Occupied Bandwidth	1.281 MHz

Page 24 of 68

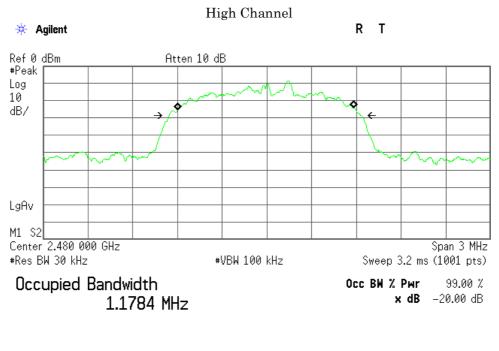


Transmit Freq Error	–11.116 kHz
Occupied Bandwidth	1.282 MHz



Page 25 of 68

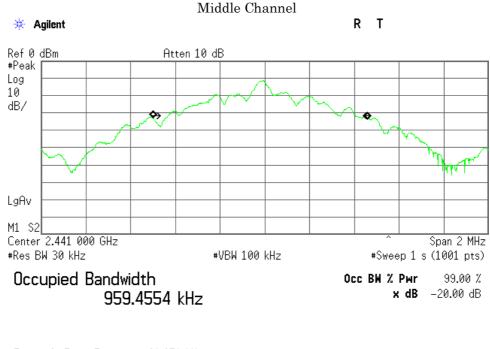
3)Packet Setting : 3 DH5(Modulation type : 8DPSK) Low Channel



Transmit Freq Error	–7.980 kHz
Occupied Bandwidth	1.288 MHz

Page 26 of 68

Transmit Freq Error	-8.584 kHz
Occupied Bandwidth	1.284 MHz


Page 27 of 68

Mode of EUT : Inquiry

Test Date : October 22, 2015

The resolution bandwidth was set to about 1% of emission bandwidth, -20dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

Frequency (MHz)	99% Bandwidth (kHz)	-20dBc Bandwidth (kHz)	Two-thirds of the 20 dB bandwidth (kHz)
2441.0	959.5	836.7	557.8

Transmit Freq Error	-21.071 kHz	
Occupied Bandwidth	836.741 kHz	

Page 28 of 68

%(2o)

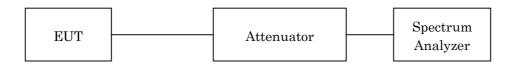
7.4 Dwell Time

For the requirements, \square - Applicable [\square - Tested. \square - Not tested by applicant request.] \square - Not Applicable

7.4.1 Test Results

For the standard,	\square - Passed	\Box - Failed	\Box - Not judged	
Dwell Time is Dwell Time (Inquiry) i Dwell Time (AFH) is	IS		<u>307.8</u> msec <u>63.7</u> msec <u>307.8</u> msec	
Uncertainty of Measur	rement Results			± 0.6

Remarks :


7.4.2 Test Instruments

Shielded Room S4					
TypeModelSerial No. (ID)ManufacturerCal. D					
Spectrum Analyzer	E4446A	US44300388 (A-39)	Agilent	2016/08/11	
Attenuator	54A-10	W5675 (D-28)	Weinschel	2016/08/16	
RF Cable	SUCOFLEX102	14253/2 (C-52)	HUBER+SUHNER	2016/08/16	

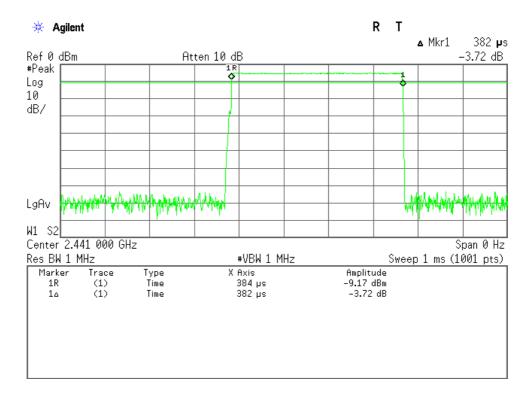
NOTE : The calibration interval of the above test instruments is 12 months.

7.4.3 Test Method and Test Setup (Diagrammatic illustration)

The test system is shown as follows:

The setting of the spectrum analyzer are shown as follows:

Res. Bandwidth	1 MHz
Video Bandwidth	1 MHz
Span	Zero Span

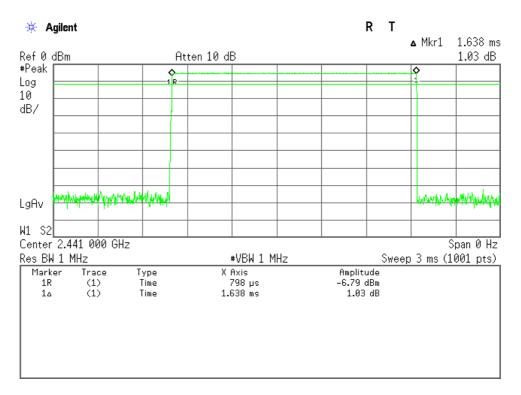

Page 29 of 68

7.4.4 Test Data

<u>Test Date : October 22, 2015</u> Temp.:25°C, Humi:50%

Mode of EUT	Dwell Time (msec)	Limit (msec)
DH1	122.2	400
DH3	262.1	400
DH5	307.8	400
Inquiry	63.7	400

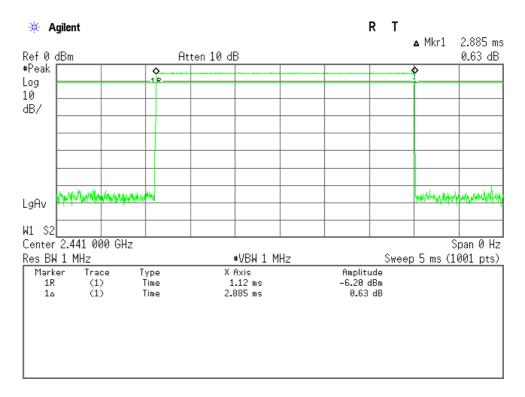
DH1(Modulation type : GFSK)


Note : The system makes worst case 1600 hops per second or 1 time slot has a length of 625 μ s with 79 channels. A DH1 Packet need 1 time slot for transmitting and 1 time slot for receiving. Then the system makes worst case 800 hops per second with 79 channels. So the system has each channel 10.1266 times per second and so for 31.6 seconds the system have 320.0 times of appearance.

Each tx-time per appearance is 0.382 ms. Dwell time = 320.0 * 0.382 = 122.2 ms

DH3(Modulation type : GFSK)

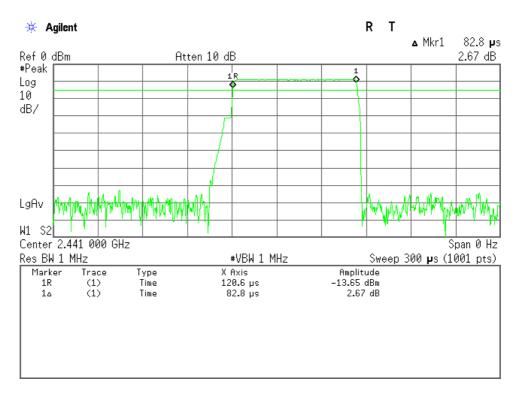
Page 30 of 68


Note: A DH3 Packet need 3 time slot for transmitting and 1 time slot for receiving. Then the system makes worst case 400 hops per second with 79 channels. So the system have each channel 5.063 times per second and so for 31.6 seconds the system have 160.0 times of appearance. Each tx-time per appearance is 1.638 ms.

Dwell time = 160.0 * 1.638 = 262.1 ms

DH5(Modulation type : GFSK)

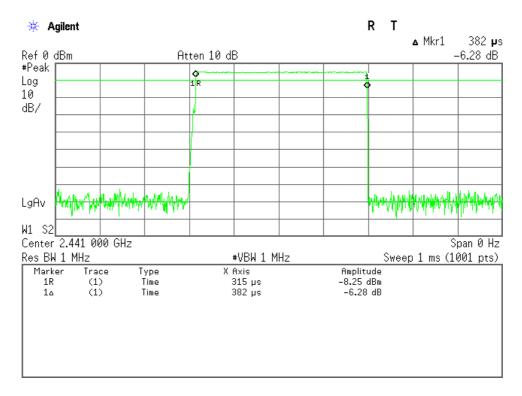
Page 31 of 68


Note: A DH5 Packet need 5 time slot for transmitting and 1 time slot for receiving. Then the system makes worst case 266.667 hops per second with 79 channels. So the system have each channel 3.3755 times per second and so for 31.6 seconds the system have 106.7 times of appearance. Each tx-time per appearance is 2.885 ms. Dwell time = 106.7 * 2.885 = 307.8 ms

Technical document No. 23199-1501

Inquiry

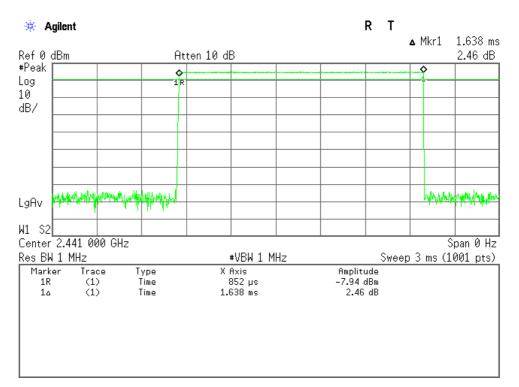
Page 32 of 68


Note : The system have 32 hopping channel in Inquiry mode. The time period = 32 * 0.4 = 12.8 seconds
In maximum case the Bluetooth system have three blocks of 2560 ms in 12.8 s period. One block has 256 burst at each hopping channel. Each tx-time per appearance is 0.083 ms. Dwell time = 0.083 * 256 * 3 = 63.7 ms

Page 33 of 68

Mode of EUT	Dwell Time (msec)	Limit (msec)
DH1(AFH)	122.2	400
DH3(AFH)	262.1	400
DH5(AFH)	307.8	400

DH1(AFH mode, Modulation type : GFSK)



Note : The system makes worst case 1600 hops per second or 1 time slot has a length of 625 μs with 79 channels. A DH1 Packet need 1 time slot for transmitting and 1 time slot for receiving. Then the system makes worst case 800 hops per second with 20 channels. So the system has each channel 40 times per second and so for 8 seconds the system have 320.0 times of appearance. Each tx-time per appearance is 0.382 ms. Dwell time = 320.0 * 0.382 = 122.2 ms

Page 34 of 68

DH3(AFH mode, Modulation type : GFSK)

Note: A DH3 Packet need 3 time slot for transmitting and 1 time slot for receiving. Then the system makes worst case 400 hops per second with 20 channels. So the system have each channel 20 times per second and so for 8 seconds the system have 160.0 times of appearance. Each tx-time per appearance is 1.638 ms.

Dwell time = 160.0 * 1.638 = 262.1 ms

Page 35 of 68

DH5(AFH mode, Modulation type : GFSK)

Agilent R T * ▲ Mkr1 2.885 ms -1.98 dB Ref 0 dBm Atten 10 dB #Peak 0 ٥ Log 10 dB/ Muniterstation and the LgAv W1 S2 Span 0 Hz Center 2.441 000 GHz #VBW 1 MHz Sweep 5 ms (1001 pts) Res BW 1 MHz Marker X Axis Amplitude Trace Түре 1R 1.195 ms -5.45 dBm (1)Time 1۵ (1)Time 2.885 ms -1.98 dB

Note: A DH5 Packet need 5 time slot for transmitting and 1 time slot for receiving. Then the system makes worst case 266.667 hops per second with 20 channels. So the system have each channel 13.33335 times per second and so for 8 seconds the system have 106.7 times of appearance. Each tx-time per appearance is 2.885 ms. Dwell time = 106.7 * 2.885 = 307.8 ms

Technical document No. 23199-1501

Page 36 of 68

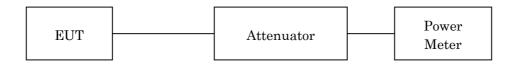
7.5 Peak Output Power(Conduction)

For the requirements, \square - Applicable [\square - Tested. \square - Not tested by applicant request.] \square - Not Applicable

7.5.1 Test Results

For the standard,	\square - Passed	\Box - Failed	🗆 - Not j	udged			
Peak Output Power is			5.06	dBm	at	2480.0	MHz
Uncertainty of Measure	ement Results					± 0.9	_ dB(2σ)

Remarks :


7.5.2 Test Instruments

Shielded Room S4				
Туре	Model	Serial No. (ID)	Manufacturer	Cal. Due
Power Meter	N1911A	GB45100291 (B-63)	Agilent	2016/07/16
Power Sensor	N1921A	US44510470 (B-64)	Agilent	2016/07/16
Attenuator	54A-10	W5675 (D-28)	Weinschel	2016/08/16
RF Cable	SUCOFLEX102	14253/2 (C-52)	HUBER+SUHNER	2016/08/16

NOTE : The calibration interval of the above test instruments is 12 months.

7.5.3 Test Method and Test Setup (Diagrammatic illustration)

The Conducted RF Power Output was measured with a power meter, one attenuator and a short, low loss cable.

Page 37 of 68

Test Data 7.5.4

1)DH5(Modulation type : GFSK)

Test Date: Octo	ber 22, 2015
<u>Temp.</u> : 25 °C,	Humi: 50 %

Transmi	tting Frequency	Correction Factor	Meter Reading		lucted put Power	Limits	Margin
СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]	[dBm]	[dB]
00	2402	9.97	-5.98	3.99	2.51	20.97	+16.98
39	2441	9.99	-5.29	4.70	2.95	20.97	+16.27
78	2480	9.99	-4.93	5.06	3.21	20.97	+15.91

Calculated result at 2480.000 MHz, as the worst point shown on underline:

Correction Factor	=	9.99 dB
+) Meter Reading	=	-4.93 dBm
Result	=	5.06 dBm = 3.21 mW

Result	=	5.06	dBm	=	3.

Minimum Margin: 20.97 - 5.06 = 15.91 (dB)

NOTES

1. The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.

2. Setting of measuring instrument(s) :

Detector Function	Video B.W.
Peak	Off

Page 38 of 68

2) 2DH5(Modulation type : pi/4-DQPSK)

							te: October 22, 2015 : 25 °C, Humi: 50 %
Transm	itting Frequency	Correction Factor	Meter Reading		lucted tput Power	Limits	Margin
СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]	[dBm]	[dB]
00	2402	9.97	-6.85	3.12	2.05	20.97	+17.85
39	2441	9.99	-6.12	3.87	2.44	20.97	+17.10
78	2480	9.99	-5.69	4.30	2.69	20.97	+16.67

Correction Factor	=	9.99 dB
+) Meter Reading	=	-5.69 dBm
Result	=	4.30 dBm = 2.69 mW

NOTES

1. The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.

2. Setting of measuring instrument(s) :

Detector Function	Video B.W.
Peak	Off

Page 39 of 68

3) 3DH5(Modulation type : 8DPSK)

							<u>te: October 22, 2015</u> : 25 °C, Humi: 50 %
Transm	itting Frequency	Correction Factor	Meter Reading		ducted tput Power	Limits	Margin
СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]	[dBm]	[dB]
00	2402	9.97	-6.49	3.48	2.23	20.97	+17.49
39	2441	9.99	-5.77	4.22	2.64	20.97	+16.75
78	2480	9.99	-5.35	4.64	2.91	20.97	+16.33

Calcu	ulated result at 2480.000	0 MHz, as the worst p	ooint shown on underline:
	Correction Factor	=	9.99 dB
	+) Meter Reading	=	-5.35 dBm
	Result	=	4.64 dBm = 2.91 mW
Mini	mum Margin: 20.97 - 4.6	34 = 16.33 (dB)	

NOTES

- 1. The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.
- 2. Setting of measuring instrument(s) :

	Detector Function	Video B.W.
Peak Off	Peak	Off

Page 40 of 68

7.6 Peak Power Density(Conduction)

For the requirements, \Box - Applicable [\Box - Tested. \Box - Not tested by applicant request.] \Box - Not Applicable

Remarks :

7.7 Spurious Emissions(Conduction)

For the requirements, \square - Applicable [\square - Tested. \square - Not tested by applicant request.] \square - Not Applicable

7.7.1 Test Results

For the standard,	\square - Passed	\Box - Failed	\Box - Not judged		
Uncertainty of Meas	urement Results		9 kHz – 1 GHz 1 GHz – 18 GHz 18 GHz – 40 GHz	± 1.4 ± 1.7 ± 2.3	_ dB(2σ) _ dB(2σ) _ dB(2σ)

Remarks:

Page 41 of 68

7.7.2 Test Instruments

Shielded Room S4										
Туре	Model	Serial No. (ID)	Manufacturer	Cal. Due						
Spectrum Analyzer	E4446A	US44300388 (A-39)	Agilent	2016/08/11						
Attenuator	54A-10	W5675 (D-28)	Weinschel	2016/08/16						
RF Cable	SUCOFLEX102	14253/2 (C-52)	HUBER+SUHNER	2016/08/16						

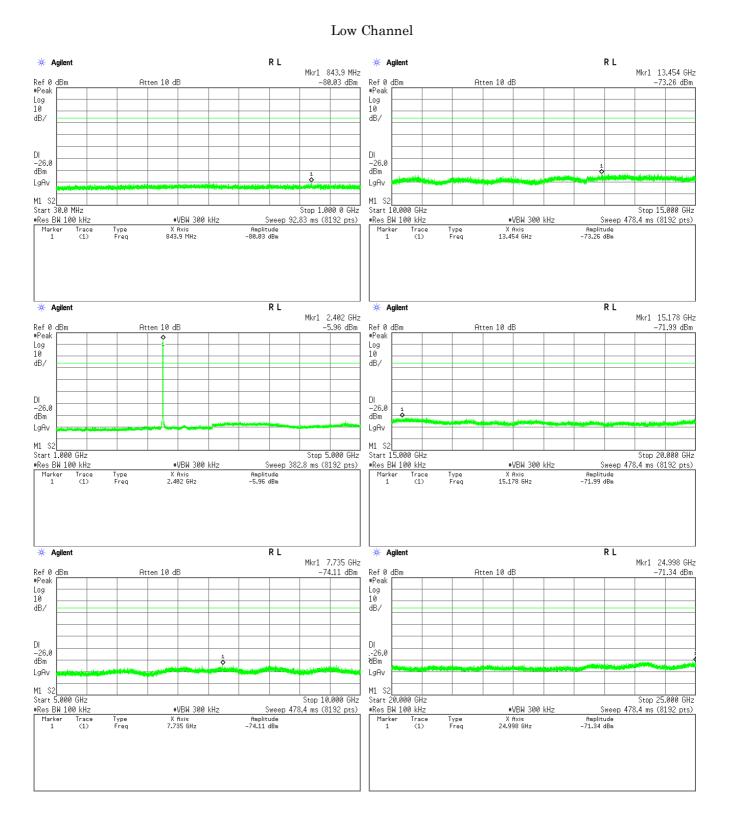
NOTE : The calibration interval of the above test instruments is 12 months.

7.7.3 Test Method and Test Setup (Diagrammatic illustration)

The test system is shown as follows:

The setting of the spectrum analyzer are shown as follows:

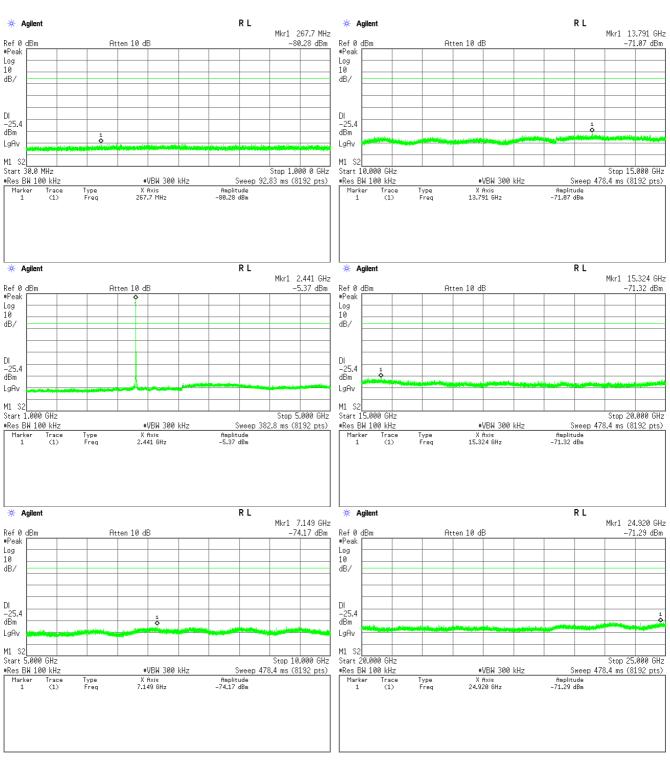
Frequency Range	30 MHz - 25 GHz	Band-Edge
Res. Bandwidth	$100 \mathrm{kHz}$	$100 \mathrm{kHz}$
Video Bandwidth	$300 \mathrm{kHz}$	300 kHz
Sweep Time	AUTO	AUTO
Trace	Maxhold	Maxhold



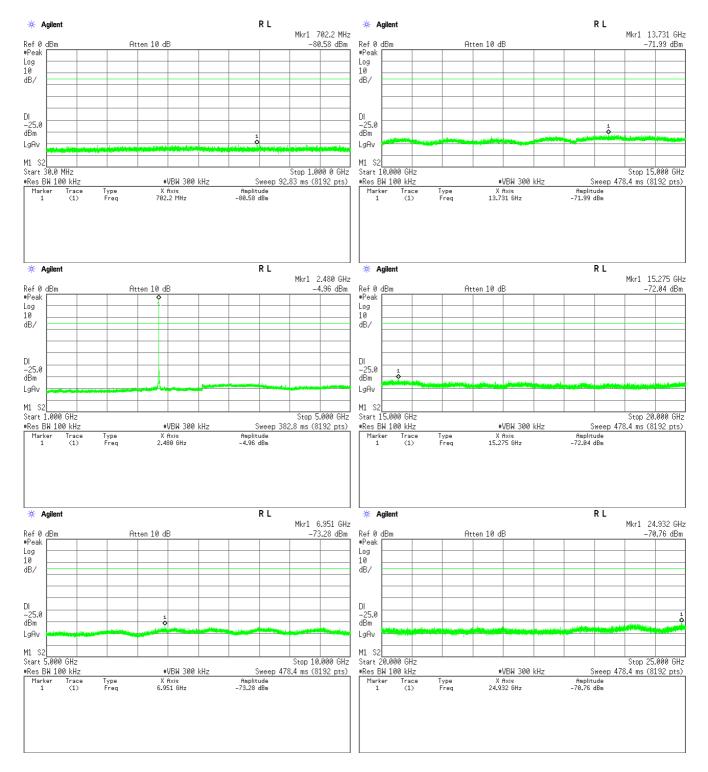
Page 42 of 68

7.7.4 Test Data

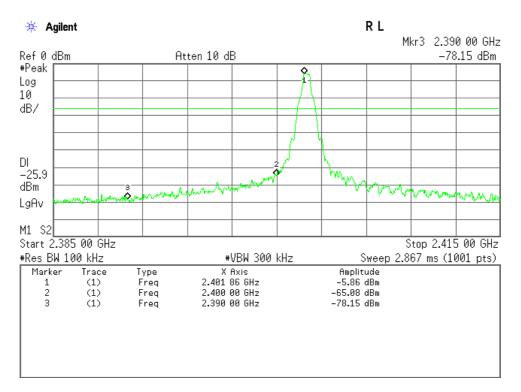
Test Date : October 22, 2015 Temp.:25°C, Humi:50%

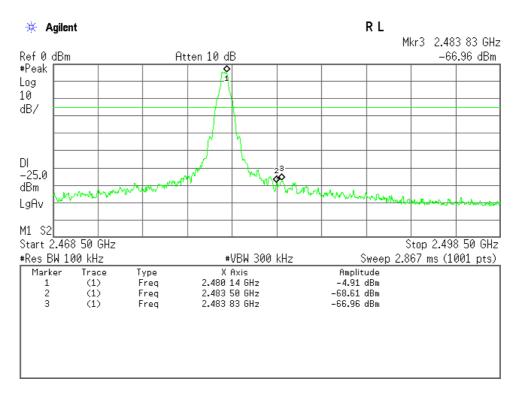

Mode of EUT : BDR (worst case)

Middle Channel

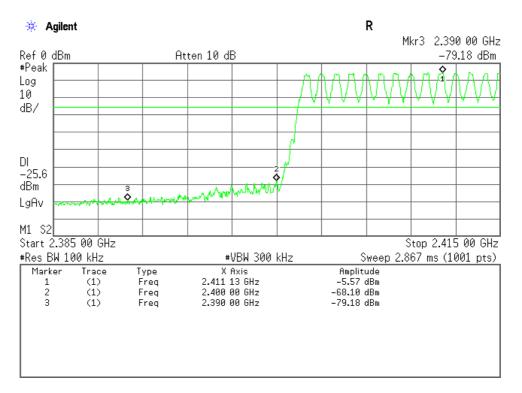

Page 43 of 68

Page 44 of 68

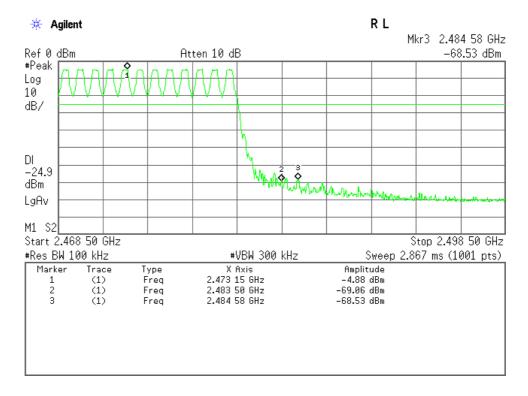

High Channel

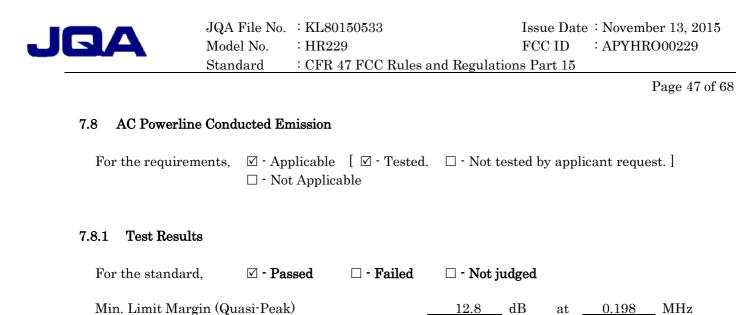

Band-Edge Emission

Page 45 of 68


Low Channel(Hopping off), Band-Edge Emission

High Channel(Hopping off), Band-Edge Emission




Low Channel(Hopping on), Band-Edge Emission

High Channel(Hopping on), Band-Edge Emission

Page 46 of 68

at <u>0.198</u> MHz

HUBER+SUHNER

 ± 2.6 dB(2 σ)

2016/07/09

7.8.2 **Test Instruments Measurement Room M2** Serial No. (ID) Model Manufacturer Cal. Due Type Test Receiver **ESU 26** 100170 (A-6) Rohde & Schwarz 2016/04/25 893045/007 AMN (main) ESH3-Z5 Rohde & Schwarz 2016/08/27 (D-12)

--- (H-9)

NOTE : The calibration interval of the above test instruments is 12 months.

RG223/U

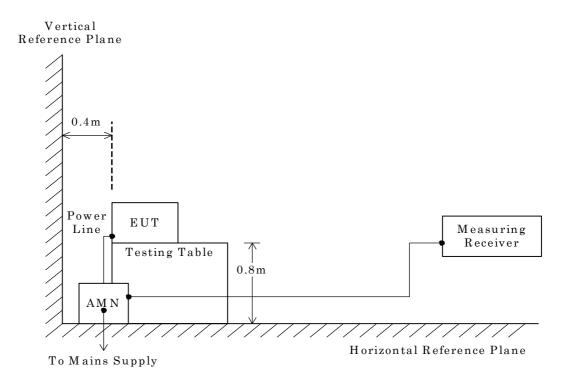
Min. Limit Margin (Quasi-Peak)

Remarks :

RF Cable

Uncertainty of Measurement Results

Page 48 of 68


7.8.3 Test Method and Test Setup (Diagrammatic illustration)

The preliminary tests were performed using the scan mode of test receiver or spectrum analyzer to observe the emissions characteristics of the EUT.

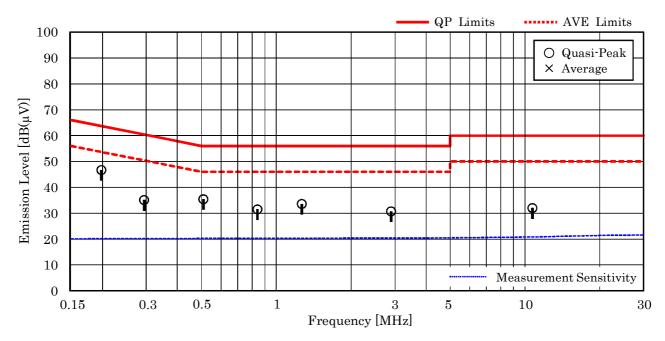
The EUT configuration, cable configuration and mode of operation were determined for producing the maximum level of emissions.

This configurations was used for final tests.

- Side View -

Page 49 of 68

7.8.4 Test Data


Mode of EUT : All modes have been investigated and the worst case mode for channel (39ch: 2441MHz) has been listed.

Test voltage : 120VAC 60Hz

Measured phase : L1

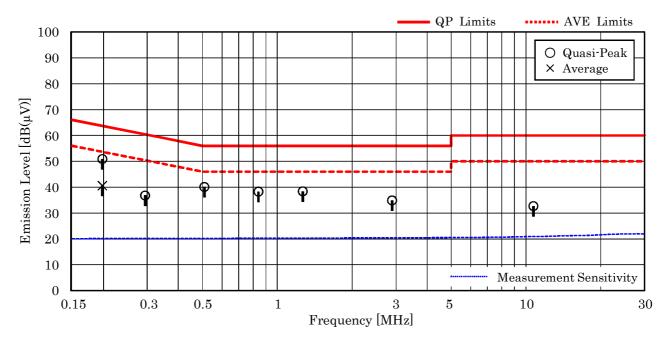
<u>Test Date: October 30, 2015</u> <u>Temp.: 21 °C, Humi.: 43 %</u>

Frequency	Corr. Factor	Meter R [dB(j	0		nits µV)]	Results [dB(µV)]		Margin [dB]		Remarks
[MHz]	[dB]	QP	AVE	QP	AVE	QP	AVE	QP	AVE	
0.198	10.2	36.5		63.7	53.7	46.7		+17.0		_
0.294	10.2	24.9		60.4	50.4	35.1		+25.3		_
0.509	10.3	25.1		56.0	46.0	35.4		+20.6		_
0.840	10.3	21.2		56.0	46.0	31.5		+24.5		_
1.266	10.3	23.3		56.0	46.0	33.6		+22.4		-
2.895	10.4	20.3		56.0	46.0	30.7		+25.3		_
10.721	10.9	21.1		60.0	50.0	32.0		+28.0		-

NOTES

- 1. The spectrum was checked from $0.15~\mathrm{MHz}$ to 30 MHz.
- 2. The correction factor includes the AMN insertion loss and the cable loss.
- 3. The symbol of "<" means "or less".
- 4. The symbol of ">" means "more than".
- 5. The symbol of "--" means "not applicable".
- 6. Calculated result at 0.198 MHz, as the worst point shown on underline: Correction Factor + Meter Reading (QP) = $10.2 + 36.5 = 46.7 \text{ dB}(\mu \text{V})$
- 7. QP : Quasi-Peak Detector / AVE : Average Detector
- 8. Test receiver setting(s) : CISPR QP 9 kHz / Average 9 kHz

Page 50 of 68


Test Date: October 30, 2015

Temp.: 21 °C, Humi.: 43 %

Test voltage : 120VAC 60Hz

Measured phase : L2

Frequency	Corr. Factor		Meter Readings [dB(μV)]		nits µV)]	Res [dB(Mar [dF	0	Remarks
[MHz]	[dB]	QP	AVE	QP	AVE	QP	AVE	QP	AVE	
0.198	10.2	40.7	30.4	63.7	53.7	50.9	40.6	+12.8	+13.1	_
0.294	10.2	26.6		60.4	50.4	36.8		+23.6		_
0.509	10.2	29.9		56.0	46.0	40.1		+15.9		_
0.840	10.3	28.0		56.0	46.0	38.3		+17.7		_
1.266	10.3	28.1		56.0	46.0	38.4		+17.6		-
2.895	10.4	24.5		56.0	46.0	34.9		+21.1		-
10.721	10.9	21.8		60.0	50.0	32.7		+27.3		-

NOTES

- 1. The spectrum was checked from $0.15\ \mathrm{MHz}$ to 30 MHz.
- 2. The correction factor includes the AMN insertion loss and the cable loss.
- 3. The symbol of "<" means "or less".
- 4. The symbol of ">" means "more than".
- 5. The symbol of "--" means "not applicable".
- 6. Calculated result at 0.198 MHz, as the worst point shown on underline: Correction Factor + Meter Reading (QP) = $10.2 + 40.7 = 50.9 \text{ dB}(\mu\text{V})$
- 7. QP : Quasi-Peak Detector / AVE : Average Detector
- 8. Test receiver setting (s) : CISPR QP 9 kHz / Average 9 kHz

Page 51 of 68

7.9 Radiated Emission

For the requirements, \square - Applicable [\square - Tested. \square - Not tested by applicant request.] \square - Not Applicable

7.9.1 Test Results

For the standard,	$\ensuremath{\boxtimes}$ - Passed	\Box - Failed	\Box - Not judged			
Min. Limit Margin (A	verage)		<u>>12.6</u> dB	at	7320.0	MHz
Uncertainty of Measu	rement Results		9 kHz – 30 M 30 MHz – 300 M 300 MHz – 1000 M 1 GHz – 6 C 6 GHz – 18 C 18 GHz – 40 C	IHz IHz Hz Hz	$ \begin{array}{r} \pm 3.0 \\ \pm 3.8 \\ \pm 4.8 \\ \pm 4.7 \\ \pm 4.6 \\ \pm 5.5 \\ \end{array} $	dB(2o) dB(2o) dB(2o) dB(2o) dB(2o) dB(2o) dB(2o)

Remarks: Y axis Position

Page 52 of 68

7.9.2 Test Instruments

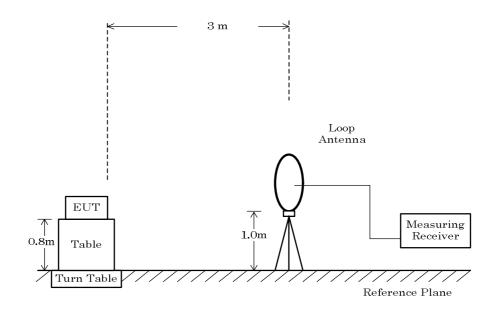
Anechoic Chamber A2										
Туре	Model	Serial No. (ID)	Manufacturer	Cal. Due						
Test Receiver	ESU 26	100170 (A-6)	Rohde & Schwarz	2016/04/25						
Loop Antenna	HFH2-Z2	872096/25 (C-2)	Rohde & Schwarz	2016/07/26						
RF Cable	RG213/U	(H-28)	HUBER+SUHNER	2016/07/26						
Pre-Amplifier	310N	304573 (A-17)	SONOMA	2016/04/15						
Biconical Antenna	VHA9103/BBA9106	2355 (C-30)	Schwarzbeck	2016/05/24						
Log-periodic Antenna	UHALP9108-A1	0694 (C-31)	Schwarzbeck	2016/05/24						
RF Cable	S 10162 B-11 etc.	(H-4)	HUBER+SUHNER	2016/04/15						
Site Attenuation		(H-15)		2016/01/05						
Pre-Amplifier	TPA0118-36	1010 (A-37)	ТОҮО	2016/05/11						
Horn Antenna	91888-2	562 (C-41-1)	EATON	2016/06/16						
Horn Antenna	91889-2	568 (C-41-2)	EATON	2016/06/16						
Horn Antenna	3160-04	9903-1053 (C-55)	EMCO	2016/06/29						
Horn Antenna	3160-05	9902-1061 (C-56)	ЕМСО	2016/06/29						
Horn Antenna	3160-06	9712-1045 (C-57)	ЕМСО	2016/06/29						
Horn Antenna	3160-07	9902-1113 (C-58)	ЕМСО	2016/06/29						
Horn Antenna	3160-08	9904-1099 (C-59)	ЕМСО	2016/06/29						
Horn Antenna	3160-09	9808-1117 (C-48)	EMCO	2016/06/28						
Attenuator	54A-10	W5713 (D-29)	Weinschel	2016/08/16						
Attenuator	2-10	BA6214 (D-79)	Weinschel	2015/11/18						
RF Cable	SUCOFLEX104	267479/4 (C-66)	HUBER+SUHNER	2016/01/19						
RF Cable	SUCOFLEX104	267414/4 (C-67)	HUBER+SUHNER	2016/01/19						
RF Cable	SUCOFLEX102EA	3041/2EA (C-69)	HUBER+SUHNER	2016/01/19						
Band Rejection Filter	BRM50701	029 (D-93)	MICRO-TRONICS	2016/02/08						
SVSWR		(H-19)		2016/02/27						

NOTE : The calibration interval of the above test instruments is 12 months.

Page 53 of 68

7.9.3 Test Method and Test Setup (Diagrammatic illustration)

7.9.3.1 Radiated Emission 9 kHz - 30 MHz


The preliminary tests were performed at the measurement distance that specified for compliance to determine the emission characteristics of the EUT.

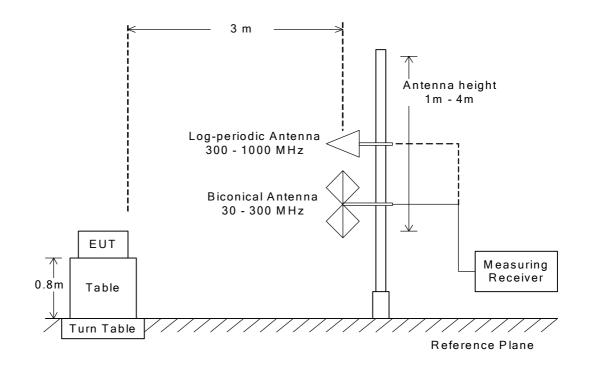
The EUT configuration(in X, Y and Z axis), cable configuration and mode of operation were determined for producing the maximum level of emissions.

The measurement were performed about three antenna orientations (parallel, perpendicular, and ground-parallel).

This configurations was used for the final tests.

- Side View -

Page 54 of 68


Radiated Emission 30 MHz - 1000 MHz 7.9.3.2

The preliminary tests were performed at the measurement distance that specified for compliance to determine the emission characteristics of the EUT.

The EUT configuration(in X, Y and Z axis), cable configuration and mode of operation were determined for producing the maximum level of emissions.

This configurations was used for the final tests.

- Side View -

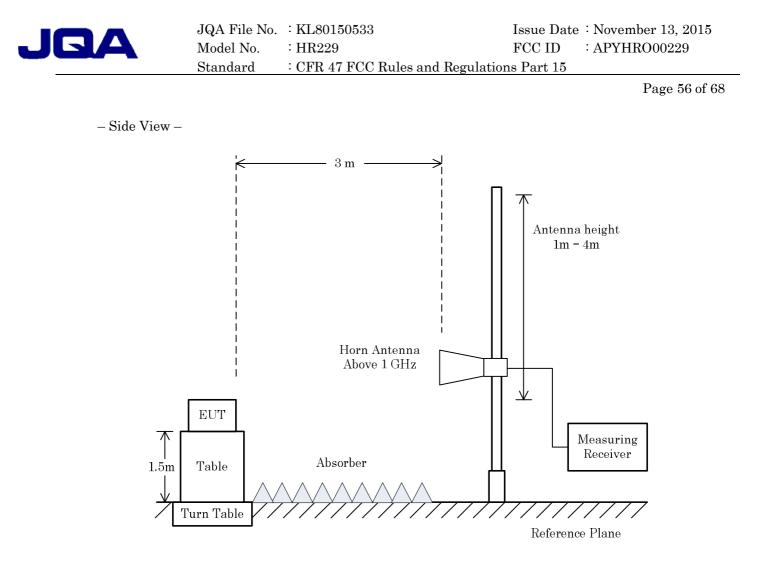
Page 55 of 68

7.9.3.3 Radiated Emission above 1 GHz

The preliminary tests were performed at the measurement distance that specified for compliance to determine the emission characteristics of the EUT.

The EUT configuration(in X, Y and Z axis), cable configuration and mode of operation were determined for producing the maximum level of emissions. This configurations was used for the final tests

This configurations was used for the final tests.


The setting of the measuring instruments are shown as follows:

Туре	Peak	Average
Detector Function	Peak	Peak
Res. Bandwidth	$1 \mathrm{~MHz}$	$1 \mathrm{~MHz}$
Video Bandwidth	$3 \mathrm{~MHz}$	$\geq 1/T * 1)$
Video Filtering	Linear Voltage	Linear Voltage
Sweep Time	AUTO	AUTO
Trace	Max Hold	Max Hold

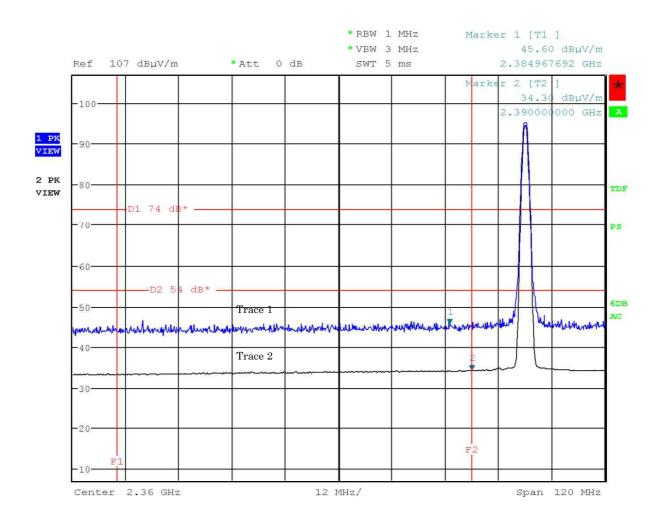
Note: 1. T: Minimum transmission duration

Average (VBW) Setting:

Mada	Interval	Cycle Duty cycle		Burst on period(T)	Min. VBW(1/T)	VBW Setting
Mode (msec		(msec)	(%)	(msec)	(kHz)	(kHz)
BDR(DH5)	0.87	3.75	76.8%	2.88	0.35	0.50

NOTE

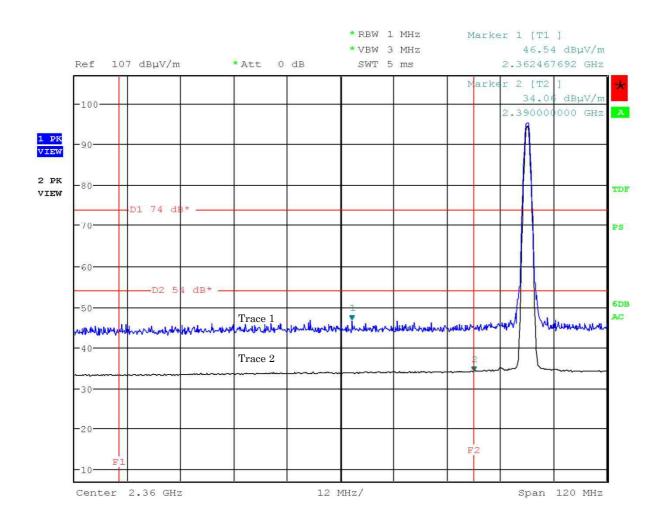
When the EUT is manipulated through three different orientations, the scan height upper range for the measurement antenna is limited to 2.5 m or 0.5 m above the top of the EUT.


Page 57 of 68

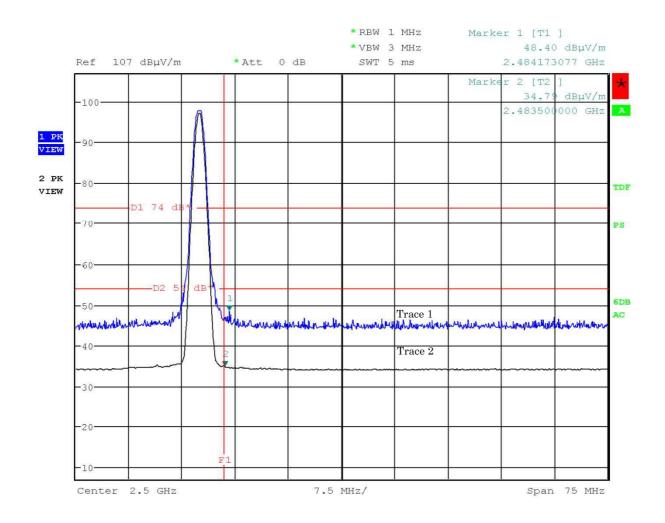
7.9.4 Test Data

7.9.4.1 Band-edge Compliance

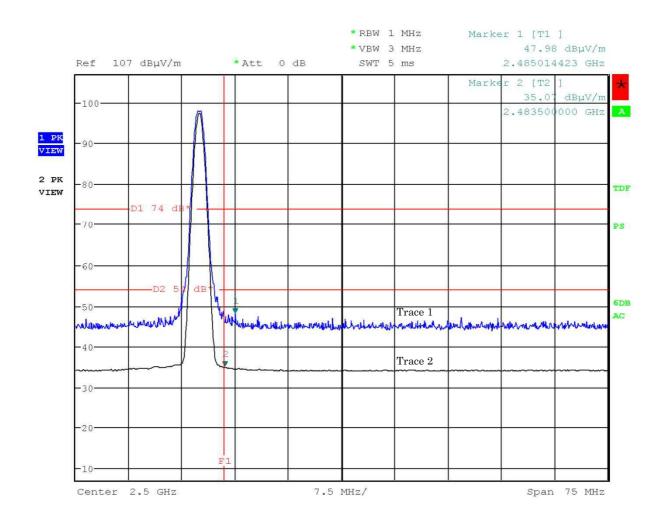
<u>Test Date : October 26, 2015</u> <u>Temp.:22°C, Humi:35%</u>


Mode of EUT : BDR, Hopping off (0ch: 2402 MHz) (worst case) Antenna Polarization : Horizontal

Page 58 of 68


Mode of EUT : BDR, Hopping off (0ch: 2402 MHz) (worst case) Antenna Polarization : Vertical

Page 59 of 68


Mode of EUT : BDR, Hopping off (78ch: 2480 MHz) (worst case) Antenna Polarization : Horizontal

Page 60 of 68

Mode of EUT : BDR, Hopping off (78ch: 2480 MHz) (worst case) Antenna Polarization : Vertical

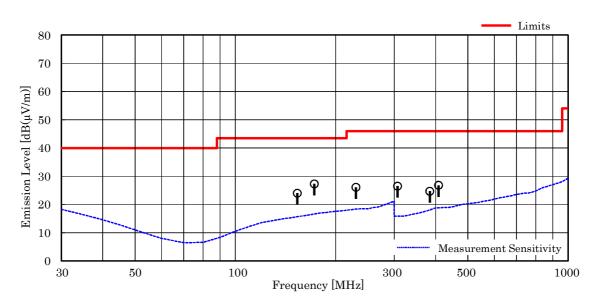
Page 61 of 68

7.9.4.2 Other Spurious Emission (9kHz - 30MHz)

Test Date : October 28, 2015

<u>Temp.:23°C, Humi:55%</u>

Mode of EUT : All modes have been investigated and the worst case mode has been listed. Results : No spurious emissions in the range 20dB below the limit.


7.9.4.3 Other Spurious Emission (30MHz – 1000MHz)

Mode of EUT : All modes have been investigated and the worst case mode has been listed.

<u>Test Date: October 28, 2015</u> <u>Temp.: 23 °C, Humi: 55 %</u>

Antenna pole : Horizontal

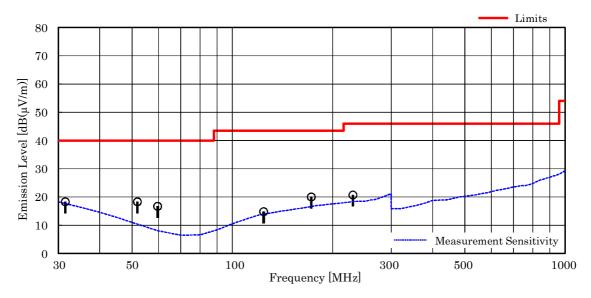
Frequency [MHz]	Antenna Factor [dB(1/m)]	Corr. Factor [dB]	Meter Readings [dB(µV)]	Limits [dB(µV/m)]	Results [dB(µV/m)]	Margin [dB]	Remarks
153.60	14.8	-26.2	35.4	43.5	24.0	+19.5	_
172.80	15.6	-26.0	37.7	43.5	27.3	+16.2	-
230.40	17.0	-25.6	34.7	46.0	26.1	+19.9	-
307.20	14.0	-25.2	37.7	46.0	26.5	+19.5	-
384.00	15.8	-24.7	33.6	46.0	24.7	+21.3	-
408.00	16.5	-24.6	34.9	46.0	26.8	+19.2	-

NOTES

- 1. Test Distance : 3 m $\,$
- 2. The spectrum was checked from 30 MHz to 1000 MHz.
- 3. The correction factor is composed of cable loss, pad attenuation and/or amplifier gain.
- 4. The symbol of "<" means "or less".
- 5. The symbol of ">" means "more than".
- 6. Calculated result at 172.80 MHz, as the worst point shown on underline:

Antenna Factor + Coorection Factor + Meter Reading = $15.6 + (-26.0) + 37.7 = 27.3 \text{ dB}(\mu\text{V/m})$ Antenna Height : 1.80 m, Turntable Angle : $114 \circ$

7. Test receiver setting(s) : CISPR QP 120 kHz (QP : Quasi-Peak)



Page 62 of 68

<u>Test Date: October 28, 2015</u> <u>Temp.: 23 °C, Humi: 55 %</u>

|--|

Frequency [MHz]	Antenna Factor [dB(1/m)]	Corr. Factor [dB]	Meter Readings [dB(µV)]	Limits [dB(µV/m)]	Results [dB(µV/m)]	Margin [dB]	Remarks
31.49	18.2	-27.5	27.6	40.0	18.3	+21.7	-
51.89	10.5	-27.2	35.0	40.0	18.3	+21.7	-
59.67	8.2	-27.1	35.6	40.0	16.7	+23.3	-
124.25	13.3	-26.4	27.9	43.5	14.8	+28.7	-
172.80	15.6	-26.0	30.4	43.5	20.0	+23.5	_
230.40	17.0	-25.6	29.3	46.0	20.7	+25.3	-

NOTES

3. The correction factor is composed of cable loss, pad attenuation and/or amplifier gain.

- 4. The symbol of "<" means "or less".
- 5. The symbol of ">" means "more than".
- 6. Calculated result at 51.89 MHz, as the worst point shown on underline: Antenna Factor + Coorection Factor + Meter Reading = $10.5 + (-27.2) + 35.0 = 18.3 \text{ dB}(\mu\text{V/m})$ Antenna Height : 1.00 m, Turntable Angle : 182 °
- 7. Test receiver setting(s) : CISPR QP 120 kHz (QP : Quasi-Peak)

^{1.} Test Distance : 3 m

^{2.} The spectrum was checked from 30 MHz to 1000 MHz.

Page 63 of 68

7.9.4.4 Other Spurious Emission (Above 1000MHz)

Mode of EUT : BDR (worst case)

<u>Test Date: October 26, 2015</u> <u>Temp.: 22 °C, Humi: 35 %</u>

Frequency	Antenna	Corr.			dings [dB(µ			mits		sults	Margin	Remarks
	Factor	Factor	Hor	izontal	Ve	rtical	[dB(µ	1V/m)]	[dB (μV/m)]	[dB]	
[MHz]	[dB(1/m)]	[dB]	РК	AVE	РК	AVE	РК	AVE	РК	AVE		
Test conditio	n:Tx Low	Ch										
4804.0	27.3	-16.1	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 49.2	< 39.2	> +14.8	
12010.0	33.6	-25.7	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 45.9	< 35.9	> +18.1	
19216.0	40.5	-42.7	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.8	< 37.8	> +16.2	
Test conditio	n : TX Midd	le Ch										
4880.0	27.3	-16.0	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 49.3	< 39.3	> +14.7	
7320.0	29.9	-16.5	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 51.4	< 41.4	> +12.6	
12200.0	33.5	-26.1	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 45.4	< 35.4	> +18.6	
19520.0	40.4	-42.6	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.8	< 37.8	> +16.2	

Test condition : TX High Ch												
4960.0	27.3	-15.9	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 49.4	< 39.4	> +14.6	
7440.0	29.8	-16.5	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 51.3	< 41.3	> +12.7	
12400.0	33.6	-26.5	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 45.1	< 35.1	> +18.9	
19840.0	40.4	-42.8	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.6	< 37.6	> +16.4	
22320.0	40.6	-43.2	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.4	< 37.4	> +16.6	

Calculated result at 7320.0 MHz, as the worst point shown on underline:

	,		1				
Antenna Factor	=	29.9	dB(1/m)				
Corr. Factor	=	-16.5	dB				
+) Meter Reading	=	<28.0	dB(µV)				
Result	=	<41.4	dB(µV/m)				
Minimum Margin: 54.0 - <41.4 = >12.6 (dB)							

NOTES

1. Test Distance : 3 m

2. The spectrum was checked from 1 GHz to 25 GHz (10th harmonic of the highest fundamental frequency).

3. The correction factor is shown as follows:

Corr. Factor [dB] = Cable Loss + 20dB Pad Att. - Pre-Amp. Gain [dB] (1.0 - 7.6GHz)

Corr. Factor [dB] = Cable Loss + 10dB Pad Att. - Pre-Amp. Gain [dB] (7.6 - 18.0GHz)

- Corr. Factor [dB] = Cable Loss · Pre·Amp. Gain [dB] (over 18 GHz)
- 4. The symbol of "<" means "or less".
- 5. The symbol of ">" means "more than".

6. PK : Peak / AVE : Average