

FCC Radio Test Report

FCC ID: 2BBLK-WL2179A

According to

47 CFR FCC Part 15, Subpart C(Section 15.247) ANSI C63.10:2013

Product description : WiFi+BT Module

Model No. : WL00018

Trade Mark : MTK

Product No. : POC230524018-S001

Applicant : Huizhou speed wireless technology co., ltd

No. 138 Huize Road, Hi-Tech Industrial Park of East River, Zhongkai Hi-tech District, Huizhou City, Guangdong Province,

China

Receipt date : 2023.07.24

Test date : 2023.07.26~2023.08.16

Issued Date : 2023.08.16

Prepared By:	Checked By:	Approved By:	Standard
Black ding	Tim zhang	Misue Su	H CAME
Black Ding	7 in. zhong	Misul Su	HAIYUN A Peport Seed

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen Haiyun Standard Technical Co., Ltd. This document may be altered or revised by Shenzhen Haiyun Standard Technical Co., Ltd. Personnel only, and shall be noted in the revision section of the document. The test results of this report relate only to the tested sample identified in this report.

Table of Contents

REPORT ISSUED HISTORY	4
1 . SUMMARY OF TEST RESULTS	5
1.1 TEST FACILITY	6
1.2 MEASUREMENT UNCERTAINTY	6
1.3 TEST ENVIRONMENT CONDITIONS	6
2 . GENERAL INFORMATION	7
2.1 GENERAL DESCRIPTION OF EUT	7
2.2 DESCRIPTION OF TEST MODES	8
2.3 PARAMETERS OF TEST SOFTWARE	9
2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	9
2.5 SUPPORT UNITS	9
3 . AC POWER LINE CONDUCTED EMISSIONS	10
3.1 LIMIT	10
3.2 TEST PROCEDURE	10
3.3 DEVIATION FROM TEST STANDARD	10
3.4 TEST SETUP	11
3.5 EUT OPERATING CONDITIONS	11
3.6 TEST RESULTS	11
4 . RADIATED EMISSIONS	12
4.1 LIMIT	12
4.2 TEST PROCEDURE	13
4.3 DEVIATION FROM TEST STANDARD	14
4.4 TEST SETUP	14
4.5 EUT OPERATING CONDITIONS	15
4.6 TEST RESULT - 9 KHZ TO 30 MHZ	15
4.7 TEST RESULT - 30 MHZ TO 1000 MHZ	15
4.8 TEST RESULT - ABOVE 1000 MHZ	15
5 . BANDWIDTH	16
5.1 LIMIT	16
5.2 TEST PROCEDURE	16
5.3 DEVIATION FROM STANDARD	16
5.4 TEST SETUP	16
5.5 EUT OPERATION CONDITIONS	16
5.6 TEST RESULTS	16
6 . MAXIMUM OUTPUT POWER	17

6.1 LIMIT	17
6.2 TEST PROCEDURE	17
6.3 DEVIATION FROM STANDARD	17
6.4 TEST SETUP	17
6.5 EUT OPERATION CONDITIONS	17
6.6 TEST RESULTS	17
7 . CONDUCTED SPURIOUS EMISSION	18
7.1 LIMIT	18
7.2 TEST PROCEDURE	18
7.3 DEVIATION FROM STANDARD	18
7.4 TEST SETUP	18
7.5 EUT OPERATION CONDITIONS	18
7.6 TEST RESULTS	18
8 . POWER SPECTRAL DENSITY	19
8.1 LIMIT	19
8.2 TEST PROCEDURE	19
8.3 DEVIATION FROM STANDARD	19
8.4 TEST SETUP	19
8.5 EUT OPERATION CONDITIONS	19
8.6 TEST RESULTS	19
9 . MEASUREMENT INSTRUMENTS LIST	20
10 . ANTENNA REQUIREMENT	21
APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS	22
APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ	25
APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ	26
APPENDIX D - RADIATED EMISSION - ABOVE 1000 MHZ	31
APPENDIX E - BANDWIDTH	52
APPENDIX F - MAXIMUM OUTPUT POWER	67
APPENDIX G - CONDUCTED SPURIOUS EMISSION	75
ADDENDIY H. DOWED SDECTDAL DENSITY	08

REPORT ISSUED HISTORY

Original Report Issue Date: 2023.08.16

- No additional attachment
- o Additional attachments were issued following record

Attachment No.	Issue Date	Description

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

FCC CFR Title 47, Part 15, Subpart C				
Standard(s) Section	Test Item	Test Result	Judgment	Remark
15.207	AC Power Line Conducted Emissions	APPENDIX A	PASS	
15.247(d) 15.205(a) 15.209(a)	Radiated Emissions	APPENDIX B APPENDIX C APPENDIX D	PASS	
15.247(a)(2)	Bandwidth	APPENDIX E	PASS	
15.247(b)(3)	Maximum Output Power	APPENDIX F	PASS	
15.247(d)	Conducted Spurious Emission	APPENDIX G	PASS	
15.247(e)	Power Spectral Density	APPENDIX H	PASS	
15.203	Antenna Requirement		PASS	Note(2)

Note:

- (1) "N/A" denotes test is not applicable to this device.
- (2) The device what use a permanently attached antenna were considered sufficient to comply with the provisions of 15.203.

1.1 TEST FACILITY

Company:	Shenzhen Haiyun Standard Technical CO., Ltd.
Address:	Room 110, 111, 112, 113, 115, 116, Block B, Jinyuan Business Building, No. 302, Xixiang Avenue, Labor Community, Xixiang Street, Baoan District, Shenzhen, China
CNAS Registration Number:	CNAS L18252
CAB identifier	CN0145
A2LA Certificate Number	6823.01
Telephone:	0755-26024411

1.2 MEASUREMENT UNCERTAINTY

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2))

Uncertainty		
Parameter	Uncertainty	
Occupied Channel Bandwidth	±143.88 kHz	
Power Spectral Density	±0.743dB	
Conducted Spurious Emission	±1.328dB	
RF power conducted	±0.384 dB	
Conducted emission(9kHz~30MHz) AC main	±2.72dB	
Radiated emission(9kHz~30MHz)	±2.66dB	
Radiated emission (30MHz~1GHz)	±4.62dB	
Radiated emission (1GHz~18GHz)	±4.86dB	
Radiated emission (18GHz~40GHz)	±3.80dB	

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Temperature	Humidity	Test Voltage	Tested By
AC Power Line Conducted Emissions	25°C	52%	AC 120V/60Hz	Albert Fan
Radiated Emissions-9 kHz to 30 MHz	24.2°C	53%	AC 120V/60Hz	Albert Fan
Radiated Emissions-30 MHz to 1000 MHz	24.2°C	53%	AC 120V/60Hz	Albert Fan
Radiated Emissions-Above 1000 MHz	24.2°C	53%	AC 120V/60Hz	Albert Fan
Bandwidth	24.5°C	54%	DC 5V	Jason Huang
Maximum Output Power	24.5°C	54%	DC 5V	Jason Huang
Conducted Spurious Emission	24.5°C	54%	DC 5V	Jason Huang
Power Spectral Density	24.5°C	54%	DC 5V	Jason Huang

Note: Adapter supply voltage AC 120V/60Hz.

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	WiFi+BT Module
Brand Name	MTK
Test Model	WL00018
Software Version	
Hardware Version	V12
Power Supply	DC 3.3V~12V
Operation Frequency	2402 MHz ~ 2480 MHz
Modulation Type	GFSK
Bit Rate of Transmitter	1Mbps, 2Mbps
Max. Output Power	6.59 dBm (0.0046 W)
Antenna gain	Ant1: 1.8dBi; Ant2: 0.8dBi
Antenna type	PCB antenna

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

2. Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	20	2442
01	2404	21	2444
02	2406	22	2446
03	2408	23	2448
04	2410	24	2450
05	2412	25	2452
06	2414	26	2454
07	2416	27	2456
08	2418	28	2458
09	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

2.2 DESCRIPTION OF TEST MODES

The test system was pre-tested based on the consideration of all possible combinations of EUT operation mode.

Pretest Mode	Description
Mode 1	TX Mode_1Mbps Channel 00/19/39
Mode 2	TX Mode_2Mbps Channel 00/19/39

Following mode(s) was (were) found to be the worst case(s) and selected for the final test.

AC power line conducted emissions test		
Final Test Mode	Description	
Mode 1	TX Mode_1Mbps Channel 00	

Radiated emissions test - Below 1GHz	
Final Test Mode	Description
Mode 1	TX Mode_1Mbps Channel 00

Radiated emissions test - Above 1GHz		
Final Test Mode	Description	
Mode 1	TX Mode_1Mbps Channel 00/19/39	
Mode 2	TX Mode_2Mbps Channel 00/19/39	

Conducted test	
Final Test Mode Description	
Mode 1	TX Mode_1Mbps Channel 00/19/39
Mode 2	TX Mode_2Mbps Channel 00/19/39

Note:

- (1) For radiated emission above 1 GHz test, the spurious points of 1GHz~18GHz and 18GHz~26.5GHz have been pre-tested and in this report only recorded the worst case. The remaining spurious points are all below the limit value of 20dB.
- (2) For AC power line conducted emissions and radiated emissions below 1 GHz test, the TX Mode_1Mbps Channel 00 is found to be the worst case and recorded.

2.3 PARAMETERS OF TEST SOFTWARE

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level.

Test Software Version	V	VCN_Combo_To	ool
Frequency (MHz)	2402	2440	2480
1Mbps	default	default	default
2Mbps	default	default	default

2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

2.5 SUPPORT UNITS

Support Equipment				
No. Equipment Brand Name Model Name Remarks				
1 Mini PC / S10 DC 12V/4A				DC 12V/4A
2 Adapter TEKA TEKA-TE120250US OUTPUT: DC 12V/2.5A				

3. AC POWER LINE CONDUCTED EMISSIONS

3.1 LIMIT

Frequency of Emission (MHz)	Limit (dl	ΒμV)
Frequency of Emission (MHZ)	Quasi-peak	Average
0.15 - 0.5	66 to 56*	56 to 46*
0.5 - 5.0	56	46
5.0 - 30.0	60	50

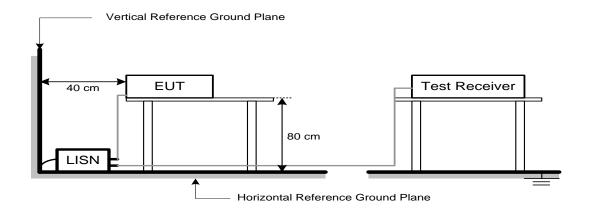
Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

The following table is the setting of the receiver:


Receiver Parameters	Setting
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.3 DEVIATION FROM TEST STANDARD

No deviation.

3.4 TEST SETUP

3.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

3.6 TEST RESULTS

Please refer to the APPENDIX A.

Remark:

- (1) All readings are QP Mode value unless otherwise stated AVG in column of <code>『Note』</code>. If the QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only QP Mode was measured, but AVG Mode didn't perform.In this case, a " * " marked in AVG Mode column of Interference Voltage Measured.
- (2) Measuring frequency range from 150 kHz to 30 MHz.

4. RADIATED EMISSIONS

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (9 kHz-1000 MHz)

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000 MHz)

Frequency (MHz)	(dBuV/n	n at 3 m)
Frequency (WITZ)	Peak	Average
Above 1000	74	54

Note:

- (1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

4.2 TEST PROCEDURE

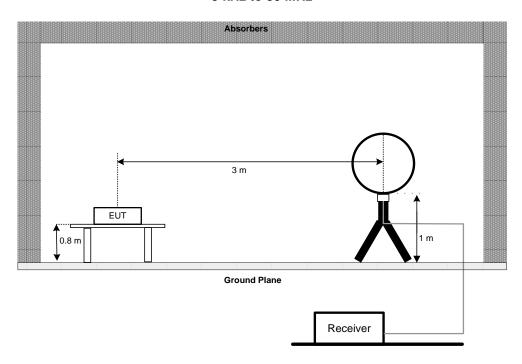
- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1 GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1 GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8m or 1.5m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1 GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1 GHz)
- i. For the actual test configuration, please refer to the related Item –EUT Test Photos.

The following table is the setting of the receiver:

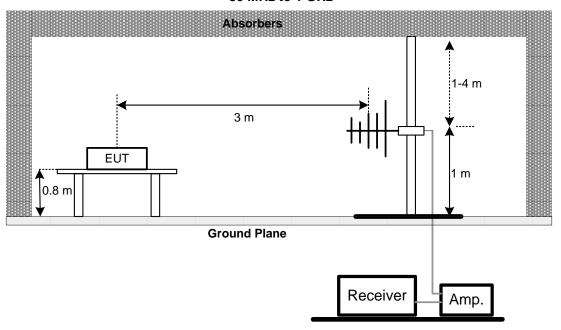
Spectrum Parameters	Setting
Start ~ Stop Frequency	9 kHz~150 kHz for RBW 200 Hz
Start ~ Stop Frequency	0.15 MHz~30 MHz for RBW 9 kHz
Start ~ Stop Frequency	30 MHz~1000 MHz for RBW 100 kHz

Spectrum Parameters	Setting
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1 MHz / 3 MHz for PK value
(Emission in restricted band)	1 MHz / 1/T Hz for AVG value

Spectrum Parameters	Setting
Start ~ Stop Frequency	9 kHz~90 kHz for PK/AVG detector
Start ~ Stop Frequency	90 kHz~110 kHz for QP detector
Start ~ Stop Frequency	110 kHz~490 kHz for PK/AVG detector
Start ~ Stop Frequency	490 kHz~30 MHz for QP detector
Start ~ Stop Frequency	30 MHz~1000 MHz for QP detector
Start ~ Stop Frequency	1 GHz~26.5 GHz for PK/AVG detector

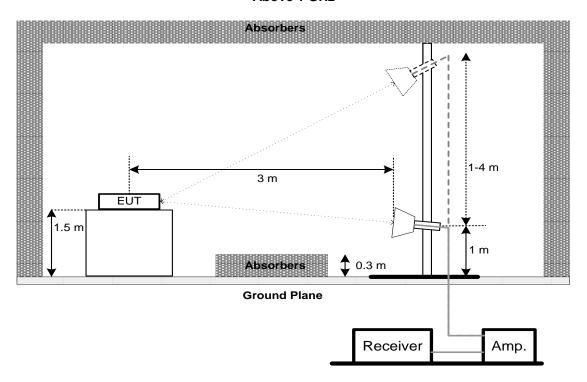


4.3 DEVIATION FROM TEST STANDARD


No deviation.

4.4 TEST SETUP

9 kHz to 30 MHz



30 MHz to 1 GHz

Above 1 GHz

4.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULT - 9 kHz TO 30 MHz

Please refer to the APPENDIX B.

Remark:

- (1) Distance extrapolation factor = 40 log (specific distance / test distance) (dB).
- (2) Limit line = specific limits (dBuV) + distance extrapolation factor.

4.7 TEST RESULT - 30 MHz TO 1000 MHz

Please refer to the APPENDIX C.

4.8 TEST RESULT - ABOVE 1000 MHz

Please refer to the APPENDIX D.

Remark:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

5. BANDWIDTH

5.1 LIMIT

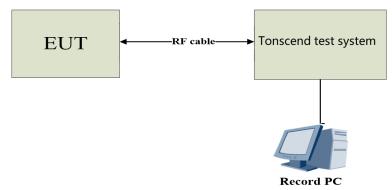
Section	Test Item	Limit	
FCC 15.247(a)(2)	6 dB Bandwidth	>= 500 kHz	
	99% Emission Bandwidth	-	

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the tonscend test system and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

For 6 dB Bandwidth:

or o ab banamann	
Spectrum Parameters	Setting
Span Frequency	> Measurement Bandwidth
RBW	100 kHz
VBW	300 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto


For 99% Emission Bandwidth:

Of OO70 Enflocion Banamati	•
Spectrum Parameters	Setting
Span Frequency	Between 1.5 times and 5.0 times the OBW
RBW	1% to 5% of the OBW
VBW	approximately three times RBW
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

5.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

5.6 TEST RESULTS

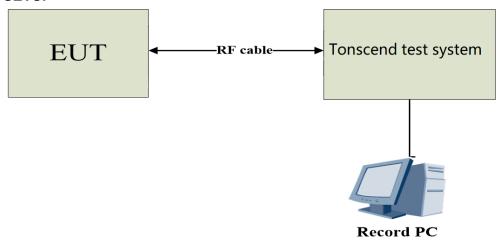
Please refer to the APPENDIX E.

6. MAXIMUM OUTPUT POWER

6.1 LIMIT

Section	Test Item	Limit
FCC 15.247(b)(3)	Maximum Output Power	1.0000 watt or 30.00 dBm

6.2 TEST PROCEDURE


- a. The EUT was directly connected to the tonscend test system and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting
Span Frequency	≥ 3×RBW
RBW	3 MHz
VBW	3 MHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

6.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

6.6 TEST RESULTS

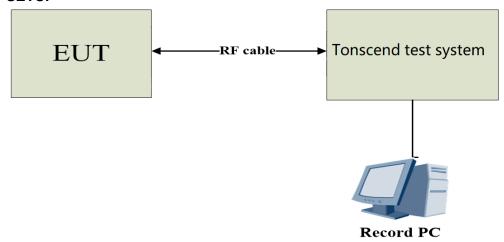
Please refer to the APPENDIX F.

7. CONDUCTED SPURIOUS EMISSION

7.1 LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak Output Power limits. If the transmitter complies with the Output Power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required.

7.2 TEST PROCEDURE


- a. The EUT was directly connected to the tonscend test system and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting
Start Frequency	30 MHz
Stop Frequency	26.5 GHz
RBW	100 kHz
VBW	300 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

7.6 TEST RESULTS

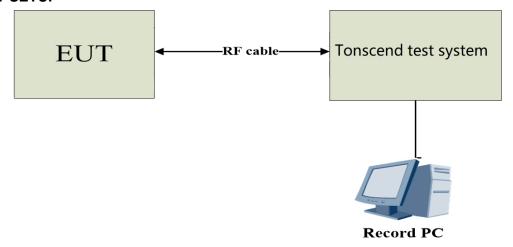
Please refer to the APPENDIX G.

8. POWER SPECTRAL DENSITY

8.1 LIMIT

Section	Section Test Item Limit	
FCC 15.247(e)	Power Spectral Density	8 dBm (in any 3 kHz)

8.2 TEST PROCEDURE


- a. The EUT was directly connected to the tonscend test system and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting
Span Frequency	2 MHz
RBW	3 kHz
VBW	10 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

8.6 TEST RESULTS

Please refer to the APPENDIX H.

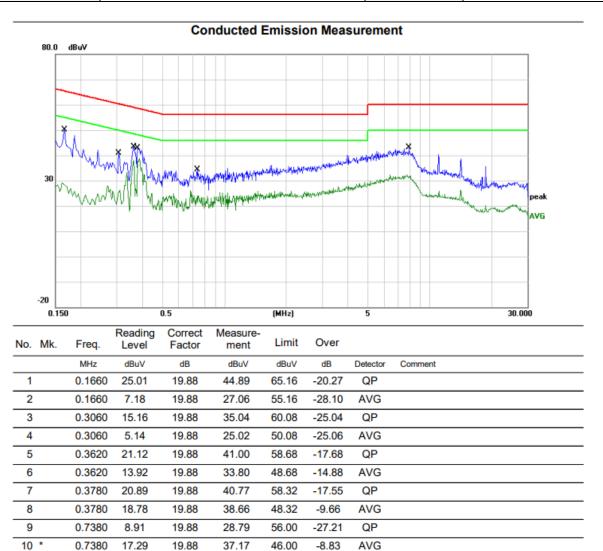
9. MEASUREMENT INSTRUMENTS LIST

9. IVII	EASUREMENT IN	STRUMENTS LIST Ra	diated Emiss	ions		
					Cal. date	Cal. Due date
No.	Equipment	Manufacturer	Type No.	Serial No.	(yyyy/mm/dd)	(yyyy/mm/dd)
1	Test receiver	Rohde&Schwarz	ESU	100184	2023/5/3	2024/5/2
2	Horn Antenna	Schwarzbeck	BBHA 9120 D	9120D-127 3	2023/4/23	2024/4/22
3	Low frequency amplifier	Unknown	LNA 0920N	2014	2023/5/3	2024/5/2
4	High frequency amplifier	Schwarzbeck	BBV 9718	284	2023/5/3	2024/5/2
5	Loop Antenna	Schwarzbeck	FMZB151 9B	00029	2022/7/4	2025/7/3
6	Log periodic antenna	Schwarzbeck	VULB 9168	1151	2023/4/23	2024/4/22
7	Horn Antenna	Schwarzbeck	BBHA 9120 D	9120D-127 3	2022/5/5	2025/5/4
8	Horn Antenna	Schwarzbeck	BBHA 9170	9170#685	2022/7/4	2025/7/3
9	Temp&Humidity Recorder	Meideshi	JR900	/	2023/5/3	2024/5/2
10	RF cable(966 chamber)9kHz- 1GHz	Unknown	Unknown	Unknown	2023/5/3	2024/5/2
11	RF cable(966 chamber)1GHz -18GHz	Unknown	Unknown	Unknown	2023/5/3	2024/5/2
12	RF cable(966 chamber)18GH z-40GHz	Unknown	Unknown	Unknown	2023/5/3	2024/5/2
13	Test software	Farad Technology Co., Ltd	EZ-EMC	/	/	/
		Co	nducted Emis	sion		
1	Test receiver	Rohde&Schwarz	ESCI	100718	2023/5/3	2024/5/2
2	LISN	Rohde&Schwarz	ENV216	100075	2023/5/3	2024/5/2
3	Pulse limiter	Rohde&Schwarz	ESH3-Z2	102299	2023/5/3	2024/5/2
4	RF cable (9kHz-30MHz)	Unknown	Unknown	Unknown	2023/5/3	2024/5/2
5	Test software	Farad Technology Co., Ltd	EZ-EMC	/	/	/
		RF co	onducted Emi			
1	MXA Signal Analyzer	Keysight	N9021B	MY600801 69	2023/4/23	2024/4/22
2	RF Control Unit	dsusoft	JS0806-2	21G80604 49	2023/4/23	2024/4/22
3	power supply unit	dsusoft	JS0806-4 ADC	N/A	2023/4/23	2024/4/22
4	VXG Signal Generator	Keysight	M9384B	MY612707 87	2023/4/23	2024/4/22
5	EXG Analog Signal Generator	Keysight	N5173B	MY591012 82	2023/4/23	2024/4/22
6	Test software	dsusoft	JS1120-3	/	/	/

10. ANTENNA REQUIREMENT

Test standard: FCC part 15.203

According to the manufacturer declared, the EUT has two PCB antennas, the antenna 1 gain is 1.8dBi and the antenna 2 gain is 0.8dBi, and the antenna connector is designed with permanent attachment and no consideration of replacement.


Therefore the EUT is considered sufficient to comply with the provision.

Refer to EUT Photo for further details.

APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS

REMARKS:

11

12

(1) Measurement Value = Reading Level + Correct Factor.

19.94

19.94

36.49

30.19

60.00

50.00

-23.51

-19.81

QP

AVG

Report No.: RF230524018-04-002

(2) Margin Level = Measurement Value - Limit Value.

16.55

10.25

7.9540

7.9540

Test Mode

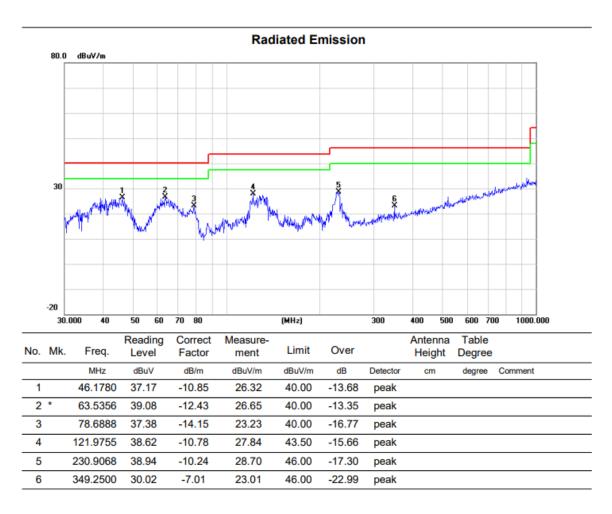
REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ

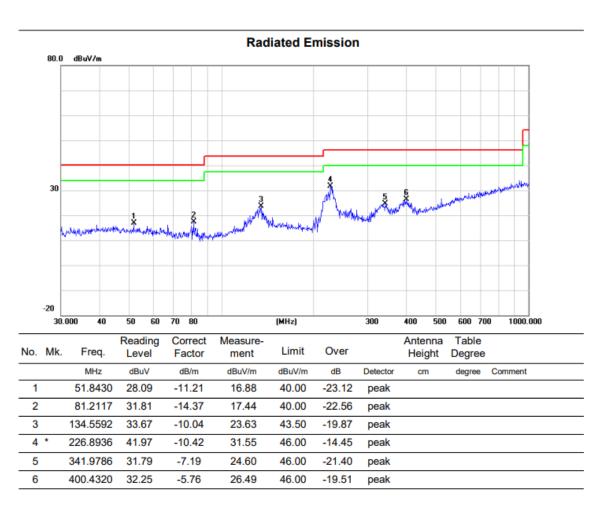
Radiated emission: 9KHz-30MHz

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.


There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ

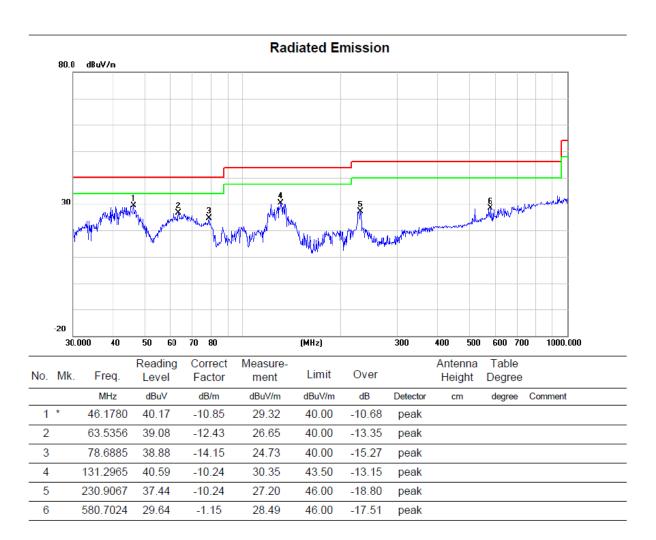
ANT 1



REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

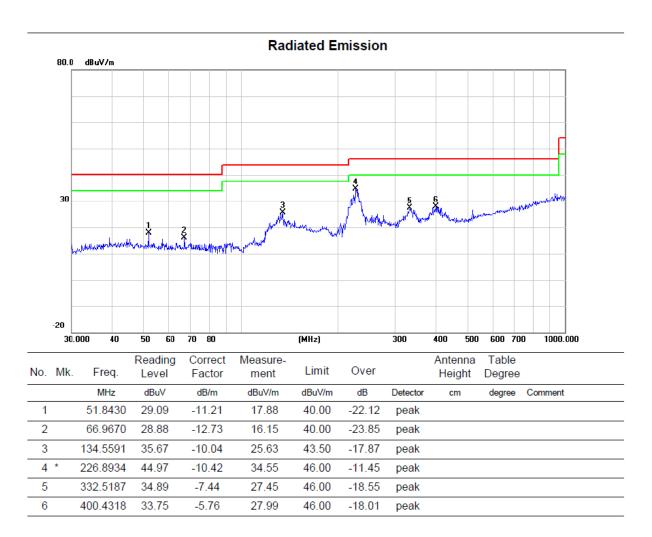
Test Mode TX Mode_1Mbps Channel 00	Polarization	Horizontal
------------------------------------	--------------	------------


REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

ANT 2

Test Mode TX Mode_1Mbps Channel 00 Polarization Vertical	Vertical
--	----------



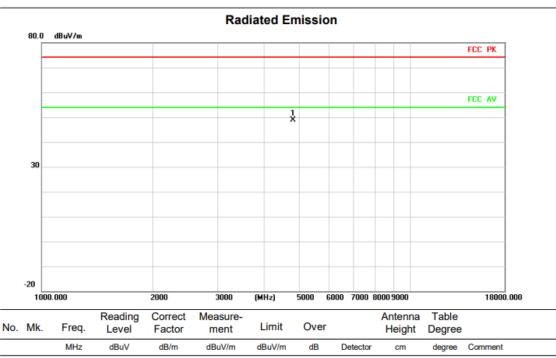
REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

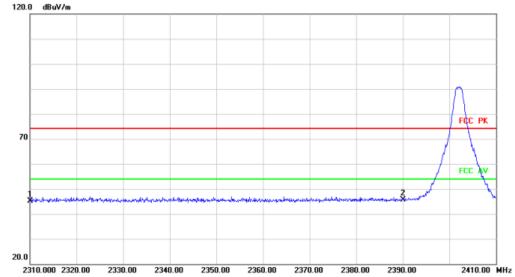
Test Mode T	TX Mode_1Mbps Channel 00	Polarization	Horizontal
-------------	--------------------------	--------------	------------

REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

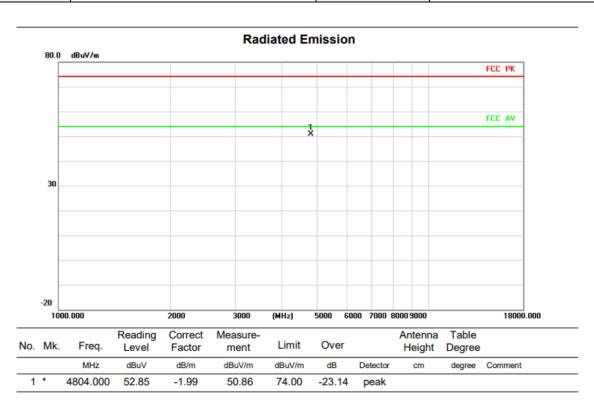


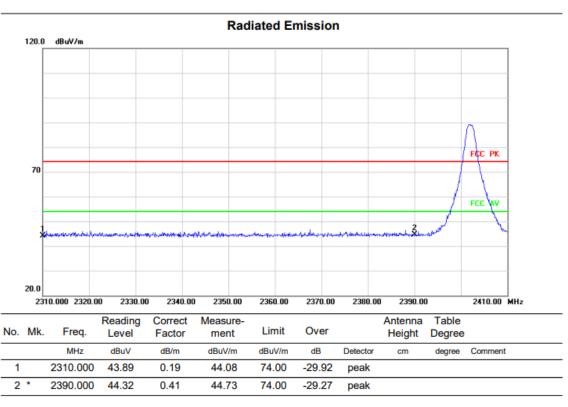
APPENDIX D - RADIATED EMISSION - ABOVE 1000 MHZ


ANT 1

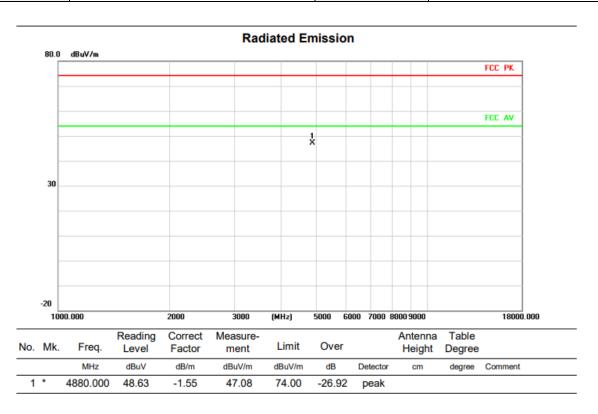
Test Mode TX 2402 MHz_1Mbps Polarization Vertical

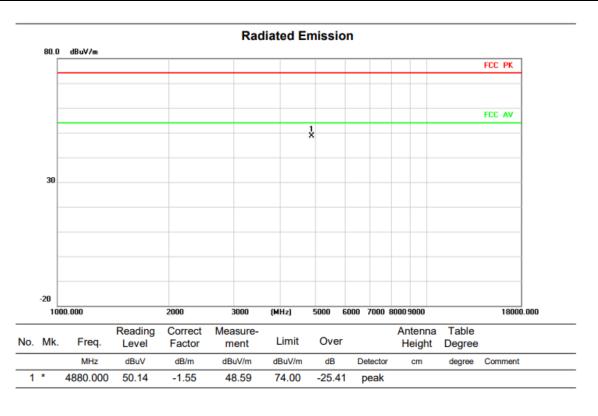
1 * 4804.000 50.86 -1.99 48.87 74.00 -25.13 peak

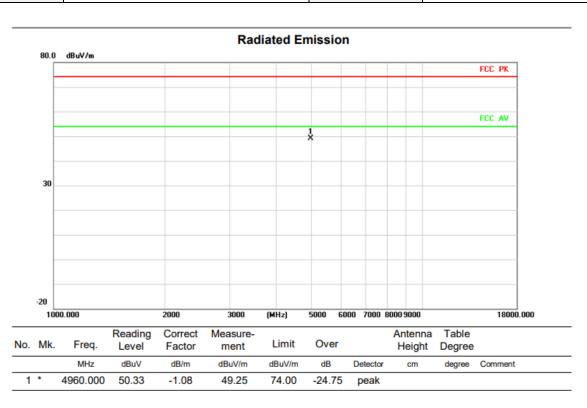

Radiated Emission

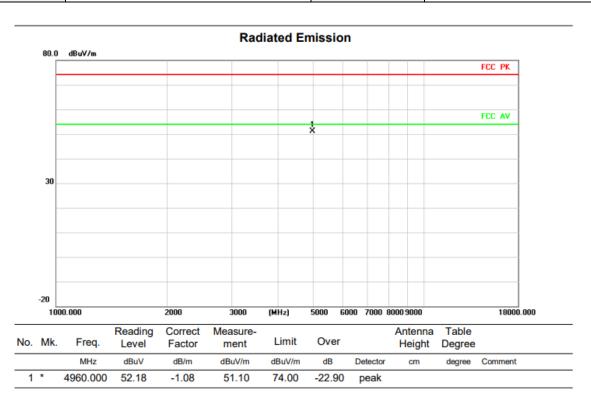


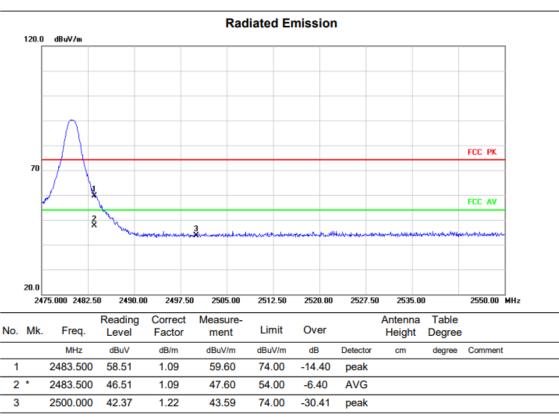
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2310.000	45.04	0.19	45.23	74.00	-28.77	peak			
2	*	2390.000	45.17	0.41	45.58	74.00	-28.42	peak			_


|--|

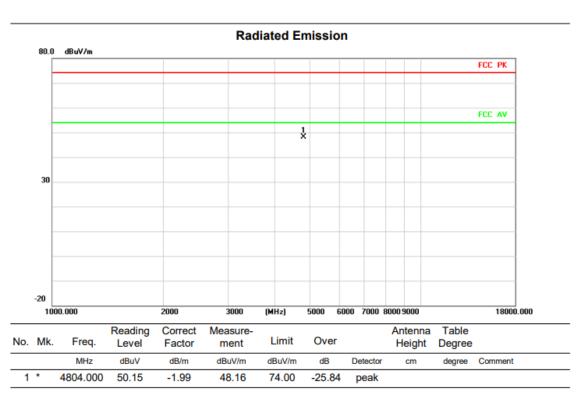


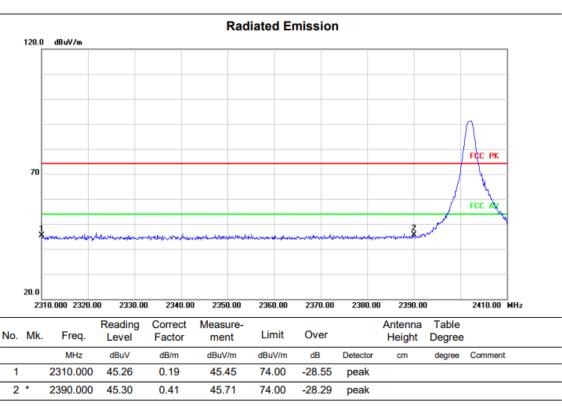

Test Mode	TX 2440 MHz _1Mbps	Polarization	Vertical
-----------	--------------------	--------------	----------

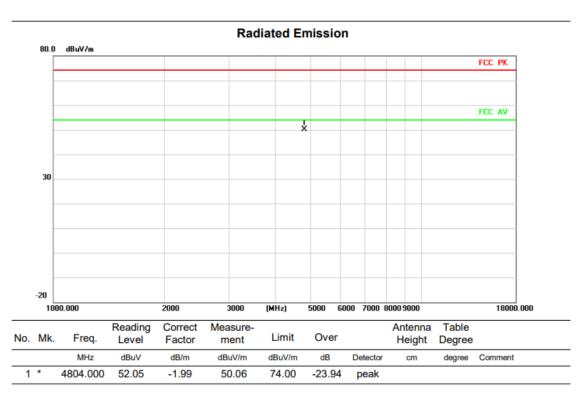


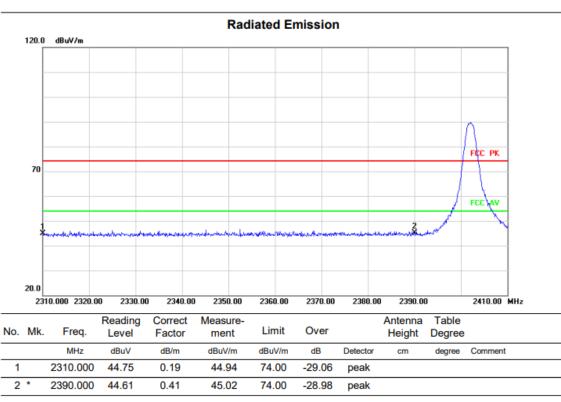

Test Mode	TX 2480 MHz 1Mbps	Polarization	Vertical
	· · · · · · · · · · · · · · · · · · ·		

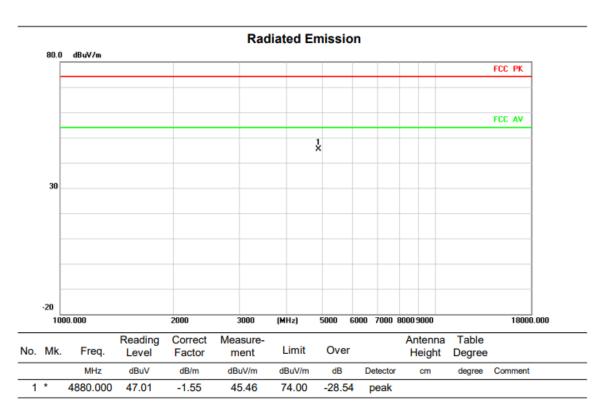
Radiated Emission 120.0 dBuV/m FCC PK 70 2475.000 2482.50 2497.50 2512.50 2520.00 2527.50 2535.00 2550.00 MHz 2490.00 2505.00 Reading Correct Measure-Antenna Table Freq. Over No. Mk. Limit Level Factor ment Degree MHz dBuV dB/m dBuV/m dBuV/m dB Detector degree Comment 1 2483.500 58.94 1.09 60.03 74.00 -13.97 peak 2 2483.500 47.44 48.53 54.00 -5.47 1.09 AVG 2500.000 44.32 74.00 3 43.10 1.22 -29.68 peak

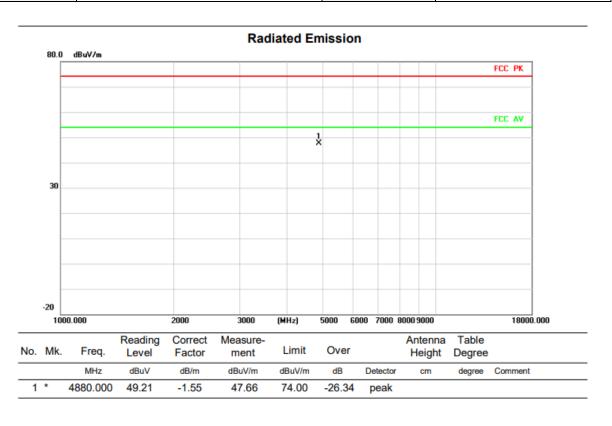




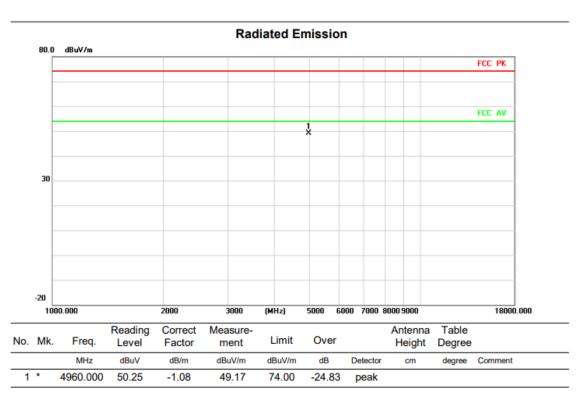

ANT 2

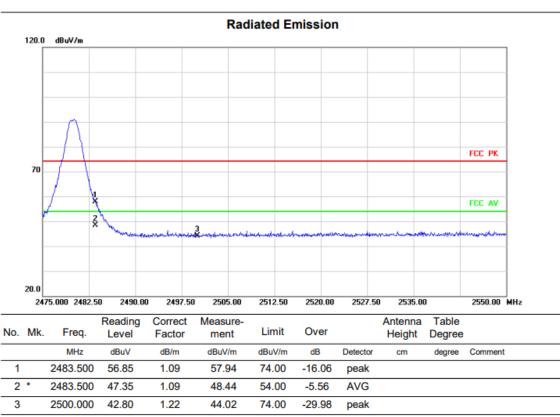

Test Mode	TX 2402 MHz 1Mbps	Polarization	Vertical
	<u> </u>		



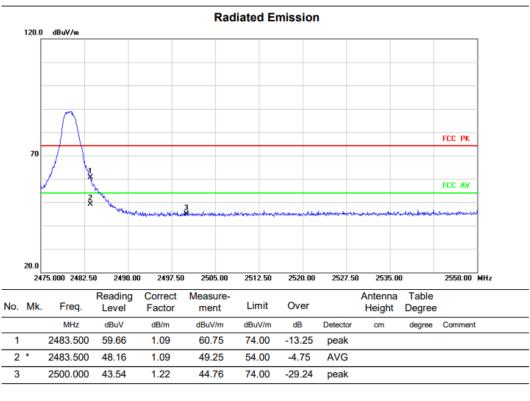


Test Mode	TX 2440 MHz _1Mbps	Polarization	Vertical
-----------	--------------------	--------------	----------

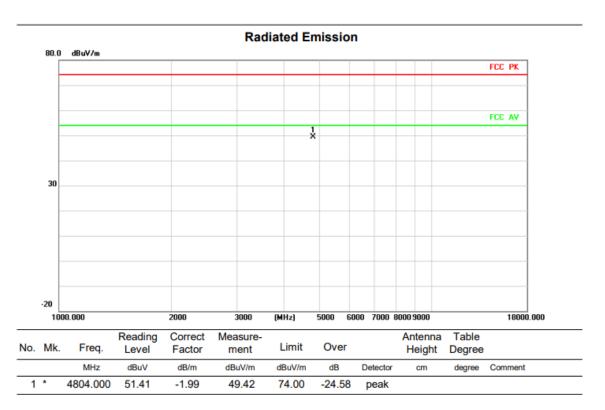



Test Mode TX 2440 MHz _1Mbps	Polarization	Horizontal
------------------------------	--------------	------------


Test Mode TX 2480 MHz_1Mbps	Polarization Vertical	
-----------------------------	-----------------------	--



Test Mode	TX 2480 MHz 1Mbps	Polarization	Horizontal
1001111040	17	· Olalization	i ionzoniai



ANT 1

Test Mode	TX 2402 MHz_2Mbps	Polarization	Vertical Vertical
-----------	-------------------	--------------	-------------------

Radiated Emission 120.0 dBuV/m FCC PK FCC 20.0 2310.000 2320.00 2330.00 2340.00 2350.00 2360.00 2370.00 2380.00 2390.00 2410.00 MHz Reading Correct Measure-Antenna Table No. Mk. Freq. Limit Over Level Factor ment Height Degree MHz dBuV/m dB

dBuV/m

74.00

74.00

Detector

peak

peak

-28.39

-28.59

Comment

dBuV

45.42

45.00

2310.000

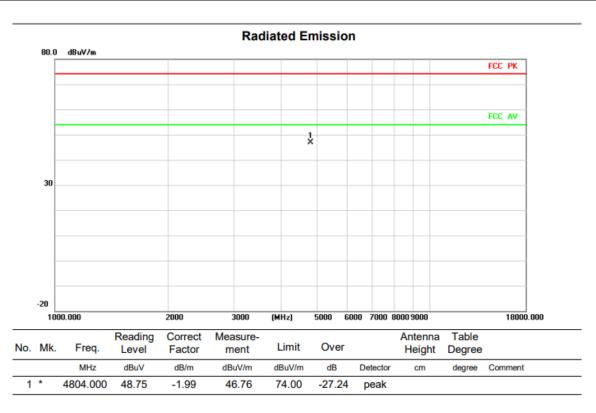
2390.000

1 *

2

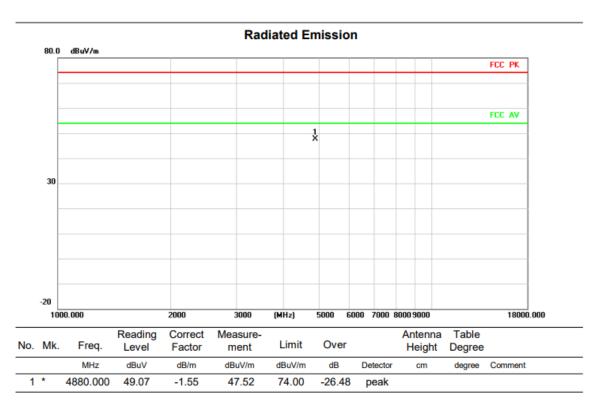
dB/m

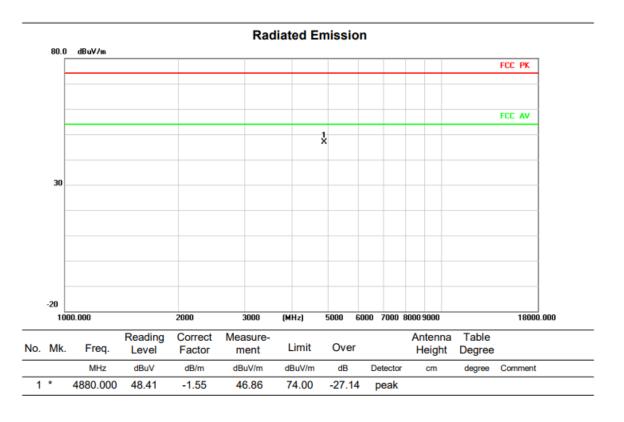
0.19


0.41

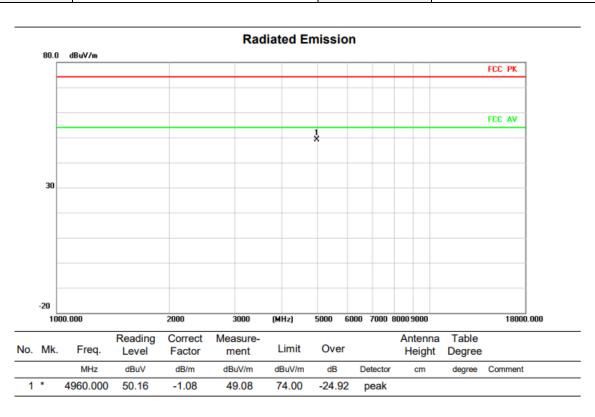
45.61

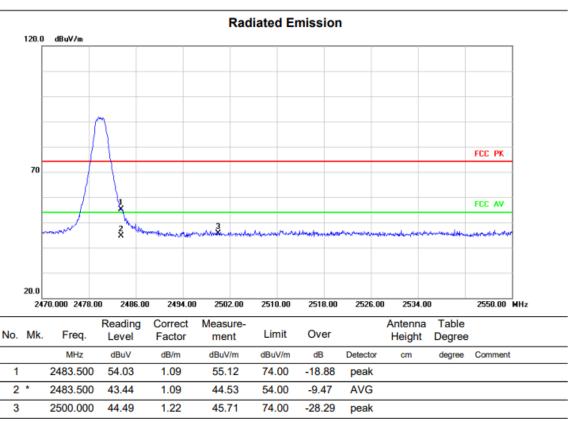
45.41

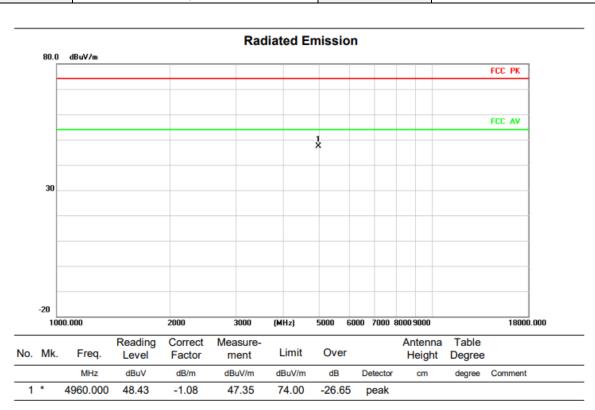

|--|



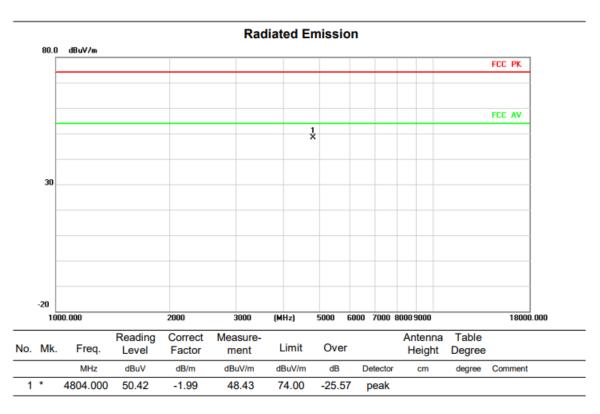
Test Mode	TX 2440 MHz _2Mbps	Polarization	Vertical
-----------	--------------------	--------------	----------

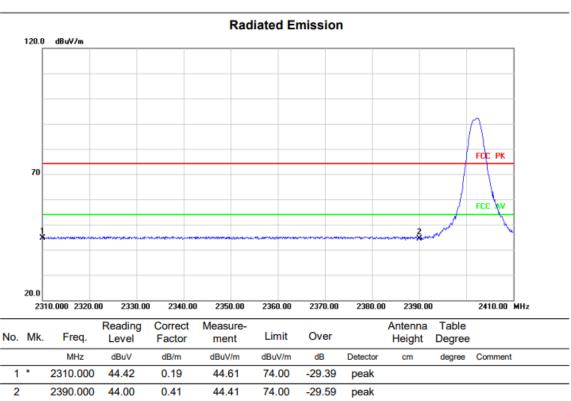


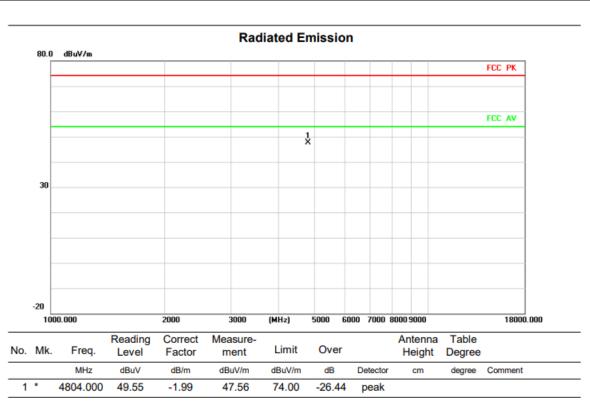

Test Mode	TX 2440 MHz _2Mbps	Polarization	Horizontal

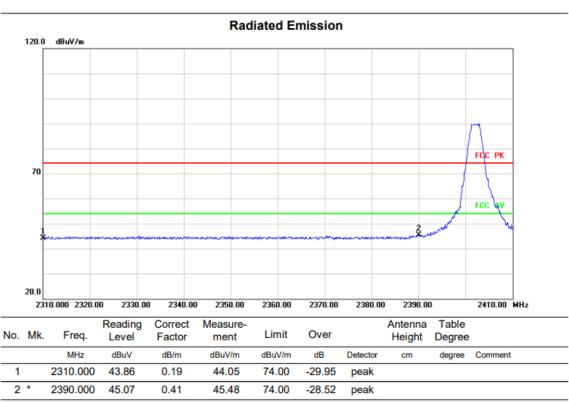


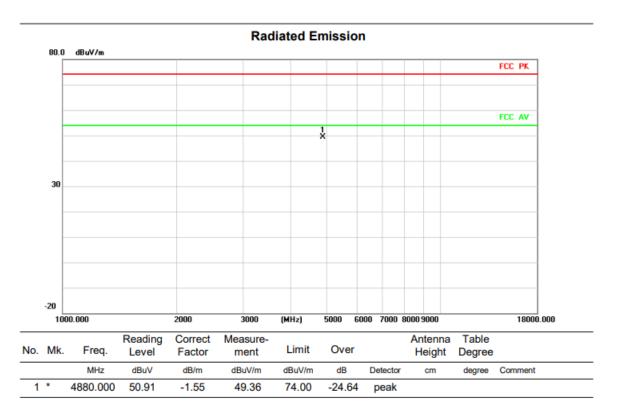
Test Mode	TX 2480 MHz_2Mbps	Polarization	Vertical
	1.7. = 100= <u>_</u> =opo		

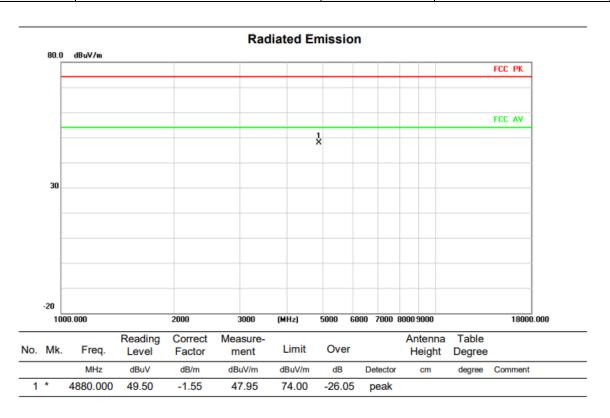


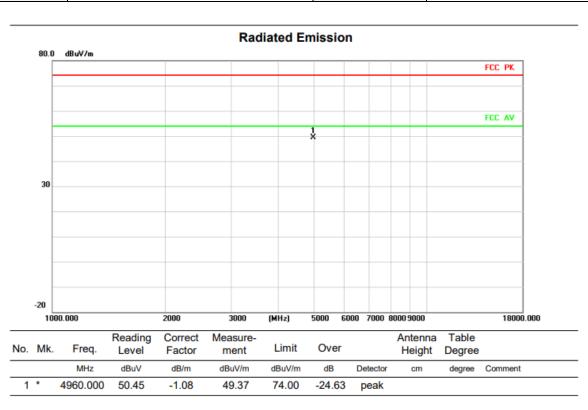

Radiated Emission 120.0 dBuV/m FCC PK 70 FCC AV ž 20.0 2470.000 2478.00 2486.00 2494.00 2502.00 2510.00 2518.00 2526.00 2534.00 2550.00 MHz Reading Table Correct Measure-Antenna No. Mk. Limit Over Freq. Level ment Height Degree


ANT 2

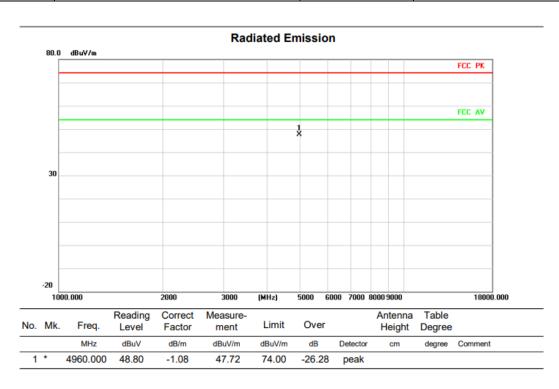

Test Mode	TX 2402 MHz 2Mbps	Polarization	Vertical

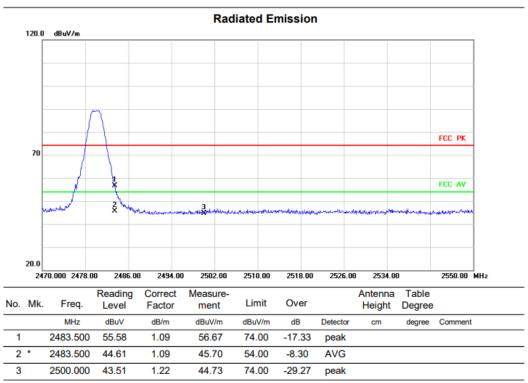






Test Mode	TX 2440 MHz _2Mbps	Polarization	Horizontal


Test Mode	TX 2480 MHz_2Mbps	Polarization	Vertical
-----------	-------------------	--------------	----------



Radiated Emission 120.0 dBuV/m FCC PK 70 FCC AV 20.0 2470.000 2478.00 2486.00 2494.00 2502.00 2510.00 2518.00 2526.00 2534.00 2550.00 MHz Reading Correct Measure-Antenna Table Freq. Limit Over No. Mk. Level Factor ment Height Degree MHz dBuV dB/m dBuV/m dBuV/m dB Detector degree Comment 1 2483.500 56.41 1.09 57.50 74.00 -16.50 peak 2 2483.500 45.24 46.33 54.00 -7.67 1.09 AVG 3 2500.000 44.17 1.22 45.39 74.00 -28.61 peak

REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

APPENDIX E - BANDWIDTH

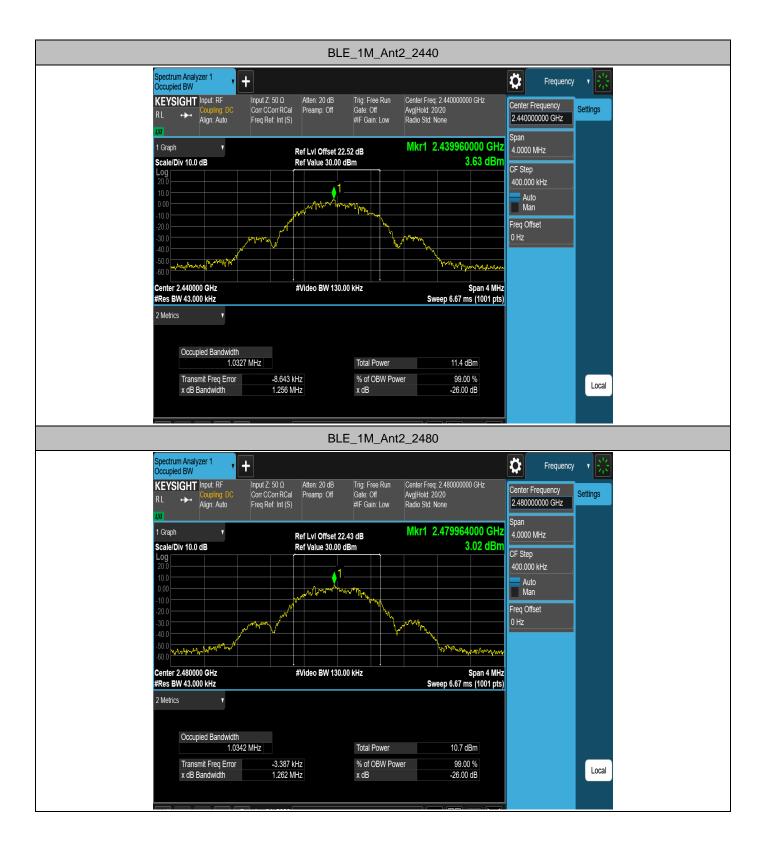
DTS Bandwidth

Test Mode	Antenna	Freq(MHz)	DTS BW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	0.708	2401.636	2402.344	0.5	PASS
BLE_1M	Ant1	2440	0.700	2439.628	2440.328	0.5	PASS
		2480	0.680	2479.636	2480.316	0.5	PASS
		2402	0.700	2401.640	2402.340	0.5	PASS
BLE_1M	Ant2	2440	0.664	2439.644	2440.308	0.5	PASS
		2480	0.712	2479.616	2480.328	0.5	PASS
	Ant1	2402	1.216	2401.364	2402.580	0.5	PASS
BLE_2M		2440	1.216	2439.348	2440.564	0.5	PASS
		2480	1.136	2479.440	2480.576	0.5	PASS
BLE_2M	Ant2	2402	1.216	2401.356	2402.572	0.5	PASS
		2440	1.220	2439.352	2440.572	0.5	PASS
		2480	1.156	2479.420	2480.576	0.5	PASS

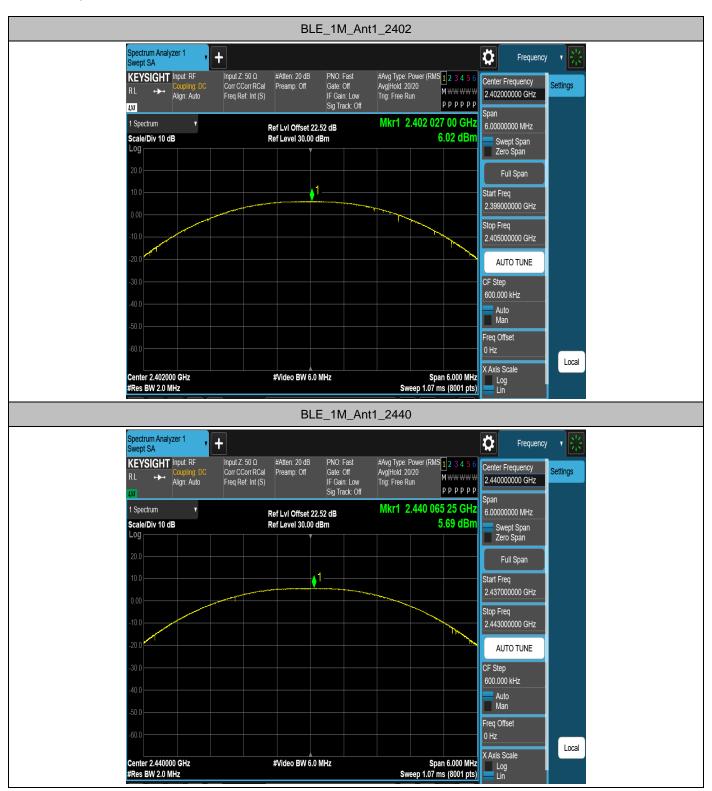
Test Graphs

Occupied Channel Bandwidth

Test Mode	Antenna	Freq(MHz)	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
	Ant1	2402	1.0315	2401.4809	2402.5124		
BLE_1M		2440	1.0433	2439.4699	2440.5132		
		2480	1.0423	2479.4655	2480.5078		
		2402	1.0252	2401.4812	2402.5064		
BLE_1M	Ant2	2440	1.0327	2439.4750	2440.5077		
		2480	1.0342	2479.4795	2480.5137		
	Ant1	2402	2.0740	2400.9730	2403.0470		
BLE_2M		2440	2.0674	2438.9739	2441.0413		
		2480	2.0608	2478.9771	2481.0379		
BLE_2M	Ant2	2402	2.0548	2400.9762	2403.0310		
		2440	2.0687	2438.9687	2441.0374		
		2480	2.0650	2478.9758	2481.0408		


Test Graphs




APPENDIX F - MAXIMUM OUTPUT POWER

TestMode	Antenna	Freq(MHz)	Conducted Peak Powert[dBm]	Conducted Limit[dBm]	Verdict
	Ant1	2402	6.02	≤30	PASS
BLE_1M		2440	5.69	≤30	PASS
		2480	5.26	≤30	PASS
	Ant2	2402	6.4	≤30	PASS
BLE_1M		2440	6.42	≤30	PASS
		2480	5.78	≤30	PASS
BLE_2M	Ant1	2402	5.98	≤30	PASS
		2440	5.9	≤30	PASS
		2480	5.43	≤30	PASS
BLE_2M	Ant2	2402	6.59	≤30	PASS
		2440	6.39	≤30	PASS
		2480	5.98	≤30	PASS

Test Graphs Peak

