FCC SAR Test Report APPLICANT : LG Electronics USA, Inc. **EQUIPMENT**: Mobile Phone BRAND NAME : LG MODEL NAME : LM-Q630EAW, LMQ630EAW, **Q630EAW, LM-Q630EA, LMQ630EA,** **Q630EA** FCC ID : ZNFQ630EAW **STANDARD** : **FCC 47 CFR PART 2 (2.1093)** **ANSI/IEEE C95.1-1992** IEEE 1528-2013 The product was received on Jan. 01, 2020 and testing was started from Feb. 04, 2020 and completed on Feb. 26, 2020. We, Sporton International (Kunshan) Inc., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards. The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (Kunshan) Inc., the test report shall not be reproduced except in full. Reviewed by: Rose Wang / Supervisor 7.5.5 (7.5 Lat Kin Approved by: Kat Yin / Manager ilac-MRA Report No.: FA9D2305 # Sporton International (Kunshan) Inc. No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: ZNFQ630EAW Page 1 of 54 Issued Date : Mar. 19, 2020 # **Table of Contents** | 1. Statement of Compliance | | |---|----| | 2. Administration Data | | | 3. Guidance Applied | | | 4. Equipment Under Test (EUT) Information | | | 4.1 General Information | 6 | | 4.2 General LTE SAR Test and Reporting Considerations | | | 5. RF Exposure Limits | 9 | | 5.1 Uncontrolled Environment | | | 5.2 Controlled Environment | | | 6. Specific Absorption Rate (SAR) | | | 6.1 Introduction | | | 6.2 SAR Definition | | | 7. System Description and Setup | | | 7.1 E-Field Probe | 12 | | 7.2 Data Acquisition Electronics (DAE) | | | 7.3 Phantom | | | 7.4 Device Holder | | | 8. Measurement Procedures | | | 8.1 Spatial Peak SAR Evaluation | 15 | | 8.2 Power Reference Measurement | | | 8.3 Area Scan | | | 8.4 Zoom Scan | | | 8.5 Volume Scan Procedures | | | 8.6 Power Drift Monitoring | | | 9. Test Equipment List | | | 10. System Verification | | | 10.1 Tissue Simulating Liquids | | | 10.2 Tissue Verification | | | 10.3 System Performance Check Results | | | 11. RF Exposure Positions | 22 | | 11.1 Ear and handset reference point | | | 11.2 Definition of the cheek position | | | 11.3 Definition of the tilt position | | | 11.4 Body Worn Accessory | | | 11.5 Product Specific 10g SAR Exposure | | | 11.6 Wireless Router | 26 | | 12. Conducted RF Output Power (Unit: dBm) | | | 13. Antenna Location | | | 14. SAR Test Results | | | 14.1 Head SAR | | | 14.2 Hotspot SAR | | | 14.3 Body Worn Accessory SAR | | | 14.4 Product specific 10g SAR | | | 14.5 Repeated SAR Measurement | | | 15. Simultaneous Transmission Analysis | | | 15.1 Head Exposure Conditions | | | 15.2 Hotspot Exposure Conditions | | | 15.3 Body-Worn Accessory Exposure Conditions | | | 16. Uncertainty Assessment | | | 17. References | 54 | | Appendix A. Plots of System Performance Check | | | Appendix B. Plots of High SAR Measurement | | | Appendix C. DASY Calibration Certificate | | | Appendix D. Test Setup Photos | | | Appendix E. Conducted RF Output Power Table | | # **Revision History** Report No.: FA9D2305 | REPORT NO. | VERSION | DESCRIPTION | ISSUED DATE | |------------|---------|-------------------------|---------------| | FA9D2305 | Rev. 01 | Initial issue of report | Mar. 19, 2020 | # 1. Statement of Compliance The maximum results of Specific Absorption Rate (SAR) found during testing for LG Electronics USA, Inc., Mobile Phone, LM-Q630EAW, LMQ630EAW, Q630EAW, LM-Q630EA, LMQ630EA, Q630EA, are as follows. Report No.: FA9D2305 | | Highest Standalone SAR Summary | | | | | | |--------------------|--------------------------------|-------------|-----------------------------|--|-----------------------------------|---| | Equipment
Class | Frequency
Band | | Head
(Separation
0mm) | Hotspot
(Separation
10mm)
1g SAR (W/kg) | Body-worn
(Separation
10mm) | Highest Simultaneous Transmission 1g SAR (W/kg) | | | | CCMSEO | 0.20 | · · · · · · · · · · · · · · · · · · · | 0.20 | , 0, | | | GSM | GSM850 | 0.29 | 0.29 | 0.29 | | | | | GSM1900 | 0.36 | 0.78 | 0.78 | | | | WCDMA | Band II | 0.43 | 0.81 | 0.81 | | | Licensed | WCDIVIA | Band V | 0.31 | 0.37 | 0.37 | 1.15 | | | | Band 5 | 0.27 | 0.35 | 0.35 | | | | LTE | Band 4 | 0.43 | 0.68 | 0.63 | | | | | Band 41 | 0.14 | 1.01 | 0.43 | | | DTS | WLAN | 2.4GHz WLAN | 0.61 | 0.12 | 0.12 | 1.01 | | NII | WLAIN | 5GHz WLAN | 0.70 | 0.33 | 0.37 | 1.15 | | DSS | Bluetooth | Bluetooth | <0.10 | <0.10 | <0.10 | 1.01 | | | Date of Testing | g: | | 2020/2/4~2 | 2020/2/26 | | | Highest 10g SAR Summary | | | | | | | |-------------------------|---------|-----------|--|--|--|--| | Equipment
Class | Frequen | cy Band | Product Specific 10g SAR (W/kg) (Separation 0mm) | | | | | NII | WLAN | 5GHz WLAN | 0.92 | | | | ### Declaration of Conformity: The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers. #### Comments and Explanations: The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification. This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg for Partial-Body 1g SAR, 4.0 W/kg for Product Specific 10g SAR) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 and FCC KDB publications. Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: ZNFQ630EAW Page 4 of 54 Issued Date : Mar. 19, 2020 # 2. Administration Data Sporton International (Kunshan) Inc. is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02. Report No.: FA9D2305 | Testing Laboratory | | | | | | | |--------------------|---|--------------------------------|--|--|--|--| | Test Firm | Sporton International (Kunshan) Inc. | | | | | | | Test Site Location | No. 1098, Pengxi North Road, Kunshan Econ
Jiangsu Province 215300 People's Republic of
TEL: +86-512-57900158
FAX: +86-512-57900958 | • | | | | | | Toot Site No | FCC Designation No. | FCC Test Firm Registration No. | | | | | | Test Site No. | CN1257 | 314309 | | | | | | Applicant | | | | | | |---------------------------------------|--|--|--|--|--| | Company Name LG Electronics USA, Inc. | | | | | | | Address | 1000 Sylvan Ave. Englewood Cliffs, New Jersey, United States 07632 | | | | | | Manufacturer | | | | | |---------------------------------------|--|--|--|--| | Company Name LG Electronics USA, Inc. | | | | | | Address | 1000 Sylvan Ave. Englewood Cliffs, New Jersey, United States 07632 | | | | # 3. Guidance Applied The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards: - FCC 47 CFR Part 2 (2.1093) - ANSI/IEEE C95.1-1992 - · IEEE 1528-2013 - FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 - FCC KDB 865664 D02 SAR Reporting v01r02 - FCC KDB 447498 D01 General RF Exposure Guidance v06 - FCC KDB 648474 D04 SAR Evaluation Considerations for Wireless Handsets v01r03 - FCC KDB 248227 D01 802.11 Wi-Fi SAR v02r02 - FCC KDB 941225 D01 3G SAR Procedures v03r01 - FCC KDB 941225 D05 SAR for LTE Devices v02r05 - FCC KDB 941225 D05A Rel.10 LTE SAR Test Guidance v01r02 - FCC KDB 941225 D06 Hotspot Mode SAR v02r01 Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: ZNFQ630EAW Page 5 of 54 Issued Date : Mar. 19, 2020 # 4. Equipment Under Test (EUT) Information ### 4.1 General Information | | Product Feature & Specification | |--|--| | Equipment Name | Mobile Phone | | Brand Name | LG | | Model Name | LM-Q630EAW, LMQ630EAW, Q630EAW, LM-Q630EA, LMQ630EA, Q630EA | | FCC ID | ZNFQ630EAW | | IMEI Code | SIM1: 353433110017056
SIM2: 353433110010523 | | Wireless Technology and
Frequency Range | GSM850: 824.2 MHz ~ 848.8 MHz GSM1900: 1850.2 MHz ~ 1909.8 MHz WCDMA Band II: 1852.4 MHz ~ 1907.6 MHz WCDMA Band V: 826.4 MHz ~ 846.6 MHz LTE Band 4: 1710.7 MHz ~ 1754.3 MHz LTE Band 5: 824.7 MHz ~ 848.3 MHz LTE Band 41: 2537.5 MHz ~ 2652.5 MHz WLAN 2.4GHz Band: 2412 MHz ~ 2472 MHz WLAN 5.2GHz Band: 5180 MHz ~ 5240 MHz WLAN 5.3GHz Band: 5260 MHz ~ 5320 MHz WLAN 5.5GHz Band: 5745 MHz ~ 5700 MHz WLAN 5.8GHz Band: 5745 MHz ~ 5825 MHz Bluetooth: 2402 MHz ~ 2480 MHz
NFC: 13.56 MHz | | Mode | GSM/GPRS/EGPRS RMC/AMR 12.2Kbps HSDPA HSUPA DC-HSDPA HSPA+ (16QAM Uplink is not supported) LTE: QPSK, 16QAM, 64QAM WLAN 2.4GHz: 802.11b/g/n HT20 WLAN 5GHz: 802.11a/n/ac HT20/HT40/VHT20/VHT40/VHT80 Bluetooth BR/EDR/LE NFC:ASK | | GSM / (E)GPRS Transfer | Class B – EUT cannot support Packet Switched and Circuit Switched Network | | mode | simultaneously but can automatically switch between Packet and Circuit Switched Network. | | EUT Stage | Identical Prototype | | Pomark: | | Report No.: FA9D2305 ### Remark: - 1. 802.11n-HT40 is not supported in 2.4GHz WLAN. - 2. WLAN 5600MHz-5650MHz is notched at WLAN5.5GHz. - This device supports VoIP in GPRS, EGPRS, WCDMA and LTE (e.g. for 3rd-party VoIP), LTE supports VoLTE operation. - 4. This device does not support DTM operation and support GRPS/EGRPS mode up to multi-slot class 12. - 5. This device WLAN 2.4GHz supports hotspot operation and Bluetooth support tethering applications. - 6. This device 2.4GHz WLAN/5.2GHz WLAN/5.8GHz WLAN support hotspot operation, and 5.2GHz WLAN/5.8GHz WLAN supports WiFi Direct (GC/GO), and 5.3GHz / 5.5GHz supports WiFi Direct (GC only). - 7. This device has two WWAN transmitter antennas. WWAN antenna 1 and WWAN antenna 2 are all located at the bottom edge of the device which can refer to antenna location chapter. WWAN antenna 1 frequency bands include GSM850, WCDMA Band V, LTE Band 41, and WWAN antenna 2 frequency bands include GSM1900, WCDMA Band II, LTE Band 4. WWAN A antenna 1 and WWAN antenna 2 can't transmit simultaneously. - 8. There are two different types of EUT. They are single SIM card mobile and dual SIM card mobile. The others are the same including circuit design, PCB board, structure and all components. It is special to declare. After pre-scan two types of EUT, we found test result of the sample that dual SIM was the worst, so we chose dual SIM card mobile to perform all tests. - 9. For dual SIM card mobile has two SIM slots and supports dual SIM dual standby. The WWAN radio transmission will be enabled by either one SIM at a time (single active). After pre-scan two SIM cards power, we found test result of the SIM1 was the worse, so we chose SIM1 slot to perform all tests. - 10. There are three types of headsets, they are only with different suppliers. Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: ZNFQ630EAW Page 6 of 54 Issued Date : Mar. 19, 2020 # 4.2 General LTE SAR Test and Reporting Considerations | Summarized r | necessary iten | ns addres | ssed in K | DB 941 | 225 D05 | v02r05 | | | |---|--|---|---------------------|-----------------|-------------------|-------------------|-------------------|--------------| | FCC ID | ZNFQ630EAV | / | | | | | | | | Equipment Name | Mobile Phone | | | | | | | | | Operating Frequency Range of each LTE transmission band | LTE Band 4: 1
LTE Band 5: 8
LTE Band 41: | 24.7 MHz | ~ 848.3 N | ИНz | | | | | | Channel Bandwidth | LTE Band 4:1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz
LTE Band 5:1.4MHz, 3MHz, 5MHz, 10MHz
LTE Band 41: 5MHz, 10MHz, 15MHz, 20MHz | | | | | | | | | Uplink Modulations used | QPSK / 16QA | M / 64QAI | M | | | | | | | LTE Voice / Data requirements | Voice and Dat | a | | | | | | | | LTE Release Version | R10, Cat 7 | | | | | | | | | CA Support | Yes, Downlink | only | | | | | | | | | Table 6.2.3 | Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 1, 2 and 3 Modulation Channel bandwidth / Transmission bandwidth (NRB) MPR (dB) | | | | | | | | LTE MPR permanently built-in by | QPSK | 1.4
MHz
> 5 | 3.0
MHz
> 4 | 5
MHz
> 8 | 10
MHz
> 12 | 15
MHz
> 16 | 20
MHz
> 18 | ≤ 1 | | design | 16 QAM | > 5
≤ 5 | > 4
≤ 4 | ≥ 8 | ≤ 12 | ≥ 16 | ≥ 18 | ≤ 1 | | 3 | 16 QAM | > 5 | > 4 | > 8 | > 12 | > 16 | > 18 | ≤ 2 | | | 64 QAM | ≤ 5 | ≤ 4 | ≤ 8 | ≤ 12 | ≤ 16 | ≤ 18 | ≤ 2 | | | 64 QAM | > 5 | > 4 | > 8 | > 12 | > 16 | > 18 | ≤ 3 | | | 256 QAM | | | | ≥ 1 | | | ≤ 5 | | LTE A-MPR | In the base state to disable A-M all TTI frames | IPR durinç
(Maximur | g SAR tes
n TTI) | sting and | the LTE | SAR test | s was trai | nsmitting on | | Spectrum plots for RB configuration | A properly configured base station simulator was used for the SAR and power measurement; therefore, spectrum plots for each RB allocation and offset configuration are not included in the SAR report. | | | | | | | | | LTE Carrier Aggregation Combinations | Intra-Band possible combinations and the detail power measurement pleas referred to section 12. | | | | | | • | | | LTE Carrier Aggregation Additional Information | This device su
LTE Release
WiFi Offloadin | features a | re not su | pported | : Relay, I | HetNet, Er | nhanced I | MIMO, elCl, | Report No. : FA9D2305 Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: ZNFQ630EAW Page 7 of 54 Issued Date : Mar. 19, 2020 | | Transmission (H, M, L) channel numbers and frequencies in each LTE band | | | | | | | | | | | | | | | | | |-----|---|------------|------------|----------|----------------|----------------------------|--------------|----------------|-----------------|-------------|-------------|------------------|----------------|----------------|--------|----------------|--| | | LTE Band 4 | | | | | | | | | | | | | | | | | | | Bandwidth | h 1.4 N | ИHz | Bandwidt | th 3 MHz | Bar | ndwid | th 5 MHz | Bandwidt | h 10 N | ЛНz | Bandwidt | h 15 MHz | n 15 MHz Bandy | | dwidth 20 MHz | | | | Ch. # | Fre
(MH | | Ch. # | Freq.
(MHz) | Ch | . # | Freq.
(MHz) | Ch. # | Fre
(Mł | | Ch. # | Freq.
(MHz) | Ch | . # | Freq.
(MHz) | | | L | 19957 | 171 | 0.7 | 19965 | 1711.5 | 199 | 975 | 1712.5 | 20000 | 17 | 15 | 20025 | 1717.5 | 200 |)50 | 1720 | | | М | 20175 | 173 | 2.5 | 20175 | 1732.5 | 201 | 175 | 1732.5 | 20175 | 173 | 2.5 | 20175 | 1732.5 | 201 | 175 | 1732.5 | | | Н | 20393 | 175 | 4.3 | 20385 | 1753.5 | 203 | 375 | 1752.5 | 20350 | 17 | 50 | 20325 | 1747.5 | 203 | 300 | 1745 | | | | | | | | | | | LTE Ba | nd 5 | | | | | | | | | | | Ban | dwidth | 1.4 M | Hz | Bar | ndwidt | th 3 N | 1Hz | Bandwidth 5 MHz | | | Bandwidth 10 MHz | | | | | | | | Ch. # | | Freq. | . (MHz) | Ch. # | Free | | q. (MHz) | Ch. # | | Freq. (MHz) | | Ch. # | ŧ | Fre | q. (MHz) | | | L | 20407 | 7 | 82 | 24.7 | 20415 | i | | 825.5 | 20425 82 | | 826.5 | 20450 |) | 829 | | | | | М | 20525 | 5 | 83 | 36.5 | 20525 | i | | 836.5 | 20525 | | | 836.5 | 2052 | 5 | | 836.5 | | | Н | 20643 | 3 | 84 | 48.3 | 20635 | 35 847.5 20625 846.5 20600 | | 20625 846 | | 20625 846.5 | | 5 846.5 | | 00 844 | | 844 | | | | | | | | | | | LTE Baı | nd 41 | | | | | | | | | | | Bandwidth | | idth 5 MHz | | Bandwidth | | width 10 MHz | | Ban | ndwidtl | h 15 N | ИHz | Bar | ndwidt | h 20 N | ЛHz | | | | Ch. # | # | Freq. | . (MHz) | Ch. # | | Fre | q. (MHz) | Ch. # | | Fre | q. (MHz) | Ch. # | £ | Fre | q. (MHz) | | | L | 4006 | 5 | 25 | 37.5 | 40090 | | | 2540 | 40115 | 5 | 2 | 2542.5 | 40140 |) | | 2545 | | | LIV | 4038 | 5 | 25 | 69.5 | 40390 | 1 | | 2570 | 40395 | 5 | 2 | 2570.5 | 40400 |) | | 2571 | | | ΗN | 4070 | 5 | 26 | 01.5 | 40690 | | | 2600 | 40685 | 5 | 2 | 2599.5 | 40670 |) | | 2598 | | | Н | 4121 | 5 | 26 | 52.5 | 41190 | | | 2650 | 41165 | 5 | 2 | 2647.5 | 41140 |) | | 2645 | | Report No.: FA9D2305 Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: ZNFQ630EAW Page 8 of 54 Issued Date : Mar. 19, 2020 # 5. RF Exposure Limits ### 5.1 Uncontrolled Environment Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity. Report No.: FA9D2305 ### 5.2 Controlled Environment Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means. ### Limits for Occupational/Controlled Exposure (W/kg) | Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles | |------------|--------------|--------------------------------| | 0.4 | 8.0 | 20.0 | ### Limits for General Population/Uncontrolled Exposure (W/kg) | Whole-Body | Partial-Body | Hands,
Wrists, Feet and Ankles | |------------|--------------|--------------------------------| | 0.08 | 1.6 | 4.0 | Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube. Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: ZNFQ630EAW Page 9 of 54 Issued Date : Mar. 19, 2020 # 6. Specific Absorption Rate (SAR) ### 6.1 Introduction SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled. Report No.: FA9D2305 ### 6.2 SAR Definition The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (p). The equation description is as below: $$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$ SAR is expressed in units of Watts per kilogram (W/kg) $$SAR = \frac{\sigma |E|^2}{\rho}$$ Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength. Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: ZNFQ630EAW Page 10 of 54 Issued Date : Mar. 19, 2020 # 7. System Description and Setup The DASY system used for performing compliance tests consists of the following items: Report No.: FA9D2305 - A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE). - An isotropic Field probe optimized and calibrated for the targeted measurement. - A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC. - The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server. - The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts. - The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning. - A computer running WinXP or Win7 and the DASY5 software. - Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc. - The phantom, the device holder and other accessories according to the targeted measurement. Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: ZNFQ630EAW Page 11 of 54 Issued Date : Mar. 19, 2020 ### 7.1 E-Field Probe The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom. ### <ES3DV3 Probe> | Construction | Symmetric design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE) | |---------------|---| | Frequency | 10 MHz – 4 GHz; | | | Linearity: ±0.2 dB (30 MHz – 4 GHz) | | Directivity | ±0.2 dB in TSL (rotation around probe axis) | | | ±0.3 dB in TSL (rotation normal to probe axis) | | Dynamic Range | 5 μW/g – >100 mW/g; | | | Linearity: ±0.2 dB | | Dimensions | Overall length: 337 mm (tip: 20 mm) | | | Tip diameter: 3.9 mm (body: 12 mm) | | | Distance from probe tip to dipole centers: 3.0 mm | Report No.: FA9D2305 ### <EX3DV4 Probe> | Construction | Symmetric design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE) | | | | | |---------------|---|--|--|--|--| | Frequency | 10 MHz – >6 GHz | | | | | | | Linearity: ±0.2 dB (30 MHz – 6 GHz) | | | | | | Directivity | ±0.3 dB in TSL (rotation around probe axis) | | | | | | Directivity | ±0.5 dB in TSL (rotation normal to probe axis) | | | | | | Dynamic Range | 10 μW/g – >100 mW/g | | | | | | Dynamic Kange | Linearity: ±0.2 dB (noise: typically <1 µW/g) | | | | | | | Overall length: 337 mm (tip: 20 mm) | | | | | | Dimensions | Tip diameter: 2.5 mm (body: 12 mm) | | | | | | Difficusions | Typical distance from probe tip to dipole centers: 1 | | | | | | | mm | | | | | ## 7.2 Data Acquisition Electronics (DAE) The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB. **Photo of DAE** Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: ZNFQ630EAW Page 12 of 54 Issued Date : Mar. 19, 2020 ## 7.3 Phantom ### <SAM Twin Phantom> | NOTAIN TWITT HAIRONIN | | | |-----------------------|---|-----| | Shell Thickness | 2 ± 0.2 mm;
Center ear point: 6 ± 0.2 mm | | | Filling Volume | Approx. 25 liters | | | Dimensions | Length: 1000 mm; Width: 500 mm; Height: adjustable feet | 7 5 | | Measurement Areas | Left Hand, Right Hand, Flat Phantom | | Report No.: FA9D2305 The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot. ### <ELI Phantom> | Shell Thickness | 2 ± 0.2 mm (sagging: <1%) | | |-----------------|--|--| | Filling Volume | Approx. 30 liters | | | Dimensions | Major ellipse axis: 600 mm
Minor axis: 400 mm | | The ELI phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids. Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: ZNFQ630EAW Page 13 of 54 Issued Date : Mar. 19, 2020 ### 7.4 Device Holder ### <Mounting Device for Hand-Held Transmitter> In combination with the Twin SAM V5.0/V5.0c or ELI phantoms, the Mounting Device for Hand-Held Transmitters enables rotation of the mounted transmitter device to specified spherical coordinates. At the heads, the rotation axis is at the ear opening. Transmitter devices can be easily and accurately positioned according to IEC 62209-1, IEEE 1528, FCC, or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). And upgrade kit to Mounting Device to enable easy mounting of wider devices like big smart-phones, e-books, small tablets, etc. It holds devices with width up to 140 mm. Report No.: FA9D2305 Mounting Device for Hand-Held Transmitters Mounting Device Adaptor for Wide-Phones ### <Mounting Device for Laptops and other Body-Worn Transmitters> The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms. Mounting Device for Laptops Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: ZNFQ630EAW Page 14 of 54 Issued Date : Mar. 19, 2020 # 8. Measurement Procedures The measurement procedures are as follows: #### <Conducted power measurement> (a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band. Report No.: FA9D2305 - (b) Read the WWAN RF power level from the base station simulator. - (c) For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT
continuously transmission, at maximum RF power in each supported wireless interface and frequency band - (d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power #### <SAR measurement> - (a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel. - (b) Place the EUT in the positions as Appendix D demonstrates. - (c) Set scan area, grid size and other setting on the DASY software. - (d) Measure SAR results for the highest power channel on each testing position. - (e) Find out the largest SAR result on these testing positions of each band - (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps: - (a) Power reference measurement - (b) Area scan - (c) Zoom scan - (d) Power drift measurement ### 8.1 Spatial Peak SAR Evaluation The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value. The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan. The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages: - (a) Extraction of the measured data (grid and values) from the Zoom Scan - (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters) - (c) Generation of a high-resolution mesh within the measured volume - (d) Interpolation of all measured values form the measurement grid to the high-resolution grid - (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface - (f) Calculation of the averaged SAR within masses of 1g and 10g Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: ZNFQ630EAW Page 15 of 54 Issued Date : Mar. 19, 2020 ### 8.2 Power Reference Measurement The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties. Report No.: FA9D2305 ### 8.3 Area Scan The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly. Area scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz. | | ≤ 3 GHz | > 3 GHz | | | |--|--|--|--|--| | Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface | 5 ± 1 mm | $\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$ | | | | Maximum probe angle from probe axis to phantom surface normal at the measurement location | 30° ± 1° | 20° ± 1° | | | | | \leq 2 GHz: \leq 15 mm
2 – 3 GHz: \leq 12 mm | $3 - 4 \text{ GHz: } \le 12 \text{ mm}$
$4 - 6 \text{ GHz: } \le 10 \text{ mm}$ | | | | Maximum area scan spatial resolution: $\Delta x_{\text{Area}},\Delta y_{\text{Area}}$ | When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device. | | | | Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 : Mar. 19, 2020 Issued Date FCC ID: ZNFQ630EAW Page 16 of 54 ### 8.4 Zoom Scan Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label. Report No.: FA9D2305 Zoom scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz. | | | | ≤ 3 GHz | > 3 GHz | |--|----------------|---|--|--| | Maximum zoom scan s | spatial reso | lution: Δx _{Zoom} , Δy _{Zoom} | \leq 2 GHz: \leq 8 mm
2 – 3 GHz: \leq 5 mm [*] | $3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$
$4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$ | | | uniform | grid: $\Delta z_{Zoom}(n)$ | ≤ 5 mm | $3 - 4 \text{ GHz: } \le 4 \text{ mm}$
$4 - 5 \text{ GHz: } \le 3 \text{ mm}$
$5 - 6 \text{ GHz: } \le 2 \text{ mm}$ | | Maximum zoom scan
spatial resolution,
normal to phantom
surface | graded
grid | Δz _{Zoom} (1): between 1 st two points closest to phantom surface | ≤ 4 mm | $3 - 4 \text{ GHz: } \le 3 \text{ mm}$
$4 - 5 \text{ GHz: } \le 2.5 \text{ mm}$
$5 - 6 \text{ GHz: } \le 2 \text{ mm}$ | | surface | | Δz _{Zoom} (n>1):
between subsequent
points | ≤ 1.5·Δz | Z _{Oom} (n-1) | | Minimum zoom scan
volume | n x, y, z | | ≥ 30 mm | 3 – 4 GHz: ≥ 28 mm
4 – 5 GHz: ≥ 25 mm
5 – 6 GHz: ≥ 22 mm | Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details. ### 8.5 Volume Scan Procedures The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR. ### 8.6 Power Drift Monitoring All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested. Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: ZNFQ630EAW Page 17 of 54 Issued Date : Mar. 19, 2020 When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. # 9. Test Equipment List | Manufacture | Name of Employment | Torre of Manufacture | Carial Name | Calib | Calibration | | | |-----------------|---------------------------------|-----------------------|---------------|------------------|-------------|--|--| | Manufacturer | Name of Equipment | Type/Model | Serial Number | Last Cal. | Due Date | | | | SPEAG | 835MHz System Validation Kit | D835V2 | 4d151 | 2019/3/27 | 2020/3/26 | | | | SPEAG | 1750MHz System Validation Kit | D1750V2 | 1090 | 2019/3/27 | 2020/3/26 | | | | SPEAG | 1900MHz System Validation Kit |
D1900V2 | 5d170 | 2019/3/26 | 2020/3/25 | | | | SPEAG | 2450MHz System Validation Kit | D2450V2 | 908 | 2019/3/25 | 2020/3/24 | | | | SPEAG | 2600MHz System Validation Kit | D2600V2 | 1078 | 2019/3/6 | 2020/3/5 | | | | SPEAG | 5000MHz System Validation Kit | D5GHzV2 | 1113 | 2019/9/24 | 2020/9/23 | | | | SPEAG | Data Acquisition Electronics | DAE4 | 871 | 2019/6/27 | 2020/6/26 | | | | SPEAG | Data Acquisition Electronics | DAE4 | 1338 | 2019/11/20 | 2020/11/19 | | | | SPEAG | Data Acquisition Electronics | DAE4 | 1210 | 2019/7/23 | 2020/7/22 | | | | SPEAG | Dosimetric E-Field Probe | ES3DV3 | 3279 | 2019/3/4 | 2020/3/3 | | | | SPEAG | Dosimetric E-Field Probe | ES3DV3 | 3293 | 2019/11/25 | 2020/11/24 | | | | SPEAG | Dosimetric E-Field Probe | EX3DV4 | 3857 | 2019/5/27 | 2020/5/26 | | | | SPEAG | SAM Twin Phantom | QD 000 P40 CB | TP-1839 | NCR | NCR | | | | SPEAG | SAM Twin Phantom | QD 000 P40 CB | TP-1697 | NCR | NCR | | | | SPEAG | SAM Twin Phantom | QD 000 P40 CB | TP-1503 | NCR | NCR | | | | SPEAG | SAM Twin Phantom | QD 000 P40 CB TP-1753 | | NCR | NCR | | | | SPEAG | SAM Twin Phantom | QD 000 P40 CB TP-1754 | | NCR | NCR | | | | SPEAG | Phone Positioner | N/A | N/A | NCR | NCR | | | | Anritsu | Radio Communication Analyzer | MT8821C | 6201432831 | 2019/4/17 | 2020/4/16 | | | | Agilent | Wireless Communication Test Set | E5515C | MY52102706 | 2019/4/17 | 2020/4/16 | | | | Agilent | ENA Series Network Analyzer | E5071C MY46111157 | | 2019/4/17 | 2020/4/16 | | | | SPEAG | Dielectric Probe Kit | DAK-3.5 | 1071 | 2019/10/28 | 2020/10/27 | | | | Anritsu | Vector Signal Generator | MG3710A | 6201682672 | 2020/1/8 | 2021/1/7 | | | | Rohde & Schwarz | Power Meter | NRVD | 102081 | 102081 2019/8/15 | | | | | Rohde & Schwarz | Power Sensor | NRV-Z5 | 100538 | 2019/8/14 | 2020/8/13 | | | | Rohde & Schwarz | Power Sensor | NRV-Z5 | 100539 | 2019/8/14 | 2020/8/13 | | | | R&S | CBT BLUETOOTH TESTER | CBT | 101641 | 2020/1/8 | 2021/1/7 | | | | EXA | Spectrum Analyzer | FSV7 | 101631 | 2020/1/8 | 2021/1/7 | | | | Testo | Hygrometer | 608-H1 | 1241332088 | 2020/1/8 | 2021/1/7 | | | | FLUKE | DIGITAC THERMOMETER | 51II | 97240029 | 2019/8/15 | 2020/8/14 | | | | ARRA | Power Divider | A3200-2 | N/A | No | ote | | | | MCL | Attenuation1 | BW-S10W5+ | N/A | No | ote | | | | MCL | Attenuation2 | BW-S10W5+ | N/A | No | ote | | | | MCL | Attenuation3 | BW-S10W5+ | N/A | No | ote | | | | Agilent | Dual Directional Coupler | 778D | 20500 | No | ote | | | | Agilent | Dual Directional Coupler | 11691D | MY48151020 | No | ote | | | | BONN | POWER AMPLIFIER | BLMA 0830-3 | 087193A | No | ote | | | | BONN | POWER AMPLIFIER | BLMA 2060-2 | 087193B | 1 | ote | | | Report No.: FA9D2305 #### Note Prior to system verification and validation, the path loss from the signal generator to the system check source and the power meter, which includes the amplifier, cable, attenuator and directional coupler, was measured by the network analyzer. The reading of the power meter was offset by the path loss difference between the path to the power meter and the path to the system check source to monitor the actual power level fed to the system check source. Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: ZNFQ630EAW Page 18 of 54 Issued Date : Mar. 19, 2020 # 10. System Verification # 10.1 Tissue Simulating Liquids For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 10.1. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 10.2. Report No.: FA9D2305 Fig 10.2 Photo of Liquid Height for Body SAR Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: ZNFQ630EAW Page 19 of 54 Issued Date : Mar. 19, 2020 # 10.2 Tissue Verification The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation. Report No.: FA9D2305 | Frequency
(MHz) | Water
(%) | Sugar
(%) | Cellulose
(%) | Salt
(%) | Preventol
(%) | DGBE
(%) | Conductivity
(σ) | Permittivity
(εr) | | | | |--------------------|--------------|--------------|------------------|-------------|------------------|-------------|---------------------|----------------------|--|--|--| | | For Head | | | | | | | | | | | | 835 | 40.3 | 57.9 | 0.2 | 1.4 | 0.2 | 0 | 0.90 | 41.5 | | | | | 1800, 1900, 2000 | 55.2 | 0 | 0 | 0.3 | 0 | 44.5 | 1.40 | 40.0 | | | | | 2450 | 55.0 | 0 | 0 | 0 | 0 | 45.0 | 1.80 | 39.2 | | | | | 2600 | 54.8 | 0 | 0 | 0.1 | 0 | 45.1 | 1.96 | 39.0 | | | | Simulating Liquid for 5GHz, Manufactured by SPEAG | Ingredients | (% by weight) | | | |--------------------|---------------|--|--| | Water | 64~78% | | | | Mineral oil | 11~18% | | | | Emulsifiers | 9~15% | | | | Additives and Salt | 2~3% | | | ### <Tissue Dielectric Parameter Check Results> | Tissue Dielectric i arameter Check Nesuris> | | | | | | | | | | | | |---|----------------|-------|-------|-----------------------------------|----------------------------|--|---------------------|-----------------------------------|--------------|-----------|--| | Frequency
(MHz) | Tissue
Type | Temp. | | Permittivity
(ε _r) | Conductivity
Target (σ) | Permittivity
Target (ε _r) | Delta
(σ)
(%) | Delta
(ε _r)
(%) | Limit
(%) | Date | | | 835 | Head | 22.7 | 0.921 | 41.32 | 0.9 | 41.5 | 2.33 | -0.43 | ±5 | 2020/2/19 | | | 1750 | Head | 22.6 | 1.343 | 38.538 | 1.37 | 40.1 | -1.97 | -3.90 | ±5 | 2020/2/15 | | | 1900 | Head | 22.7 | 1.39 | 40.639 | 1.4 | 40 | -0.71 | 1.60 | ±5 | 2020/2/18 | | | 2450 | Head | 22.7 | 1.79 | 40.694 | 1.8 | 39.2 | -0.56 | 3.81 | ±5 | 2020/2/4 | | | 2600 | Head | 22.9 | 2.049 | 40.127 | 1.96 | 39 | 4.54 | 2.89 | ±5 | 2020/2/22 | | | 5250 | Head | 22.9 | 4.601 | 36.381 | 4.71 | 35.9 | -2.31 | 1.34 | ±5 | 2020/2/25 | | | 5600 | Head | 22.9 | 4.99 | 35.802 | 5.07 | 35.5 | -1.58 | 0.85 | ±5 | 2020/2/26 | | | 5750 | Head | 22.9 | 5.167 | 35.547 | 5.22 | 35.4 | -1.02 | 0.42 | ±5 | 2020/2/26 | | Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 Issued Date : Mar. 19, 2020 FCC ID: ZNFQ630EAW Page 20 of 54 ## 10.3 System Performance Check Results Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report. ### <1g SAR> | Date | Frequency
(MHz) | Tissue
Type | Input
Power
(mW) | Dipole
S/N | Probe
S/N | DAE
S/N | Measured
1g SAR
(W/kg) | Targeted
1g SAR
(W/kg) | Normalized
1g SAR
(W/kg) | Deviation
(%) | |-----------|--------------------|----------------|------------------------|---------------|--------------|------------|------------------------------|------------------------------|--------------------------------|------------------| | 2020/2/19 | 835 | Head | 250 | 4d151 | 3279 | 871 | 2.52 | 9.3 | 10.08 | 8.39 | | 2020/2/15 | 1750 | Head | 250 | 1090 | 3293 | 1338 | 8.5 | 36.4 | 34 | -6.59 | | 2020/2/18 | 1900 | Head | 250 | 5d170 | 3293 | 1338 | 10.1 | 39 | 40.4 | 3.59 | | 2020/2/4 | 2450 | Head | 250 | 908 | 3279 | 871 | 13.1 | 52.8 | 52.4 | -0.76 | | 2020/2/22 | 2600 | Head | 250 | 1078 | 3279 | 871 | 14.9 | 57.6 | 59.6 | 3.47 | | 2020/2/25 | 5250 | Head | 100 | 1113 | 3857 | 1210 | 8.77 | 80.5 | 87.7 | 8.94 | | 2020/2/26 | 5600 | Head | 100 | 1113 | 3857 | 1210 | 8.53 | 83.4 | 85.3 | 2.28 | | 2020/2/26 | 5750 | Head | 100 | 1113 | 3857 | 1210 | 8.12 | 80 | 81.2 | 1.50 | ### <10g SAR> | Date | Frequency
(MHz) | Tissue
Type | Input
Power
(mW) | Dipole
S/N | Probe
S/N | DAE
S/N | Measured
10g SAR
(W/kg) | Targeted
10g SAR
(W/kg) | Normalized
10g SAR
(W/kg) | Deviation
(%) | |-----------|--------------------|----------------|------------------------|---------------|--------------|------------|-------------------------------|-------------------------------|---------------------------------|------------------| | 2020/2/25 | 5250 | Head | 100 | 1113 | 3857 | 1210 | 2.34 | 23.1 | 23.4 | 1.30 | | 2020/2/26 | 5600 | Head | 100 | 1113 | 3857 | 1210 | 2.45 | 23.8 | 24.5 | 2.94 | Report No.: FA9D2305 Fig 10.3.2 Setup Photo Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: ZNFQ630EAW Page 21 of 54 Issued Date : Mar. 19, 2020 # 11. RF Exposure Positions ## 11.1 Ear and handset reference point Figure 11.1.1 shows the front, back, and side views of the SAM phantom. The center-of-mouth reference point is labeled "M," the left ear reference point (ERP) is marked "LE," and the right ERP is marked "RE." Each ERP is 15 mm along the B-M (back-mouth) line behind the entrance-to-ear-canal (EEC) point, as shown in Figure 11.1.2 The Reference Plane is defined as passing through the two ear reference points and point M. The line N-F (neck-front), also called the reference pivoting line, is normal to the Reference Plane and perpendicular to both a line passing through RE and LE and the B-M line (see Figure 11.1.3). Both N-F and
B-M lines should be marked on the exterior of the phantom shell to facilitate handset positioning. Posterior to the N-F line the ear shape is a flat surface with 6 mm thickness at each ERP, and forward of the N-F line the ear is truncated, as illustrated in Figure 11.1.2. The ear truncation is introduced to preclude the ear lobe from interfering with handset tilt, which could lead to unstable positioning at the cheek. Fig 11.1.1 Front, back, and side views of SAM twin phantom Fig 11.1.2 Close-up side view of phantom showing the ear region. Report No.: FA9D2305 Fig 11.1.3 Side view of the phantom showing relevant markings and seven cross-sectional plane locations Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: ZNFQ630EAW Page 22 of 54 Issued Date : Mar. 19, 2020 ### 11.2 Definition of the cheek position - 1. Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece (flip cover), open the cover. If the handset can transmit with the cover closed, both configurations must be tested. - 2. Define two imaginary lines on the handset—the vertical centerline and the horizontal line. The vertical centerline passes through two points on the front side of the handset—the midpoint of the width wt of the handset at the level of the acoustic output (point A in Figure 11.2.1 and Figure 11.2.2), and the midpoint of the width wb of the bottom of the handset (point B). The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output (see Figure 11.2.1). The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset (see Figure 11.2.2), especially for clamshell handsets, handsets with flip covers, and other irregularly-shaped handsets. - 3. Position the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 11.2.3), such that the plane defined by the vertical centerline and the horizontal line of the handset is approximately parallel to the sagittal plane of the phantom. - 4. Translate the handset towards the phantom along the line passing through RE and LE until handset point A touches the pinna at the ERP. - 5. While maintaining the handset in this plane, rotate it around the LE-RE line until the vertical centerline is in the plane normal to the plane containing B-M and N-F lines, i.e., the Reference Plane. - 6. Rotate the handset around the vertical centerline until the handset (horizontal line) is parallel to the N-F line. - 7. While maintaining the vertical centerline in the Reference Plane, keeping point A on the line passing through RE and LE, and maintaining the handset contact with the pinna, rotate the handset about the N-F line until any point on the handset is in contact with a phantom point below the pinna on the cheek. See Figure 11.2.3. The actual rotation angles should be documented in the test report. Fig 11.2.1 Handset vertical and horizontal reference lines—"fixed case Fig 11.2.2 Handset vertical and horizontal reference lines—"clam-shell case" vertical center line acoustic output Report No.: FA9D2305 Fig 11.2.3 cheek or touch position. The reference points for the right ear (RE), left ear (LE), and mouth (M), which establish the Reference Plane for handset positioning, are indicated. Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: ZNFQ630EAW Page 23 of 54 Issued Date : Mar. 19, 2020 ### 11.3 Definition of the tilt position 1. Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece (flip cover), open the cover. If the handset can transmit with the cover closed, both configurations must be tested. Report No.: FA9D2305 - 2. While maintaining the orientation of the handset, move the handset away from the pinna along the line passing through RE and LE far enough to allow a rotation of the handset away from the cheek by 15°. - 3. Rotate the handset around the horizontal line by 15°. - 4. While maintaining the orientation of the handset, move the handset towards the phantom on the line passing through RE and LE until any part of the handset touches the ear. The tilt position is obtained when the contact point is on the pinna. See Figure 11.3.1. If contact occurs at any location other than the pinna, e.g., the antenna at the back of the phantom head, the angle of the handset should be reduced. In this case, the tilt position is obtained if any point on the handset is in contact with the pinna and a second point Fig 11.3.1 Tilt position. The reference points for the right ear (RE), left ear (LE), and mouth (M), which define the Reference Plane for handset positioning, are indicated. Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: ZNFQ630EAW Page 24 of 54 Issued Date : Mar. 19, 2020 ### 11.4 Body Worn Accessory Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 11.4). Per KDB648474 D04v01r03, body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB 447498 D01v06 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for body-worn accessory, measured without a headset connected to the handset is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a handset attached to the handset. Report No.: FA9D2305 Accessories for body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are test with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-chip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested. Fig 11.4 Body Worn Position Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: ZNFQ630EAW Page 25 of 54 Issued Date : Mar. 19, 2020 ### 11.5 Product Specific 10g SAR Exposure For smart phones with a display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm that provide similar mobile web access and multimedia support found in mini-tablets or UMPC mini-tablets that support voice calls next to the ear, According to KDB648474 D04v01r03, the following phablet procedures should be applied to evaluate SAR compliance for each applicable wireless modes and frequency band. Devices marketed as phablets, regardless of form factors and operating characteristics must be tested as a phablet to determine SAR compliance Report No.: FA9D2305 - 1. The normally required head and body-worn accessory SAR test procedures for handsets, including hotspot mode, must be applied. - 2. The UMPC mini-tablet procedures must also be applied to test the SAR of all surfaces and edges with an antenna located at ≤ 25 mm from that surface or edge, in direct contact with a flat phantom, for 10-g extremity SAR according to the body-equivalent tissue dielectric parameters in KDB 865664 to address interactive hand use exposure conditions.6 The UMPC mini-tablet 1-g SAR at 5 mm is not required. When hotspot mode applies, 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg. ### 11.6 Wireless Router Some battery-operated handsets have the capability to transmit and receive user through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06 v02r01 where SAR test considerations for handsets (L x W ≥ 9 cm x 5 cm) are based on a composite test separation distance of 10mm from the front, back and edges of the device containing transmitting antennas within 2.5cm of their edges, determined form general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests. When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v06
publication procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time. Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 : Mar. 19, 2020 Issued Date FCC ID: ZNFQ630EAW Page 26 of 54 # 12. Conducted RF Output Power (Unit: dBm) The detailed conducted power table can refer to Appendix E. ### <GSM Conducted Power> #### **General Note:** Per KDB 447498 D01v06, the maximum output power channel is used for SAR testing and for further SAR test reduction. Report No.: FA9D2305 - 2. Per KDB 941225 D01v03r01, for SAR test reduction for GSM / GPRS / EDGE modes is determined by the source-based time-averaged output power including tune-up tolerance. The mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. Therefore, the GPRS (4Tx slots) for GSM850/GSM1900 is considered as the primary mode. - Other configurations of GSM / GPRS / EDGE are considered as secondary modes. The 3G SAR test reduction procedure is applied, when the maximum output power and tune-up tolerance specified for production units in a secondary mode is ≤ ¼ dB higher than the primary mode, SAR measurement is not required for the secondary mode. - 4. The frame-averaged power is linearly scaled the maximum burst averaged power over 8 time slots. The calculated method are shown as below: Frame-averaged power = Maximum burst averaged power (1 Tx Slot) - 9 dB Frame-averaged power = Maximum burst averaged power (2 Tx Slots) - 6 dB Frame-averaged power = Maximum burst averaged power (3 Tx Slots) - 4.26 dB Frame-averaged power = Maximum burst averaged power (4 Tx Slots) - 3 dB Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: ZNFQ630EAW Page 27 of 54 Issued Date : Mar. 19, 2020 ### <WCDMA Conducted Power> - 1. The following tests were conducted according to the test requirements outlines in 3GPP TS 34.121 specification. - 2. The procedures in KDB 941225 D01v03r01 are applied for 3GPP Rel. 6 HSPA to configure the device in the required sub-test mode(s) to determine SAR test exclusion. Report No.: FA9D2305 A summary of these settings are illustrated below: ### **HSDPA Setup Configuration:** - a. The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration. - b. The RF path losses were compensated into the measurements. - c. A call was established between EUT and Base Station with following setting: - i. Set Gain Factors (β_c and β_d) and parameters were set according to each - ii. Specific sub-test in the following table, C10.1.4, quoted from the TS 34.121 - iii. Set RMC 12.2Kbps + HSDPA mode. - iv. Set Cell Power = -86 dBm - v. Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK) - vi. Select HSDPA Uplink Parameters - vii. Set Delta ACK, Delta NACK and Delta CQI = 8 - viii. Set Ack-Nack Repetition Factor to 3 - ix. Set CQI Feedback Cycle (k) to 4 ms - x. Set CQI Repetition Factor to 2 - xi. Power Ctrl Mode = All Up bits - The transmitted maximum output power was recorded. Table C.10.1.4: β values for transmitter characteristics tests with HS-DPCCH | Sub-test | βc | βd | βd | β _c /β _d | βнs | CM (dB) | MPR (dB) | |----------|----------|----------|------|--------------------------------|--------------------|----------|----------| | | | | (SF) | | (Note1,
Note 2) | (Note 3) | (Note 3) | | 1 | 2/15 | 15/15 | 64 | 2/15 | 4/15 | 0.0 | 0.0 | | 2 | 12/15 | 15/15 | 64 | 12/15 | 24/15 | 1.0 | 0.0 | | | (Note 4) | (Note 4) | | (Note 4) | | | | | 3 | 15/15 | 8/15 | 64 | 15/8 | 30/15 | 1.5 | 0.5 | | 4 | 15/15 | 4/15 | 64 | 15/4 | 30/15 | 1.5 | 0.5 | Note 1: \triangle_{ACK} , \triangle_{NACK} and $\triangle_{CQI} = 30/15$ with $\beta_{hs} = 30/15 * \beta_c$. support HSDPA in release 6 and later releases. - Note 2: For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Magnitude (EVM) with HS-DPCCH test in clause 5.13.1A, and HSDPA EVM with phase discontinuity in clause 5.13.1AA, \triangle ACK and \triangle NACK = 30/15 with β_{hs} = 30/15 * β_c , and \triangle CQI = 24/15 with β_{hs} = 24/15 * β_c . - Note 3: CM = 1 for β_c/β_d =12/15, β_{hs}/β_c =24/15. For all other combinations of DPDCH, DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that - Note 4: For subtest 2 the β_d/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 11/15 and β_d = 15/15 Setup Configuration Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: ZNFQ630EAW Page 28 of 54 Issued Date : Mar. 19, 2020 ### FCC SAR Test Report ### **HSUPA Setup Configuration:** - a. The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration. - b. The RF path losses were compensated into the measurements. - c. A call was established between EUT and Base Station with following setting *: - i. Call Configs = 5.2B, 5.9B, 5.10B, and 5.13.2B with QPSK - ii. Set the Gain Factors (β_c and β_d) and parameters (AG Index) were set according to each specific sub-test in the following table, C11.1.3, quoted from the TS 34.121 Report No.: FA9D2305 - iii. Set Cell Power = -86 dBm - iv. Set Channel Type = 12.2k + HSPA - v. Set UE Target Power - vi. Power Ctrl Mode= Alternating bits - vii. Set and observe the E-TFCI - viii. Confirm that E-TFCI is equal to the target E-TFCI of 75 for sub-test 1, and other subtest's E-TFCI - d. The transmitted maximum output power was recorded. Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH | Sub-
test | βα | βd | βd
(SF) | βс/βа | βнs
(Note1) | Вес | β _{ed}
(Note 4)
(Note 5) | β _{ed}
(SF) | β _{ed}
(Codes) | CM
(dB)
(Note
2) | MPR
(dB)
(Note
2)
(Note
6) | AG
Index
(Note
5) | E-
TFCI | |--------------|-------------------|----------------------|------------|----------------------|----------------|-------------|--|-------------------------|----------------------------|---------------------------|---|----------------------------|------------| | 1 | 11/15
(Note 3) | 15/15
(Note
3) | 64 | 11/15
(Note
3) | 22/15 | 209/2
25 | 1309/225 | 4 | 1 | 1.0 | 0.0 | 20 | 75 | | 2 | 6/15 | 15/15 | 64 | 6/15 | 12/15 | 12/15 | 94/75 | 4 | 1 | 3.0 | 2.0 | 12 | 67 | | 3 | 15/15 | 9/15 | 64 | 15/9 | 30/15 | 30/15 | β _{ed} 1: 47/15
β _{ed} 2: 47/15 | 4 | 2 | 2.0 | 1.0 | 15 | 92 | | 4 | 2/15 | 15/15 | 64 | 2/15 | 4/15 | 2/15 | 56/75 | 4 | 1 | 3.0 | 2.0 | 17 | 71 | | 5 | 15/15 | 0 | - | - | 5/15 | 5/15 | 47/15 | 4 | 1 | 1.0 | 0.0 | 12 | 67 | - Note 1: For sub-test 1 to 4, Δ_{NACK} , Δ_{NACK} and Δ_{CQI} = 30/15 with β_{hs} = 30/15 * β_c . For sub-test 5, Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 5/15 with β_{hs} = 5/15 * β_c . - Note 2: CM = 1 for β_c/β_d =12/15, β_{he}/β_c =24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference. - Note 3: For subtest 1 the βc/βd ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to βc = 10/15 and βd = 15/15. - Note 4: In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to TS25.306 Table 5.1g. - Note 5: βed can not be set directly; it is set by Absolute Grant Value. - Note 6: For subtests 2, 3 and 4, UE may perform E-DPDCH power scaling at max power which could results in slightly smaller MPR values. **Setup Configuration** Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: ZNFQ630EAW Page 29 of 54 Issued Date : Mar. 19, 2020 ### FCC SAR Test Report ### DC-HSDPA 3GPP release 8 Setup Configuration: - The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration below - The RF path losses were compensated into the measurements. - A call was established between EUT and Base Station with following setting: - Set RMC 12.2Kbps + HSDPA mode. - Set Cell Power = -25 dBm ii. - Set HS-DSCH Configuration Type to FRC (H-set 12, QPSK) iii. - Select HSDPA Uplink Parameters - Set Gain Factors (β_c and β_d) and parameters were set according to each Specific sub-test in the following table, C10.1.4, quoted from the TS 34.121 Report No.: FA9D2305 - a). Subtest 1: $\beta_c/\beta_d=2/15$ - b). Subtest 2: $\beta_c/\beta_d=12/15$ c). Subtest 3: $\beta_c/\beta_d=15/8$ - d). Subtest 4: $\beta_c/\beta_d=15/4$ Set Delta ACK, Delta NACK and Delta CQI = 8 - Set Ack-Nack Repetition Factor to 3 vii. - Set CQI Feedback Cycle (k) to 4 ms viii. - ix. Set CQI Repetition Factor to 2 - Power Ctrl Mode = All Up bits - The transmitted maximum output power was recorded. The following tests were conducted according to the test requirements outlines in 3GPP TS 34.121 specification. A summary of these settings are illustrated below: #### C.8.1.12 Fixed Reference Channel Definition H-Set 12 Table C.8.1.12: Fixed Reference Channel H-Set 12 | | Parameter | Unit | Value | | | |
---|---|--------|--------|--|--|--| | Nominal | Avg. Inf. Bit Rate | kbps | 60 | | | | | Inter-TTI | Distance | TTľs | 1 | | | | | Number | of HARQ Processes | Proces | 6 | | | | | | | ses | U | | | | | Informati | on Bit Payload ($N_{\it INF}$) | Bits | 120 | | | | | Number | Code Blocks | Blocks | 1 | | | | | Binary C | hannel Bits Per TTI | Bits | 960 | | | | | Total Ava | ailable SML's in UE | SML's | 19200 | | | | | Number | of SML's per HARQ Proc. | SML's | 3200 | | | | | Coding F | Rate | | 0.15 | | | | | Number | of Physical Channel Codes | Codes | 1 | | | | | Modulation | | | QPSK | | | | | Note 1: | Note 1: The RMC is intended to be used for DC-HSDPA | | | | | | | mode and both cells shall transmit with identical | | | | | | | | | parameters as listed in the table. | | | | | | | Note 2: Maximum number of transmission is limited to 1, i.e., | | | | | | | | | retransmission is not allowed. The | | cy and | | | | | | constellation version 0 shall be use | ed. | | | | | Figure C.8.19: Coding rate for Fixed reference Channel H-Set 12 (QPSK) ### **Setup Configuration** Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 : Mar. 19, 2020 FCC ID: ZNFQ630EAW Page 30 of 54 Issued Date ### <WCDMA Conducted Power> #### **General Note:** Per KDB 941225 D01v03r01, for SAR testing is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". Report No.: FA9D2305 2. Per KDB 941225 D01v03r01, RMC 12.2kbps setting is used to evaluate SAR. The maximum output power and tune-up tolerance specified for production units in HSDPA / HSUPA / DC-HSDPA is ≤ ¼ dB higher than RMC 12.2Kbps or when the highest reported SAR of the RMC12.2Kbps is scaled by the ratio of specified maximum output power and tune-up tolerance of HSDPA / HSUPA / DC-HSDPA to RMC12.2Kbps and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for HSDPA / HSUPA / DC-HSDPA, and according to the following RF output power, the output power results of the secondary modes (HSUPA, HSDPA, DC-HSDPA) are less than ¼ dB higher than the primary modes; therefore, SAR measurement is not required for HSDPA / HSUPA / DC-HSDPA. ### <LTE Conducted Power> ### **General Note:** - Anritsu MT8820C base station simulator was used to setup the connection with EUT; the frequency band, channel bandwidth, RB allocation configuration, modulation type are set in the base station simulator to configure EUT transmitting at maximum power and at different configurations which are requested to be reported to FCC, for conducted power measurement and SAR testing. - 2. Per KDB 941225 D05v02r05, when a properly configured base station simulator is used for the SAR and power measurements, spectrum plots for each RB allocation and offset configuration is not required. - 3. Per KDB 941225 D05v02r05, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel. - 4. Per KDB 941225 D05v02r05, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure. - 5. Per KDB 941225 D05v02r05, for QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested. - Per KDB 941225 D05v02r05, 16QAM output power for each RB allocation configuration is > not ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, 16QAM SAR testing is not required. - 7. Per KDB 941225 D05v02r05, smaller bandwidth output power for each RB allocation configuration is > not ½ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, smaller bandwidth SAR testing is not required. - 8. For LTE 4 / B5 the maximum bandwidth does not support three non-overlapping channels, per KDB 941225 D05v02r05, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing. Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: ZNFQ630EAW Page 31 of 54 Issued Date : Mar. 19, 2020 #### <TDD LTE SAR Measurement> TDD LTE configuration setup for SAR measurement SAR was tested with a fixed periodic duty factor according to the highest transmission duty factor implemented for the device and supported by 3GPP. - a. 3GPP TS 36.211 section 4.2 for Type 2 Frame Structure and Table 4.2-2 for uplink-downlink configurations - b. "special subframe S" contains both uplink and downlink transmissions, it has been taken into consideration to determine the transmission duty factor according to the worst case uplink and downlink cyclic prefix requirements for UpPTS Report No.: FA9D2305 c. Establishing connections with base station simulators ensure a consistent means for testing SAR and recommended for evaluating SAR. The Anritsu MT8820C (firmware: #22.52#004) was used for LTE output power measurements and SAR testing. Figure 4.2-1: Frame structure type 2 (for 5 ms switch-point periodicity). Table 4.2-2: Uplink-downlink configurations. | Uplink-downlink | Uplink-downlink Downlink-to-Uplink | | Subframe number | | | | | | | | | | |-----------------|------------------------------------|---|-----------------|---|---|---|---|---|---|---|---|--| | configuration | Switch-point periodicity | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | | 0 | 5 ms | | S | U | U | U | D | S | U | U | U | | | 1 | 5 ms | D | S | U | U | D | D | S | U | U | D | | | 2 | 5 ms | D | S | U | D | D | D | S | U | О | D | | | 3 | 10 ms | D | S | U | U | U | D | D | D | D | D | | | 4 | 10 ms | D | S | U | U | D | D | D | D | D | D | | | 5 | 10 ms | D | S | U | D | D | D | D | D | D | D | | | 6 | 5 ms | | S | U | U | U | D | S | U | J | D | | Table 4.2-1: Configuration of special subframe (lengths of DwPTS/GP/UpPTS). | Special subframe | Norma | Normal cyclic prefix in downlink | | | nded cyclic prefix in downlink | | | | |------------------|------------------------|--------------------------------------|--|------------------------|-----------------------------------|-------------------------------------|--|--| | configuration | DwPTS | UpPTS | | DwPTS | UpPTS | | | | | | | Normal
cyclic prefix
in uplink | Extended
cyclic prefix
in uplink | | Normal cyclic
prefix in uplink | Extended cyclic
prefix in uplink | | | | 0 | 6592 · T _s | | | 7680 · T _s | | | | | | 1 | 19760 · T _s | | | 20480 · T _s | 2192 · T _e | 2560 · T _e | | | | 2 | 21952 · T _s | $2192 \cdot T_{s}$ | 2560 · T _s | 23040 · T _s | 2192·1 _s | 2500·1 _s | | | | 3 | 24144 · T _s | | | 25600 · T _s | | | | | | 4 | 26336·T _s | | | 7680 · T _s | | | | | | 5 | 6592 · T _s | | | 20480 · T _s | 4384 · T _e | 5120 · T₀ | | | | 6 | 19760 ⋅ T _s | | | 23040 · T _s | 4364.1 _s | 3120·1 _{\$} | | | | 7 | 21952 · T _s | $4384 \cdot T_s$ | 5120 ⋅ <i>T</i> _s | 12800 · T _s | | | | | | 8 | 24144 · T _s | | | - | - | - | | | | 9 | 13168 · T _s | | | - | - | - | | | Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: ZNFQ630EAW Page 32 of 54 Issued Date : Mar. 19, 2020 | Special subframe (30720⋅T₅): Normal cyclic prefix in downlink (UpPTS) | | | | | | | | |---|--|-------|-------|--|--|--|--| | | Special subframe Normal cyclic prefix in Extended cyclic prefix in configuration uplink uplink | | | | | | | | Uplink duty factor in one | 0~4 | 7.13% | 8.33% | | | | | | special subframe | 5~9 | 14.3% | 16.7% | | | | | Report No.: FA9D2305 | Special subframe(30720·T _s): Extended cyclic prefix in downlink (UpPTS) | | | | | | | | |--|-----|-------|-------|--|--|--|--| | Special subframe Normal cyclic prefix in configuration uplink Extended cyclic prefix in uplink | | | | | | | | | Uplink duty factor in one | 0~3 | 7.13% | 8.33% | | | | | | special subframe | 4~7 | 14.3% | 16.7% | | | | | The highest duty factor is resulted from: #### For LTE Band 41 Power class 3 - i. Uplink-downlink configuration: 0. In a half-frame consisted of 5 subfames, uplink operation is in 3 uplink subframes and 1 special subframe. - ii. special subframe configuration: 5-9 for normal cyclic prefix in downlink, 4-7 for extended cyclic prefix in downlink - iii. for special subframe with extended cyclic prefix in uplink, the total uplink duty factor in one half-frame is: (3+0.167)/5 = 63.3% - iv. for special subframe with normal cyclic prefix in uplink, the total uplink duty factor in one half-frame is: (3+0.143)/5 = 62.9% - v. For TDD LTE SAR measurement, the duty cycle 1:1.59 (62.9 %) was used perform testing and considering the theoretical duty cycle of 63.3% for extended cyclic prefix in the uplink, and the theoretical duty cycle of 62.9% for normal cyclic prefix in uplink, a scaling factor of extended cyclic prefix 63.3%/62.9% = 1.006 is applied to scale-up the measured SAR result. The scaled TDD LTE SAR = measured
SAR (W/kg)* Tune-up Scaling Factor* scaling factor for extended cyclic prefix. Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: ZNFQ630EAW Page 33 of 54 Issued Date : Mar. 19, 2020 ### <LTE Carrier Aggregation combinations> #### **General Note:** - This device supports Carrier Aggregation on downlink only for intra band, Uplink CA is not supported. For the device supports combination bands and configurations are according to 3GPP. - 2. In applying the existing power measurement procedure of KDB 941225 D05A for DL CA SAR test exclusion, only the subset with the largest number of combinations of the frequency band and CCs in each row need consideration, and that configurations require power measurement should be highlighted in the below table. Report No.: FA9D2305 3. All permutations exist. No restrictions on Pcell & Scell combinations. | 2CC Downlink Carrier Aggregation | | | | | | | | |----------------------------------|-------------|-------------|----------------------|--|--|--|--| | Number | Combination | Restriction | Covered by | | | | | | Number | Combination | Restriction | Measurement Superset | | | | | | 1 | CA_41C | | | | | | | | 2 | CA_5A-5A | | | | | | | # < Power verification when LTE Carrier Aggregation Active> #### **General Note:** - i. According to KDB941225 D05A v01r02, Uplink maximum output power measurement with downlink carrier aggregation active should be measured, using the highest output channel measured without downlink carrier aggregation, to confirm that uplink maximum output power with downlink carrier aggregation active remains within the specified tune-up tolerance limits and not more than ¼ dB higher than the maximum output measured without downlink carrier aggregation active. - ii. Uplink maximum output power with downlink carrier aggregation active does not show more than ¼ dB higher than the maximum output power without downlink carrier aggregation active, therefore SAR evaluation with downlink carrier aggregation active can be excluded. - iii. The device supports downlink two carrier aggregation. For power measurement were control and acknowledge data is sent on uplink channels that operate identical to specifications when downlink carrier aggregation is inactive. - iv. Selected highest measured power when downlink carrier aggregation is inactive for conducted power comparison with downlink carrier aggregation is active, to confirm that when downlink carrier aggregation is active uplink maximum output power remains within the specified tune-up tolerance limits and not more than ¼ dB higher than the maximum output power measured when downlink carrier aggregation inactive. - v. For non-contiguous intra-band CA, the SCC selected to provide maximum separation from the PCC and must remain fully within the downlink transmission band. - vi. For Intra-band, contiguous CA, the downlink channels selected to perform the uplink power measurement must satisfy 3GPP channel spacing (5.4.1A of 3GPP TS 36.521 or equivalent) and channel bandwidth (5.4.2A) requirements. Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: ZNFQ630EAW Page 34 of 54 Issued Date : Mar. 19, 2020 ### <WLAN Conducted Power> #### **General Note:** 1. Per KDB 248227 D01v02r02, SAR test reduction is determined according to 802.11 transmission mode configurations and certain exposure conditions with multiple test positions. In the 2.4 GHz band, separate SAR procedures are applied to DSSS and OFDM configurations to simplify DSSS test requirements. For OFDM, in both 2.4 and 5 GHz bands, an initial test configuration must be determined for each standalone and aggregated frequency band, according to the transmission mode configuration with the highest maximum output power specified for production units to perform SAR measurements. If the same highest maximum output power applies to different combinations of channel bandwidths, modulations and data rates, additional procedures are applied to determine which test configurations require SAR measurement. When applicable, an initial test position may be applied to reduce the number of SAR measurements required for next to the ear, UMPC mini-tablet or hotspot mode configurations with multiple test positions. Report No.: FA9D2305 - 2. For 2.4 GHz 802.11b DSSS, either the initial test position procedure for multiple exposure test positions or the DSSS procedure for fixed exposure position is applied; these are mutually exclusive. For 2.4 GHz and 5 GHz OFDM configurations, the initial test configuration is applied to measure SAR using either the initial test position procedure for multiple exposure test position configurations or the initial test configuration procedures for fixed exposure test conditions. Based on the reported SAR of the measured configurations and maximum output power of the transmission mode configurations that are not included in the initial test configuration, the subsequent test configuration and initial test position procedures are applied to determine if SAR measurements are required for the remaining OFDM transmission configurations. In general, the number of test channels that require SAR measurement is minimized based on maximum output power measured for the test sample(s). - 3. For OFDM transmission configurations in the 2.4 GHz and 5 GHz bands, When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel for each frequency band. - 4. DSSS and OFDM configurations are considered separately according to the required SAR procedures. SAR is measured in the initial test position using the 802.11 transmission mode configuration required by the DSSS procedure or initial test configuration and subsequent test configuration(s) according to the OFDM procedures.18 The initial test position procedure is described in the following: - a. When the reported SAR of the initial test position is ≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and 802.11 transmission mode combinations within the frequency band or aggregated band. - b. When the reported SAR of the test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position on the highest maximum output power channel, until the report SAR is ≤ 0.8 W/kg or all required test position are tested. - c. For all positions/configurations, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested. Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: ZNFQ630EAW Page 35 of 54 Issued Date : Mar. 19, 2020 ### <2.4GHz Bluetooth> #### **General Note:** - 1. For 2.4GHz Bluetooth SAR testing was selected 1Mbps, due to its highest average power. - 2. The Bluetooth duty cycle is 77.04 % as following figure, according to 2016 Oct. TCB workshop for Bluetooth SAR scaling need further consideration and the theoretical duty cycle is 83.3%, therefore the actual duty cycle will be scaled up to the theoretical value of Bluetooth reported SAR calculation. Report No.: FA9D2305 # 13. Antenna Location Right Side _____ Report No.: FA9D2305 #### **Bottom Side** | | Distance | of the Antenna to | the EUT surface | e/edge | | | | | | | | | | |------------------|---|-------------------|-----------------|-------------|------------|-----------|--|--|--|--|--|--|--| | Antennas | Back | Front | Top Side | Bottom Side | Right Side | Left Side | | | | | | | | | WWAN Antenna 1 | WWAN Antenna 1 ≤ 25mm ≤ 25mm >25mm ≤ 25mm ≤ 25mm ≤ 25mm | | | | | | | | | | | | | | WWAN Antenna 2 | ≤ 25mm | ≤ 25mm | >25mm | ≤ 25mm | >25mm | ≤ 25mm | | | | | | | | | 2.4GHz WLAN & BT | ≤ 25mm | ≤ 25mm | ≤ 25mm | >25mm | >25mm | ≤ 25mm | | | | | | | | | 5GHz WLAN | ≤ 25mm | ≤ 25mm | ≤ 25mm | >25mm | >25mm | ≤ 25mm | | | | | | | | | | Posi | tions for SAR tes | sts; Hotspot mode | e | | | |------------------|------|-------------------|-------------------|-------------|------------|-----------| | Antennas | Back | Front | Top Side | Bottom Side | Right Side | Left Side | | WWAN Antenna 1 | Yes | Yes | No | Yes | Yes | Yes | | WWAN Antenna 2 | Yes | Yes | No | Yes | No | Yes | | 2.4GHz WLAN & BT | Yes | Yes | Yes | No | No | Yes | | 5GHz WLAN | Yes | Yes | Yes | No | No | Yes | #### **General Note:** - 1. This device has two WWAN transmitter antennas. WWAN antenna 1 and WWAN antenna 2 are all located at the bottom edge of the device as above. WWAN antenna 1 frequency bands include GSM850, WCDMA Band V, LTE Band 41, and WWAN antenna 2 frequency bands include GSM1900, WCDMA Band II, LTE Band 4. - Referring to KDB 941225 D06 v02r01, when the overall device length and width are ≥ 9cm*5cm, the test distance is 10 mm. SAR must be measured for all sides and surfaces with a transmitting antenna located within 25mm from that surface or edge. Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: ZNFQ630EAW Page 37 of 54 Issued Date : Mar. 19, 2020 # 14. SAR Test Results #### **General Note:** - 1. Per KDB 447498 D01v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance. - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW),
where tune-up limit is the maximum rated power among all production units. Report No.: FA9D2305 - b. For SAR testing of WLAN signal with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)" - c. For WWAN: Reported SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor - d. For WLAN/Bluetooth: Reported SAR(W/kg)= Measured SAR(W/kg)* Duty Cycle scaling factor * Tune-up scaling factor - e. For TDD LTE SAR measurement, the duty cycle 1:1.59 (62.9 %) was used perform testing and considering the theoretical duty cycle of 63.3% for extended cyclic prefix in the uplink, and the theoretical duty cycle of 62.9% for normal cyclic prefix in uplink, a scaling factor of extended cyclic prefix 63.3%/62.9% = 1.006 is applied to scale-up the measured SAR result. The Reported TDD LTE SAR = measured SAR (W/kg)* Tune-up Scaling Factor* scaling factor for extended cyclic prefix. - 2. Per KDB 447498 D01v06, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the *reported* 1-g or 10-g SAR for the mid-band or highest output power channel is: - ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz - ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz - ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz - 3. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg. Per KDB 865664 D01v01r04, if the extremity repeated SAR is necessary, the same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds. - Per KDB 648474 D04v01r03, when the reported SAR for a body-worn accessory measured without a headset connected to the handset is ≤ 1.2 W/kg, SAR testing with a headset connected to the handset is not required. - 5. Per KDB648474 D04v01r03, for smart phones with a display diagonal dimension > 15cm or an overall diagonal dimension > 16cm, when hotspot mode applies, 10-g product specific SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg, in this report all the hotspot mode results are < 1.2W/kg. - 6. For 5.3GHz / 5.5GHz WLAN product specific 10g SAR is necessary, due to an overall diagonal dimension is > 16cm and it has no hotspot mode. - 7. This device has two WWAN transmitter antennas. WWAN antenna 1 and WWAN antenna 2 are all located at the bottom edge of the device which can refer to antenna location chapter. WWAN antenna 1 frequency bands include GSM850, WCDMA Band V, LTE Band 41, and WWAN antenna 2 frequency bands include GSM1900, WCDMA Band II, LTE Band 4. #### **GSM Note:** - 1. Per KDB 941225 D01v03r01, for SAR test reduction for GSM / GPRS / EDGE modes is determined by the source-based time-averaged output power including tune-up tolerance. The mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. Therefore, the GPRS (4Tx slots) for GSM850/GSM1900 are considered as the primary mode. - Other configurations of GSM / GPRS / EDGE are considered as secondary modes. The 3G SAR test reduction procedure is applied, when the maximum output power and tune-up tolerance specified for production units in a secondary mode is ≤ ¼ dB higher than the primary mode, SAR measurement is not required for the secondary mode. #### **WCDMA Note:** - 1. Per KDB 941225 D01v03r01, for SAR testing is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". - 2. Per KDB 941225 D01v03r01, RMC 12.2kbps setting is used to evaluate SAR. The maximum output power and tune-up tolerance specified for production units in HSDPA / HSUPA / DC-HSDPA is ≤ ¼ dB higher than RMC 12.2Kbps or when the highest reported SAR of the RMC12.2Kbps is scaled by the ratio of specified maximum output power and tune-up tolerance of HSDPA / HSUPA / DC-HSDPA to RMC12.2Kbps and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for HSDPA / HSUPA / DC-HSDPA, and according to the following RF output power, the output power results of the secondary modes (HSUPA, HSDPA, DC-HSDPA) are less than ¼ dB higher than the primary modes; therefore, SAR measurement is not required for HSDPA / HSUPA / DC-HSDPA. Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: ZNFQ630EAW Page 38 of 54 Issued Date : Mar. 19, 2020 # FCC SAR Test Report #### LTE Note: Per KDB 941225 D05v02r05, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel. Report No.: FA9D2305 - Per KDB 941225 D05v02r05, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure. - 3. Per KDB 941225 D05v02r05, for QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested. - 4. Per KDB 941225 D05v02r05, 16QAM output power for each RB allocation configuration is > not ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, 16QAM SAR testing is not required. - 5. Per KDB 941225 D05v02r05, smaller bandwidth output power for each RB allocation configuration is > not ½ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, smaller bandwidth SAR testing is not required. - 6. For LTE B4 / B5 the maximum bandwidth does not support three non-overlapping channels, per KDB 941225 D05v02r05, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing. #### WLAN/Bluetooth Note: - 1. Per KDB 248227 D01v02r02, for 2.4GHz 802.11g/n SAR testing is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg. - 2. Per KDB 248227 D01v02r02, U-NII-1 SAR testing is not required when the U-NII-2A band highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band. - 3. When the reported SAR of the test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position on the highest maximum output power channel, until the report SAR is ≤ 0.8 W/kg or all required test position are tested. - 4. For all positions / configurations, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions / configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested. - 5. During SAR testing the WLAN transmission was verified using a spectrum analyzer. - Bluetooth and WLAN share the same antenna, with similar work frequency, so for Bluetooth SAR testing, we chose the worst positon of WLAN to perform. Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: ZNFQ630EAW Page 39 of 54 Issued Date : Mar. 19, 2020 # 14.1 Head SAR # <GSM SAR> | Plot
No. | Band | Mode | Test
Position | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|---------|-----------------|------------------|-----|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------| | 01 | GSM850 | GPRS 4 Tx slots | Right Cheek | 189 | 836.4 | 29.05 | 29.50 | 1.109 | -0.1 | 0.257 | <mark>0.285</mark> | | | GSM850 | GPRS 4 Tx slots | Right Tilted | 189 | 836.4 | 29.05 | 29.50 | 1.109 | 0.1 | 0.110 | 0.122 | | | GSM850 | GPRS 4 Tx slots | Left Cheek | 189 | 836.4 | 29.05 | 29.50 | 1.109 | -0.07 | 0.246 | 0.273 | | | GSM850 | GPRS 4 Tx slots | Left Tilted | 189 | 836.4 | 29.05 | 29.50 | 1.109 | 0.18 | 0.115 | 0.128 | | | GSM1900 | GPRS 4 Tx slots | Right Cheek | 810 | 1909.8 | 25.90 | 26.50 | 1.148 | -0.03 | 0.231 | 0.265 | | | GSM1900 | GPRS 4 Tx slots | Right Tilted | 810 | 1909.8 | 25.90 | 26.50 | 1.148 | 0.07 | 0.171 | 0.196 | | 02 | GSM1900 | GPRS 4 Tx slots | Left Cheek | 810 | 1909.8 | 25.90 | 26.50 | 1.148 | 0.07 | 0.316 | <mark>0.363</mark> | | | GSM1900 | GPRS 4 Tx slots | Left Tilted | 810 | 1909.8 | 25.90 | 26.50 | 1.148 | 0.09 | 0.171 | 0.196 | Report No.: FA9D2305 # <WCDMA SAR> | Plot
No. | Band | Mode | Test
Position | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|---------------|--------------
------------------|------|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------| | | WCDMA Band II | RMC 12.2Kbps | Right Cheek | 9538 | 1907.6 | 23.96 | 24.50 | 1.132 | -0.01 | 0.243 | 0.275 | | | WCDMA Band II | RMC 12.2Kbps | Right Tilted | 9538 | 1907.6 | 23.96 | 24.50 | 1.132 | -0.05 | 0.201 | 0.228 | | 03 | WCDMA Band II | RMC 12.2Kbps | Left Cheek | 9538 | 1907.6 | 23.96 | 24.50 | 1.132 | 0.08 | 0.383 | <mark>0.434</mark> | | | WCDMA Band II | RMC 12.2Kbps | Left Tilted | 9538 | 1907.6 | 23.96 | 24.50 | 1.132 | 0.16 | 0.183 | 0.207 | | | WCDMA Band V | RMC 12.2Kbps | Right Cheek | 4233 | 846.6 | 24.25 | 25.00 | 1.189 | 0.06 | 0.263 | 0.313 | | | WCDMA Band V | RMC 12.2Kbps | Right Tilted | 4233 | 846.6 | 24.25 | 25.00 | 1.189 | 0.12 | 0.118 | 0.140 | | 04 | WCDMA Band V | RMC 12.2Kbps | Left Cheek | 4233 | 846.6 | 24.25 | 25.00 | 1.189 | 0.07 | 0.264 | <mark>0.314</mark> | | | WCDMA Band V | RMC 12.2Kbps | Left Tilted | 4233 | 846.6 | 24.25 | 25.00 | 1.189 | -0.01 | 0.122 | 0.145 | # <FDD LTE SAR> | Plot
No. | Band | BW
(MHz) | Modulation | RB
Size | RB
Offset | Test
Position | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|------------|-------------|------------|------------|--------------|------------------|-------|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------| | 05 | LTE Band 5 | 10M | QPSK | 1 | 25 | Right Cheek | 20525 | 836.5 | 24.29 | 25.00 | 1.178 | 0.01 | 0.227 | <mark>0.267</mark> | | | LTE Band 5 | 10M | QPSK | 25 | 0 | Right Cheek | 20525 | 836.5 | 23.35 | 24.00 | 1.161 | -0.06 | 0.168 | 0.195 | | | LTE Band 5 | 10M | QPSK | 1 | 25 | Right Tilted | 20525 | 836.5 | 24.29 | 25.00 | 1.178 | -0.05 | 0.094 | 0.111 | | | LTE Band 5 | 10M | QPSK | 25 | 0 | Right Tilted | 20525 | 836.5 | 23.35 | 24.00 | 1.161 | -0.19 | 0.079 | 0.092 | | | LTE Band 5 | 10M | QPSK | 1 | 25 | Left Cheek | 20525 | 836.5 | 24.29 | 25.00 | 1.178 | 0.04 | 0.189 | 0.223 | | | LTE Band 5 | 10M | QPSK | 25 | 0 | Left Cheek | 20525 | 836.5 | 23.35 | 24.00 | 1.161 | 0.06 | 0.174 | 0.202 | | | LTE Band 5 | 10M | QPSK | 1 | 25 | Left Tilted | 20525 | 836.5 | 24.29 | 25.00 | 1.178 | 0.04 | 0.107 | 0.126 | | | LTE Band 5 | 10M | QPSK | 25 | 0 | Left Tilted | 20525 | 836.5 | 23.35 | 24.00 | 1.161 | -0.02 | 0.089 | 0.104 | | | LTE Band 4 | 20M | QPSK | 1 | 49 | Right Cheek | 20175 | 1732.5 | 23.99 | 24.50 | 1.125 | 0.06 | 0.267 | 0.300 | | | LTE Band 4 | 20M | QPSK | 50 | 0 | Right Cheek | 20175 | 1732.5 | 22.92 | 23.50 | 1.143 | 0.09 | 0.208 | 0.238 | | | LTE Band 4 | 20M | QPSK | 1 | 49 | Right Tilted | 20175 | 1732.5 | 23.99 | 24.50 | 1.125 | -0.07 | 0.179 | 0.201 | | | LTE Band 4 | 20M | QPSK | 50 | 0 | Right Tilted | 20175 | 1732.5 | 22.92 | 23.50 | 1.143 | -0.09 | 0.144 | 0.165 | | 06 | LTE Band 4 | 20M | QPSK | 1 | 49 | Left Cheek | 20175 | 1732.5 | 23.99 | 24.50 | 1.125 | -0.09 | 0.382 | <mark>0.430</mark> | | | LTE Band 4 | 20M | QPSK | 50 | 0 | Left Cheek | 20175 | 1732.5 | 22.92 | 23.50 | 1.143 | 0.11 | 0.297 | 0.339 | | | LTE Band 4 | 20M | QPSK | 1 | 49 | Left Tilted | 20175 | 1732.5 | 23.99 | 24.50 | 1.125 | -0.02 | 0.246 | 0.277 | | | LTE Band 4 | 20M | QPSK | 50 | 0 | Left Tilted | 20175 | 1732.5 | 22.92 | 23.50 | 1.143 | 0.07 | 0.195 | 0.223 | Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: ZNFQ630EAW Page 40 of 54 Issued Date : Mar. 19, 2020 # <TDD LTE SAR> | Plot
No. | Band | BW
(MHz) | Modulation | RB
Size | RB
Offset | Test
Position | Ch. | Freq.
(MHz) | Power | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Cyclo | | Deift | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|-------------|-------------|------------|------------|--------------|------------------|-------|----------------|-------|---------------------------|------------------------------|-------|-------|-------|------------------------------|------------------------------| | | LTE Band 41 | 20M | QPSK | 1 | 49 | Right Cheek | 40140 | 2545 | 23.71 | 24.50 | 1.199 | 62.9 | 1.006 | 0.02 | 0.075 | 0.090 | | | LTE Band 41 | 20M | QPSK | 50 | 0 | Right Cheek | 40140 | 2545 | 22.67 | 23.50 | 1.211 | 62.9 | 1.006 | -0.17 | 0.057 | 0.069 | | | LTE Band 41 | 20M | QPSK | 1 | 49 | Right Tilted | 40140 | 2545 | 23.71 | 24.50 | 1.199 | 62.9 | 1.006 | 0.02 | 0.052 | 0.063 | | | LTE Band 41 | 20M | QPSK | 50 | 0 | Right Tilted | 40140 | 2545 | 22.67 | 23.50 | 1.211 | 62.9 | 1.006 | 0.05 | 0.041 | 0.050 | | 07 | LTE Band 41 | 20M | QPSK | 1 | 49 | Left Cheek | 40140 | 2545 | 23.71 | 24.50 | 1.199 | 62.9 | 1.006 | 0.09 | 0.116 | <mark>0.140</mark> | | | LTE Band 41 | 20M | QPSK | 50 | 0 | Left Cheek | 40140 | 2545 | 22.67 | 23.50 | 1.211 | 62.9 | 1.006 | 0.01 | 0.073 | 0.089 | | | LTE Band 41 | 20M | QPSK | 1 | 49 | Left Tilted | 40140 | 2545 | 23.71 | 24.50 | 1.199 | 62.9 | 1.006 | -0.14 | 0.079 | 0.095 | | | LTE Band 41 | 20M | QPSK | 50 | 0 | Left Tilted | 40140 | 2545 | 22.67 | 23.50 | 1.211 | 62.9 | 1.006 | 0.02 | 0.063 | 0.077 | Report No. : FA9D2305 # <WLAN 2.4GHz SAR> | Plot
No. | Band | Mode | Test
Position | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Duty
Cycle
% | Duty
Cycle
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|------------|---------------|------------------|-----|----------------|---------------------------|---------------------------|------------------------------|--------------------|------------------------------------|------------------------|------------------------------|------------------------------| | 08 | WLAN2.4GHz | 802.11b 1Mbps | Right Cheek | 11 | 2462 | 16.89 | 17.50 | 1.151 | 100 | 1.000 | -0.09 | 0.533 | 0.613 | | | WLAN2.4GHz | 802.11b 1Mbps | Right Tilted | 11 | 2462 | 16.89 | 17.50 | 1.151 | 100 | 1.000 | 0.01 | 0.452 | 0.520 | | | WLAN2.4GHz | 802.11b 1Mbps | Left Cheek | 11 | 2462 | 16.89 | 17.50 | 1.151 | 100 | 1.000 | 0.05 | 0.107 | 0.123 | | | WLAN2.4GHz | 802.11b 1Mbps | Left Tilted | 11 | 2462 | 16.89 | 17.50 | 1.151 | 100 | 1.000 | 0.15 | 0.157 | 0.181 | # <WLAN 5GHz SAR> | Plot
No. | Band | Mode | Test
Position | Ch. | Freq.
(MHz) | Dower | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | | Duty
Cycle
Scaling
Factor | Drift | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|------------|---------------|------------------|-----|----------------|-------|---------------------------|------------------------------|-------|------------------------------------|-------|------------------------------|------------------------------| | 09 | WLAN5.3GHz | 802.11a 6Mbps | Right Cheek | 64 | 5320 | 15.18 | 16.00 | 1.094 | 96.94 | 1.032 | -0.08 | 0.464 | <mark>0.524</mark> | | | WLAN5.3GHz | 802.11a 6Mbps | Right Tilted | 64 | 5320 | 15.18 | 16.00 | 1.094 | 96.94 | 1.032 | -0.13 | 0.460 | 0.519 | | | WLAN5.3GHz | 802.11a 6Mbps | Left Cheek | 64 | 5320 | 15.18 | 16.00 | 1.094 | 96.94 | 1.032 | -0.09 | 0.425 | 0.480 | | | WLAN5.3GHz | 802.11a 6Mbps | Left Tilted | 64 | 5320 | 15.18 | 16.00 | 1.094 | 96.94 | 1.032 | -0.18 | 0.458 | 0.517 | | | WLAN5.5GHz | 802.11a 6Mbps | Right Cheek | 100 | 5500 | 15.76 | 16.00 | 1.059 | 96.94 | 1.032 | -0.08 | 0.481 | 0.526 | | | WLAN5.5GHz | 802.11a 6Mbps | Right Tilted | 100 | 5500 | 15.76 | 16.00 | 1.059 | 96.94 | 1.032 | -0.09 | 0.535 | 0.585 | | | WLAN5.5GHz | 802.11a 6Mbps | Left Cheek | 100 | 5500 | 15.76 | 16.00 | 1.059 | 96.94 | 1.032 | 0.09 | 0.568 | 0.621 | | 10 | WLAN5.5GHz | 802.11a 6Mbps | Left Tilted | 100 | 5500 | 15.76 | 16.00 | 1.059 | 96.94 | 1.032 | -0.15 | 0.643 | <mark>0.703</mark> | | | WLAN5.8GHz | 802.11a 6Mbps | Right Cheek | 149 | 5745 | 15.37 | 16.00 | 1.064 | 96.94 | 1.032 | 0.01 | 0.454 | 0.499 | | | WLAN5.8GHz | 802.11a 6Mbps | Right Tilted | 149 | 5745 | 15.37 | 16.00 | 1.064 | 96.94 | 1.032 | 0.01 | 0.528 | 0.580 | | | WLAN5.8GHz | 802.11a 6Mbps | Left Cheek | 149 | 5745 | 15.37 | 16.00 | 1.064 | 96.94 | 1.032 | -0.12 | 0.531 | 0.583 | | 11 | WLAN5.8GHz | 802.11a 6Mbps | Left Tilted | 149 | 5745 | 15.37 | 16.00 | 1.064 | 96.94 | 1.032 | -0.12 | 0.610 | 0.670 | #### <Bluetooth SAR> | Plot
No. | Band | Mode | Test
Position | Ch. | | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Duty
Cycle
% | Duty
Cycle
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|-----------|-------|------------------|-----|------|---------------------------|---------------------------|------------------------------|--------------------|------------------------------------|------------------------|------------------------------|------------------------------| | 12 | Bluetooth | 1Mbps | Right Cheek | 39 | 2441 | 10.97 | 11.00 | 1.007 | 77.04 | 1.081 | 0.04 | 0.081 | <mark>0.088</mark> | Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 Issued Date : Mar. 19, 2020 FCC ID: ZNFQ630EAW Page 41 of 54 # 14.2 Hotspot SAR # <GSM SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(mm) | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|---------|-----------------|------------------|-------------|-----
----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------| | | GSM850 | GPRS 4 Tx slots | Front | 10 | 189 | 836.4 | 29.05 | 29.50 | 1.109 | 0.08 | 0.199 | 0.221 | | 13 | GSM850 | GPRS 4 Tx slots | Back | 10 | 189 | 836.4 | 29.05 | 29.50 | 1.109 | 0.03 | 0.257 | <mark>0.285</mark> | | | GSM850 | GPRS 4 Tx slots | Left Side | 10 | 189 | 836.4 | 29.05 | 29.50 | 1.109 | -0.03 | 0.197 | 0.219 | | | GSM850 | GPRS 4 Tx slots | Right Side | 10 | 189 | 836.4 | 29.05 | 29.50 | 1.109 | 0.02 | 0.255 | 0.283 | | | GSM850 | GPRS 4 Tx slots | Bottom Side | 10 | 189 | 836.4 | 29.05 | 29.50 | 1.109 | 0.12 | 0.184 | 0.204 | | | GSM1900 | GPRS 4 Tx slots | Front | 10 | 810 | 1909.8 | 25.90 | 26.50 | 1.148 | 0.07 | 0.535 | 0.614 | | 14 | GSM1900 | GPRS 4 Tx slots | Back | 10 | 810 | 1909.8 | 25.90 | 26.50 | 1.148 | -0.09 | 0.683 | <mark>0.784</mark> | | | GSM1900 | GPRS 4 Tx slots | Left Side | 10 | 810 | 1909.8 | 25.90 | 26.50 | 1.148 | 0.03 | 0.463 | 0.532 | | | GSM1900 | GPRS 4 Tx slots | Right Side | 10 | 810 | 1909.8 | 25.90 | 26.50 | 1.148 | 0.04 | 0.160 | 0.184 | | | GSM1900 | GPRS 4 Tx slots | Bottom Side | 10 | 810 | 1909.8 | 25.90 | 26.50 | 1.148 | -0.07 | 0.326 | 0.374 | Report No.: FA9D2305 # <WCDMA SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(mm) | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|---------------|--------------|------------------|-------------|------|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------| | | WCDMA Band II | RMC 12.2Kbps | Front | 10 | 9538 | 1907.6 | 23.96 | 24.50 | 1.132 | 0.03 | 0.645 | 0.730 | | 15 | WCDMA Band II | RMC 12.2Kbps | Back | 10 | 9538 | 1907.6 | 23.96 | 24.50 | 1.132 | -0.02 | 0.712 | <mark>0.806</mark> | | | WCDMA Band II | RMC 12.2Kbps | Back | 10 | 9262 | 1852.4 | 23.91 | 24.50 | 1.146 | -0.03 | 0.703 | 0.805 | | | WCDMA Band II | RMC 12.2Kbps | Back | 10 | 9400 | 1880 | 23.92 | 24.50 | 1.143 | -0.05 | 0.705 | 0.806 | | | WCDMA Band II | RMC 12.2Kbps | Left Side | 10 | 9538 | 1907.6 | 23.96 | 24.50 | 1.132 | -0.15 | 0.571 | 0.647 | | | WCDMA Band II | RMC 12.2Kbps | Right Side | 10 | 9538 | 1907.6 | 23.96 | 24.50 | 1.132 | -0.04 | 0.198 | 0.224 | | | WCDMA Band II | RMC 12.2Kbps | Bottom Side | 10 | 9538 | 1907.6 | 23.96 | 24.50 | 1.132 | -0.08 | 0.430 | 0.487 | | | WCDMA Band V | RMC 12.2Kbps | Front | 10 | 4233 | 846.6 | 24.25 | 25.00 | 1.189 | 0.03 | 0.212 | 0.252 | | 16 | WCDMA Band V | RMC 12.2Kbps | Back | 10 | 4233 | 846.6 | 24.25 | 25.00 | 1.189 | -0.03 | 0.311 | <mark>0.370</mark> | | | WCDMA Band V | RMC 12.2Kbps | Left Side | 10 | 4233 | 846.6 | 24.25 | 25.00 | 1.189 | 0.01 | 0.170 | 0.202 | | | WCDMA Band V | RMC 12.2Kbps | Right Side | 10 | 4233 | 846.6 | 24.25 | 25.00 | 1.189 | 0.09 | 0.273 | 0.324 | | | WCDMA Band V | RMC 12.2Kbps | Bottom Side | 10 | 4233 | 846.6 | 24.25 | 25.00 | 1.189 | 0.14 | 0.200 | 0.238 | Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: ZNFQ630EAW Page 42 of 54 Issued Date : Mar. 19, 2020 # <FDD LTE SAR> | Plot
No. | Band | BW
(MHz) | Modulation | RB
Size | RB
Offset | Test
Position | Gap
(mm) | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|------------|-------------|------------|------------|--------------|------------------|-------------|-------|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------| | | LTE Band 5 | 10M | QPSK | 1 | 25 | Front | 10 | 20525 | 836.5 | 24.29 | 25.00 | 1.178 | 0.02 | 0.203 | 0.239 | | | LTE Band 5 | 10M | QPSK | 25 | 0 | Front | 10 | 20525 | 836.5 | 23.35 | 24.00 | 1.161 | 0.02 | 0.154 | 0.179 | | 17 | LTE Band 5 | 10M | QPSK | 1 | 25 | Back | 10 | 20525 | 836.5 | 24.29 | 25.00 | 1.178 | 0.08 | 0.295 | 0.347 | | | LTE Band 5 | 10M | QPSK | 25 | 0 | Back | 10 | 20525 | 836.5 | 23.35 | 24.00 | 1.161 | 0.04 | 0.223 | 0.259 | | | LTE Band 5 | 10M | QPSK | 1 | 25 | Left Side | 10 | 20525 | 836.5 | 24.29 | 25.00 | 1.178 | 0.13 | 0.147 | 0.173 | | | LTE Band 5 | 10M | QPSK | 25 | 0 | Left Side | 10 | 20525 | 836.5 | 23.35 | 24.00 | 1.161 | 0.09 | 0.116 | 0.135 | | | LTE Band 5 | 10M | QPSK | 1 | 25 | Right Side | 10 | 20525 | 836.5 | 24.29 | 25.00 | 1.178 | -0.07 | 0.161 | 0.190 | | | LTE Band 5 | 10M | QPSK | 25 | 0 | Right Side | 10 | 20525 | 836.5 | 23.35 | 24.00 | 1.161 | 0.12 | 0.154 | 0.179 | | | LTE Band 5 | 10M | QPSK | 1 | 25 | Bottom Side | 10 | 20525 | 836.5 | 24.29 | 25.00 | 1.178 | 0.06 | 0.155 | 0.183 | | | LTE Band 5 | 10M | QPSK | 25 | 0 | Bottom Side | 10 | 20525 | 836.5 | 23.35 | 24.00 | 1.161 | 0.17 | 0.135 | 0.157 | | | LTE Band 4 | 20M | QPSK | 1 | 49 | Front | 10 | 20175 | 1732.5 | 23.99 | 24.50 | 1.125 | -0.06 | 0.515 | 0.579 | | | LTE Band 4 | 20M | QPSK | 50 | 0 | Front | 10 | 20175 | 1732.5 | 22.92 | 23.50 | 1.143 | 0.02 | 0.411 | 0.470 | | | LTE Band 4 | 20M | QPSK | 1 | 49 | Back | 10 | 20175 | 1732.5 | 23.99 | 24.50 | 1.125 | -0.06 | 0.560 | 0.630 | | | LTE Band 4 | 20M | QPSK | 50 | 0 | Back | 10 | 20175 | 1732.5 | 22.92 | 23.50 | 1.143 | -0.01 | 0.446 | 0.510 | | 18 | LTE Band 4 | 20M | QPSK | 1 | 49 | Left Side | 10 | 20175 | 1732.5 | 23.99 | 24.50 | 1.125 | -0.08 | 0.608 | 0.684 | | | LTE Band 4 | 20M | QPSK | 50 | 0 | Left Side | 10 | 20175 | 1732.5 | 22.92 | 23.50 | 1.143 | -0.09 | 0.479 | 0.547 | | | LTE Band 4 | 20M | QPSK | 1 | 49 | Right Side | 10 | 20175 | 1732.5 | 23.99 | 24.50 | 1.125 | -0.06 | 0.230 | 0.259 | | | LTE Band 4 | 20M | QPSK | 50 | 0 | Right Side | 10 | 20175 | 1732.5 | 22.92 | 23.50 | 1.143 | -0.12 | 0.180 | 0.206 | | | LTE Band 4 | 20M | QPSK | 1 | 49 | Bottom Side | 10 | 20175 | 1732.5 | 23.99 | 24.50 | 1.125 | -0.09 | 0.410 | 0.461 | | | LTE Band 4 | 20M | QPSK | 50 | 0 | Bottom Side | 10 | 20175 | 1732.5 | 22.92 | 23.50 | 1.143 | -0.14 | 0.328 | 0.375 | Report No.: FA9D2305 # <TDD LTE SAR> | Plot
No. | Band | BW
(MHz) | Modulation | RB
Size | RB
Offset | Test
Position | Gap
(mm) | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Duty
Cycle
% | Duty
Cycle
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|-------------|-------------|------------|------------|--------------|------------------|-------------|-------|----------------|---------------------------|---------------------------|------------------------------|--------------------|------------------------------------|------------------------|------------------------------|------------------------------| | | LTE Band 41 | 20M | QPSK | 1 | 49 | Front | 10 | 40140 | 2545 | 23.71 | 24.50 | 1.199 | 62.9 | 1.006 | -0.04 | 0.357 | 0.431 | | | LTE Band 41 | 20M | QPSK | 50 | 0 | Front | 10 | 40140 | 2545 | 22.67 | 23.50 | 1.211 | 62.9 | 1.006 | 0.01 | 0.279 | 0.340 | | | LTE Band 41 | 20M | QPSK | 1 | 49 | Back | 10 | 40140 | 2545 | 23.71 | 24.50 | 1.199 | 62.9 | 1.006 | -0.05 | 0.339 | 0.409 | | | LTE Band 41 | 20M | QPSK | 50 | 0 | Back | 10 | 40140 | 2545 | 22.67 | 23.50 | 1.211 | 62.9 | 1.006 | 0.01 | 0.298 | 0.363 | | | LTE Band 41 | 20M | QPSK | 1 | 49 | Left Side | 10 | 40140 | 2545 | 23.71 | 24.50 | 1.199 | 62.9 | 1.006 | -0.12 | 0.085 | 0.102 | | | LTE Band 41 | 20M | QPSK | 50 | 0 | Left Side | 10 | 40140 | 2545 | 22.67 | 23.50 | 1.211 | 62.9 | 1.006 | -0.02 | 0.064 | 0.078 | | | LTE Band 41 | 20M | QPSK | 1 | 49 | Bottom Side | 10 | 40140 | 2545 | 23.71 | 24.50 | 1.199 | 62.9 | 1.006 | -0.02 | 0.673 | 0.812 | | | LTE Band 41 | 20M | QPSK | 1 | 49 | Bottom Side | 10 | 40400 | 2571 | 23.62 | 24.50 | 1.225 | 62.9 | 1.006 | -0.05 | 0.773 | 0.952 | | 19 | LTE Band 41 | 20M | QPSK | 1 | 49 | Bottom Side | 10 | 40670 | 2598 | 23.69 | 24.50 | 1.205 | 62.9 | 1.006 | -0.05 | 0.833 | 1.010 | | | LTE Band 41 | 20M | QPSK | 1 | 49 | Bottom Side | 10 | 41140 | 2645 | 23.70 | 24.50 | 1.202 | 62.9 | 1.006 | -0.03 | 0.776 | 0.939 | | | LTE Band 41 | 20M | QPSK | 50 | 0 | Bottom Side | 10 | 40140 | 2545 | 22.67 | 23.50 | 1.211 | 62.9 | 1.006 | -0.09 | 0.531 | 0.647 | | | LTE Band 41 | 20M | QPSK | 100 | 0 | Bottom Side | 10 | 40140 | 2545 | 22.56 | 23.50 | 1.242 | 62.9 | 1.006 | -0.03 | 0.526 | 0.657 | Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: ZNFQ630EAW Page 43 of 54 Issued Date : Mar. 19, 2020 # <WLAN 2.4GHz SAR> | Plo
No. | Rand | Mode | Test
Position | Gap
(mm) | Ch. | Freq.
(MHz) | Power | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Duty
Cycle
% | Duty
Cycle
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |------------|------------|---------------|------------------|-------------|-----|----------------|-------|---------------------------|------------------------------|--------------------|------------------------------------|------------------------|------------------------------|------------------------------| | | WLAN2.4GHz | 802.11b 1Mbps | Front | 10 | 11 | 2462 | 16.89 | 17.50 | 1.151 | 100 | 1.000 | 0.02 | 0.079 | 0.091 | | 20 | WLAN2.4GHz | 802.11b 1Mbps | Back | 10 | 11 | 2462 | 16.89 | 17.50 | 1.151 | 100 | 1.000 | 0.03 | 0.108 | <mark>0.124</mark> | | | WLAN2.4GHz | 802.11b 1Mbps |
Left Side | 10 | 11 | 2462 | 16.89 | 17.50 | 1.151 | 100 | 1.000 | 0.01 | 0.081 | 0.094 | | | WLAN2.4GHz | 802.11b 1Mbps | Top Side | 10 | 11 | 2462 | 16.89 | 17.50 | 1.151 | 100 | 1.000 | 0.09 | 0.062 | 0.071 | Report No.: FA9D2305 # <WLAN 5GHz SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(mm) | LU. IN | Freq.
(MHz) | Power | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Cyclo | Duty
Cycle
Scaling
Factor | Drift | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|------------|---------------|------------------|-------------|--------|----------------|-------|---------------------------|------------------------------|-------|------------------------------------|-------|------------------------------|------------------------------| | | WLAN5.2GHz | 802.11a 6Mbps | Front | 10 | 48 | 5240 | 14.09 | 15.00 | 1.233 | 96.94 | 1.032 | 0.02 | 0.072 | 0.092 | | | WLAN5.2GHz | 802.11a 6Mbps | Back | 10 | 48 | 5240 | 14.09 | 15.00 | 1.233 | 96.94 | 1.032 | -0.09 | 0.081 | 0.103 | | | WLAN5.2GHz | 802.11a 6Mbps | Left Side | 10 | 48 | 5240 | 14.09 | 15.00 | 1.233 | 96.94 | 1.032 | 0.01 | 0.032 | 0.041 | | 21 | WLAN5.2GHz | 802.11a 6Mbps | Top Side | 10 | 48 | 5240 | 14.09 | 15.00 | 1.233 | 96.94 | 1.032 | -0.07 | 0.090 | <mark>0.114</mark> | | | WLAN5.8GHz | 802.11a 6Mbps | Front | 10 | 149 | 5745 | 15.37 | 16.00 | 1.156 | 96.94 | 1.032 | 0.02 | 0.108 | 0.129 | | 22 | WLAN5.8GHz | 802.11a 6Mbps | Back | 10 | 149 | 5745 | 15.37 | 16.00 | 1.156 | 96.94 | 1.032 | 0.01 | 0.279 | 0.333 | | | WLAN5.8GHz | 802.11a 6Mbps | Left Side | 10 | 149 | 5745 | 15.37 | 16.00 | 1.156 | 96.94 | 1.032 | 0.01 | 0.024 | 0.028 | | | WLAN5.8GHz | 802.11a 6Mbps | Top Side | 10 | 149 | 5745 | 15.37 | 16.00 | 1.156 | 96.94 | 1.032 | 0.01 | 0.118 | 0.141 | # <Bluetooth SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(mm) | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Duty
Cycle
% | Duty
Cycle
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|-----------|-------|------------------|-------------|-----|----------------|---------------------------|---------------------------|------------------------------|--------------------|------------------------------------|------------------------|------------------------------|------------------------------| | 23 | Bluetooth | 1Mbps | Back | 10 | 39 | 2441 | 10.97 | 11.00 | 1.007 | 77.04 | 1.298 | -0.05 | 0.011 | 0.014 | Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: ZNFQ630EAW Page 44 of 54 Issued Date : Mar. 19, 2020 # 14.3 Body Worn Accessory SAR # <GSM SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(mm) | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|---------|-----------------|------------------|-------------|-----|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------| | | GSM850 | GPRS 4 Tx slots | Front | 10 | 189 | 836.4 | 29.05 | 29.50 | 1.109 | 0.08 | 0.199 | 0.221 | | 24 | GSM850 | GPRS 4 Tx slots | Back | 10 | 189 | 836.4 | 29.05 | 29.50 | 1.109 | 0.03 | 0.257 | <mark>0.285</mark> | | | GSM1900 | GPRS 4 Tx slots | Front | 10 | 810 | 1909.8 | 25.90 | 26.50 | 1.148 | 0.07 | 0.535 | 0.614 | | 25 | GSM1900 | GPRS 4 Tx slots | Back | 10 | 810 | 1909.8 | 25.90 | 26.50 | 1.148 | -0.09 | 0.683 | <mark>0.784</mark> | Report No. : FA9D2305 # <WCDMA SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(mm) | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|---------------|--------------|------------------|-------------|------|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------| | | WCDMA Band II | RMC 12.2Kbps | Front | 10 | 9538 | 1907.6 | 23.96 | 24.50 | 1.132 | 0.03 | 0.645 | 0.730 | | 26 | WCDMA Band II | RMC 12.2Kbps | Back | 10 | 9538 | 1907.6 | 23.96 | 24.50 | 1.132 | -0.02 | 0.712 | <mark>0.806</mark> | | | WCDMA Band II | RMC 12.2Kbps | Back | 10 | 9262 | 1852.4 | 23.91 | 24.50 | 1.146 | -0.03 | 0.703 | 0.805 | | | WCDMA Band II | RMC 12.2Kbps | Back | 10 | 9400 | 1880 | 23.92 | 24.50 | 1.143 | -0.05 | 0.705 | 0.806 | | | WCDMA Band V | RMC 12.2Kbps | Front | 10 | 4233 | 846.6 | 24.25 | 25.00 | 1.189 | 0.03 | 0.212 | 0.252 | | 27 | WCDMA Band V | RMC 12.2Kbps | Back | 10 | 4233 | 846.6 | 24.25 | 25.00 | 1.189 | -0.03 | 0.311 | <mark>0.370</mark> | #### <FDD LTE SAR> | Plot
No. | Band | BW
(MHz) | Modulation | RB
Size | RB
Offset | Test
Position | Gap
(mm) | (.n | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|------------|-------------|------------|------------|--------------|------------------|-------------|-------|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------| | | LTE Band 5 | 10M | QPSK | 1 | 25 | Front | 10 | 20525 | 836.5 | 24.29 | 25.00 | 1.178 | 0.02 | 0.203 | 0.239 | | | LTE Band 5 | 10M | QPSK | 25 | 0 | Front | 10 | 20525 | 836.5 | 23.35 | 24.00 | 1.161 | 0.02 | 0.154 | 0.179 | | 28 | LTE Band 5 | 10M | QPSK | 1 | 25 | Back | 10 | 20525 | 836.5 | 24.29 | 25.00 | 1.178 | 0.08 | 0.295 | 0.347 | | | LTE Band 5 | 10M | QPSK | 25 | 0 | Back | 10 | 20525 | 836.5 | 23.35 | 24.00 | 1.161 | 0.04 | 0.223 | 0.259 | | | LTE Band 4 | 20M | QPSK | 1 | 49 | Front | 10 | 20175 | 1732.5 | 23.99 | 24.50 | 1.125 | -0.06 | 0.515 | 0.579 | | | LTE Band 4 | 20M | QPSK | 50 | 0 | Front | 10 | 20175 | 1732.5 | 22.92 | 23.50 | 1.143 | 0.02 | 0.411 | 0.470 | | 29 | LTE Band 4 | 20M | QPSK | 1 | 49 | Back | 10 | 20175 | 1732.5 | 23.99 | 24.50 | 1.125 | -0.06 | 0.560 | 0.630 | | | LTE Band 4 | 20M | QPSK | 50 | 0 | Back | 10 | 20175 | 1732.5 | 22.92 | 23.50 | 1.143 | -0.01 | 0.446 | 0.510 | # <TDD LTE SAR> | Plot
No. | Band | BW
(MHz) | Modulation | RB
Size | RB
Offset | Test
Position | Gap
(mm) | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Duty
Cycle
% | Duty
Cycle
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|-------------|-------------|------------|------------|--------------|------------------|-------------|-------|----------------|---------------------------|---------------------------|------------------------------|--------------------|------------------------------------|------------------------|------------------------------|------------------------------| | 30 | LTE Band 41 | 20M | QPSK | 1 | 49 | Front | 10 | 40140 | 2545 | 23.71 | 24.50 | 1.199 | 62.9 | 1.006 | -0.04 | 0.357 | <mark>0.431</mark> | | | LTE Band 41 | 20M | QPSK | 50 | 0 | Front | 10 | 40140 | 2545 | 22.67 | 23.50 | 1.211 | 62.9 | 1.006 | 0.01 | 0.279 | 0.340 | | | LTE Band 41 | 20M | QPSK | 1 | 49 | Back | 10 | 40140 | 2545 | 23.71 | 24.50 | 1.199 | 62.9 | 1.006 | -0.05 | 0.339 | 0.409 | | | LTE Band 41 | 20M | QPSK | 50 | 0 | Back | 10 | 40140 | 2545 | 22.67 | 23.50 | 1.211 | 62.9 | 1.006 | 0.01 | 0.298 | 0.363 | Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: ZNFQ630EAW Page 45 of 54 Issued Date : Mar. 19, 2020 # <WLAN 2.4GHz SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(mm) | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Duty
Cycle
% | Duty
Cycle
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|------------|---------------|------------------|-------------|-----|----------------|---------------------------|---------------------------|------------------------------|--------------------|------------------------------------|------------------------|------------------------------|------------------------------| | | WLAN2.4GHz | 802.11b 1Mbps | Front | 10 | 11 | 2462 | 16.89 | 17.50 | 1.151 | 100 | 1.000 | 0.02 | 0.079 | 0.091 | | 31 | WLAN2.4GHz | 802.11b 1Mbps | Back | 10 | 11 | 2462 | 16.89 | 17.50 | 1.151 | 100 | 1.000 | 0.03 | 0.108 | <mark>0.124</mark> | Report No. : FA9D2305 # <WLAN 5GHz SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(mm) | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Cycla | LVCIA | Drift | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|------------|---------------|------------------|-------------|-----|----------------|---------------------------|---------------------------|------------------------------|-------|-------|-------|------------------------------|------------------------------| | | WLAN5.2GHz | 802.11a 6Mbps | Front | 10 | 48 | 5240 | 14.09 | 15.00 | 1.233 | 96.94 | 1.032 | 0.02 | 0.072 | 0.092 | | 32 | WLAN5.2GHz | 802.11a 6Mbps | Back | 10 | 48 | 5240 | 14.09 | 15.00 | 1.233 | 96.94 | 1.032 | -0.09 | 0.081 | <mark>0.103</mark> | | | WLAN5.3GHz | 802.11a 6Mbps | Front | 10 | 64 | 5320 | 15.18 | 16.00 | 1.208 | 96.94 | 1.032 |
0.01 | 0.098 | 0.122 | | 33 | WLAN5.3GHz | 802.11a 6Mbps | Back | 10 | 64 | 5320 | 15.18 | 16.00 | 1.208 | 96.94 | 1.032 | -0.09 | 0.204 | <mark>0.254</mark> | | | WLAN5.5GHz | 802.11a 6Mbps | Front | 10 | 100 | 5500 | 15.76 | 16.00 | 1.057 | 96.94 | 1.032 | 0.01 | 0.139 | 0.152 | | 34 | WLAN5.5GHz | 802.11a 6Mbps | Back | 10 | 100 | 5500 | 15.76 | 16.00 | 1.057 | 96.94 | 1.032 | 0.01 | 0.336 | <mark>0.366</mark> | | | WLAN5.8GHz | 802.11a 6Mbps | Front | 10 | 149 | 5745 | 15.37 | 16.00 | 1.156 | 96.94 | 1.032 | 0.02 | 0.108 | 0.129 | | 35 | WLAN5.8GHz | 802.11a 6Mbps | Back | 10 | 149 | 5745 | 15.37 | 16.00 | 1.156 | 96.94 | 1.032 | 0.01 | 0.279 | <mark>0.333</mark> | # <Bluetooth SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(mm) | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Duty
Cycle
% | Duty
Cycle
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|-----------|-------|------------------|-------------|-----|----------------|---------------------------|---------------------------|------------------------------|--------------------|------------------------------------|------------------------|------------------------------|------------------------------| | 36 | Bluetooth | 1Mbps | Back | 10 | 39 | 2441 | 10.97 | 11.00 | 1.007 | 77.04 | 1.298 | -0.05 | 0.011 | 0.014 | Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: ZNFQ630EAW Page 46 of 54 Issued Date : Mar. 19, 2020 # 14.4 Product specific 10g SAR # <WLAN 5GHz SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(mm) | Ch. | Freq.
(MHz) | Power | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Cyclo | Duty
Cycle
Scaling
Factor | Power
Drift
(dB) | Measured
10g SAR
(W/kg) | Reported
10g SAR
(W/kg) | |-------------|------------|---------------|------------------|-------------|-----|----------------|-------|---------------------------|------------------------------|-------|------------------------------------|------------------------|-------------------------------|-------------------------------| | | WLAN5.3GHz | 802.11a 6Mbps | Front | 0 | 64 | 5320 | 15.18 | 16.00 | 1.208 | 96.94 | 1.032 | 0.03 | 0.299 | 0.373 | | | WLAN5.3GHz | 802.11a 6Mbps | Back | 0 | 64 | 5320 | 15.18 | 16.00 | 1.208 | 96.94 | 1.032 | 0.01 | 0.487 | 0.607 | | | WLAN5.3GHz | 802.11a 6Mbps | Left Side | 0 | 64 | 5320 | 15.18 | 16.00 | 1.208 | 96.94 | 1.032 | 0.06 | 0.202 | 0.252 | | 37 | WLAN5.3GHz | 802.11a 6Mbps | Top Side | 0 | 64 | 5320 | 15.18 | 16.00 | 1.208 | 96.94 | 1.032 | 0.05 | 0.546 | <mark>0.681</mark> | | | WLAN5.5GHz | 802.11a 6Mbps | Front | 0 | 100 | 5500 | 15.76 | 16.00 | 1.057 | 96.94 | 1.032 | 0.02 | 0.365 | 0.398 | | | WLAN5.5GHz | 802.11a 6Mbps | Back | 0 | 100 | 5500 | 15.76 | 16.00 | 1.057 | 96.94 | 1.032 | -0.09 | 0.762 | 0.831 | | | WLAN5.5GHz | 802.11a 6Mbps | Left Side | 0 | 100 | 5500 | 15.76 | 16.00 | 1.057 | 96.94 | 1.032 | 0.02 | 0.230 | 0.251 | | 38 | WLAN5.5GHz | 802.11a 6Mbps | Top Side | 0 | 100 | 5500 | 15.76 | 16.00 | 1.057 | 96.94 | 1.032 | 0.08 | 0.847 | <mark>0.924</mark> | Report No.: FA9D2305 Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: ZNFQ630EAW Page 47 of 54 Issued Date : Mar. 19, 2020 # 14.5 Repeated SAR Measurement | No | . Band | Mode | BW
(MHz) | Modulation | RB
Size | RB
Offset | Test
Position | Gap
(mm) | | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Cycle | Duty
Cycle
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Ratio | Reported
1g SAR
(W/kg) | |-----|-------------|------|-------------|------------|------------|--------------|------------------|-------------|-------|----------------|---------------------------|---------------------------|------------------------------|-------|------------------------------------|------------------------|------------------------------|-------|------------------------------| | 1s | LTE Band 41 | | 20M | QPSK | 1 | 49 | Bottom Side | 10 | 40670 | 2598 | 23.69 | 24.50 | 1.205 | 62.9 | 1.006 | -0.05 | 0.833 | 1 | 1.010 | | 2nd | LTE Band 41 | | 20M | QPSK | 1 | 49 | Bottom Side | 10 | 40670 | 2598 | 23.69 | 24.50 | 1.205 | 62.9 | 1.006 | 0.06 | 0.818 | 1.018 | 0.992 | Report No.: FA9D2305 #### **General Note:** - 1. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg. - 2. Per KDB 865664 D01v01r04, if the ratio among the repeated measurement is ≤ 1.2 and the measured SAR <1.45W/kg, only one repeated measurement is required. - 3. The ratio is the difference in percentage between original and repeated measured SAR. - 4. All measurement SAR result is scaled-up to account for tune-up tolerance and is compliant. Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 Issued Date : Mar. 19, 2020 FCC ID: ZNFQ630EAW Page 48 of 54 # 15. Simultaneous Transmission Analysis | NI- | 0:! | Portable Handset | | | | | | | | |-----|--|------------------|-----------|---------|--------------------------|--|--|--|--| | No. | Simultaneous Transmission Configurations | Head | Body-worn | Hotspot | Product specific 10g SAR | | | | | | 1. | GSM Voice + WLAN2.4GHz | Yes | Yes | | Yes | | | | | | 2. | GPRS/EDGE + WLAN2.4GHz | Yes | Yes | Yes | Yes | | | | | | 3. | WCDMA + WLAN2.4GHz | Yes | Yes | Yes | Yes | | | | | | 4. | LTE + WLAN2.4GHz | Yes | Yes | Yes | Yes | | | | | | 5. | GSM Voice + Bluetooth | Yes | Yes | | Yes | | | | | | 6. | GPRS/EDGE + Bluetooth | Yes | Yes | Yes | Yes | | | | | | 7. | WCDMA+ Bluetooth | Yes | Yes | Yes | Yes | | | | | | 8. | LTE + Bluetooth | Yes | Yes | Yes | Yes | | | | | | 9. | GSM Voice + WLAN5.3/5.5GHz | Yes | Yes | | Yes | | | | | | 10. | GPRS/EDGE + WLAN5.3/5.5GHz | Yes | Yes | | Yes | | | | | | 11. | WCDMA + WLAN5.3/5.5GHz | Yes | Yes | | Yes | | | | | | 12. | LTE + WLAN5.3/5.5GHz | Yes | Yes | | Yes | | | | | | 13. | GSM Voice + WLAN5.2/5.8GHz | Yes | Yes | | Yes | | | | | | 14. | GPRS/EDGE + WLAN5.2/5.8GHz | Yes | Yes | Yes | Yes | | | | | | 15. | WCDMA + WLAN5.2/5.8GHz | Yes | Yes | Yes | Yes | | | | | | 16. | LTE + WLAN5.2/5.8GHz | Yes | Yes | Yes | Yes | | | | | Report No.: FA9D2305 #### **General Note:** - This device supports VoIP in GPRS, EGPRS, WCDMA and LTE (e.g. for 3rd-party VoIP), and LTE supports VoLTE function. - 2. EUT will choose each GSM, WCDMA and LTE according to the network signal condition; therefore, they will not operate simultaneously at any moment. - 3. WWAN A antenna 1 and WWAN antenna 2 can't transmit simultaneously. - 4. This device WLAN 2.4GHz supports hotspot operation and Bluetooth support tethering applications. - 5. WLAN 2.4GHz and Bluetooth share the same antenna so can't transmit simultaneously. - 6. WLAN 5GHz and Bluetooth can't transmit simultaneously. - 7. This device 2.4GHz WLAN/5.2GHz WLAN/5.8GHz WLAN support hotspot operation, and 5.2GHz WLAN/5.8GHz WLAN supports WiFi Direct (GC/GO), and 5.3GHz / 5.5GHz supports WiFi Direct (GC only). - 8. EUT will choose either WLAN 2.4GHz or WLAN 5GHz according to the network signal condition; therefore, 2.4GHz WLAN and 5GHz WLAN will not operate simultaneously at any moment. - 9. For Bluetooth SAR testing only perform the worst positon of WLAN, so other positon use this SAR value to do co-located with WWAN analysis. - 10. All licensed modes share the same antenna part and cannot transmit simultaneously. - 11. The reported SAR summation is calculated based on the same configuration and test position - 12. Per KDB 447498 D01v06, simultaneous transmission SAR is compliant if, - i) Scalar SAR summation < 1.6W/kg. - ii) SPLSR = (SAR1 + SAR2)^1.5 / (min. separation distance, mm), and the peak separation distance is determined from the square root of [(x1-x2)2 + (y1-y2)2 + (z1-z2)2], where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the extrapolated peak SAR locations in the zoom scan. - iii) If SPLSR ≤ 0.04, simultaneously transmission SAR measurement is not necessary. - iv) Simultaneously transmission SAR measurement, and the reported multi-band SAR < 1.6 W/kg. Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: ZNFQ630EAW Page 49 of 54 Issued Date : Mar. 19, 2020 # 15.1 Head Exposure Conditions | | | | 1 | 2 | 3 | 4 | 1+2
Summed
1g SAR | 1+3 | 1+4 | |---------|----------|----------------------|--------------------------------|----------------|------------------|------------------|-------------------------|------------------|------------------| | 1AWW | N Band | Exposure
Position | WWAN | 2.4GHz
WLAN | 5GHz
WLAN | Bluetooth | | Summed
1g SAR | Summed
1g SAR | | | | 1 conton | 1g SAR 1g SAR
(W/kg) (W/kg) | | 1g SAR
(W/kg) | 1g SAR
(W/kg) | (W/kg) | (W/kg) | (W/kg) | | | | Right Cheek | 0.285 | 0.613 | 0.526 | 0.088 | 0.90 | 0.81 | 0.37 | | | GSM850 | Right Tilted | 0.122 | 0.520 | 0.585 | 0.088 | 0.64 | 0.71 | 0.21 | | | GSIVIOSO | Left Cheek | 0.273 | 0.123 | 0.621 | 0.088 | 0.40 | 0.89 | 0.36 | | GSM | | Left Tilted | 0.128 | 0.181 | 0.703 | 0.088 | 0.31 | 0.83 | 0.22 | | GSIVI | | Right Cheek | 0.265 | 0.613 | 0.526 | 0.088 | 0.88 | 0.79 | 0.35 | | | GSM1900 | Right Tilted | 0.196 | 0.520 | 0.585 | 0.088 | 0.72 | 0.78 | 0.28 | | | GSM1900 | Left Cheek | 0.363 | 0.123 | 0.621 | 0.088 | 0.49 | 0.98 | 0.45 | | | | Left Tilted | 0.196 | 0.181 | 0.703 | 0.088 | 0.38 | 0.90 | 0.28 | | | Band II | Right Cheek | 0.275 | 0.613 | 0.526 | 0.088 | 0.89 | 0.80 | 0.36 | | | | Right Tilted | 0.228 |
0.520 | 0.585 | 0.088 | 0.75 | 0.81 | 0.32 | | | | Left Cheek | 0.434 | 0.123 | 0.621 | 0.088 | 0.56 | 1.06 | 0.52 | | WCDMA | | Left Tilted | 0.207 | 0.181 | 0.703 | 0.088 | 0.39 | 0.91 | 0.30 | | WCDIVIA | Band V | Right Cheek | 0.313 | 0.613 | 0.526 | 0.088 | 0.93 | 0.84 | 0.40 | | | | Right Tilted | 0.140 | 0.520 | 0.585 | 0.088 | 0.66 | 0.73 | 0.23 | | | | Left Cheek | 0.314 | 0.123 | 0.621 | 0.088 | 0.44 | 0.94 | 0.40 | | | | Left Tilted | 0.145 | 0.181 | 0.703 | 0.088 | 0.33 | 0.85 | 0.23 | | | | Right Cheek | 0.300 | 0.613 | 0.526 | 0.088 | 0.91 | 0.83 | 0.39 | | | Band 4 | Right Tilted | 0.201 | 0.520 | 0.585 | 0.088 | 0.72 | 0.79 | 0.29 | | | | Left Cheek | 0.430 | 0.123 | 0.621 | 0.088 | 0.55 | 1.05 | 0.52 | | | | Left Tilted | 0.277 | 0.181 | 0.703 | 0.088 | 0.46 | 0.98 | 0.37 | | | | Right Cheek | 0.267 | 0.613 | 0.526 | 0.088 | 0.88 | 0.79 | 0.36 | | LTE | Dond F | Right Tilted | 0.111 | 0.520 | 0.585 | 0.088 | 0.63 | 0.70 | 0.20 | | LIE | Band 5 | Left Cheek | 0.223 | 0.123 | 0.621 | 0.088 | 0.35 | 0.84 | 0.31 | | | | Left Tilted | 0.126 | 0.181 | 0.703 | 0.088 | 0.31 | 0.83 | 0.21 | | | | Right Cheek | 0.090 | 0.613 | 0.526 | 0.088 | 0.70 | 0.62 | 0.18 | | | Band 41 | Right Tilted | 0.063 | 0.520 | 0.585 | 0.088 | 0.58 | 0.65 | 0.15 | | | Danu 41 | Left Cheek | 0.140 | 0.123 | 0.621 | 0.088 | 0.26 | 0.76 | 0.23 | | | | Left Tilted | 0.095 | 0.181 | 0.703 | 0.088 | 0.28 | 0.80 | 0.18 | Report No.: FA9D2305 Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: ZNFQ630EAW Page 50 of 54 Issued Date : Mar. 19, 2020 # 15.2 Hotspot Exposure Conditions | | | | 1 | 2 | 3 | 4 | 1+2 | 1+3 | 1+4 | |-------|---------|----------------------|------------------|------------------|------------------|------------------|-------------------|------------------|------------------| | MWW. | N Band | Exposure | WWAN | 2.4GHz
WLAN | 5GHz WLAN | Bluetooth | Summed | Summed | Summed | | | | Position | 1g SAR
(W/kg) | | | Front | 0.221 | 0.091 | 0.129 | 0.014 | 0.31 | 0.35 | 0.24 | | | | Back | 0.285 | 0.124 | 0.333 | 0.014 | 0.41 | 0.62 | 0.30 | | | | Left side | 0.219 | 0.094 | 0.041 | 0.014 | 0.31 | 0.26 | 0.23 | | | GSM850 | Right side | 0.283 | | | | 0.28 | 0.28 | 0.28 | | | | Top side | | 0.071 | 0.141 | 0.014 | 0.07 | 0.14 | 0.01 | | | | Bottom side | 0.204 | | | | 0.20 | 0.20 | 0.20 | | GSM | | Front | 0.614 | 0.091 | 0.129 | 0.014 | 0.71 | 0.74 | 0.63 | | | | Back | 0.784 | 0.124 | 0.333 | 0.014 | 0.91 | 1.12 | 0.80 | | | | Left side | 0.532 | 0.094 | 0.041 | 0.014 | 0.63 | 0.57 | 0.55 | | | GSM1900 | Right side | 0.184 | | 515 11 | | 0.18 | 0.18 | 0.18 | | | | Top side | 01.01 | 0.071 | 0.141 | 0.014 | 0.07 | 0.14 | 0.01 | | | | Bottom side | 0.374 | 0.011 | 3.1.1. | 0.011 | 0.37 | 0.37 | 0.37 | | | | Front | 0.730 | 0.091 | 0.129 | 0.014 | 0.82 | 0.86 | 0.74 | | | | Back | 0.806 | 0.124 | 0.333 | 0.014 | 0.93 | 1.15 | 0.83 | | | Band II | Left side | 0.647 | 0.094 | 0.041 | 0.014 | 0.74 | 0.69 | 0.66 | | | | Right side | 0.224 | 0.004 | 0.041 | 0.014 | 0.22 | 0.22 | 0.22 | | | | Top side | U.ZZ- | 0.071 | 0.141 | 0.014 | 0.07 | 0.14 | 0.01 | | | | Bottom side | 0.487 | 0.071 | 0.141 | 0.014 | 0.49 | 0.49 | 0.49 | | WCDMA | | Front | 0.252 | 0.091 | 0.129 | 0.014 | 0.43 | 0.38 | 0.43 | | | Band V | Back | 0.232 | 0.124 | 0.333 | 0.014 | 0.49 | 0.70 | 0.27 | | | | Left side | 0.202 | 0.094 | 0.041 | 0.014 | 0.49 | 0.70 | 0.30 | | | | Right side | 0.202 | 0.094 | 0.041 | 0.014 | 0.30 | 0.24 | 0.22 | | | | Top side | 0.324 | 0.071 | 0.141 | 0.014 | 0.07 | 0.32 | 0.01 | | | | Bottom side | 0.238 | 0.071 | 0.141 | 0.014 | 0.07 | 0.14 | 0.01 | | | | Front | 0.238 | 0.091 | 0.129 | 0.014 | 0.24 | 0.24 | 0.59 | | | Band 4 | | 0.630 | 0.091 | 0.129 | 0.014 | 0.07 | 0.71 | 0.64 | | | | Back
Left side | 0.684 | 0.124 | 0.333 | 0.014 | 0.78 | 0.90 | 0.70 | | | | Right side | 0.259 | 0.094 | 0.041 | 0.014 | 0.76 | 0.73 | 0.76 | | | | Top side | 0.259 | 0.071 | 0.141 | 0.014 | 0.20 | 0.26 | 0.20 | | | | | 0.461 | 0.071 | 0.141 | 0.014 | | | | | | | Bottom side
Front | 0.461 | 0.091 | 0.129 | 0.014 | 0.46 | 0.46
0.37 | 0.46
0.25 | | | | Back | 0.239 | 0.091 | 0.129 | 0.014 | 0.33 | | 0.25 | | | | | 0.347 | 0.124 | 0.333 | 0.014 | 0.47 | 0.68
0.21 | 0.36 | | LTE | Band 5 | Left side | | 0.094 | 0.041 | 0.014 | | | | | | | Right side Top side | 0.190 | 0.071 | 0.141 | 0.014 | 0.19
0.07 | 0.19
0.14 | 0.19 | | | | <u> </u> | 0.102 | 0.071 | 0.141 | 0.014 | | | | | | | Bottom side | 0.183 | 0.004 | 0.120 | 0.014 | 0.18 | 0.18 | 0.18 | | | | Front | 0.431 | 0.091 | 0.129 | 0.014 | 0.52 | 0.56 | 0.45 | | | | Back | 0.409 | 0.124 | 0.333 | 0.014 | 0.53 | 0.74 | 0.42 | | | Band 41 | Left side | 0.102 | 0.094 | 0.041 | 0.014 | 0.20 | 0.14 | 0.12 | | | | Right side | | 0.074 | 0.444 | 0.044 | 0.07 | 0.44 | 0.04 | | | | Top side | 4.040 | 0.071 | 0.141 | 0.014 | 0.07 | 0.14 | 0.01 | | | | Bottom side | 1.010 | | | | <mark>1.01</mark> | 1.01 | 1.01 | Report No.: FA9D2305 Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: ZNFQ630EAW Page 51 of 54 Issued Date : Mar. 19, 2020 # 15.3 Body-Worn Accessory Exposure Conditions | | | | 1 | 2 | 3 | 4 | 1+2 | 1+3 | 1+4 | |-----------|----------|----------------------|------------------|------------------|------------------|------------------|------------------|----------------------------|------------------| | WWAN Band | | Exposure
Position | WWAN | 2.4GHz
WLAN | 5GHz WLAN | Bluetooth | Summed
1g SAR | Summed
1g SAR
(W/kg) | Summed
1g SAR | | | | 1 03/11011 | 1g SAR
(W/kg) | 1g SAR
(W/kg) | 1g SAR
(W/kg) | 1g SAR
(W/kg) | (W/kg) | | (W/kg) | | | GSM850 | Front | 0.221 | 0.091 | 0.129 | 0.014 | 0.31 | 0.35 | 0.24 | | GSM | GSIVI650 | Back | 0.285 | 0.124 | 0.333 | 0.014 | 0.41 | 0.62 | 0.30 | | GSIVI | GSM1900 | Front | 0.614 | 0.091 | 0.129 | 0.014 | 0.71 | 0.74 | 0.63 | | | GSW1900 | Back | 0.784 | 0.124 | 0.333 | 0.014 | 0.91 | 1.12 | 0.80 | | | Band II | Front | 0.730 | 0.091 | 0.129 | 0.014 | 0.82 | 0.86 | 0.74 | | WCDMA | Danu II | Back | 0.806 | 0.124 | 0.333 | 0.014 | 0.93 | 1.15 | 0.83 | | VVCDIVIA | Band V | Front | 0.252 | 0.091 | 0.129 | 0.014 | 0.34 | 0.38 | 0.27 | | | | Back | 0.370 | 0.124 | 0.333 | 0.014 | 0.49 | 0.70 | 0.38 | | | Band 4 | Front | 0.579 | 0.091 | 0.129 | 0.014 | 0.67 | 0.71 | 0.59 | | | Danu 4 | Back | 0.630 | 0.124 | 0.333 | 0.014 | 0.75 | 0.96 | 0.64 | | LTE | Band 5 | Front | 0.239 | 0.091 | 0.129 | 0.014 | 0.33 | 0.37 | 0.25 | | LIE | Dailú 5 | Back | 0.347 | 0.124 | 0.333 | 0.014 | 0.47 | 0.68 | 0.36 | | | Band 41 | Front | 0.431 | 0.091 | 0.129 | 0.014 | 0.52 | 0.56 | 0.45 | | | Danu 41 | Back | 0.409 | 0.124 | 0.333 | 0.014 | 0.53 | 0.74 | 0.42 | Report No. : FA9D2305 Test Engineer: Nick Hu, Yuan Zhao, Jiaxing Chang, Yuankai Kong Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: ZNFQ630EAW Page 52 of 54 Issued Date : Mar. 19, 2020 # 16. <u>Uncertainty Assessment</u> Per KDB 865664 D01 SAR measurement 100MHz to 6GHz, when the highest measured 1-g SAR within a frequency band is < 3.75 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg. The expanded SAR measurement uncertainty must be $\leq 30\%$, for a confidence interval of k = 2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. For this device, the highest measured 1-g SAR is less 1.5W/kg and highest measured 10-g SAR is less 3.75W/kg. Therefore, the measurement uncertainty table is not required in this report. Report No.: FA9D2305 Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: ZNFQ630EAW Page 53 of 54 Issued Date : Mar. 19, 2020 # 17. References [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations" Report No.: FA9D2305 - [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992 - [3] IEEE Std. 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", Sep 2013 - [4] SPEAG DASY System Handbook - [5] FCC KDB 865664 D01 v01r04, "SAR Measurement Requirements for 100 MHz to 6 GHz", Aug 2015. - [6] FCC KDB 865664 D02 v01r02, "RF Exposure Compliance Reporting and Documentation Considerations" Oct 2015. - [7] FCC KDB 248227 D01 v02r02, "SAR Guidance for IEEE 802.11 (WiFi) Transmitters", Oct 2015. - [8] FCC KDB 447498 D01 v06, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Oct 2015 - [9] FCC KDB 648474 D04 v01r03, "SAR Evaluation Considerations for Wireless Handsets", Oct 2015. - [10] FCC KDB 941225 D01 v03r01, "3G SAR MEAUREMENT PROCEDURES", Oct 2015 - [11] FCC KDB 941225 D05 v02r05, "SAR Evaluation Considerations for LTE Devices", Dec 2015 - [12] FCC KDB 941225 D05A v01r02, "Rel. 10 LTE SAR Test Guidance and KDB Inquiries", Oct 2015 - [13] FCC KDB 941225 D06 v02r01, "SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities", Oct 2015. ----THE END----- Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: ZNFQ630EAW Page 54 of 54 Issued Date : Mar. 19, 2020 # Appendix A. Plots of System Performance Check Report No.: FA9D2305 The plots are shown as follows. Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID : ZNFQ630EAW
Page A1 of A1 Issued Date : Mar. 19, 2020 #### System Check Head 835MHz #### **DUT: D835V2 - SN:4d151** Communication System: UID 0, CW (0); Frequency: 835 MHz; Duty Cycle: 1:1 Medium: HSL_850 Medium parameters used: f = 835 MHz; $\sigma = 0.921$ S/m; $\epsilon_r = 41.32$; $\rho = 1000$ kg/m^3 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.7 °C #### DASY5 Configuration: - Probe: ES3DV3 SN3279; ConvF(6.38, 6.38, 6.38); Calibrated: 2019.3.4 - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn871; Calibrated: 2019.6.27 - Phantom: SAM1; Type: SAM; Serial: TP-1753 - Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.11 (7439) **Pin=250mW/Area Scan (61x61x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 3.38 W/kg **Pin=250mW/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 61.15 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 3.93 W/kg SAR(1 g) = 2.52 W/kg; SAR(10 g) = 1.64 W/kg Maximum value of SAR (measured) = 3.44 W/kg 0 dB = 3.44 W/kg = 5.37 dBW/kg ### System Check_Head_1750MHz #### **DUT: D1750V2 - SN:1090** Communication System: UID 0, CW (0); Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: HSL_1750 Medium parameters used: f = 1750 MHz; $\sigma = 1.343$ S/m; $\varepsilon_r = 38.538$; $\rho = 1000$ Date: 2020.2.15 kg/m^3 Ambient Temperature: 23.2 °C; Liquid Temperature: 22.6 °C #### DASY5 Configuration: - Probe: ES3DV3 SN3293; ConvF(5.53, 5.53, 5.53); Calibrated: 2019.11.25 - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1338; Calibrated: 2019.11.20 - Phantom: SAM2; Type: SAM; Serial: TP-1503 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Pin=250mW/Area Scan (61x61x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 11.0 W/kg **Pin=250mW/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 92.55 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 14.4 W/kg SAR(1 g) = 8.5 W/kg; SAR(10 g) = 4.66 W/kgMaximum value of SAR (measured) = 10.4 W/kg 0 dB = 10.4 W/kg = 10.17 dBW/kg # System Check_Head_1900MHz #### **DUT: D1900V2 - SN:5d170** Communication System: UID 0, CW (0); Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL_1900 Medium parameters used: f = 1900 MHz; $\sigma = 1.39$ S/m; $\varepsilon_r = 40.639$; $\rho = 1000$ Date: 2020.2.18 kg/m^3 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.7 °C # DASY5 Configuration: - Probe: ES3DV3 SN3293; ConvF(5.32, 5.32, 5.32); Calibrated: 2019.11.25 - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1338; Calibrated: 2019.11.20 - Phantom: SAM2; Type: SAM; Serial: TP-1503 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Pin=250mW/Area Scan (61x61x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 13.1 W/kg **Pin=250mW/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 98.02 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 18.1 W/kg SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.3 W/kg Maximum value of SAR (measured) = 12.6 W/kg 0 dB = 12.6 W/kg = 11.00 dBW/kg -5.03 -10.07 -15.10 -20.14 -25.17 # System Check_Head_2450MHz #### **DUT: D2450V2 - SN:908** Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL_2450 Medium parameters used: f = 2450 MHz; σ = 1.79 S/m; ϵ_r = 40.694; ρ = 1000 kg/m³ Ambient Temperature: 23.3 °C; Liquid Temperature: 22.7 °C # DASY5 Configuration: - Probe: ES3DV3 SN3279; ConvF(4.77, 4.77, 4.77); Calibrated: 2019.3.4 - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn871; Calibrated: 2019.6.27 - Phantom: SAM1; Type: SAM; Serial: TP-1839 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Pin=250mW/Area Scan (81x81x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 18.1 W/kg **Pin=250mW/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 71.10 V/m; Power Drift = 0.19 dB Peak SAR (extrapolated) = 24.0 W/kg SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.26 W/kgMaximum value of SAR (measured) = 17.8 W/kg 0 dB = 18.1 W/kg = 12.58 dBW/kg #### System Check Head 2600MHz #### **DUT: D2600V2 - SN:1078** Communication System: UID 0, CW (0); Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: HSL_2600 Medium parameters used: f = 2600 MHz; $\sigma = 2.049$ S/m; $\epsilon_r = 40.127$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.1 °C; Liquid Temperature: 22.9 °C #### DASY5 Configuration: - Probe: ES3DV3 SN3279; ConvF(4.58, 4.58, 4.58); Calibrated: 2019.3.4 - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn871; Calibrated: 2019.6.27 - Phantom: SAM2; Type: SAM; Serial: TP-1754 - Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.11 (7439) **Pin=250mW/Area Scan (71x71x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 24.4 W/kg **Pin=250mW/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 72.80 V/m; Power Drift = 0.15 dB Peak SAR (extrapolated) = 32.7 W/kg SAR(1 g) = 14.9 W/kg; SAR(10 g) = 6.59 W/kgMaximum value of SAR (measured) = 23.6 W/kg 0 dB = 23.6 W/kg = 13.73 dBW/kg ### System Check Head 5250MHz #### **DUT: D5GHzV2 - SN:1113** Communication System: UID 0, CW (0); Frequency: 5250 MHz; Duty Cycle: 1:1 Medium: HSL_5000 Medium parameters used: f = 5250 MHz; $\sigma = 4.601$ S/m; $\epsilon_r = 36.381$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3 °C; Liquid Temperature: 22.9 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(5.19, 5.19, 5.19); Calibrated: 2019.5.27 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2019.7.23 - Phantom: SAM1; Type: SAM; Serial: TP-1697 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Pin=100mW/Area Scan (71x71x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 20.8 W/kg Pin=100mW/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 46.53 V/m; Power Drift = 0.14 dB Peak SAR (extrapolated) = 32.0 W/kg SAR(1 g) = 8.77 W/kg; SAR(10 g) = 2.34 W/kgMaximum value of SAR (measured) = 19.6 W/kg 0 dB = 20.8 W/kg = 13.18 dBW/kg #### System Check Head 5600MHz #### **DUT: D5GHzV2 - SN:1113** Communication System: UID 0, CW (0); Frequency: 5600 MHz; Duty Cycle: 1:1 Medium: HSL 5000 Medium parameters used: f = 5600 MHz; $\sigma = 4.99$ S/m; $\varepsilon_r = 35.802$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.3 °C; Liquid Temperature : 22.9 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(4.92, 4.92, 4.92); Calibrated: 2019.5.27 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2019.7.23 - Phantom: SAM1; Type: SAM; Serial: TP-1697 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) Pin=100mW/Area Scan (71x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 21.2 W/kg Pin=100mW/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 43.32 V/m; Power Drift = 0.17 dB Peak SAR (extrapolated) = 34.1 W/kg SAR(1 g) = 8.53 W/kg; SAR(10 g) = 2.45 W/kgMaximum value of SAR (measured) = 19.8 W/kg ### System Check Head 5750MHz #### **DUT: D5GHzV2 - SN:1113** Communication System: UID 0, CW (0); Frequency: 5750 MHz; Duty Cycle: 1:1 Medium: HSL 5000 Medium parameters used: f = 5750 MHz; $\sigma = 5.167$ S/m; $\varepsilon_r = 35.547$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.3 °C; Liquid Temperature : 22.9 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(5.17, 5.17, 5.17); Calibrated: 2019.5.27 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2019.7.23 - Phantom: SAM1; Type: SAM; Serial: TP-1697 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) Pin=100mW/Area Scan (71x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 19.7 W/kg Pin=100mW/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 40.41 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 33.4 W/kg SAR(1 g) = 8.12 W/kg; SAR(10 g) = 2.34 W/kgMaximum value of SAR (measured) = 19.2 W/kg #### Plots of High SAR Measurement Appendix B. Report No.: FA9D2305 The plots are shown as follows. Sporton International (Kunshan) Inc. Report Version: Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: 181113 Issued Date: Mar. 19, 2020 FCC ID: ZNFQ630EAW Page B1 of B1 # 01_GSM850_GPRS 4 Tx slots_Rightt Cheek_0mm_C189 Communication System: UID 0, GSM850-4UP (0); Frequency: 836.4 MHz; Duty Cycle: 1:2.08 Medium: HSL_850 Medium parameters used: f = 836.4 MHz; $\sigma = 0.923$ S/m; $\epsilon_r = 41.305$; $\rho = 1000$ kg/m³ Date: 2020.2.19 Ambient Temperature: 23.2 °C; Liquid Temperature: 22.7 °C # DASY5 Configuration: - Probe: ES3DV3 SN3279; ConvF(6.38, 6.38, 6.38); Calibrated: 2019.3.4 - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn871; Calibrated: 2019.6.27 - Phantom: SAM1; Type: SAM; Serial: TP-1753 - Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.11 (7439) **Ch189/Area Scan (71x81x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.283 W/kg Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.657 V/m; Power Drift = -0.1 dB Peak SAR (extrapolated) = 0.318 W/kg SAR(1 g) = 0.257 W/kg; SAR(10 g) = 0.198 W/kg Maximum value of SAR (measured) = 0.283 W/kg # 02_GSM1900_GPRS 4 Tx slots_Left Cheek_0mm_Ch810 Communication System: UID 0, PCS-4UP (0); Frequency: 1909.8 MHz; Duty Cycle: 1:2.08 Medium: HSL_1900 Medium parameters used: f = 1909.8 MHz; $\sigma = 1.4$ S/m; $\epsilon_r = 40.6$; $\rho =
1000$ kg/m³ Date: 2020.2.18 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.7 °C # DASY5 Configuration: - Probe: ES3DV3 SN3293; ConvF(5.32, 5.32, 5.32); Calibrated: 2019.11.25 - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1338; Calibrated: 2019.11.20 - Phantom: SAM2; Type: SAM; Serial: TP-1503 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) Ch1900/Area Scan (71x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.372 W/kg Ch1900/Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.769 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 0.485 W/kg SAR(1 g) = 0.316 W/kg; SAR(10 g) = 0.197 W/kg Maximum value of SAR (measured) = 0.363 W/kg 0 dB = 0.363 W/kg = -4.40 dBW/kg ### 03 WCDMA Band II RMC 12.2Kbps Left Cheek 0mm Ch9538 Communication System: UID 0, WCDMA (0); Frequency: 1907.6 MHz; Duty Cycle: 1:1 Medium: HSL_1900 Medium parameters used: f = 1907.6 MHz; $\sigma = 1.398$ S/m; $\epsilon_r = 40.609$; $\rho = 1000$ kg/m³ Date: 2020.2.18 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.7 °C #### DASY5 Configuration: - Probe: ES3DV3 SN3293; ConvF(5.32, 5.32, 5.32); Calibrated: 2019.11.25 - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1338; Calibrated: 2019.11.20 - Phantom: SAM2; Type: SAM; Serial: TP-1503 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) Ch9538/Area Scan (71x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mmMaximum value of SAR (interpolated) = 0.449 W/kg Ch9538/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.722 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 0.600 W/kg SAR(1 g) = 0.383 W/kg; SAR(10 g) = 0.235 W/kg Maximum value of SAR (measured) = 0.441 W/kg 0 dB = 0.441 W/kg = -3.56 dBW/kg # 04_WCDMA Band V_RMC12.2Kbps_Left Cheek_0mm_Ch4233 Communication System: UID 0, WCDMA (0); Frequency: 846.6 MHz; Duty Cycle: 1:1 Medium: HSL_850 Medium parameters used: f = 846.6 MHz; $\sigma = 0.932$ S/m; $\epsilon_r = 41.199$; $\rho = 1000_{kg/m}^3$ Date: 2020.2.19 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.7 °C #### DASY5 Configuration: - Probe: ES3DV3 SN3279; ConvF(6.38, 6.38, 6.38); Calibrated: 2019.3.4 - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn871; Calibrated: 2019.6.27 - Phantom: SAM1; Type: SAM; Serial: TP-1753 - Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.11 (7439) **Ch4233/Area Scan (71x81x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.283 W/kg Ch4233/Zoom Scan (6x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.931 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 0.327 W/kg SAR(1 g) = 0.264 W/kg; SAR(10 g) = 0.201 W/kg Maximum value of SAR (measured) = 0.287 W/kg 0 dB = 0.287 W/kg = -5.42 dBW/kg # 05_LTE Band 5_10M_QPSK_1RB_25Offset_Right Cheek_0mm_Ch20525 Communication System: UID 0, LTE-FDD (0); Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: HSL_850 Medium parameters used: f = 836.5 MHz; $\sigma = 0.923$ S/m; $\epsilon_r = 41.305$; $\rho = 1000$ kg/m³ Date: 2020.2.19 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.7 °C # DASY5 Configuration: - Probe: ES3DV3 SN3279; ConvF(6.38, 6.38, 6.38); Calibrated: 2019.3.4 - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn871; Calibrated: 2019.6.27 - Phantom: SAM1; Type: SAM; Serial: TP-1753 - Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.11 (7439) Ch20525/Area Scan (71x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.243 W/kg Ch20525/Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.522 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.280 W/kg SAR(1 g) = 0.227 W/kg; SAR(10 g) = 0.174 W/kg Maximum value of SAR (measured) = 0.245 W/kg # 06_LTE Band 4_20M_QPSK_1RB_49Offset_Left Cheek_0mm_Ch20175 Communication System: UID 0, LTE-FDD (0); Frequency: 1732.5 MHz; Duty Cycle: 1:1 Medium: HSL_1750 Medium parameters used: f = 1733 MHz; $\sigma = 1.326$ S/m; $\epsilon_r = 38.619$; $\rho = 1000$ Date: 2020.2.15 kg/m³ Ambient Temperature: 23.2 °C; Liquid Temperature: 22.6 °C # DASY5 Configuration: - Probe: ES3DV3 SN3293; ConvF(5.53, 5.53, 5.53); Calibrated: 2019.11.25 - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1338; Calibrated: 2019.11.20 - Phantom: SAM2; Type: SAM; Serial: TP-1503 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Ch20175/Area Scan (71x81x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.428 W/kg Ch20175/Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.534 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 0.563 W/kg SAR(1 g) = 0.382 W/kg; SAR(10 g) = 0.249 W/kg Maximum value of SAR (measured) = 0.426 W/kg 0 dB = 0.426 W/kg = -3.71 dBW/kg ### 07 LTE Band 41 20M QPSK 1RB 49Offset Left Cheek 0mm Ch40140 Communication System: UID 0, LTE-TDD (0); Frequency: 2545 MHz; Duty Cycle: 1:1.59 Medium: HSL_2600 Medium parameters used: f = 2545 MHz; $\sigma = 1.982$ S/m; $\epsilon_r = 40.35$; $\rho = 1000$ kg/m³ Date: 2020.2.22 Ambient Temperature : 23.1 °C; Liquid Temperature : 22.9 °C # DASY5 Configuration: - Probe: ES3DV3 SN3279; ConvF(4.58, 4.58, 4.58); Calibrated: 2019.3.4 - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn871; Calibrated: 2019.6.27 - Phantom: SAM2; Type: SAM; Serial: TP-1754 - Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.11 (7439) **Ch40140/Area Scan (91x91x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.159 W/kg Ch40140/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.752 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 0.212 W/kg SAR(1 g) = 0.116 W/kg; SAR(10 g) = 0.060 W/kg Maximum value of SAR (measured) = 0.146 W/kg 0 dB = 0.146 W/kg = -8.36 dBW/kg # 08 WLAN2.4GHz 802.11b 1Mbps Right Cheek 0mm Ch11 Communication System: UID 0, 802.11b (0); Frequency: 2462 MHz; Duty Cycle: 1:1 Medium: HSL_2450 Medium parameters used: f = 2462 MHz; $\sigma = 1.868$ S/m; $\epsilon_r = 38.411$; $\rho = 1000$ kg/m³ Date: 2020.2.4 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.7 °C # DASY5 Configuration: - Probe: ES3DV3 SN3279; ConvF(4.77, 4.77, 4.77); Calibrated: 2019.3.4 - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn871; Calibrated: 2019.6.27 - Phantom: SAM1; Type: SAM; Serial: TP-1839 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Ch11/Area Scan (101x91x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.773 W/kg Ch11/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 11.36 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 1.18 W/kg SAR(1 g) = 0.533 W/kg; SAR(10 g) = 0.248 W/kg Maximum value of SAR (measured) = 0.693 W/kg 0 dB = 0.773 W/kg = -1.12 dBW/kg ### 09 WLAN5.3GHz_802.11a 6Mbps Right Cheek 0mm Ch64 Communication System: UID 0, 802.11a (0); Frequency: 5320 MHz; Duty Cycle: 1:1.032 Medium: HSL_5000 Medium parameters used: f = 5320 MHz; $\sigma = 4.678$ S/m; $\epsilon_r = 36.276$; $\rho = 1000$ kg/m³ Date: 2020.2.25 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.9 °C ## DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(5.19, 5.19, 5.19); Calibrated: 2019.5.27 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2019.7.23 - Phantom: SAM1; Type: SAM; Serial: TP-1697 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Ch64/Area Scan (101x91x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.09 W/kg Ch64/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 16.48 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 1.95 W/kg SAR(1 g) = 0.464 W/kg; SAR(10 g) = 0.150 W/kg SAR(1 g) = 0.464 W/kg; SAR(10 g) = 0.150 W/kgMaximum value of SAR (measured) = 1.12 W/kg 0 dB = 1.09 W/kg = 0.37 dBW/kg ### 10 WLAN5.5GHz 802.11a 6Mbps Left Tilted 0mm Ch100 Communication System: UID 0, 802.11a (0); Frequency: 5500 MHz; Duty Cycle: 1:1.032 Medium: HSL_5000 Medium parameters used: f = 5500 MHz; $\sigma = 4.873$ S/m; $\epsilon_r = 35.974$; $\rho = 1000$ kg/m³ Date: 2020.2.26 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.9 °C ## DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(4.92, 4.92, 4.92); Calibrated: 2019.5.27 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2019.7.23 - Phantom: SAM1; Type: SAM; Serial: TP-1697 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Ch100/Area Scan (101x91x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.46 W/kg Ch100/Zoom Scan (9x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 17.86 V/m; Power Drift = -0.15 dB Peak SAR (extrapolated) = 2.26 W/kg SAR(1 g) = 0.643 W/kg; SAR(10 g) = 0.220 W/kg SAR(1 g) = 0.643 W/kg; SAR(10 g) = 0.220 W/k Maximum value of SAR (measured) = 1.46 W/kg 0 dB = 1.46 W/kg = 1.64 dBW/kg ## 11_WLAN5.8GHz_802.11a 6Mbps_Left Tilted_0mm_Ch149 Communication System: UID 0, 802.11a (0); Frequency: 5745 MHz; Duty Cycle: 1:1.032 Medium: HSL_5000 Medium parameters used (interpolated): f = 5745 MHz; $\sigma = 5.16$ S/m; $\varepsilon_r = 35.56$; $\rho = 1000$ kg/m³ Date: 2020.2.26 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.9 °C ## DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(5.17, 5.17, 5.17); Calibrated: 2019.5.27 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2019.7.23 - Phantom: SAM1; Type: SAM; Serial: TP-1697 - Measurement SW: DASY52, Version 52.10 (1);
SEMCAD X Version 14.6.11 (7439) **Ch149/Area Scan (101x91x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.41 W/kg Ch149/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 16.57 V/m; Power Drift = -0.12 dB Peak SAR (extrapolated) = 2.29 W/kg SAR(1 g) = 0.610 W/kg; SAR(10 g) = 0.215 W/kg Maximum value of SAR (measured) = 1.42 W/kg 0 dB = 1.41 W/kg = 1.49 dBW/kg # 12_Bluetooth_1Mbps_Right Cheek_0mm_Ch39 Communication System: UID 0, Bluetooth (0); Frequency: 2441 MHz; Duty Cycle: 1:1.298 Medium: HSL_2450 Medium parameters used: f = 2441 MHz; $\sigma = 1.842$ S/m; $\epsilon_r = 38.477$; $\rho = 1000$ kg/m³ Date: 2020.2.4 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.7 °C ## DASY5 Configuration: - Probe: ES3DV3 SN3279; ConvF(4.77, 4.77, 4.77); Calibrated: 2019.3.4 - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn871; Calibrated: 2019.6.27 - Phantom: SAM1; Type: SAM; Serial: TP-1839 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Ch39/Area Scan (101x91x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.106 W/kg Ch39/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.253 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 0.179 W/kg SAR(1 g) = 0.081 W/kg; SAR(10 g) = 0.037 W/kg Maximum value of SAR (measured) = 0.106 W/kg 0 dB = 0.106 W/kg = -9.75 dBW/kg # 13_GSM850_GPRS 4 Tx slots_Back_10mm_Ch189 Communication System: UID 0, GSM850-4UP (0); Frequency: 836.4 MHz; Duty Cycle: 1:2.08 Medium: HSL_850 Medium parameters used: f = 836.4 MHz; $\sigma = 0.923$ S/m; $\epsilon_r = 41.305$; $\rho = 1000$ kg/m³ Date: 2020.2.19 Ambient Temperature : 23.3 °C; Liquid Temperature : 22.7 ### DASY5 Configuration: - Probe: ES3DV3 SN3279; ConvF(6.38, 6.38, 6.38); Calibrated: 2019.3.4 - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn871; Calibrated: 2019.6.27 - Phantom: SAM1; Type: SAM; Serial: TP-1753 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) Ch189/Area Scan (71x141x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.314 W/kg Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 17.81 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.420 W/kg SAR(1 g) = 0.257 W/kg; SAR(10 g) = 0.157 W/kg Maximum value of SAR (measured) = 0.307 W/kg # 14_GSM1900_GPRS 4 Tx slots_Back_10mm_Ch810 Communication System: UID 0, PCS-4UP (0); Frequency: 1909.8 MHz; Duty Cycle: 1:2.08 Medium: HSL_1900 Medium parameters used: f = 1909.8 MHz; σ = 1.4 S/m; ϵ_r = 40.6; ρ = 1000 kg/m³ Date: 2020.2.18 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.7 °C # DASY5 Configuration: - Probe: ES3DV3 SN3293; ConvF(5.32, 5.32, 5.32); Calibrated: 2019.11.25 - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1338; Calibrated: 2019.11.20 - Phantom: SAM2; Type: SAM; Serial: TP-1503 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Ch810/Area Scan (81x81x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.809 W/kg Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 14.55 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 1.23 W/kg SAR(1 g) = 0.683 W/kg; SAR(10 g) = 0.377 W/kg Maximum value of SAR (measured) = 0.843 W/kg # 15_WCDMA Band II_RMC 12.2Kbps_Back_10mm_Ch9538 Communication System: UID 0, WCDMA (0); Frequency: 1907.6 MHz; Duty Cycle: 1:1 Medium: HSL_1900 Medium parameters used: f = 1907.6 MHz; $\sigma = 1.398$ S/m; $\varepsilon_r = 40.609$; $\rho = 1000$ kg/m³ Date: 2020.2.18 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.7 °C ### DASY5 Configuration: - Probe: ES3DV3 SN3293; ConvF(5.32, 5.32, 5.32); Calibrated: 2019.11.25 - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1338; Calibrated: 2019.11.20 - Phantom: SAM2; Type: SAM; Serial: TP-1503 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Ch9538/Area Scan (71x81x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.888 W/kg Ch9538/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 15.28 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 1.28 W/kg SAR(1 g) = 0.712 W/kg; SAR(10 g) = 0.400 W/kg Maximum value of SAR (measured) = 0.881 W/kg ### 16 WCDMA Band V RMC12.2Kbps Back 10mm Ch4233 Communication System: UID 0, WCDMA (0); Frequency: 846.6 MHz; Duty Cycle: 1:1 Medium: HSL_850 Medium parameters used: f = 847 MHz; $\sigma = 0.932$ S/m; $\epsilon_r = 41.199$; $\rho = 1000$ kg/m³ Date: 2020.2.19 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.7 °C ### DASY5 Configuration: - Probe: ES3DV3 SN3279; ConvF(6.38, 6.38, 6.38); Calibrated: 2019.3.4 - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn871; Calibrated: 2019.6.27 - Phantom: SAM1; Type: SAM; Serial: TP-1753 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Ch4233/Area Scan (71x141x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.384 W/kg Ch4233/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 17.40 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.520 W/kg SAR(1 g) = 0.311 W/kg; SAR(10 g) = 0.189 W/kg Maximum value of SAR (measured) = 0.374 W/kg 0 dB = 0.374 W/kg = -4.27 dBW/kg ### 17 LTE Band 5 10M QPSK 1RB 25Offset Back 10mm Ch20525 Communication System: UID 0, LTE-FDD (0); Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: HSL_850 Medium parameters used: f = 836.5 MHz; $\sigma = 0.923$ S/m; $\epsilon_r = 41.305$; $\rho = 1000$ kg/m³ Date: 2020.2.19 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.7 °C # DASY5 Configuration: - Probe: ES3DV3 SN3279; ConvF(6.38, 6.38, 6.38); Calibrated: 2019.3.4 - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn871; Calibrated: 2019.6.27 - Phantom: SAM1; Type: SAM; Serial: TP-1753 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) Ch20525/Area Scan (81x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.344 W/kg Ch20525/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 16.76 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 0.500 W/kg SAR(1 g) = 0.295 W/kg; SAR(10 g) = 0.176 W/kg Maximum value of SAR (measured) = 0.348 W/kg ### 18 LTE Band 4 20M QPSK 1RB 49Offset Left Side 10mm Ch20175 Communication System: UID 0, LTE-FDD (0); Frequency: 1732.5 MHz; Duty Cycle: 1:1 Medium: HSL_1750 Medium parameters used: f = 1732.5 MHz; $\sigma = 1.326$ S/m; $\epsilon_r = 38.619$; $\rho = 1000_{kg/m}^3$ Date: 2020.2.15 Ambient Temperature: 23.2 °C; Liquid Temperature: 22.6 °C ### DASY5 Configuration: - Probe: ES3DV3 SN3293; ConvF(5.53, 5.53, 5.53); Calibrated: 2019.11.25 - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1338; Calibrated: 2019.11.20 - Phantom: SAM2; Type: SAM; Serial: TP-1503 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Ch20175/Area Scan (41x91x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.743 W/kg Ch20175/Zoom Scan (5x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 14.85 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 0.977 W/kg SAR(1 g) = 0.608 W/kg; SAR(10 g) = 0.367 W/kg Maximum value of SAR (measured) = 0.730 W/kg # 19_LTE Band 41_20M_QPSK_1RB_49Offset_Bottom Side_10mm_Ch40670 Communication System: UID 0, LTE-TDD (0); Frequency: 2598 MHz; Duty Cycle: 1:1.59 Medium: HSL_2600 Medium parameters used: f = 2598 MHz; $\sigma = 2.046$ S/m; $\epsilon_r = 40.135$; $\rho = 1000$ kg/m³ Date: 2020.2.22 Ambient Temperature: 23.1 °C; Liquid Temperature: 22.9 °C # DASY5 Configuration: - Probe: ES3DV3 SN3279; ConvF(4.58, 4.58, 4.58); Calibrated: 2019.3.4 - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn871; Calibrated: 2019.6.27 - Phantom: SAM2; Type: SAM; Serial: TP-1754 - Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.11 (7439) **Ch40670/Area Scan (51x101x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 1.17 W/kg Ch40670/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 14.32 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 1.72 W/kg SAR(1 g) = 0.833 W/kg; SAR(10 g) = 0.371 W/kg Maximum value of SAR (measured) = 1.10 W/kg 0 dB = 1.10 W/kg = 0.41 dBW/kg # 20_WLAN2.4GHz_802.11b 1Mbps_Back_10mm_Ch11 Communication System: UID 0, 802.11b (0); Frequency: 2462 MHz; Duty Cycle: 1:1 Medium: HSL_2450 Medium parameters used: f = 2462 MHz; $\sigma = 1.868$ S/m; $\epsilon_r = 38.411$; $\rho = 1000$ kg/m³ Date: 2020.2.4 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.7 °C ## DASY5 Configuration: - Probe: ES3DV3 SN3279; ConvF(4.77, 4.77, 4.77); Calibrated: 2019.3.4 - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn871; Calibrated: 2019.6.27 - Phantom: SAM1; Type: SAM; Serial: TP-1839 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Ch11/Area Scan (101x91x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.151 W/kg Ch11/Zoom Scan (7x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.399 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.270 W/kg SAR(1 g) = 0.108 W/kg; SAR(10 g) = 0.051 W/kg Maximum value of SAR (measured) = 0.142 W/kg 0 dB = 0.151 W/kg = -8.21 dBW/kg ### 21 WLAN5.2GHz 802.11a 6Mbps Top Side 10mm Ch48 Communication System: UID 0, 802.11a (0); Frequency: 5240 MHz; Duty Cycle: 1:1.032 Medium: HSL_5000 Medium parameters used: f = 5240 MHz; $\sigma = 4.586$ S/m;
$\epsilon_r = 36.401$; $\rho = 1000$ kg/m³ Date: 2020.2.25 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.9 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(5.19, 5.19, 5.19); Calibrated: 2019.5.27 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2019.7.23 - Phantom: SAM1; Type: SAM; Serial: TP-1697 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Ch48/Area Scan (51x91x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.212 W/kg Ch48/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 6.970 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 0.397 W/kg SAR(1 g) = 0.090 W/kg; SAR(10 g) = 0.031 W/kg Maximum value of SAR (measured) = 0.218 W/kg 0 dB = 0.212 W/kg = -6.74 dBW/kg ### 22 WLAN5.8GHz 802.11a 6Mbps Back 10mm Ch149 Communication System: UID 0, 802.11a (0); Frequency: 5745 MHz; Duty Cycle: 1:1.032 Medium: HSL_5000 Medium parameters used: f = 5745 MHz; σ = 5.16 S/m; ϵ_r = 35.56; ρ = 1000 kg/m³ Date: 2020.2.26 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.9 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(5.17, 5.17, 5.17); Calibrated: 2019.5.27 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2019.7.23 - Phantom: SAM1; Type: SAM; Serial: TP-1697 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Ch149/Area Scan (101x91x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.700 W/kg Ch149/Zoom Scan (8x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 0 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 1.13 W/kg SAR(1 g) = 0.279 W/kg; SAR(10 g) = 0.092 W/kg Maximum value of SAR (measured) = 0.696 W/kg 0 dB = 0.700 W/kg = -1.55 dBW/kg ### 23_Bluetooth 1Mbps Back 10mm Ch39 Communication System: UID 0, Bluetooth (0); Frequency: 2441 MHz; Duty Cycle: 1:1.298 Medium: HSL_2450 Medium parameters used: f = 2441 MHz; $\sigma = 1.842$ S/m; $\epsilon_r = 38.477$; $\rho = 1000$ kg/m³ Date: 2020.2.4 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.7 °C ## DASY5 Configuration: - Probe: ES3DV3 SN3279; ConvF(4.77, 4.77, 4.77); Calibrated: 2019.3.4 - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn871; Calibrated: 2019.6.27 - Phantom: SAM1; Type: SAM; Serial: TP-1839 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Ch39/Area Scan (101x91x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.0341 W/kg Ch39/Zoom Scan (8x9x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.335 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 0.0560 W/kg SAR(1 g) = 0.011 W/kg; SAR(10 g) = 0.0058 W/kg SAR(1 g) = 0.011 W/kg; SAR(10 g) = 0.0058 W/kg Maximum value of SAR (measured) = 0.0173 W/kg 0 dB = 0.0341 W/kg = -14.67 dBW/kg # 24_GSM850_GPRS 4 Tx slots_Back_10mm_Ch189 Communication System: UID 0, GSM850-4UP (0); Frequency: 836.4 MHz; Duty Cycle: 1:2.08 Medium: HSL_850 Medium parameters used: f = 836.4 MHz; $\sigma = 0.923$ S/m; $\epsilon_r = 41.305$; $\rho = 1000$ kg/m³ Date: 2020.2.19 Ambient Temperature : 23.3 °C; Liquid Temperature : 22.7 ### DASY5 Configuration: - Probe: ES3DV3 SN3279; ConvF(6.38, 6.38, 6.38); Calibrated: 2019.3.4 - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn871; Calibrated: 2019.6.27 - Phantom: SAM1; Type: SAM; Serial: TP-1753 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) Ch189/Area Scan (71x141x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.314 W/kg Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 17.81 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.420 W/kg SAR(1 g) = 0.257 W/kg; SAR(10 g) = 0.157 W/kg Maximum value of SAR (measured) = 0.307 W/kg # 25_GSM1900_GPRS 4 Tx slots_Back_10mm_Ch810 Communication System: UID 0, PCS-4UP (0); Frequency: 1909.8 MHz; Duty Cycle: 1:2.08 Medium: HSL_1900 Medium parameters used: f = 1909.8 MHz; σ = 1.4 S/m; ϵ_r = 40.6; ρ = 1000 kg/m³ Date: 2020.2.18 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.7 °C # DASY5 Configuration: - Probe: ES3DV3 SN3293; ConvF(5.32, 5.32, 5.32); Calibrated: 2019.11.25 - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1338; Calibrated: 2019.11.20 - Phantom: SAM2; Type: SAM; Serial: TP-1503 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Ch1900/Area Scan (81x81x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.809 W/kg Ch1900/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 14.55 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 1.23 W/kg SAR(1 g) = 0.683 W/kg; SAR(10 g) = 0.377 W/kg Maximum value of SAR (measured) = 0.843 W/kg # 26_WCDMA Band II_RMC 12.2Kbps_Back_10mm_Ch9538 Communication System: UID 0, WCDMA (0); Frequency: 1907.6 MHz; Duty Cycle: 1:1 Medium: HSL_1900 Medium parameters used: f = 1907.6 MHz; $\sigma = 1.398$ S/m; $\epsilon_r = 40.609$; $\rho = 1000$ kg/m³ Date: 2020.2.18 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.7 °C ## DASY5 Configuration: - Probe: ES3DV3 SN3293; ConvF(5.32, 5.32, 5.32); Calibrated: 2019.11.25 - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1338; Calibrated: 2019.11.20 - Phantom: SAM2; Type: SAM; Serial: TP-1503 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Ch9538/Area Scan (71x81x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.888 W/kg Ch9538/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 15.28 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 1.28 W/kg SAR(1 g) = 0.712 W/kg; SAR(10 g) = 0.400 W/kg Maximum value of SAR (measured) = 0.881 W/kg ## 27 WCDMA Band V RMC12.2Kbps Back 10mm Ch4233 Communication System: UID 0, WCDMA (0); Frequency: 846.6 MHz; Duty Cycle: 1:1 Medium: HSL_850 Medium parameters used: f = 846.6 MHz; $\sigma = 0.932$ S/m; $\epsilon_r = 41.199$; $\rho = 1000_{kg/m}^3$ Date: 2020.2.19 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.7 °C ### DASY5 Configuration: - Probe: ES3DV3 SN3279; ConvF(6.38, 6.38, 6.38); Calibrated: 2019.3.4 - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn871; Calibrated: 2019.6.27 - Phantom: SAM1; Type: SAM; Serial: TP-1753 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Ch4233/Area Scan (71x141x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.384 W/kg Ch4233/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 17.40 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.520 W/kg SAR(1 g) = 0.311 W/kg; SAR(10 g) = 0.189 W/kg Maximum value of SAR (measured) = 0.374 W/kg ### 28 LTE Band 5 10M QPSK 1RB 25Offset Back 10mm Ch20525 Communication System: UID 0, LTE-FDD (0); Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: HSL_850 Medium parameters used: f = 836.5 MHz; $\sigma = 0.923$ S/m; $\epsilon_r = 41.305$; $\rho = 1000$ kg/m³ Date: 2020.2.19 Ambient Temperature : 23.3 °C; Liquid Temperature : 22.7 °C # DASY5 Configuration: - Probe: ES3DV3 SN3279; ConvF(6.38, 6.38, 6.38); Calibrated: 2019.3.4 - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn871; Calibrated: 2019.6.27 - Phantom: SAM1; Type: SAM; Serial: TP-1753 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) Ch20525/Area Scan (81x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.344 W/kg Ch20525/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 16.76 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 0.500 W/kg SAR(1 g) = 0.295 W/kg; SAR(10 g) = 0.176 W/kg Maximum value of SAR (measured) = 0.348 W/kg