

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Shenzhen,

Guangdong, China 518057

Email:

Telephone: +86 (0) 755 2601 2053 Report No.: SZEM170800849702 +86 (0) 755 2671 0594

Rev.01

Page : 1 of 78

FCC SAR TEST REPORT

SZEM1708008497RG **Application No:**

Hisense International Co., Ltd. Applicant: Manufacturer: Hisense Communications Co., Ltd. Hisense Communications Co., Ltd. **Factory:**

Product Name: Smart Phone Model No.(EUT): Hisense F23 Trade Mark: Hisense

FCC ID: 2ADOBF23

ee.shenzhen@sgs.com

Standards: FCC 47CFR §2.1093

Date of Receipt: 2017-09-01

Date of Test: 2017-09-02 to 2017-09-04

2017-09-07 Date of Issue:

Test Result: PASS *

In the configuration tested, the EUT detailed in this report complied with the standards specified above.

Authorized Signature:

Derole yang

Derek Yang

Wireless Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

This document is issued by the Company subject to its General Conditions of Service printed overleaf,—available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is adviced that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document to error falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

Report No.: SZEM170800849702

Rev.01

Page: 2 of 78

REVISION HISTORY

Revision Record				
Version	Chapter	Date	Modifier	Remark
01		2017-09-07		Original

Report No.: SZEM170800849702

Rev.01

Page: 3 of 78

TEST SUMMARY

	1201001		
Frequency Band	Maximum Reported SAR(W/kg)		
r requericy band	Head	Body-worn	Hotspot
GSM850	0.19	0.22	0.66
GSM1900	0.20	0.16	0.74
WCDMA Band II	0.53	0.37	0.78
WCDMA Band IV	0.27	0.34	0.70
WCDMA Band V	0.22	0.26	0.32
LTE Band 2	0.47	0.36	0.73
LTE Band 4	0.29	0.23	0.50
LTE Band 5	0.26	0.30	0.30
LTE Band 7	0.41	0.27	0.74
WI-FI (2.4GHz)	0.64	<0.1	0.18
SAR Limited(W/kg)		1.6	
Maximum Simultaneous Transmission SAR (W/kg)			
Scenario	Head	Body-worn	Hotspot
Sum SAR	0.96	0.45	0.87
SPLSR	N/A	N/A	N/A
SPLSR Limited 0.04			

Approved & Released by

Simon Ling

SAR Manager

Tested by

Evan Mi

SAR Engineer

Report No.: SZEM170800849702

Rev.01

Page: 4 of 78

CONTENTS

1	GEN	ERAL INFORMATION	7
	1.1	DETAILS OF CLIENT	7
	1.2	TEST LOCATION	7
	1.3	TEST FACILITY	8
	1.4	GENERAL DESCRIPTION OF EUT	9
	1.5	TEST SPECIFICATION	10
	1.6	RF EXPOSURE LIMITS	10
2	SAR	MEASUREMENTS SYSTEM CONFIGURATION	11
	2.1	THE SAR MEASUREMENT SYSTEM ISOTROPIC E-FIELD PROBE EX3DV4.	
	2.2 2.3	DATA ACQUISITION ELECTRONICS (DAE)	
	2.3 2.4	SAM Twin Phantom	
	2.4 2.5	ELI PHANTOM.	
	2.6	DEVICE HOLDER FOR TRANSMITTERS	
	2.7	MEASUREMENT PROCEDURE	
	2.7 .1		
	2.7.2		
	2.7.3	-	
•		CRIPTION OF TEST POSITION	
3	DE2		
	3.1	THE HEAD TEST POSITION	20
	3.1.1	SAM Phantom Shape	20
	3.1.2	EUT constructions	21
	3.1.3	Provide the state of the state	
	3.1.4	Definition of the "tilted" position	
	3.2	THE BODY TEST POSITION	
	3.2.1		
	3.2.2	Wireless Router exposure conditions	24
4	SAR	SYSTEM VERIFICATION PROCEDURE	25
	4.1	TISSUE SIMULATE LIQUID	25
	4.1.1	Recipes for Tissue Simulate Liquid	25
	4.1.2	Measurement for Tissue Simulate Liquid	26
	4.2	SAR SYSTEM VALIDATION	27
	4.2.1	Justification for Extended SAR Dipole Calibrations	28
	4.2.2	Summary System Validation Result(s)	29

Report No.: SZEM170800849702

Rev.01

Page: 5 of 78

	4.2.3	Detailed System validation Results	29
5	TEST F	RESULTS AND MEASUREMENT DATA	30
	5.1 30	G SAR Test Reduction Procedure	30
	5.2 O	PERATION CONFIGURATIONS	30
	5.2.1	GSM Test Configuration	30
	5.2.2	WCDMA Test Configuration	31
	5.2.3	WiFi Test Configuration	37
	5.2.4	LTE Test Configuration	40
	5.2.5	DUT Antenna Locations	41
	5.2.6	EUT side for SAR Testing	41
	5.2.7	Stand-alone SAR test evaluation	42
	5.3 M	EASUREMENT OF RF CONDUCTED POWER	43
	5.3.1	Conducted Power of GSM	43
	5.3.2	Conducted Power of WCDMA	44
	5.3.3	Conducted Power of LTE	47
	5.3.4	Conducted Power of WIFI and BT	55
	5.4 M	EASUREMENT OF SAR DATA	56
	5.4.1	SAR Result of GSM850	56
	5.4.2	SAR Result of GSM1900	57
	5.4.3	SAR Result of WCDMA850	58
	5.4.4	SAR Result of WCDMA1700	59
	5.4.5	SAR Result of WCDMA1900	60
	5.4.6	SAR Result of LTE Band 2	61
	5.4.7	SAR Result of LTE Band 4	63
	5.4.1	SAR Result of LTE Band 5	65
	5.4.2	SAR Result of LTE Band 7	67
	<i>5.4.3</i>	SAR Result of WIFI	69
	5.5 M	ULTIPLE TRANSMITTER EVALUATION	70
	5.5.1	Simultaneous SAR SAR test evaluation	70
6	EQUIP	MENT LIST	75
7	MEAS	JREMENT UNCERTAINTY	76
3	CALIB	RATION CERTIFICATE	77
9	РНОТО	OGRAPHS	77
ĄF	PPENDIX A	A: DETAILED SYSTEM VALIDATION RESULTS	78
٩F	PPENDIX	B: DETAILED TEST RESULTS	78

Report No.: SZEM170800849702

Rev.01

Page: 6 of 78

APPENDIX C: CALIBRATION CERTIFICATE	78
APPENDIX D: PHOTOGRAPHS	78

Report No.: SZEM170800849702

Rev.01

Page: 7 of 78

1 General Information

1.1 Details of Client

Applicant:	Hisense International Co., Ltd.		
Address:	Floor 22, Hisense Tower, 17 Donghai Xi Road, Qingdao, 266071, China		
Manufacturer:	Hisense Communications Co., Ltd.		
Address:	218 Qianwangang Road, Economic & Technological Development Zone, Qingdao, Shandong Province, P.R. China		
Factory:	Hisense Communications Co., Ltd.		
Address:	218 Qianwangang Road, Economic & Technological Development Zone, Qingdao, Shandong Province, P.R.		

1.2 Test Location

Company: SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Address: No. 1 Workshop, M-10, Middle section, Science & Technology Park, Shenzhen,

Guangdong, China

Post code: 518057

Telephone: +86 (0) 755 2601 2053 Fax: +86 (0) 755 2671 0594 E-mail: ee.shenzhen@sgs.com

Report No.: SZEM170800849702

Rev.01

Page: 8 of 78

1.3 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

VCCI

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

FCC –Designation Number: CN1178

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been recognized as an accredited testing laboratory.

Designation Number: CN1178. Test Firm Registration Number: 406779.

• Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

Report No.: SZEM170800849702

Rev.01

Page: 9 of 78

1.4 General Description of EUT

ADOBF23	ment / general population IMN / PF8HKRLJSKJFOVSK	
roduction unit ortable device ncontrolled environr ADOBF23 TBMNN4THMORS4 71.00 1357.6.01.01.MX05	IMN / PF8HKRLJSKJFOVSK	
roduction unit ortable device ncontrolled environr ADOBF23 TBMNN4THMORS4 71.00	IMN / PF8HKRLJSKJFOVSK	
ortable device ncontrolled environr ADOBF23 TBMNN4THMORS4 /1.00 1357.6.01.01.MX05	IMN / PF8HKRLJSKJFOVSK	
ncontrolled environr ADOBF23 TBMNN4THMORS4 /1.00 1357.6.01.01.MX05	IMN / PF8HKRLJSKJFOVSK	
ADOBF23 TBMNN4THMORS4 /1.00 1357.6.01.01.MX05	IMN / PF8HKRLJSKJFOVSK	
TBMNN4THMORS4 /1.00 1357.6.01.01.MX05		
/1.00 1357.6.01.01.MX05		
1357.6.01.01.MX05		
PIFA		
itions :		
GSM:GMSK, 8PSK; WCDMA: QPSK; LTE:QPSK,16QAM WIFI: DSSS,OFDM; BT: GFSK, π/4DQPSK,8DPSK		
В		
2	EGPRS Multi-slots Class:	12
4	HSUPA UE Category	6
24		
Band	Tx (MHz)	Rx (MHz)
GSM850	824-849	869-894
GSM1900	1850-1910	1930-1990
WCDMA850	824-849	869-894
WCDMA1700	1710-1755	2110- 2155
WCDMA1900	1850-1910	1930-1990
LTE Band 2	1850-1910	1930-1990
LTE Band 4	1710-1755	2110- 2155
LTE Band 5	824-849	869-894
LTE Band 7	2500-2570	2620- 2690
WIFI	2412-2462	2412-2462
ВТ	2402-2480	2402-2480
Model: LPN385300		
Normal Voltage: 3.85V		
Rated capacity: 3000mAh		
Battery Type: INTERNA Rechargeable Li-polymer Battery		
Manufacturer: NingBo VeKen Battery Co.,LTD.		
N 3 2 2 2 2 1 1 1 R 3 3	JIFI: DSSS,OFDM; 2 4 4 Band GSM850 GSM1900 WCDMA1700 WCDMA1700 WCDMA1900 LTE Band 2 LTE Band 4 LTE Band 5 LTE Band 7 WIFI BT Iodel: LPN385300 ormal Voltage: 3.85 ated capacity: 3000 attery Type: INTER	### BT: GFSK, π/4DQPSK,8DPS EGPRS Multi-slots Class: 4

Remark:

This test report (Ref. No.: SZEM170800849702) is only valid with the original test report (Ref.

No.: SZEM1612010850RG). According to the declaration from the applicant, the models in this report and models in original report are identical, which are only different on the screen. Considering the difference, we are tested the worst case on the original report.

Report No.: SZEM170800849702

Rev.01

Page: 10 of 78

1.5 Test Specification

Identity	Document Title	
FCC 47CFR §2.1093	Radiofrequency Radiation Exposure Evaluation: Portable Devices	
IEEE Std C95.1 – 1991	IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz – 300 GHz.	
IEEE 1528-2013	Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques	
KDB 941225 D01 3G SAR Procedures v03r01	3G SAR Measurement Procedures	
KDB 941225 D05 SAR for LTE Devices v02r05	SAR EVALUATION CONSIDERATIONS FOR LTE DEVICES	
KDB 248227 D01 802.11 Wi-Fi SAR v02r02	SAR GUIDANCE FOR IEEE 802.11 (Wi-Fi) TRANSMITTERS	
KDB 941225 D06 Hotspot Mode SAR v02r01	SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities	
KDB 648474 D04 Handset SAR v01r03	SAR Evaluation Considerations for Wireless Handsets	
KDB447498 D01 General RF Exposure Guidance v06	Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies	
KDB447498 D03 Supplement C Cross- Reference v01	OET Bulletin 65, Supplement C Cross-Reference	
KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04	SAR Measurement Requirements for 100 MHz to 6 GHz	
KDB 865664 D02 RF Exposure Reporting v01r02	RF Exposure Compliance Reporting and Documentation Considerations	

1.6 RF exposure limits

Human Exposure	Uncontrolled Environment General Population	Controlled Environment Occupational
Spatial Peak SAR* (Brain*Trunk)	1.60 mW/g	8.00 mW/g
Spatial Average SAR** (Whole Body)	0.08 mW/g	0.40 mW/g
Spatial Peak SAR*** (Hands/Feet/Ankle/Wrist)	4.00 mW/g	20.00 mW/g

Notes:

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation.)

^{*} The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time

^{**} The Spatial Average value of the SAR averaged over the whole body.

^{***} The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Report No.: SZEM170800849702

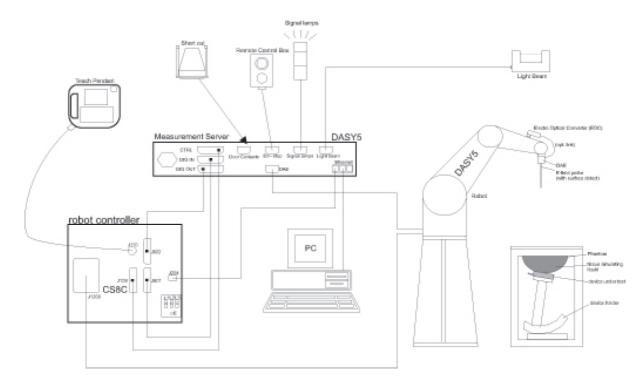
Rev.01

Page: 11 of 78

2 SAR Measurements System Configuration

2.1 The SAR Measurement System

This SAR Measurement System uses a Computer-controlled 3-D stepper motor system (SPEAG DASY5 professional system). A E-field probe is used to determine the internal electric fields. The SAR can be obtained from the equation SAR= σ (|Ei|2)/ ρ where σ and ρ are the conductivity and mass density of the tissue-Simulate.


The DASY5 system for performing compliance tests consists of the following items:

A standard high precision 6-axis robot (Stabile RX family) with controller, teach pendant and software .An arm extension for accommodation the data acquisition electronics (DAE).

A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.

F-1. SAR Measurement System Configuration

Report No.: SZEM170800849702

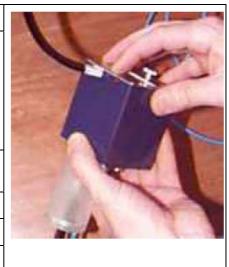
Rev.01

Page: 12 of 78

- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 7.
- DASY5 software.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand, right-hand and Body Worn usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validating the proper functioning of the system.

2.2 Isotropic E-field Probe EX3DV4

	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	ISO/IEC 17025 calibration service available.
Frequency	10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in TSL (rotation around probe axis) ± 0.5 dB in TSL (rotation normal to probe axis)
Dynamic Range	10 μW/g to > 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μW/g)
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields); the only probe that enables compliance testing for frequencies up to 6 GHz with precision of better 30%.
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI


Report No.: SZEM170800849702

Rev.01

Page: 13 of 78

2.3 Data Acquisition Electronics (DAE)

Model	DAE3,DAE4
Construction	Signal amplifier, multiplexer, A/D converter and control logic. Serial optical link for communication with DASY4/5 embedded system (fully remote controlled). Two step probe touch detector for mechanical surface detection and emergency robot stop.
Measurement Range	-100 to +300 mV (16 bit resolution and two range settings: 4mV,400mV)
Input Offset Voltage	< 5μV (with auto zero)
Input Bias Current	< 50 f A
Dimensions	60 x 60 x 68 mm

2.4 SAM Twin Phantom

Material	Vinylester, glass fiber reinforced (VE-GF)
Liquid Compatibility	Compatible with all SPEAG tissue simulating liquids (incl. DGBE type)
Shell Thickness	2 ± 0.2 mm (6 ± 0.2 mm at ear point)
Dimensions (incl. Wooden Support)	Length: 1000 mm Width: 500 mm Height: adjustable feet
Filling Volume	approx. 25 liters
Wooden Support	SPEAG standard phantom table

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.

Twin SAM V5.0 has the same shell geometry and is manufactured from the same material as Twin SAM V4.0, but has reinforced top structure.

Report No.: SZEM170800849702

Rev.01

Page: 14 of 78

2.5 ELI Phantom

Material	Vinylester, glass fiber reinforced (VE-GF)
Liquid	Compatible with all SPEAG tissue
Compatibility	simulating liquids (incl. DGBE type)
Shell Thickness	2.0 ± 0.2 mm (bottom plate)
Dimensions	Major axis: 600 mm
Dimensions	Minor axis: 400 mm
Filling Volume	approx. 30 liters
Wooden Support	SPEAG standard phantom table

Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.

ELI V5.0 has the same shell geometry and is manufactured from the same material as ELI4, but has reinforced top structure.

Report No.: SZEM170800849702

Rev.01

Page: 15 of 78

2.6 Device Holder for Transmitters

F-2. Device Holder for Transmitters

- The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centres for both scales are the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.
- The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Report No.: SZEM170800849702

Rev.01

Page: 16 of 78

2.7 Measurement procedure

2.7.1 Scanning procedure

Step 1: Power reference measurement

The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure.

Step 2: Area scan

The SAR distribution at the exposed side of the head was measured at a distance of 4mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 15mm*15mm or 12mm*12mm or 10mm*10mm.Based on the area scan data, the area of the maximum absorption was determined by spline interpolation.

Step 3: Zoom scan

Around this point, a volume of 30mm*30mm*30mm (fine resolution volume scan, zoom scan) was assessed by measuring 5x5x7 points (≤2GHz)and 7x7x7 points (≥2GHz). On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure:

The data at the surface was extrapolated, since the centre of the dipoles is 2.0mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2mm. (This can be variable. Refer to the probe specification). The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip. The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3D-Spline interpolation algorithm. The volume was integrated with the trapezoidal algorithm. One thousand points were interpolated to calculate the average. All neighbouring volumes were evaluated until no neighboring volume with a higher average value was found.

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std. 1528-2013.

Report No.: SZEM170800849702

Rev.01

Page: 17 of 78

			≤ 3 GHz	> 3 GHz	
Maximum distance from		•	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$	
Maximum probe angle surface normal at the m			30° ± 1°	20° ± 1°	
			≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm	
Maximum area scan sp	atial resolu	ntion: Δx _{Area} , Δy _{Area}	When the x or y dimension of measurement plane orientation the measurement resolution in x or y dimension of the test dimeasurement point on the test.	on, is smaller than the above, nust be ≤ the corresponding levice with at least one	
Maximum zoom scan s	patial reso	lution: Δx _{Zoom} , Δy _{Zoom}	\leq 2 GHz: \leq 8 mm 3 - 4 GHz: \leq 5 m 2 - 3 GHz: \leq 5 mm* 4 - 6 GHz: \leq 4 m		
	uniform	grid: Δz _{Zoom} (n)	≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm	
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm	
grid $\Delta z_{Zoom}(n>1)$: between subsequent points			≤ 1.5·Δz	Zoom(n-1)	
Minimum zoom scan volume x, y, z			≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

Step 4: Power reference measurement (drift)

The Power Drift Measurement job measures the field at the same location as the most recent power reference measurement job within the same procedure, and with the same settings. The indicated drift is mainly the variation of the DUT's output power and should vary max. \pm 5 %

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

SGS

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM170800849702

Rev.01

Page: 18 of 78

2.7.2 Data Storage

The DASY software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DAE3". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated. The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [m W/g], [m W/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

2.7.3 Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Normi, ai0, ai1, ai2

Conversion factorDiode compression pointDcpi

Device parameters: - Frequency f

- Crest factor cf Media parameters: - Conductivity ε

- Density ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V\iota = U\iota + U\iota^2 \cdot c f / d c p_I$$

With Vi = compensated signal of channel i (i = x, y, z)

Ui = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes:

$$E\iota = (V\iota / Norm\iota \cdot ConvF)^{1/2}$$

H-field probes:

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="https://www.sgs.com/en/Terms-and-Conditions/Terms

Report No.: SZEM170800849702

Rev.01

Page: 19 of 78

 $Hi = (Vi)^{1/2} \cdot (\alpha i + \alpha i f + \alpha i 2 f^2) / f$

With Vi = compensated signal of channel i (i = x, y

Normi = sensor sensitivity of channel I (i = x, y, z)

[mV/(V/m)2] for E-field Probes

ConvF = sensitivity enhancement in solution

aij = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

Ei = electric field strength of channel i in V/m

Hi = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (Etot^2 \cdot \sigma) / (\varepsilon \cdot 1000)$$

with SAR = local specific absorption rate in mW/g

Etot = total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

ε= equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = E_{tot}^2 \frac{2}{3770}_{OI} P_{pwe} = H_{tot}^2 \cdot 37.7$$

with Ppwe = equivalent power density of a plane wave in mW/cm2

Etot = total electric field strength in V/m

Htot = total magnetic field strength in A/m

Report No.: SZEM170800849702

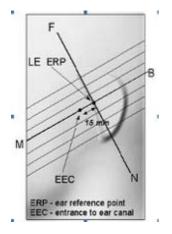
Rev.01

Page: 20 of 78

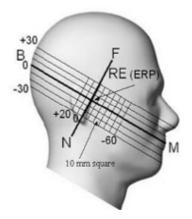
3 Description of Test Position

3.1 The Head Test Position

3.1.1 SAM Phantom Shape



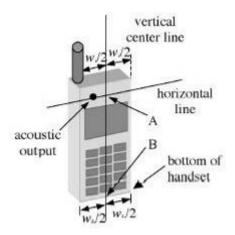
F-3. Front, back, and side views of SAM (model for the phantom shell). Full-head model is for illustration purposes only-procedures in this recommended practice are intended primarily for the phantom setup.


Note: The centre strip including the nose region has a different thickness tolerance.

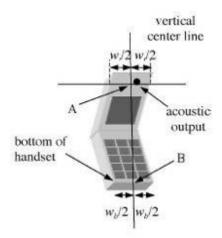
F-4. Sagittally bisected phantom with extended perimeter (shown placed on its side as used for SAR measurements)

F-5. Close-up side view of phantom, showing the ear region, N-F and B-M lines, and seven cross-sectional plane locations

F-6. Side view of the phantom showing relevant markings and seven cross-sectional plane locations



Report No.: SZEM170800849702


Rev.01

Page: 21 of 78

3.1.2 EUT constructions

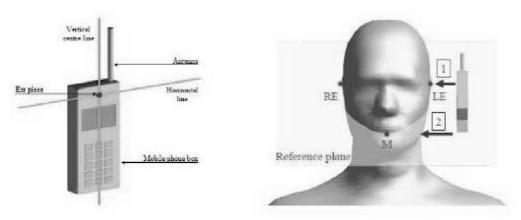
F-7. Handset vertical and horizontal reference lines-"fixed case"

F-8. Handset vertical and horizontal reference lines-"clam-shell case"

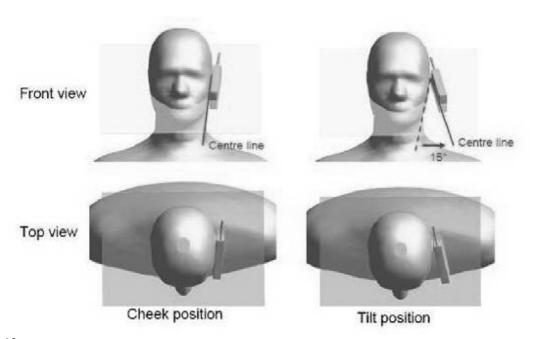
3.1.3 Definition of the "cheek" position

a) Position the device with the vertical centre line of the body of the device and the horizontal line crossing the centre of the ear piece in a plane parallel to the sagittal plane of the phantom ("initial position"). While maintaining the device in this plane, align the vertical centre line with the reference plane containing the three ear and mouth reference points (M, RE and LE) and align the centre of the ear piece with the line RE-LE. b) Translate the mobile phone box towards the phantom with the ear piece aligned with the line LE-RE until telephone touches the ear. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the box until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost.

Report No.: SZEM170800849702


Rev.01

Page: 22 of 78


3.1.4 Definition of the "tilted" position

a) Position the device in the "cheek" position described above;

b) While maintaining the device in the reference plane described above and pivoting against the ear, move it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost.

F-9. Definition of the reference lines and points, on the phone and on the phantom and initial position

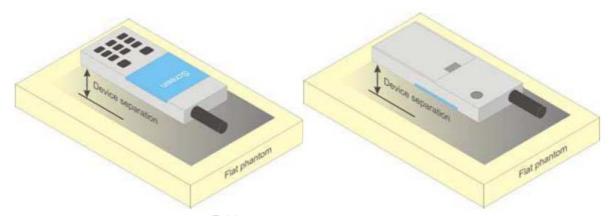
F-10. "Cheek" and "tilt" positions of the mobile phone on the left side

Report No.: SZEM170800849702

Rev.01

Page: 23 of 78

3.2 The Body Test Position


3.2.1 Body-worn accessory exposure conditions

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations.

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration. Per FCC KDB Publication 648474 D04, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented. Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

F-11. Test positions for body-worn devices

Report No.: SZEM170800849702

Rev.01

Page: 24 of 78

3.2.2 Wireless Router exposure conditions

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06 where SAR test considerations for handsets (L x W \geq 9 cm x 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. For devices with form factors smaller than 9 cm x 5 cm, a test separation distance of 5 mm is required.

Report No.: SZEM170800849702

Rev.01

Page: 25 of 78

4 SAR System Verification Procedure

4.1 Tissue Simulate Liquid

4.1.1 Recipes for Tissue Simulate Liquid

The bellowing tables give the recipes for tissue simulating liquids to be used in different frequency bands:

Ingredients	Frequency (MHz)									
(% by weight)	450		835		1800-2000		2300-2700			
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body		
Water	38.56	51.16	40.30	50.75	55.24	70.17	55.00	68.53		
Salt (NaCl)	3.95	1.49	1.38	0.94	0.31	0.39	0.2	0.1		
Sucrose	56.32	46.78	57.90	48.21	0	0	0	0		
HEC	0.98	0.52	0.24	0	0	0	0	0		
Bactericide	0.19	0.05	0.18	0.10	0	0	0	0		
Tween	0	0	0	0	44.45	29.44	44.80	31.37		

Salt: $99^{+}\%$ Pure Sodium Chloride Sucrose: $98^{+}\%$ Pure Sucrose Water: De-ionized, $16 \text{ M}\Omega^{+}$ resistivity HEC: Hydroxyethyl Cellulose

Tween: Polyoxyethylene (20) sorbitan monolaurate

Table 1: Recipe of Tissue Simulate Liquid

Report No.: SZEM170800849702

Rev.01

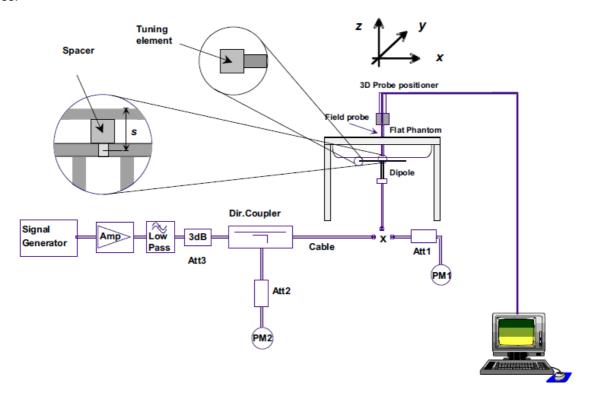
Page: 26 of 78

4.1.2 Measurement for Tissue Simulate Liquid

The dielectric properties for this Tissue Simulate Liquids were measured by using the Agilent Model 85070E Dielectric Probe in conjunction with Agilent E5071C Network Analyzer (300 KHz-8500 MHz). The Conductivity (σ) and Permittivity (ρ) are listed in Table 2. For the SAR measurement given in this report. The temperature variation of the Tissue Simulate Liquids was 22±2°C.

Tissue	Measured	Target Tiss	ue (±5%)	Measure	d Tissue	Liquid Temp.	
Type	Frequency (MHz)	ε _r	σ(S/m)	ε _r	σ(S/m)	(℃)	Measured Date
835 Head	835	41.5 (39.43~43.58)	0.90 (0.86~0.95)	42.113	0.905	22.1	2017/9/2
835 Body	835	55.2 (52.44~57.96)	0.97 (0.92~1.02)	53.853	0.986	22.1	2017/9/3
1750 Head	1750	40.1 (38.10~42.11)	1.37 (1.30~1.44)	40.757	1.332	22.2	2017/9/2
1750 Body	1750	53.4 (50.73~56.07)	1.49 (1.42~1.56)	53.088	1.537	22.2	2017/9/3
1900 Head	1900	40.0 (38.00~42.00)	1.40 (1.33~1.47)	40.64	1.372	22.3	2017/9/2
1900 Body	1900	53.3 (50.64~55.97)	1.52 (1.44~1.60)	53.234	1.51	22.3	2017/9/3
2450 Head	2450	39.20 (37.24~41.16)	1.80 (1.71~1.89)	39.147	1.823	22	2017/9/4
2450 Body	2450	52.70 (50.07~55.34)	1.95 (1.85~2.05)	53.314	1.966	22	2017/9/4
2600 Head	2600	39.0 (37.05~40.95)	1.96 (1.86~2.06)	38.658	1.982	22.1	2017/9/3
2600 Body	2600	52.50 (49.88~55.13)	2.16 (2.05~2.27)	52.944	2.132	22.1	2017/9/4

Table 2: Measurement result of Tissue electric parameters


Report No.: SZEM170800849702

Rev.01

Page: 27 of 78

4.2 SAR System Validation

The microwave circuit arrangement for system verification is sketched in F-12. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within +/- 10% from the target SAR values. The tests were conducted on the same days as the measurement of the EUT. The obtained results from the system accuracy verification are displayed in the table 3 (A power level of 250mw was input to the dipole antenna). During the tests, the ambient temperature of the laboratory was in the range 22±2°C, the relative humidity was in the range 60% and the liquid depth above the ear reference points was above 15 cm in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

F-12. the microwave circuit arrangement used for SAR system verification

Report No.: SZEM170800849702

Rev.01

Page: 28 of 78

4.2.1 Justification for Extended SAR Dipole Calibrations

1) Referring to KDB865664 D01 requirements for dipole calibration, instead of the typical annual calibration recommended by measurement standards, longer calibration intervals of up to three years may be considered when it is demonstrated that the SAR target, impedance and return loss of a dipole have remain stable according to the following requirements. Each measured dipole is expected to evaluate with the following criteria at least on annual interval in Appendix C.

- a) There is no physical damage on the dipole;
- b) System check with specific dipole is within 10% of calibrated value;
- c) Return-loss is within 10% of calibrated measurement;
- d) Impedance is within 5Ω from the previous measurement.
- 2) Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

Report No.: SZEM170800849702

Rev.01

Page: 29 of 78

4.2.2 Summary System Validation Result(s)

Validatio	on Kit	Measured SAR 250mW	Measured SAR 250mW	Measured SAR (normalized to 1w)	Measured SAR (normalized to 1w)	Target SAR (normalized to 1w) (±10%)	Target SAR (normalized to 1w) (±10%)	Liquid Temp. (°C)	Measured Date
		1g (W/kg)	10g (W/kg)	1g (W/kg)	10g (W/kg)	1-g(W/kg)	10-g(W/kg)		
D835V2	Head	2.49	1.62	9.96	6.48	9.59 (8.63~10.55)	6.29 (5.66~6.92)	22.1	2017/9/2
D033V2	Body	2.51	1.65	10.04	6.6	9.65 (8.69~10.62)	6.46 (5.81~7.11)	22.1	2017/9/3
D4750\/0	Head	8.77	4.69	35.08	18.76	36.7 (33.03~40.37)	19.5 (17.55~21.45)	22.2	2017/9/2
D1750V2	Body	9.78	5.2	39.12	20.8	37 (33.30~40.70)	19.7 (17.73~21.67)	22.2	2017/9/3
D4000\(0	Head	10.4	5.54	41.6	22.16	40.7 (36.63~44.77)	21.1 (18.99~23.21)	22.3	2017/9/2
D1900V2	Body	10.3	5.43	41.2	21.72	41.6 (37.44~45.76)	21.4 (19.26~23.54)	22.3	2017/9/3
D2450\/2	Head	13.3	6.16	53.2	24.64	53.1 (47.79~58.41)	24.9 (22.41~27.39)	22	2017/9/4
D2450V2	Body	12.6	5.92	50.4	23.68	51.0 (45.9~56.1)	23.5 (21.15~25.85)	22	2017/9/4
D2600\/2	Head	14.2	6.36	56.8	25.44	56.6 (50.94~62.26)	25.4 (22.86~27.94)	22.1	2017/9/3
D2600V2	Body	13.1	5.94	52.4	23.76	54.2 (48.78~59.62)	24.3 (21.87~26.73)	22.1	2017/9/4

Table 3: SAR System Validation Result

4.2.3 Detailed System Validation Results

Please see the Appendix A

Report No.: SZEM170800849702

Rev.01

Page: 30 of 78

5 Test results and Measurement Data

5.1 3G SAR Test Reduction Procedure

According to KDB 941225D01 v03R01, in the following procedures, the mode tested for SAR is referred to as the primary mode. The equivalent modes considered for SAR test reduction are denoted as secondary modes. Both primary and secondary modes must be in the same frequency band. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode. This is referred to as the 3G SAR test reduction procedure in the following SAR test guidance, where the primary mode is identified in the applicable wireless mode test procedures and the secondary mode is wireless mode being considered for SAR test reduction by that procedure. When the 3G SAR test reduction procedure is not satisfied, it is identified as "otherwise" in the applicable procedures; SAR measurement is required for the secondary mode.

5.2 Operation Configurations

5.2.1 GSM Test Configuration

SAR tests for GSM 850 and GSM 1900, a communication link is set up with a base station by air link. Using CMU200 the power lever is set to "5" and "0" in SAR of GSM 850 and GSM 1900. The tests in the band of GSM 850 and GSM 1900 are performed in the mode of GPRS/EGPRS function. Since the GPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslot is 5. The EGPRS class is 12 for this EUT, it has at most 4 timeslots in uplink, and at most 4 timeslots in downlink, the maximum total timeslot is 5.

SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested.

When SAR tests for EGPRS mode is necessary, GMSK modulation should be used to minimize SAR measurement error due to higher peak-to-average power (PAR) ratios inherent in 8-PSK.

The 3G SAR test reduction procedure is applied to 8-PSK EDGE with GMSK GPRS/EDGE as the primary mode.

Report No.: SZEM170800849702

Rev.01

Page: 31 of 78

5.2.2 WCDMA Test Configuration

1) . Output Power Verification

Maximum output power is verified on the high, middle and low channels according to procedures described in section 5.2 of 3GPP TS 34.121, using the appropriate RMC or AMR with TPC (transmit power control) set to all "1's" for WCDMA/HSDPA or by applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HSDPA, HSPA) are required in the SAR report. All configurations that are not supported by the handset or cannot be measured due to technical or equipment limitations must be clearly identified.

2) . Head SAR

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for 12.2 kbps AMR in 3.4 kbps SRB (signaling radio bearer) using the highest reported SAR configuration in 12.2 kbps RMC for head exposure

3) . Body SAR

SAR for body configurations is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCHn configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreaing code or DPDCHn, for the highest reported body-worn accessory exposure SAR configuration in 12.2 kbps RMC. When more than 2 DPDCHn are supported by the handset, it may be necessary to configure additional DPDCHn using FTM (Factory Test Mode) or other chipset based test approaches with parameters similar to those used in 384 kbps and 768 kbps RMC.

4) . HSDPA / HSUPA / DC-HSDPA

According to KDB 941225 D01v03, RMC 12.2kbps setting is used to evaluate SAR. If the maximum output power and tune-up tolerance specified for production units in HSDPA / HSUPA / DC-HSDPA is \leq ½ dB higher than RMC 12.2Kbps or when the highest reported SAR of the RMC12.2Kbps is scaled by the ratio of specified maximum output power and tune-up tolerance of HSDPA / HSUPA / DC-HSDPA to RMC12.2Kbps and the adjusted SAR is \leq 1.2 W/kg, SAR measurement is not required for HSDPA / HSUPA / DC-HSDPA

a) HSDPA

HSDPA is configured according to the applicable UE category of a test device. The number of HS-DSCH/HS-PDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the H-set for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 4 ms and a CQI repetition factor of 2 to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors(β c, β d), and HS-DPCCH power offset parameters (Δ ACK, Δ NACK, Δ CQI) are set according to values indicated in the following table The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the H-set.

Report No.: SZEM170800849702

Rev.01

Page: 32 of 78

Sub-test	βc	Bd	βd(SF)	βc/βd	βhs	CM(dB)	MPR (dB)
1	2/15	15/15	64	2/15	4/15	0.0	0
2	12/15(3)	15/15(3)	64	12/15(3)	24/15	1.0	0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

Note1: \triangle ACK, \triangle NACK and \triangle CQI= 8 Ahs = β hs/ β c=30/15 β hs=30/15* β c

Note2:For the HS-DPCCH power mask requirement test in clause 5.2C,5.7A,and the Error Vector Magnitude(EVM) with HS-DPCCH test in clause 5.13.1.A,and HSDPA EVM with phase discontinuity in clause 5.13.1AA, \triangle ACK and \triangle NACK= 8 (Ahs=30/15) with β hs=30/15* β c,and \triangle CQI=

7 (Ahs=24/15) with β hs= $24/15*\beta$ c.

Note3: CM=1 for β c/ β d =12/15, β hs/ β c=24/15. For all other combinations of DPDCH, DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.

The measurements were performed with a Fixed Reference Channel (FRC) and H-Set 1 QPSK.

The measurements were performed with a rixed r	() () () () () () () () () ()
Parameter	Value
Nominal average inf. bit rate	534 kbit/s
Inter-TTI Distance	3 TTI"s
Number of HARQ Processes	2 Processes
Information Bit Payload	3202 Bits
MAC-d PDU size	336 Bits
Number Code Blocks	1 Block
Binary Channel Bits Per TTI	4800 Bits
Total Available SMLs in UE	19200 SMLs
Number of SMLs per HARQ Process	9600 SMLs
Coding Rate	0.67
Number of Physical Channel Codes	5

Table 4: settings of required H-Set 1 QPSK acc. to 3GPP 34.121

Report No.: SZEM170800849702

Rev.01

Page: 33 of 78

HS-DSCH Category	Maximum HS-DSCH Codes Received	Minimum Inter- TTI Interval	MaximumH S-DSCH Transport BlockBits/HS- DSCH TTI	Total Soft Channel Bits
1	5	3	7298	19200
2	5	3	7298	28800
3	5	2	7298	28800
4	5	2	7298	38400
5	5	1	7298	57600
6	5	1	7298	67200
7	10	1	14411	115200
8	10	1	14411	134400
9	15	1	25251	172800
10	15	1	27952	172800
11	5	2	3630	14400
12	5	1	3630	28800
13	15	1	34800	259200
14	15	1	42196	259200
15	15	1	23370	345600
16	15	1	27952	345600

Table 5: HSDPA UE category

b) HSUPA

Due to inner loop power control requirements in HSUPA, a commercial communication test set should be used for the output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and E-DCH configurations for HSUPA should be configured according to the values indicated below as well as other applicable procedures described in the "WCDMA Handset" and "Release 5 HSUPA Data Device" sections of 3G device.

Report No.: SZEM170800849702

Rev.01

Page: 34 of 78

Sub -test₽	βe€	βa↔	β _d (SF) _e	β₀/β₫₽	β _{hs} (1)¢ ³	β _{ec+} 2	$eta_{ ext{ed}} arphi$	β _e _{o+1} (SF)+2	βed+ ^J (code)+ ^J	CM ⁽ 2)↔ (dB)↔	MP R↓ (dB)↓	AG ⁽⁴)↔ Inde x↔	E- TFC I
1₽	11/15(3)+2	15/15(3)	64₽	11/15(3)+3	22/15	209/22 5 ₄ 3	1039/225	4€	1₽	1.0₽	0.0	20₽	75₽
2₽	6/15₽	15/15₽	64₽	6/15₽	12/15₽	12/15₽	94/75₽	4₽	1₽	3.0₄	2.0₽	12 ₽	67₽
3₽	15/150	9/15	64₽	15/9₽	30/15₽	30/15₽	β _{ed1} :47/1 5 ₄ β _{ed2:} 47/1 5 ₄	4₽	2₽	2.0₽	1.0₽	15.0	92₽
4₽	2/15₽	15/15₽	64₽	2/15₄	4/15₽	2/15₽	56/75₽	4₽	1₽	3.0₽	2.0₽	17₽	71₽
5₽	15/15(4)	15/15(4)	64₽	15/15(4)+3	30/15₽	24/15₽	134/15₽	4₽	1₽	1.0₽	0.0₽	21	81₽

Note 1: \triangle ACK, \triangle NACK and \triangle CQI = 8 $A_{hs} = \beta_{hs}/\beta_{e} = 30/15$ $\beta_{hs} = 30/15 * \beta_{ed}$

Note 2: CM = 1 for β_c/β_d = 12/15, β_{hs}/β_c = 24/15. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3 : For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 10/15$ and $\beta_d = 15/15$.

Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 14/15$ and $\beta_d = 15/15$.

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g₊¹

Note 6: βed can not be set directly; it is set by Absolute Grant Value. Φ

Table 6: Subtests for UMTS Release 6 HSUPA

UE E-DCH Category	Maximum E-DCH Codes Transmitted	Number of HARQ Processes	E-DCH TTI(ms)	Minimum Speading Factor	Maximum E-DCH Transport Block Bits	Max Rate (Mbps)
1	1	4	10	4	7110	0.7296
2	2	8	2	4	2798	1.4592
2	2	4	10	4	14484	1.4592
3	2	4	10	4	14484	1.4592
4	2	8	2	2	5772	2.9185
4	2	4	10	2	20000	2.00
5	2	4	10	2	20000	2.00
6	4	8	10	2SF2&2SF	11484	5.76
(No DPDCH)	4	4	2	4	20000	2.00
7	4	8	2	2SF2&2SF	22996	?
(No DPDCH)	4	4	10	4	20000	?

NOTE: When 4 codes are transmitted in parallel, two codes shall be transmitted with SF2 and two with SF4.UE categories 1 to 6 support QPSK only. UE category 7 supports QPSK and 16QAM.(TS25.306-7.3.0).

Table 7: HSUPA UE category

Report No.: SZEM170800849702

Rev.01

Page: 35 of 78

c) <u>DC-HSDPA</u>

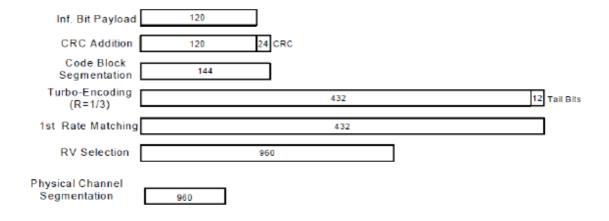
SAR is required for Rel. 8 DC-HSDPA when SAR is required for Rel. 5 HSDPA; otherwise, the 3G SAR test reduction procedure is applied to DC-HSDPA with 12.2 kbps RMC as the primary mode. Power is measured for DC-HSDPA according to the H-Set 12, FRC configuration in Table C.8.1.12 of 3GPP TS 34.121-1 to determine SAR test reduction. A primary and a secondary serving HS-DSCH Cell are required to perform the power measurement and for the results to be acceptable

A call was established between EUT and Base Station with following setting:

- i. Set RMC 12.2Kbps + HSDPA mode.
- ii. Set Cell Power = -25 dBm
- iii. Set HS-DSCH Configuration Type to FRC (H-set 12, QPSK)
- iv. Select HSDPA Uplink Parameters
- v. Set Gain Factors (β c and β d) and parameters were set according to each Specific sub-test in the following tableC10.1.4, quoted from the TS 34.121
- a). Subtest 1: βc/βd=2/15
- b). Subtest 2: βc/βd=12/15
- c). Subtest 3: βc/βd=15/8
- d). Subtest 4: βc/βd=15/4
- vi. Set Delta ACK, Delta NACK and Delta CQI = 8
- vii. Set Ack-Nack Repetition Factor to 3
- viii. Set CQI Feedback Cycle (k) to 4 ms
- ix. Set CQI Repetition Factor to 2
- x. Power Ctrl Mode = All Up bits

Report No.: SZEM170800849702

Rev.01


Page: 36 of 78

The following tests were conducted according to the test requirements outlines in 3GPP TS 34.121 specification.

A summary of these settings are illustrated below:

Table C.8.1.12: Fixed Reference Channel H-Set 12

	Parameter	Unit	Value		
Nominal	Avg. Inf. Bit Rate	kbps	60		
Inter-TTI	Distance	TTI's	1		
Number (of HARQ Processes	Proces	6		
		ses	0		
Informati	on Bit Payload (N_{INF})	Bits	120		
Number	Code Blocks	Blocks	1		
Binary C	hannel Bits Per TTI	Bits	960		
Total Ava	ilable SML's in UE	SML's	19200		
Number (of SML's per HARQ Proc.	SML's	3200		
Coding F	late		0.15		
Number (of Physical Channel Codes	Codes	1		
Modulatio	on		QPSK		
Note 1:	The RMC is intended to be used for	or DC-HSD	PA		
	mode and both cells shall transmit	with identi	ical		
parameters as listed in the table.					
Note 2: Maximum number of transmission is limited to 1, i.e.,					
retransmission is not allowed. The redundancy and					
	constellation version 0 shall be use	ed.			

Report No.: SZEM170800849702

Rev.01


Page: 37 of 78

5.2.3 WiFi Test Configuration

The normal network operating configurations of 802.11 transmitters are not suitable for SAR measurements. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v02r02 for more details.

The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters.

A Wi-Fi device must be configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools for SAR measurement.

5.2.3.1 Initial Test Position SAR Test Reduction Procedure

DSSS and OFDM configurations are considered separately according to the required SAR procedures. SAR is measured in the initial test position using the 802.11 transmission mode configuration required by the DSSS procedure or initial test configuration and subsequent test configuration(s) according to the OFDM procedures. The initial test position procedure is described in the following:

- 1) . When the reported SAR of the initial test position is ≤ 0.4 W/kg, further SAR measurement is not required for the other (remaining) test positions in that exposure configuration and 802.11 transmission mode combinations within the frequency band or aggregated band. SAR is also not required for that exposure configuration in the subsequent test configuration(s).
- 2) . When the reported SAR of the initial test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position using subsequent highest extrapolated or estimated 1-g SAR conditions determined by area scans or next closest/smallest test separation distance and maximum RF coupling test positions based on manufacturer justification, on the highest maximum output power channel, until the reported SAR is ≤ 0.8 W/kg or all required test positions (left, right, touch, tilt or subsequent surfaces and edges) are tested.
- 3) . For all positions/configurations tested using the initial test position and subsequent test positions, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested. a) Additional power measurements may be required for this step, which should be limited to those necessary for identifying the subsequent highest output power channels.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for leaderonic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

Report No.: SZEM170800849702

Rev.01

Page: 38 of 78

5.2.3.2 Initial Test Configuration Procedures

An initial test configuration is determined for OFDM transmission modes according to the channel bandwidth, modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band. SAR is measured using the highest measured maximum output power channel. For configurations with the same specified or measured maximum output power, additional transmission mode and test channel selection procedures are required. SAR test reduction for subsequent highest output test channels is determined according to *reported* SAR of the initial test configuration.

For next to the ear, hotspot mode and UMC mini-tablet exposure configurations where multiple test positions are required, the initial test position procedure is applied to minimize the number of test positions required for SAR measurement using the initial test configuration transmission mode. For fixed exposure conditions that do not have multiple SAR test positions, SAR is measured in the transmission mode determined by the initial test configuration.

When the *reported* SAR of the initial test configuration is > 0.8 W/kg, SAR measurement is required for subsequent next highest measured output power channel(s) in the initial test configuration until *reported* SAR is ≤ 1.2 W/kg or all required channels are tested.

5.2.3.3 Subsequent Test Configuration Procedures

SAR measurement requirements for the remaining 802.11 transmission mode configurations that have not been tested in the initial test configuration are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units. The initial test position procedure is applied to next to the ear, UMPC mini-tablet and hotspot mode configurations. When the same maximum output power is specified for multiple transmission modes, additional power measurements may be required to determine if SAR measurements are required for subsequent highest output power channels in a subsequent test configuration. The subsequent test configuration and SAR measurement procedures are described in the following.

- 1) . When SAR test exclusion provisions of KDB Publication 447498 are applicable and SAR measurement is not required for the initial test configuration, SAR is also not required for the next highest maximum output power transmission mode subsequent test configuration(s) in that frequency band or aggregated band and exposure configuration.
- 2) . When the highest reported SAR for the initial test configuration (when applicable, include subsequent highest output channels), according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration.
- 3) . The number of channels in the initial test configuration and subsequent test configuration can be different due to differences in channel bandwidth. When SAR measurement is required for a subsequent test configuration and the channel bandwidth is smaller than that in the initial test configuration, all channels in the subsequent test configuration that overlap with the larger bandwidth channel tested in the initial test configuration should be used to determine the highest maximum output power channel. This step requires additional power measurement to identify the highest maximum output power channel in the subsequent test configuration to determine SAR test reduction.
 - a)SAR should first be measured for the channel with highest measured output power in the subsequent test configuration.
 - b) SAR for subsequent highest measured maximum output power channels in the subsequent test configuration is required only when the *reported* SAR of the preceding higher maximum output power channel(s) in the subsequent test configuration is > 1.2 W/kg or until all required channels are tested. i) For channels with the same measured maximum output power, SAR should be measured using the channel closest to the center frequency of the larger channel bandwidth channel in the initial test configuration.
- 4) . SAR measurements for the remaining highest specified maximum output power OFDM transmission mode configurations that have not been tested in the initial test configuration (highest maximum output) or subsequent test configuration(s) (subsequent next highest maximum output power) is determined by recursively applying the subsequent test configuration procedures in this section to the remaining configurations according to the following:
 - a)replace "subsequent test configuration" with "next subsequent test configuration" (i.e., subsequent next highest specified maximum output power configuration)
 - b) replace "initial test configuration" with "all tested higher output power configurations"

Report No.: SZEM170800849702

Rev.01

Page: 39 of 78

5.2.3.4 2.4 GHz SAR Procedures

Separate SAR procedures are applied to DSSS and OFDM configurations in the 2.4 GHz band to simplify DSSS test requirements. For 802.11b DSSS SAR measurements, DSSS SAR procedure applies to fixed exposure test position and initial test position procedure applies to multiple exposure test positions. When SAR measurement is required for an OFDM configuration, the initial test configuration, subsequent test configuration and initial test position procedures are applied. The SAR test exclusion requirements for 802.11g/n OFDM configurations are described in following.

802.11b DSSS SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- 1) . When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) . When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.
- 2.4 GHz 802.11g/n OFDM SAR Test Exclusion Requirements

When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied (section 5.3, including sub-sections). SAR is not required for the following 2.4 GHz OFDM conditions.

- 1) . When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration.
- 2) . When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

Report No.: SZEM170800849702

Rev.01

Page: 40 of 78

5.2.4 LTE Test Configuration

LTE modes were tested according to FCC KDB 941225 D05 publication. Please see notes after the tabulated SAR data for required test configurations. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR. The R&S CMW500 was used for LTE output power measurements and SAR testing. Max power control was used so the UE transmits with maximum output power during SAR testing. SAR must be measured with the maximum TTI (transmit time interval) supported by the device in each LTE configuration.

A) Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

B) MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

Modulation	Cha	Channel bandwidth / Transmission bandwidth (N _{RB})							
	1.4	3.0	5	10	15	20			
	MHz	MHz	MHz	MHz	MHz	MHz			
QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1		
16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1		
16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 2		

C) A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

D) Largest channel bandwidth standalone SAR test requirements

1) QPSK with 1 RB allocation

Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is \leq 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1 RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel. When the reported SAR of a required test channel is > 1.45 W/kg, SAR is required for all three RB offset configurations for that required test channel.

2) QPSK with 50% RB allocation

The procedures required for 1 RB allocation in 1) are applied to measure the SAR for QPSK with 50% RB allocation.

3) QPSK with 100% RB allocation

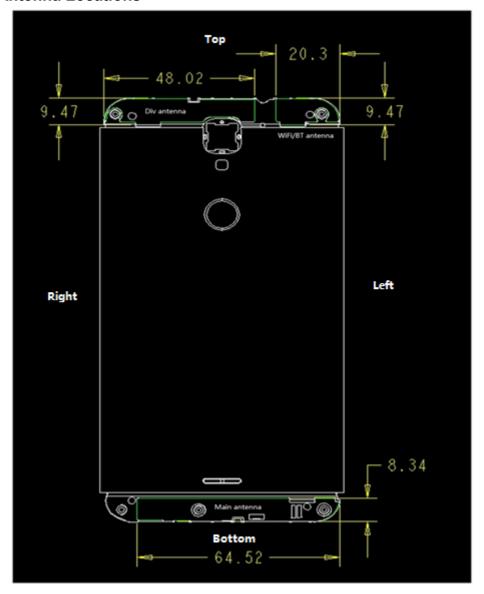
For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation in 1) and 2) are \leq 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.

4) Higher order modulations

For each modulation besides QPSK; e.g., 16-QAM, 64-QAM, apply the QPSK procedures in above sections to determine the QAM configurations that may need SAR measurement. For each configuration identified as required for testing, SAR is required only when the highest maximum output power for the configuration in the higher order modulation is > $\frac{1}{2}$ dB higher than the same configuration in QPSK or when the reported SAR for the QPSK configuration is > 1.45 W/kg.

E) Other channel bandwidth standalone SAR test requirements

For the other channel bandwidths used by the device in a frequency band, apply all the procedures required for the largest channel bandwidth in section A) to determine the channels and RB configurations that need SAR testing and only measure SAR when the highest maximum output power of a configuration requiring testing in the smaller channel bandwidth is $> \frac{1}{2}$ dB higher than the equivalent channel configurations in the largest channel bandwidth configuration or the reported SAR of a configuration for the largest channel bandwidth is $> \frac{1}{2}$ dB higher than the equivalent channel bandwidth is $> \frac{1}{2}$ dB higher than the equivalent channel bandwidth is $> \frac{1}{2}$ dB higher than the equivalent channel bandwidth is $> \frac{1}{2}$ dB higher than the equivalent channel bandwidth is $> \frac{1}{2}$ dB higher than the equivalent channel bandwidth is $> \frac{1}{2}$ dB higher than the equivalent channel bandwidth is $> \frac{1}{2}$ dB higher than the equivalent channel bandwidth is $> \frac{1}{2}$ dB higher than the equivalent channel bandwidth is $> \frac{1}{2}$ dB higher than the equivalent channel bandwidth is $> \frac{1}{2}$ dB higher than the equivalent channel bandwidth is $> \frac{1}{2}$ dB higher than the equivalent channel bandwidth is $> \frac{1}{2}$ dB higher than the equivalent channel bandwidth is $> \frac{1}{2}$ dB higher than the equivalent channel bandwidth is $> \frac{1}{2}$ dB higher than the equivalent channel bandwidth is $> \frac{1}{2}$ dB higher than the equivalent channel bandwidth is $> \frac{1}{2}$ dB higher than the equivalent channel bandwidth is $> \frac{1}{2}$ dB higher than the equivalent channel bandwidth is $> \frac{1}{2}$ dB higher than the equivalent channel bandwidth is $> \frac{1}{2}$ dB higher than the equivalent channel bandwidth is $> \frac{1}{2}$ dB higher than the equivalent channel bandwidth is $> \frac{1}{2}$ dB higher than the equivalent channel bandwidth is $> \frac{1}{2}$ dB higher than the equivalent channel bandwidth is $> \frac{1}{2}$ dB higher than the equivalent channel bandwidth is $> \frac{1}{2}$ dB higher than the equivalent channel b



Report No.: SZEM170800849702

Rev.01

Page: 41 of 78

5.2.5 DUT Antenna Locations

Note: The Diversity antenna does not have transmit function.

5.2.6 EUT side for SAR Testing

According to the distance between LTE/WCDAM/GSM&WIFI antennas and the sides of the EUT we can draw the conclusion that:

EUT Sides for SAR Testing									
Mode	Front	Back	Left	Right	Тор	Bottom			
GSM	Yes	Yes	Yes	Yes	No	Yes			
WCDMA	Yes	Yes	Yes	Yes	No	Yes			
LTE	Yes	Yes	Yes	Yes	No	Yes			
Wi-Fi (2.4GHz)	Yes	Yes	Yes	Yes	Yes	No			

Table 8: EUT Sides for SAR Testing

Note: When the antenna-to-edge distance is greater than 2.5cm, such position does not need to be tested.

Report No.: SZEM170800849702

Rev.01

Page: 42 of 78

5.2.7 Stand-alone SAR test evaluation

Unless specifically required by the published RF exposure KDB procedures, standalone 1-g head or body and 10-g extremity SAR evaluation for general population exposure conditions, by measurement or numerical simulation, is not required when the corresponding SAR Test Exclusion Threshold condition is satisfied. These test exclusion conditions are based on source-based time-averaged maximum conducted output power of the RF channel requiring evaluation, adjusted for tune-up tolerance, and the minimum test separation distance required for the exposure conditions.

Freq. Frequenc Band (GHz)		Position	Average Power		Test Separation (mm)	Calculate Value	Exclusion Threshold	Exclusion (Y/N)
			dBm	mW	(11111)			
		Head	17	50.1	0	15.7	3	N
Wi-Fi	2.45	Body-worn	17	50.1	15	5.2	3	N
		hotspot	17	50.1	10	7.8	3	N
		Head	6	4.0	0	1.3	3	Y
Bluetooth	2.48	Body-worn	6	4.0	15	0.4	3	Y
		hotspot	6	4.0	10	0.6	3	Υ

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] · [$\sqrt{f(GHz)}$] ≤ 3.0 for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is \leq 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

Report No.: SZEM170800849702

Rev.01

Page: 43 of 78

5.3 Measurement of RF conducted Power

5.3.1 Conducted Power of GSM

5.3.1 Cor	5.3.1 Conducted Power of GSM									
				GS	SM 850					
	Burst Outpo	ut Power(c	IBm)		Tune	Division Factors		e-Average (Power(dBm		Tune
Ch	annel	128	190	251	up	raciois	128	190	251	up
GSM (GMSK)	GSM	32.59	32.31	32.14	33	-9.19	23.4	23.12	22.95	23.81
	1 TX Slot	32.57	32.31	32.14	33	-9.19	23.38	23.12	22.95	23.81
GPRS/ EGPRS	2 TX Slots	31.98	31.71	31.64	32	-6.18	25.8	25.53	25.46	25.82
(GMSK)	3 TX Slots	30.47	30.23	30.07	31	-4.42	26.05	25.81	25.65	26.58
(GIVIOIT)	4 TX Slots	29.43	29.14	29.01	30	-3.17	26.26	25.97	25.84	26.83
	1 TX Slot	26.91	27.18	27.14	28	-9.19	17.72	17.99	17.95	18.81
EGPRS	2 TX Slots	25.73	25.81	25.66	27	-6.18	19.55	19.63	19.48	20.82
(8PSK)	3 TX Slots	23.37	23.54	23.49	24	-4.42	18.95	19.12	19.07	19.58
	4 TX Slots	22.26	22.28	22.18	23	-3.17	19.09	19.11	19.01	19.83
				GS	M 1900					
	Burst Outpo	ut Power(c	IBm)		Tune Division		POWEROBID			Tune
Ch	annel	512	661	810	up	Factors	512	661	810	up
GSM (GMSK)	GSM	30.31	29.94	29.6	31	-9.19	21.12	20.75	20.41	21.81
	1 TX Slot	30.29	29.94	29.58	31	-9.19	21.1	20.75	20.39	21.81
GPRS/	2 TX Slots	29.71	29.33	29.04	30	-6.18	23.53	23.15	22.86	23.82
EGPRS (GMSK)	3 TX Slots	28.19	27.74	27.48	29	-4.42	23.77	23.32	23.06	24.58
(GIVIOIT)	4 TX Slots	27.09	26.69	26.41	28	-3.17	23.92	23.52	23.24	24.83
	1 TX Slot	26.5	26.13	25.93	27	-9.19	17.31	16.94	16.74	17.81
EGPRS	2 TX Slots	25.28	25.04	24.81	26	-6.18	19.1	18.86	18.63	19.82
(8PSK)	3 TX Slots	25.31	25.03	24.81	26	-4.42	20.89	20.61	20.39	21.58
	4 TX Slots	25.43	25.01	24.79	26	-3.17	22.26	21.84	21.62	22.83

Table 9: Conducted Power of GSM

1) . CMU200 measures GSM peak and average output power for active timeslots. For SAR the time based average power is relevant. The difference in between depends on the duty cycle of the TDMA signal:

			, ,			
No. of timeslots	1	2	3	4		
Duty Cycle	1:8.3	1:4.15	1:2.77	1:2.075		
Time based avg. power compared to slotted avg. power	-9.19	-6.18	-4.42	-3.17		

2) The frame-averaged power is linearly proportion to the slot number configured and it is linearly scaled the maximum burst-averaged power based on time slots. The calculated method is shown as below:

Frame-averaged power = 10 x log (Burst-averaged power mW x Slot used / 8

- 3) . When the maximum output power variation across the required test channels is > $\frac{1}{2}$ dB, instead of the middle channel, the highest output power channel must be used
- 4) . SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance.

Report No.: SZEM170800849702

Rev.01

Page: 44 of 78

5.3.2 Conducted Power of WCDMA

WCDMA850								
Average Conducted Power(dBm)								
Channe	el	4132	4182	4233				
WCDMA	12.2kbps AMR	23.07	23.03	23.01				
VVCDIVIA	12.2kbps RMC	23.11	23.05	23.04				
	Subtest 1	22.18	22.08	22.17				
HSDPA	Subtest 2	22.02	21.95	21.99				
HODPA	Subtest 3	21.48	21.42	21.37				
	Subtest 4	21.49	21.37	21.38				
	Subtest 1	21.19	21.14	21.16				
	Subtest 2	21.26	21.18	21.22				
HSUPA	Subtest 3	21.17	21.18	21.15				
	Subtest 4	21.24	21.19	21.2				
	Subtest 5	21.19	21.13	21.16				
	Subtest 1	22.13	22.02	22.11				
DC-HSDPA	Subtest 2	21.96	21.91	21.99				
DC-USDLA	Subtest 3	21.39	21.32	21.45				
	Subtest 4	21.41	21.33	21.41				

Report No.: SZEM170800849702

Rev.01

Page: 45 of 78

	WCDMA1700								
Average Conducted Power(dBm)									
Channe	l	1312	1412	1513					
WCDMA	12.2kbps AMR	22.32	22.63	22.51					
VVCDIVIA	12.2kbps RMC	22.4	22.67	22.56					
	Subtest 1	21.67	22	21.74					
HCDDA	Subtest 2	21.45	21.78	21.53					
HSDPA	Subtest 3	20.87	21.15	20.85					
	Subtest 4	20.88	21.05	20.89					
	Subtest 1	20.62	20.92	20.76					
	Subtest 2	20.68	20.95	20.81					
HSUPA	Subtest 3	20.65	20.91	20.82					
	Subtest 4	20.69	20.96	20.78					
	Subtest 5	20.67	20.93	20.76					
	Subtest 1	21.46	21.89	21.71					
DC-HSDPA	Subtest 2	21.39	21.73	21.54					
DC-HODPA	Subtest 3	20.81	21.05	20.81					
	Subtest 4	20.82	21.01	20.83					

Report No.: SZEM170800849702

Rev.01

Page: 46 of 78

	WCDMA1900									
Average Conducted Power(dBm)										
Ch	annel	9262	9400	9538						
WCDMA	12.2kbps AMR	23.22	23.31	23.14						
VVCDIVIA	12.2kbps RMC	23.24	23.34	23.18						
	Subtest 1	22.53	22.52	22.32						
HSDPA	Subtest 2	22.3	22.24	22.12						
ПЭДРА	Subtest 3	21.79	21.69	21.65						
	Subtest 4	21.68	21.59	21.52						
	Subtest 1	21.52	21.5	21.43						
	Subtest 2	21.46	21.48	21.38						
HSUPA	Subtest 3	21.52	21.54	21.44						
	Subtest 4	21.49	21.49	21.4						
	Subtest 5	21.47	21.5	21.42						
	Subtest 1	22.46	22.48	22.31						
DC HCDDA	Subtest 2	22.21	22.21	22.10						
DC-HSDPA	Subtest 3	21.71	21.63	21.62						
	Subtest 4	21.62	21.54	21.54						

Table 10: Conducted Power of WCDMA

1) When the maximum output power variation across the required test channels is $> \frac{1}{2}$ dB, instead of the middle channel, the highest output power channel must be used.

Report No.: SZEM170800849702

Rev.01

Page: 47 of 78

5.3.3 Conducted Power of LTE

	LTE FDD Band 2			Cond	lucted Power	(dBm)
Donadoui alth	Madulation	DD eine	RB	Channel	Channel	Channel
Bandwidth	Modulation	RB size	offset	18607	18900	19193
		1	0	22.87	22.87	22.85
		1	2	22.96	22.97	22.94
		1	5	22.86	22.9	22.84
	QPSK	3	0	21.95	21.97	21.93
		3	2	21.94	21.93	21.91
		3	3	21.92	21.95	21.9
1.4MHz		6	0	21.98	21.97	21.98
1.411172		1	0	22.08	22.08	22.01
		1	2	22.17	22.18	22.11
		1	5	22.09	22.09	22
	16QAM	3	0	21.93	21.95	21.9
		3	2	21.89	21.92	21.87
		3	3	21.91	21.95	21.89
		6	0	21.02	21.01	21.05
Bandwidth	Modulation	RB size	RB	Channel	Channel	Channel
Danuwidin	Modulation	ND SIZE	offset	18615	18900	19185
	QPSK	1	0	22.88	22.84	22.83
		1	7	22.89	22.89	22.85
		1	14	22.83	22.83	22.8
		8	0	21.97	21.99	21.95
		8	4	21.95	21.94	21.94
		8	7	21.94	21.96	21.93
3MHz		15	0	21.96	21.97	21.95
JIVII IZ		1	0	21.98	21.98	21.98
		1	7	22.03	22.07	21.99
		1	14	21.94	22	21.93
	16QAM	8	0	20.9	20.94	20.86
		8	4	20.89	20.9	20.85
		8	7	20.88	20.92	20.86
		15	0	20.85	20.89	20.82
Bandwidth	Modulation	RB size	RB	Channel	Channel	Channel
241141114111	344,41011		offset	18625	18900	19175
		1	0	22.81	22.82	22.78
		1	13	22.8	22.82	22.78
		1	24	22.7	22.72	22.69
	QPSK	12	0	21.89	21.91	21.87
		12	6	21.87	21.87	21.86
		12	13	21.84	21.88	21.83
5MHz		25	0	21.85	21.85	21.84
		1	0	22.13	22.15	22.08
		1	13	22.12	22.13	22.04
	400	1	24	22.04	22.04	21.97
	16QAM	12	0	20.96	20.96	20.88
		12	6	20.94	20.92	20.89
		12	13	20.9	20.93	20.86
		25	0	20.91	20.89	20.86

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="https://www.sgs.com/en/Terms-and-Conditions/Terms

Report No.: SZEM170800849702

Rev.01

Page: 48 of 78

5 1 1 1 1 1 1 1 1	NA 1 1 C		RB	Channel	Channel	Channel
Bandwidth	Modulation	RB size	offset	18650	18900	19150
		1	0	22.83	22.79	22.75
		1	25	22.75	22.74	22.71
	QPSK	1	49	22.72	22.71	22.66
		25	0	21.82	21.82	21.8
		25	13	21.79	21.79	21.78
		25	25	21.77	21.77	21.75
10MHz		50	0	21.84	21.81	21.79
TUNITZ		1	0	22.08	22.05	21.99
		1	25	21.99	21.98	21.95
		1	49	21.99	21.94	21.89
	16QAM	25	0	20.82	20.83	20.8
		25	13	20.79	20.81	20.78
		25	25	20.79	20.78	20.75
		50	0	20.82	20.81	20.79
Bandwidth	Modulation	RB size	RB	Channel	Channel	Channel
Danuwiutii	Modulation	ND SIZE	offset	18675	18900	19125
	QPSK	1	0	22.9	22.88	22.82
		1	38	22.82	22.81	22.75
		1	74	22.78	22.8	22.73
		36	0	21.93	21.92	21.88
		36	18	21.87	21.87	21.86
		36	39	21.84	21.86	21.83
15MHz		75	0	21.88	21.88	21.86
I SIVII IZ	16QAM	1	0	22.15	22.15	22.1
		1	38	22.08	22.06	22.02
		1	74	22.04	22.08	21.98
		36	0	20.93	20.93	20.85
		36	18	20.9	20.89	20.84
		36	39	20.85	20.88	20.83
		75	0	20.91	20.89	20.82
Bandwidth	Modulation	RB size	RB	Channel	Channel	Channel
24114111411	modulation		offset	18700	18900	19100
		1	0	22.91	22.93	22.88
		1	50	22.79	22.79	22.85
		1	99	22.83	22.86	22.78
	QPSK	50	0	21.78	21.85	21.82
		50	25	21.75	21.77	21.74
		50	50	21.72	21.76	21.76
20MHz		100	0	21.75	21.77	21.77
		1	0	22.38	22.23	22.21
		1	50	22.31	22.22	22.12
		1	99	22.23	22.28	22.13
	16QAM	50	0	20.84	20.82	20.83
		50	25	20.77	20.83	20.82
		50	50	20.76	20.83	20.81
		100	0	20.84	20.8	20.81

Report No.: SZEM170800849702

Rev.01

Page: 49 of 78

	LTE FDD	Cond	Conducted Power(dBm)			
Danduddh	Modulation	DD size	DD offeet	Channel	Channel	Channel
Bandwidth	Modulation	RB size	RB offset	19957	20175	20393
		1	0	22.39	22.44	22.49
		1	2	22.48	22.43	22.47
		1	5	22.37	22.45	22.41
	QPSK	3	0	21.41	21.46	21.43
		3	2	21.45	21.44	21.47
		3	3	21.48	21.46	21.41
1.4MHz		6	0	21.47	21.44	21.46
1.4111112		1	0	21.47	21.45	21.4
		1	2	21.47	21.45	21.41
		1	5	21.45	21.45	21.42
	16QAM	3	0	21.45	21.48	21.46
		3	2	21.4	21.48	21.44
		3	3	21.41	21.49	21.46
		6	0	20.51	20.57	20.56
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel
Danuwiutii	Modulation	ND SIZE	KD Oliset	19965	20175	20385
		1	0	22.49	22.48	22.41
		1	7	22.48	22.43	22.44
		1	14	22.45	22.44	22.49
	QPSK	8	0	21.41	21.41	21.48
		8	4	21.49	21.41	21.43
		8	7	21.47	21.48	21.43
3MHz		15	0	21.49	21.4	21.44
SIVITZ	16QAM	1	0	21.48	21.46	21.41
		1	7	21.45	21.44	21.43
		1	14	21.41	21.45	21.49
		8	0	20.62	20.73	20.66
		8	4	20.59	20.71	20.66
		8	7	20.58	20.7	20.69
		15	0	20.56	20.67	20.65
Bandwidth	Modulation	DP size	RB offset	Channel	Channel	Channel
Danuwiuiii	Modulation	RB size	ND UIISEL	19975	20175	20375
		1	0	22.48	22.46	22.44
		1	13	22.48	22.49	22.45
		1	24	22.41	22.4	22.42
	QPSK	12	0	21.46	21.43	21.41
		12	6	21.44	21.44	21.4
		12	13	21.42	21.43	21.42
5MHz		25	0	21.42	21.49	21.49
SIVITIZ		1	0	21.49	21.45	21.46
		1	13	21.44	21.49	21.49
		1	24	21.46	21.4	21.48
	16QAM	12	0	20.61	20.68	20.65
		12	6	20.59	20.7	20.65
		12	13	20.58	20.67	20.66
		25	0	20.56	20.65	20.62

Report No.: SZEM170800849702

Rev.01

Page: 50 of 78

Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel
Bandwidth	Modulation	RD SIZE	RD Ollset	20000	20175	20350
		1	0	22.47	22.48	22.41
		1	25	22.38	22.45	22.4
		1	49	22.34	22.44	22.43
	QPSK	25	0	21.46	21.49	21.45
		25	13	21.44	21.4	21.44
		25	25	21.41	21.4	21.43
10MHz		50	0	21.48	21.42	21.4
TOWINZ		1	0	21.46	21.48	21.48
		1	25	21.48	21.49	21.45
		1	49	21.44	21.44	21.41
	16QAM	25	0	20.48	20.52	20.46
		25	13	20.43	20.52	20.44
		25	25	20.43	20.49	20.43
		50	0	20.48	20.54	20.5
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel
Danawiath	Modulation	ND SIZE	ND oliset	20025	20175	20325
		1	0	22.44	22.43	22.42
		1	38	22.34	22.43	22.33
		1	74	22.32	22.39	22.4
	QPSK	36	0	21.46	21.49	21.45
		36	18	21.41	21.48	21.44
		36	39	21.39	21.49	21.4
15MHz		75	0	21.43	21.46	21.44
13141112	16QAM	1	0	21.47	21.44	21.45
		1	38	21.46	21.48	21.43
		1	74	21.45	21.42	21.41
		36	0	20.48	20.51	20.49
		36	18	20.44	20.52	20.45
		36	39	20.42	20.52	20.44
		75	0	20.45	20.5	20.44
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel
Danawaan	Modulation	110 0120	112 011001	20050	20175	20300
		1	0	22.61	22.59	22.6
		1	50	22.41	22.54	22.51
		1	99	22.45	22.55	22.56
	QPSK	50	0	21.41	21.45	21.54
		50	25	21.38	21.44	21.45
		50	50	21.43	21.47	21.49
20MHz		100	0	21.42	21.47	21.46
2011112		1	0	22.04	21.65	21.8
		1	50	21.87	21.75	21.63
		1	99	21.74	22.01	21.69
	16QAM	50	0	20.43	20.48	20.45
		50	25	20.36	20.46	20.39
		50	50	20.4	20.43	20.45
		100	0	20.38	20.43	20.47

Report No.: SZEM170800849702

Rev.01

Page: 51 of 78

	LTE FDD Band	5		Cond	lucted Power(dBm)
Bandwidth	Modulation	RB size	RB offset	Channel 20407	Channel 20525	Channel 20643
		1	0	22.06	22.06	22.12
		1	2	22.15	22.14	22.21
		1	5	22.06	22.08	22.11
	QPSK	3	0	22.15	22.16	22.25
		3	2	22.1	22.15	22.22
		3	3	22.15	22.17	22.23
		6	0	21.12	21.14	21.22
1.4MHz		1	0	21.28	21.27	21.25
		1	2	21.38	21.4	21.32
		1	5	21.26	21.3	21.23
	16QAM	3	0	21.13	21.15	21.15
		3	2	21.08	21.14	21.1
		3	3	21.11	21.15	21.12
		6	0	20.18	20.2	20.24
Danahusialth	Madulation	RB size RB offset 20407 1 0 22.06 1 2 22.15 1 5 22.06 3 0 22.15 3 2 22.1 3 3 22.15 6 0 21.12 1 0 21.28 1 2 21.38 1 5 21.26 3 0 21.13 3 2 21.08 3 3 21.11 6 0 20.18	Channel	Channel		
Bandwidth	Modulation	RB Size	RB ollset	20415	20525	20635
		1	0	22.03	22.07	22.15
		1	7	22.07	22.13	22.18
		1	14	21.97	22.06	22.09
	QPSK	8	0	21.13	21.19	21.28
		8		21.12	21.19	21.24
		8	7	21.1	21.18	21.22
3MHz		15			21.16	21.24
JIVII IZ		1		21.25	21.29	21.3
		1	7	21.32	21.35	21.29
		_	14		21.31	21.21
	16QAM				20.25	20.29
					20.23	20.24
					20.22	20.23
		15	0	20.1	20.19	20.22

Report No.: SZEM170800849702

Rev.01

Page: 52 of 78

Domahu i alth	Madulation	DD size	RB offset	Channel	Channel	Channel
Bandwidth	Modulation	RB size	RD Ollset	20425	20525	20625
		1	0	22.07	22.11	22.19
		1	13	22.06	22.11	22.2
		1	24	22	22.07	22.1
	QPSK	12	0	21.11	21.18	21.27
		12	6	21.11	21.19	21.26
		12	13	21.12	21.17	21.22
5MHz		25	0	21.08	21.14	21.25
02		1	0	21.36	21.37	21.42
		1	13	21.36	21.4	21.4
		1	24	21.29	21.38	21.26
	16QAM	12	0	20.16	20.19	20.29
		12	6	20.16	20.22	20.25
		12	13	20.17	20.21	20.22
		25	0	20.12	20.15	20.23
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel
Danuwiutii	Modulation	IND SIZE	IND Ollset	20450	20525	20600
		1	0	22.16	22.18	22.09
		1	25	22.13	22.14	22.13
		1	49	22.09	22.04	22.05
	QPSK	25	0	21.15	21.16	21.15
		25	13	21.12	21.15	21.14
		25	25	21.15	21.11	21.12
10MHz		50	0	21.16	21.13	21.14
IUIVITIZ		1	0	21.53	21.18	21.11
		1	25	21.13	21.52	21.04
		1	49	21.11	21.06	21.31
	16QAM	25	0	20.16	20.23	20.2
		25	13	20.15	20.19	20.24
		25	25	2018	20.15	20.18
		50	0	20.17	20.14	20.1

Report No.: SZEM170800849702

Rev.01

Page: 53 of 78

	LTE FDD Band	17		Conducted Power(dBm)				
Bandwidth	Modulation	RB size	RB offset	Channel 20775	Channel 21100	Channel 21425		
		1	0	21.2	21.23	21.71		
		1	13	21.13	21.23	20.99		
		1	24	21.25	21.63	21.04		
	QPSK	12	0	20.28	19.99	20.64		
	Qron	12	6	20.26	20.04	20.69		
		12	13	20.38	20.06	20.61		
		25	0	20.1	20.06	20.23		
5MHz		1	0	19.97	20.51	20.57		
		1	13	19.83	20.01	20.27		
		1	24	19.79	19.82	20.06		
	16QAM	12	0	19.6	19.27	19.68		
		12	6	19.64	19.46	19.59		
		12	13	19.86	19.81	19.43		
		25	0	19.07	18.93	19.41		
			-	Channel	Channel	Channel		
Bandwidth	Modulation	RB size	RB offset	20800	21100	21400		
		1	0	21.26	21.27	21.76		
		1	25	21.21	21.45	21.06		
		1	49	21.3	21.7	21.09		
	QPSK	25	0	20.33	20.04	20.72		
		25	13	20.32	20.11	20.73		
		25	25	20.45	20.13	20.66		
10MHz		50	0	20.16	20.09	20.3		
I OWIT IZ		1	0	20.05	20.54	20.65		
		1	25	19.9	20.08	20.34		
		1	49	19.85	19.88	20.09		
	16QAM	25	0	19.66	19.35	19.74		
		25	13	19.7	19.51	19.62		
		25	25	19.9	19.87	19.47		
		50	0	19.1	19	19.45		

Report No.: SZEM170800849702

Rev.01

Page: 54 of 78

Dan duvidéh	Madulation	DD size	DD offeet	Channel	Channel	Channel
Bandwidth	Modulation	RB size	RB offset	20825	21100	21375
		1	0	21.32	21.31	21.84
		1	38	21.27	21.48	21.11
		1	74	21.34	21.74	21.12
	QPSK	36	0	20.39	20.12	20.78
		36	18	20.38	20.17	20.79
		36	39	20.51	20.19	20.7
15MHz		75	0	20.21	20.14	20.36
1011112		1	0	20.12	20.59	20.7
		1	38	19.97	20.14	20.39
		1	74	19.91	19.92	20.15
	16QAM	36	0	19.72	19.43	19.82
		36	18	19.76	19.56	19.65
		36	39	19.95	19.91	19.5
		75	0	19.18	19.06	19.51
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel
Danuwidin	Modulation	ND SIZE	KD Oliset	20850	21100	21350
		1	0	21.38	21.37	21.87
		1	50	21.32	21.54	21.16
		1	99	21.37	21.8	21.15
	QPSK	50	0	20.44	20.16	20.86
		50	25	20.45	20.21	20.83
		50	50	20.58	20.24	20.77
20MHz		100	0	20.27	20.21	20.41
ZUIVITZ		1	0	20.19	20.63	20.76
		1	50	20.01	20.18	20.45
		1	99	19.98	19.99	20.18
	16QAM	50	0	19.79	19.51	19.88
		50	25	19.82	19.63	19.73
		50	50	20.01	19.98	19.54
		100	0	19.24	19.11	19.56

Table 11: Conducted Power of LTE

Report No.: SZEM170800849702

Rev.01

Page: 55 of 78

5.3.4 Conducted Power of WIFI and BT

Wi-Fi			Average	Power (dE	m) for Da	ta Rates (N	Mbps)		
2450MHz	Channel	1	2	5.5	11	1	1	1	1
	1	16.51	16.37	16.46	16.43	1	1	1	1
802.11b	6	16.1	16.1	16.1	15.96	1	1	1	1
	11	16.31	15.7	15.65	15.54	1	1	1	1
	Channel	6	9	12	18	24	36	48	54
802.11g	1	13.96	13.9	13.91	13.57	13.7	13.53	13.38	13.26
602.11g	6	13.83	13.81	13.85	13.75	13.31	13.41	13.13	13.04
	11	12.68	12.61	12.82	12.7	12.84	12.25	12.51	12.4
	Channel	6.5	13	19.5	26	39	52	58.5	65
802.11n	1	12.53	12.9	12.55	12.43	12.29	12.06	11.99	11.93
HT20	6	12.82	12.5	12.87	12.34	12.2	12.14	12.05	12.02
	11	11.91	11.77	11.65	11.54	11.43	11.45	11.37	11.32
	Channel	6.5	13	19.5	26	39	52	58.5	65
802.11n	3	11.58	11.52	11.34	11.23	10.81	10.75	10.51	10.42
HT40	6	11.67	11.35	11.2	11.06	10.86	10.66	10.18	10.5
	9	11.38	11.27	11.12	10.98	10.75	10.41	10.11	10.01

Table 12: Conducted Power Of WIFI

B ⁻	Γ	Avera	ge Conducted Powe	er(dBm)
Band	Channel	GFSK	π/4DQPSK	8DPSK
	0	5.19	2.88	2.87
BT	39	5.25	3.07	3.09
	78	4.43	2.05	2.08
	0	4.19	1	1
BLE	19	4.24	/	1
	39	3.42	1	1

Table 13: Conducted Power of BT

Report No.: SZEM170800849702

Rev.01

Page: 56 of 78

5.4 Measurement of SAR Data

5.4.1 SAR Result of GSM850

This is the original test report (Ref.No.: SZEM1612010850RG).

SAR Power Conducted Tune

Test position	Test mode	Test Ch./Freq.	Duty Cycle	SAR (W/kg)1- g	Power Drift (dB)	Conducted Power (dBm)	up Limit (dBm)	Scaled factor	Scaled SAR (W/kg)	Liquid Temp	SAR limit (W/kg)
				He	ead Test o	lata					
Left cheek	GSM	190/836.6	1:8.3	0.091	0.08	32.31	33	1.172	0.107	22.1	1.6
Left tilted	GSM	190/836.6	1:8.3	0.0453	0.17	32.31	33	1.172	0.053	22.1	1.6
Right cheek	GSM	190/836.6	1:8.3	0.098	0.01	32.31	33	1.172	0.115	22.1	1.6
Right tilted	GSM	190/836.6	1:8.3	0.0413	0.08	32.31	33	1.172	0.048	22.1	1.6
			Во	ody worn Te	st data(S	eparate 15mm)					
Front side	GSM	190/836.6	1:8.3	0.139	0.11	32.31	33	1.172	0.163	22.1	1.6
Back side	GSM	190/836.6	1:8.3	0.185	0.05	32.31	33	1.172	0.217	22.1	1.6
			ŀ	Hotspot Tes	t data(Se	parate 10mm)					
Front side	GPRS 4TS	190/836.6	1:2.075	0.3	-0.04	29.14	30	1.219	0.366	22.1	1.6
Back side	GPRS 4TS	190/836.6	1:2.075	0.429	-0.11	29.14	30	1.219	0.523	22.1	1.6
Left side	GPRS 4TS	190/836.6	1:2.075	0.357	-0.08	29.14	30	1.219	0.435	22.1	1.6
Right side	GPRS 4TS	190/836.6	1:2.075	0.321	-0.02	29.14	30	1.219	0.391	22.1	1.6
Bottom side	GPRS 4TS	190/836.6	1:2.075	0.129	-0.15	29.14	30	1.219	0.157	22.1	1.6
	The	worst case	on the	original te	st report	(Ref.No.: SZ	EM170	8008497	7RG).		
Test position	Test mode	Test Ch./Freq.	Duty Cycle	SAR (W/kg)1- g	Power Drift (dB)	Conducted Power(dBm)	Tune up Limit (dBm)	Scaled factor	Scaled SAR (W/kg)	Liquid Temp	SAR limit (W/kg)
				He	ead Test o	lata					
Right cheek	GSM	190/836.6	1:8.3	0.159	-0.07	32.31	33	1.172	0.186	22.1	1.6
			Во	ody worn Te	est data(S	eparate 15mm)					
Back side	GSM	190/836.6	1:8.3	0.183	0.06	32.31	33	1.172	0.215	22.1	1.6
			ŀ	Hotspot Tes	t data(Se	parate 10mm)					
Back side	GPRS 4TS	190/836.6	1:2.075	0.541	-0.01	29.14	30	1.219	0.659	22.1	1.6

Table 14: SAR of GSM850 for Head and Body.

- 1) The maximum Scaled SAR value is marked in bold. Graph results refer to Appendix B
- 2) If the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).

Report No.: SZEM170800849702

Rev.01

Page: 57 of 78

5.4.2 SAR Result of GSM1900

This is the original test report (Ref.No.: SZEM1612010850RG).

Test position	Test mode	Test Ch./Freq.	Duty Cycle	SAR (W/kg) 1-g	Power Drift (dB)	Conduc ted Power (dBm)	Tune up Limit (dBm)	Scaled factor	Scaled SAR (W/kg)	Liquid Temp	SAR limit (W/kg)
				He	ead Test c	lata	,				
Left cheek	GSM	512/1850.2	1:8.3	0.164	0.01	30.31	31	1.172	0.192	22.3	1.6
Left tilted	GSM	512/1850.2	1:8.3	0.0842	-0.04	30.31	31	1.172	0.099	22.3	1.6
Right cheek	GSM	512/1850.2	1:8.3	0.0989	0.09	30.31	31	1.172	0.116	22.3	1.6
Right tilted	GSM	512/1850.2	1:8.3	0.0829	-0.01	30.31	31	1.172	0.097	22.3	1.6
			Boo	ly worn Te	est data(Se	eparate 15n	nm)				
Front side	GSM	512/1850.2	1:8.3	0.0984	0	30.31	31	1.172	0.115	22.3	1.6
Back side	GSM	512/1850.2	1:8.3	0.123	0.04	30.31	31	1.172	0.144	22.3	1.6
			Н	otspot Tes	t data(Ser	parate 10mr	n)				
Front side	GPRS 4TS	512/1850.2	1:2.075	0.325	0.04	27.09	28	1.233	0.401	22.3	1.6
Back side	GPRS 4TS	512/1850.2	1:2.075	0.407	0.1	27.09	28	1.233	0.502	22.3	1.6
Left side	GPRS 4TS	512/1850.2	1:2.075	0.168	-0.07	27.09	28	1.233	0.207	22.3	1.6
Right side	GPRS 4TS	512/1850.2	1:2.075	0.092	0.11	27.09	28	1.233	0.113	22.3	1.6
Bottom side	GPRS 4TS	512/1850.2	1:2.075	0.519	-0.06	27.09	28	1.233	0.640	22.3	1.6
		e worst case	on the o	original to	est repo	rt (Ref.No	.: SZEM	1708008	497RG).		
Test position	Test mode	Test Ch./Freq.	Duty Cycle	SAR (W/kg) 1-g	Power Drift (dB)	Conduc ted Power(dBm)	Tune up Limit (dBm)	Scaled factor	Scaled SAR (W/kg)	Liquid Temp	SAR limit (W/kg)
				He	ead Test c	lata					
Left cheek	GSM	512/1850.2	1:8.3	0.169	-0.16	30.31	31	1.172	0.198	22.3	1.6
			Boo	ly worn Te	est data(Se	eparate 15n	nm)				
Back side	GSM	512/1850.2	1:8.3	0.14	-0.06	30.31	31	1.172	0.164	22.3	1.6
			Но	otspot Tes	t data(Ser	oarate 10mr	n)				
Bottom side	GPRS 4TS	512/1850.2	1:2.075	0.599	0.14	27.09	28	1.233	0.739	22.3	1.6

Table 15: SAR of GSM1900 for Head and Body.

- 1) The maximum Scaled SAR value is marked in bold. Graph results refer to Appendix B
- 2) If the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).

Report No.: SZEM170800849702

Rev.01

Page: 58 of 78

5.4.3 SAR Result of WCDMA850

This is the original test report (Ref.No.: SZEM1612010850RG).

Test position	Test mode	Test Ch./Freq.	Duty Cycle	SAR (W/kg)	Power Drift	Conduct ed Power	Tune up Limit	Scaled factor	Scaled SAR	Liquid Temp	SAR limit
position	illoue	Cii./i Teq.	Cycle	1-g	(dB)	(dBm)	(dBm)	iactoi	(W/kg)	Temp	(W/kg)
					Head Tes	st data					
Left cheek	RMC	4182/836.4	1:1	0.134	0.08	23.05	24	1.245	0.167	22.1	1.6
Left tilted	RMC	4182/836.4	1:1	0.0734	0.03	23.05	24	1.245	0.091	22.1	1.6
Right cheek	RMC	4182/836.4	1:1	0.163	-0.06	23.05	24	1.245	0.203	22.1	1.6
Right tilted	RMC	4182/836.4	1:1	0.067	0.15	23.05	24	1.245	0.083	22.1	1.6
				Body worn	Test data	(Separate 15	imm)				
Front side	RMC	4182/836.4	1:1	0.163	0.08	23.05	24	1.245	0.203	22.1	1.6
Back side	RMC	4182/836.4	1:1	0.206	0.03	23.05	24	1.245	0.256	22.1	1.6
				Hotspot ⁻	Test data(S	Separate 10n	nm)				
Front side	RMC	4182/836.4	1:1	0.175	0.1	23.05	24	1.245	0.218	22.1	1.6
Back side	RMC	4182/836.4	1:1	0.237	0.07	23.05	24	1.245	0.295	22.1	1.6
Left side	RMC	4182/836.4	1:1	0.214	0.04	23.05	24	1.245	0.266	22.1	1.6
Right side	RMC	4182/836.4	1:1	0.255	0.01	23.05	24	1.245	0.317	22.1	1.6
Bottom side	RMC	4182/836.4	1:1	0.0797	-0.04	23.05	24	1.245	0.099	22.1	1.6
	T	he worst cas	se on th	ne origina	al test rep	ort (Ref.N	o.: SZEN	/1708008	8497RG)		
Test position	Test mode	Test Ch./Freq.	Duty Cycle	SAR (W/kg) 1-g	Power Drift (dB)	Conduct ed Power (dBm)	Tune up Limit(d Bm)	Scaled factor	Scaled SAR (W/kg)	Liquid Temp	SAR limit (W/kg)
					Head Tes	st data					
Right cheek	RMC	4182/836.4	1:1	0.18	0.07	23.05	24	1.245	0.224	22.1	1.6
				Body worn	Test data	(Separate 15	imm)				
Back side	RMC	4182/836.4	1:1	0.209	-0.05	23.05	24	1.245	0.260	22.1	1.6
				Hotspot ⁻	Test data(S	Separate 10n	nm)				
Right side	RMC	4182/836.4	1:1	0.208	0	23.05	24	1.245	0.259	22.1	1.6

Table 16: SAR of WCDMA850 for Head and Body.

- 1) The maximum Scaled SAR value is marked in bold. Graph Results refer to Appendix B
- 2) If the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).

Report No.: SZEM170800849702

Rev.01

Page: 59 of 78

5.4.4 SAR Result of WCDMA1700

This is the original test report (Ref.No.: SZEM1612010850RG).

Test position	Test mode	Test Ch./Freq.	Duty Cycl e	SAR (W/kg) 1-g	Power Drift (dB)	Condu cted Power (dBm)	Tune up Limit (dBm)	Scaled factor	Scaled SAR (W/kg)	Liquid Temp	SAR limit (W/kg)
					Head Tes	t data	,				
Left cheek	RMC	1412/1732.4	1:1	0.224	-0.06	22.67	23.5	1.211	0.271	22.2	1.6
Left tilted	RMC	1412/1732.4	1:1	0.0836	0.04	22.67	23.5	1.211	0.101	22.2	1.6
Right cheek	RMC	1412/1732.4	1:1	0.194	0.04	22.67	23.5	1.211	0.235	22.2	1.6
Right tilted	RMC	1412/1732.4	1:1	0.0679	0.03	22.67	23.5	1.211	0.082	22.2	1.6
Body worn Test data(Separate 15mm)											
Front side	RMC	1412/1732.4	1:1	0.271	0.08	22.67	23.5	1.211	0.328	22.2	1.6
Back side	RMC	1412/1732.4	1:1	0.281	0.02	22.67	23.5	1.211	0.340	22.2	1.6
				Hotspot T	est data(S	Separate 10	mm)				
Front side	RMC	1412/1732.4	1:1	0.536	-0.02	22.67	23.5	1.211	0.649	22.2	1.6
Back side	RMC	1412/1732.4	1:1	0.574	0.03	22.67	23.5	1.211	0.695	22.2	1.6
Left side	RMC	1412/1732.4	1:1	0.365	0.11	22.67	23.5	1.211	0.442	22.2	1.6
Right side	RMC	1412/1732.4	1:1	0.182	0.03	22.67	23.5	1.211	0.220	22.2	1.6
Bottom side	RMC	1412/1732.4	1:1	0.538	-0.1	22.67	23.5	1.211	0.651	22.2	1.6
	Tł	ne worst case	on th	e origina	I test rep			M170800)8497RG	i).	
Test position	Test mode	Test Ch./Freq.	Duty Cycl e	SAR (W/kg) 1-g	Power Drift (dB)	Condu cted Power (dBm)	Tune up Limit (dBm)	Scaled factor	Scaled SAR (W/kg)	Liquid Temp	SAR limit (W/kg)
					Head Tes	t data					
Left cheek	RMC	1412/1732.4	1:1	0.184	0.12	22.67	23.5	1.211	0.223	22.2	1.6
			E	Body worn	Test data	Separate 1	5mm)				
Back side	RMC	1412/1732.4	1:1	0.242	-0.14	22.67	23.5	1.211	0.293	22.2	1.6
				Hotspot T	est data(S	Separate 10	mm)				
Back side	RMC	1412/1732.4	1:1	0.422	0.03	22.67	23.5	1.211	0.511	22.2	1.6

Table 17: SAR of WCDMA1700 for Head and Body.

- 1) The maximum Scaled SAR value is marked in bold. Graph Results refer to Appendix B
- 2) If the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).

Report No.: SZEM170800849702

Rev.01

Page: 60 of 78

5.4.5 SAR Result of WCDMA1900

This is the original test report (Ref.No.: SZEM1612010850RG).

Test position	Test mode	Test Ch./Freq.	Duty Cycle	SAR (W/kg) 1-g	Power Drift (dB)	Condu cted Power (dBm)	Tune up Limit (dBm)	Scaled factor	Scaled SAR (W/kg)	Liquid Temp	SAR limit (W/kg)
					Head Test	data					
Left cheek	RMC	9400/1880	1:1	0.456	0.18	23.34	24	1.164	0.531	22.3	1.6
Left tilted	RMC	9400/1880	1:1	0.206	0.01	23.34	24	1.164	0.240	22.3	1.6
Right cheek	RMC	9400/1880	1:1	0.278	0.12	23.34	24	1.164	0.324	22.3	1.6
Right tilted	RMC	9400/1880	1:1	0.209	-0.01	23.34	24	1.164	0.243	22.3	1.6
			Е	Body worn	Test data(Separate 1	5mm)				
Front side	RMC	9400/1880	1:1	0.251	0.13	23.34	24	1.164	0.292	22.3	1.6
Back side	RMC	9400/1880	1:1	0.273	0.08	23.34	24	1.164	0.318	22.3	1.6
				Hotspot T	est data(S	eparate 10	mm)				
Front side	RMC	9400/1880	1:1	0.472	0.06	23.34	24	1.164	0.549	22.3	1.6
Back side	RMC	9400/1880	1:1	0.513	0.01	23.34	24	1.164	0.597	22.3	1.6
Left side	RMC	9400/1880	1:1	0.231	0.03	23.34	24	1.164	0.269	22.3	1.6
Right side	RMC	9400/1880	1:1	0.122	0.12	23.34	24	1.164	0.142	22.3	1.6
Bottom side	RMC	9400/1880	1:1	0.542	0.02	23.34	24	1.164	0.631	22.3	1.6
	Th	e worst cas	e on the	e origina	l test rep	ort (Ref.I	No.: SZE	M17080	08497RG	i).	
Test position	Test mode	Test Ch./Freq.	Duty Cycle	SAR (W/kg) 1-g	Power Drift (dB)	Condu cted Power (dBm)	Tune up Limit (dBm)	Scaled factor	Scaled SAR (W/kg)	Liquid Temp	SAR limit (W/kg)
					Head Test	data					
Left cheek	RMC	9400/1880	1:1	0.257	0.14	23.34	24	1.164	0.299	22.3	1.6
		,	Е	Body worn	Test data(Separate 1	5mm)				
Back side	RMC	9400/1880	1:1	0.32	-0.01	23.34	24	1.164	0.373	22.3	1.6
				Hotspot T	est data(S	eparate 10	mm)				
Bottom side	RMC	9400/1880	1:1	0.673	0.1	23.34	24	1.164	0.783	22.3	1.6

Table 18: SAR of WCDMA1900 for Head and Body.

- 1) The maximum Scaled SAR value is marked in bold. Graph Results refer to Appendix B
- 2) If the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).

Report No.: SZEM170800849702

Rev.01

Page: 61 of 78

5.4.6 SAR Result of LTE Band 2

This is the original test report (Ref.No.: SZEM1612010850RG).

	This is the original test report (Ref.No.: SZEM1612010850RG).											
Test position	B W.	Test mode	Test Ch./Freq.	Duty Cycle	SAR (W/kg) 1-g	Power Drift (dB)	ed power (dBm)	Tune up Limit (dBm)	Scaled factor	Scaled SAR (W/kg)	Liquid Temp.	SAR limit (W/kg)
				He	ad Test d	ata(1RB_	0 offset)					
Left cheek	20	QPSK	18900/1880	1:1	0.412	0.08	22.93	23.5	1.140	0.470	22.3	1.6
Left tilted	20	QPSK	18900/1880	1:1	0.142	0.04	22.93	23.5	1.140	0.162	22.3	1.6
Right cheek	20	QPSK	18900/1880	1:1	0.211	0.01	22.93	23.5	1.140	0.241	22.3	1.6
Right tilted	20	QPSK	18900/1880	1:1	0.142	0.05	22.93	23.5	1.140	0.162	22.3	1.6
					Head Tes	t data(50°	%RB)					
Left cheek	20	QPSK	18900/1880	1:1	0.322	0.08	21.85	22.5	1.161	0.374	22.3	1.6
Left tilted	20	QPSK	18900/1880	1:1	0.118	-0.12	21.85	22.5	1.161	0.137	22.3	1.6
Right cheek	20	QPSK	18900/1880	1:1	0.166	0.17	21.85	22.5	1.161	0.193	22.3	1.6
Right tilted	20	QPSK	18900/1880	1:1	0.106	0.08	21.85	22.5	1.161	0.123	22.3	1.6
			Body	worn Te	est data(S	eparate 1	5mm 1RB_	0 offset)				
Front side	20	QPSK	18900/1880	1:1	0.272	0.16	22.93	23.5	1.140	0.310	22.3	1.6
Back side	20	QPSK	18900/1880	1:1	0.273	-0.02	22.93	23.5	1.140	0.311	22.3	1.6
			Во	dy worn	Test data	(Separate	15mm 50°	%RB)				
Front side	20	QPSK	18900/1880	1:1	0.217	0.01	21.85	22.5	1.161	0.252	22.3	1.6
Back side	20	QPSK	18900/1880	1:1	0.218	0.03	21.85	22.5	1.161	0.253	22.3	1.6
			Hot	spot Tes	t data(Ser	oarate 10r	nm 1RB_0	offset)				
Front side	20	QPSK	18900/1880	1:1	0.473	0.08	22.93	23.5	1.140	0.539	22.3	1.6
Back side	20	QPSK	18900/1880	1:1	0.514	0	22.93	23.5	1.140	0.586	22.3	1.6
Left side	20	QPSK	18900/1880	1:1	0.314	0.02	22.93	23.5	1.140	0.358	22.3	1.6
Right side	20	QPSK	18900/1880	1:1	0.122	0.05	22.93	23.5	1.140	0.139	22.3	1.6
Bottom side	20	QPSK	18900/1880	1:1	0.588	0.17	22.93	23.5	1.140	0.670	22.3	1.6
			F	lotspot T	est data (Separate	10mm 50%	RB)				
Front side	20	QPSK	18900/1880	1:1	0.384	0.1	21.85	22.5	1.161	0.446	22.3	1.6
Back side	20	QPSK	18900/1880	1:1	0.418	0.01	21.85	22.5	1.161	0.485	22.3	1.6
Left side	20	QPSK	18900/1880	1:1	0.248	-0.1	21.85	22.5	1.161	0.288	22.3	1.6
Right side	20	QPSK	18900/1880	1:1	0.1	0.17	21.85	22.5	1.161	0.116	22.3	1.6
Bottom side	20	QPSK	18900/1880	1:1	0.485	0.06	21.85	22.5	1.161	0.563	22.3	1.6

Report No.: SZEM170800849702

Rev.01

Page: 62 of 78

	The worst case on the original test report (Ref.No.: SZEM1708008497RG).													
Test position	B W.	Test mode	Test Ch./Freq.	Duty Cycle	SAR (W/kg) 1-g	Power Drift (dB)	Conduct ed power (dBm)	Tune up Limit (dBm)	Scaled factor	Scaled SAR (W/kg)	Liquid Temp.	SAR limit (W/kg)		
	Head Test data(1RB_0 offset)													
Left cheek														
			Во	dy worn	Test data	(Separate	15mm 1RE	B_0 offset)						
Back side	20	QPSK	18900/1880	1:1	0.315	-0.09	22.93	23.5	1.140	0.359	22.3	1.6		
	Hotspot Test data(Separate 10mm 1RB_0 offset)													
Bottom side	20 OPSK 18900/1880 171 0.642 -0.08 22.93 23.5 1.140 0.732 22.3 1.6													

Table 19: SAR of LTE Band 2 for Head and Body.

- 1) The maximum Scaled SAR value is marked in bold. Graph results refer to Appendix B
- 2) If the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).

Report No.: SZEM170800849702

Rev.01

Page: 63 of 78

5.4.7 SAR Result of LTE Band 4

This is the original test report (Ref.No.: SZEM1612010850RG).

			his is the orig		SAR	Power	Condu	Tune		Scale		SAR
Test position	W.	Test mode	Test Ch./Freq.	Duty Cycle	(W/kg) 1-g	Drift (dB)	cted power (dBm)	up Limit (dBm)	Scaled factor	d SAR (W/kg)	Liquid Temp.	limit (W/kg)
				Hea	ad Test dat	a(1RB_0	offset)					
Left cheek	20	QPSK	20050/1720	1:1	0.212	0.08	22.61	23	1.094	0.232	22.2	1.6
Left tilted	20	QPSK	20050/1720	1:1	0.0692	0.16	22.61	23	1.094	0.076	22.2	1.6
Right cheek	20	QPSK	20050/1720	1:1	0.132	-0.08	22.61	23	1.094	0.144	22.2	1.6
Right tilted	20	QPSK	20050/1720	1:1	0.0449	0.04	22.61	23	1.094	0.049	22.2	1.6
				H	Head Test	data(50%	RB)					
Left cheek	20	QPSK	20300/1745	1:1	0.207	0.06	21.54	22	1.112	0.230	22.2	1.6
Left tilted	20	QPSK	20300/1745	1:1	0.0706	0.09	21.54	22	1.112	0.078	22.2	1.6
Right cheek	20	QPSK	20300/1745	1:1	0.16	0.02	21.54	22	1.112	0.178	22.2	1.6
Right tilted	20	QPSK	20300/1745	1:1	0.0589	0.07	21.54	22	1.112	0.065	22.2	1.6
			Body	worn Te	st data(Ser	parate 15	mm 1RB_	0 offset)				
Front side	20	QPSK	20050/1720	1:1	0.168	0.07	22.61	23	1.094	0.184	22.2	1.6
Back side	20	QPSK	20050/1720	1:1	0.208	-0.17	22.61	23	1.094	0.228	22.2	1.6
			Во	dy worn T	est data (S	Separate	15mm 50°	%RB)				
Front side	20	QPSK	20300/1745	1:1	0.19	-0.06	21.54	22	1.112	0.211	22.2	1.6
Back side	20	QPSK	20300/1745	1:1	0.208	-0.06	21.54	22	1.112	0.231	22.2	1.6
			Hots	spot Test	data(Sepa	rate 10m	m 1RB_0	offset)				
Front side	20	QPSK	20050/1720	1:1	0.361	-0.05	22.61	23	1.094	0.395	22.2	1.6
Back side	20	QPSK	20050/1720	1:1	0.433	-0.1	22.61	23	1.094	0.474	22.2	1.6
Left side	20	QPSK	20050/1720	1:1	0.234	-0.05	22.61	23	1.094	0.256	22.2	1.6
Right side	20	QPSK	20050/1720	1:1	0.113	0.14	22.61	23	1.094	0.124	22.2	1.6
Bottom side	20	QPSK	20050/1720	1:1	0.425	-0.04	22.61	23	1.094	0.465	22.2	1.6
			Н	otspot Te	est data (Se	eparate 10	0mm 50%	RB)				
Front side	20	QPSK	20300/1745	1:1	0.395	0.02	21.54	22	1.112	0.439	22.2	1.6
Back side	20	QPSK	20300/1745	1:1	0.453	-0.04	21.54	22	1.112	0.504	22.2	1.6
Left side	20	QPSK	20300/1745	1:1	0.24	0.07	21.54	22	1.112	0.267	22.2	1.6
Right side	20	QPSK	20300/1745	1:1	0.11	0.02	21.54	22	1.112	0.122	22.2	1.6
Bottom side	20	QPSK	20300/1745	1:1	0.418	0.07	21.54	22	1.112	0.465	22.2	1.6

Report No.: SZEM170800849702

Rev.01

Page: 64 of 78

	The worst case on the original test report (Ref.No.: SZEM1708008497RG).												
Test position	B W.	Test mode	Test Ch./Freq.	Duty Cycle	SAR (W/kg) 1-g	Power Drift (dB)	Conduct ed power (dBm)	Tune up Limit (dBm)	Scaled factor	Scale d SAR (W/kg)	Liquid Temp.	SAR limit (W/kg)	
				Не	ead Test da	ata(1RB_0	offset)						
Left cheek	Left cheek 20 QPSK 20050/1720 1:1 0.269 0.09 22.61 23 1.094 0.294 22.2 1.6												
			В	ody worn	Test data	(Separate	15mm 50%	6RB)					
Back side	20	QPSK	20300/1745	1:1	0.208	-0.07	21.54	22	1.112	0.231	22.2	1.6	
	Hotspot Test data (Separate 10mm 50%RB)												
Back side	20	QPSK	20300/1745	1:1	0.375	-0.06	21.54	22	1.112	0.417	22.2	1.6	

Table 20: SAR of LTE Band 4 for Head and Body.

- 1) The maximum Scaled SAR value is marked in bold. Graph results refer to Appendix B
- 2) If the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).

Report No.: SZEM170800849702

Rev.01

Page: 65 of 78

5.4.1 SAR Result of LTE Band 5

This is the original test report (Ref.No.: SZEM1612010850RG).

			This is the or		SAR	Power	Condu	Tune		Scaled		SAR
Test position	W.	Test mode	Test Ch./Freq.	Duty Cycle	(W/kg) 1-g	Drift (dB)	cted power (dBm)	up Limit (dBm)	Scaled factor	SAR (W/kg)	Liquid Temp.	limit (W/kg)
				Не	ead Test da	ata(1RB_0	offset)					
Left cheek	10	QPSK	20525/836.5	1:1	0.099	0.05	22.18	23	1.208	0.120	22.1	1.6
Left tilted	10	QPSK	20525/836.5	1:1	0.0656	0.14	22.18	23	1.208	0.079	22.1	1.6
Right cheek	10	QPSK	20525/836.5	1:1	0.12	0.05	22.18	23	1.208	0.145	22.1	1.6
Right tilted	10	QPSK	20525/836.5	1:1	0.0536	0.16	22.18	23	1.208	0.065	22.1	1.6
					Head Test	data(50%	SRB)					
Left cheek 10 QPSK 20525/836.5 1:1 0.0792 0.08 21.16 22 1.213 0.096 22.1 1.6											1.6	
Left tilted	10	QPSK	20525/836.5	1:1	0.0519	0.14	21.16	22	1.213	0.063	22.1	1.6
Right cheek	10	QPSK	20525/836.5	1:1	0.0914	0.16	21.16	22	1.213	0.111	22.1	1.6
Right tilted	10	QPSK	20525/836.5	1:1	0.0423	0.04	21.16	22	1.213	0.051	22.1	1.6
			Bod	y worn Te	est data(Se	eparate 15	imm 1RB_	_0 offset)				
Front side	10	QPSK	20525/836.5	1:1	0.125	0.12	22.18	23	1.208	0.151	22.1	1.6
Back side	10	QPSK	20525/836.5	1:1	0.17	0.02	22.18	23	1.208	0.205	22.1	1.6
			В	ody worn	Test data	(Separate	15mm 50	%RB)				
Front side	10	QPSK	20525/836.5	1:1	0.106	0.05	21.16	22	1.213	0.129	22.1	1.6
Back side	10	QPSK	20525/836.5	1:1	0.136	-0.01	21.16	22	1.213	0.165	22.1	1.6
			Но	tspot Tes	t data(Sep	arate 10m	ım 1RB_0	offset)				
Front side	10	QPSK	20525/836.5	1:1	0.15	0.1	22.18	23	1.208	0.181	22.1	1.6
Back side	10	QPSK	20525/836.5	1:1	0.197	0.01	22.18	23	1.208	0.238	22.1	1.6
Left side	10	QPSK	20525/836.5	1:1	0.181	0.03	22.18	23	1.208	0.219	22.1	1.6
Right side	10	QPSK	20525/836.5	1:1	0.23	0	22.18	23	1.208	0.278	22.1	1.6
Bottom side	10	QPSK	20525/836.5	1:1	0.0592	0.04	22.18	23	1.208	0.072	22.1	1.6
			I	Hotspot T	est data (S	Separate 1	0mm 50%	βRB)				
Front side	10	QPSK	20525/836.5	1:1	0.12	-0.01	21.16	22	1.213	0.146	22.1	1.6
Back side	10	QPSK	20525/836.5	1:1	0.158	0.06	21.16	22	1.213	0.192	22.1	1.6
Left side	10	QPSK	20525/836.5	1:1	0.145	0.01	21.16	22	1.213	0.176	22.1	1.6
Right side	10	QPSK	20525/836.5	1:1	0.185	0	21.16	22	1.213	0.224	22.1	1.6
Bottom side	10	QPSK	20525/836.5	1:1	0.0489	-0.03	21.16	22	1.213	0.059	22.1	1.6

Report No.: SZEM170800849702

Rev.01

Page: 66 of 78

	The worst case on the original test report (Ref.No.: SZEM1708008497RG).													
Test position	B W.	Test mode	Test Ch./Freq.	Duty Cycle	SAR (W/kg) 1-g	Power Drift (dB)	cted power (dBm)	Tune up Limit (dBm)	Scaled factor	Scaled SAR (W/kg)	Liquid Temp.	SAR limit (W/kg)		
				ļ	Head Test	data(1RB	_0 offset)							
Right cheek														
			В	ody worn	Test data(Separate	15mm 1R	B_0 offset	:)					
Back side	10	QPSK	20525/836.5	1:1	0.248	0.01	22.18	23	1.208	0.300	22.1	1.6		
	Hotspot Test data(Separate 10mm 1RB_0 offset)													
Right side	10	QPSK	20525/836.5	1:1	0.245	-0.04	22.18	23	1.208	0.296	22.1	1.6		

Table 21: SAR of LTE Band 5 for Head and Body.

- 1) The maximum Scaled SAR value is marked in bold. Graph results refer to Appendix B
- 2) If the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).

Report No.: SZEM170800849702

Rev.01

Page: 67 of 78

5.4.2 SAR Result of LTE Band 7

This is the original test report (Ref.No.: SZEM1612010850RG).

Inis is the original test report (Ref.No.: SZEM1612010850RG).												
Test position	B W.	Test mode	Test Ch./Freq.	Duty Cycle	SAR (W/kg) 1-g	Power Drift (dB)	Conduc ted power (dBm)	Tune up Limit (dBm)	Scaled factor	Scaled SAR (W/kg)	Liquid Temp.	limit (W/k g)
				He	ead Test d	ata(1RB_0	O offset)					
Left cheek	20	QPSK	21350/2560	1:1	0.241	0.08	21.87	22.5	1.156	0.279	22.1	1.6
Left tilted	20	QPSK	21350/2560	1:1	0.0686	0.09	21.87	22.5	1.156	0.079	22.1	1.6
Right cheek	20	QPSK	21350/2560	1:1	0.156	0.04	21.87	22.5	1.156	0.180	22.1	1.6
Right tilted	20	QPSK	21350/2560	1:1	0.137	-0.03	21.87	22.5	1.156	0.158	22.1	1.6
					Head Tes	t data(50%	%RB)					
Left cheek	20	QPSK	21350/2560	1:1	0.228	0.07	20.86	21.5	1.159	0.264	22.1	1.6
Left tilted	20	QPSK	21350/2560	1:1	0.0675	0.02	20.86	21.5	1.159	0.078	22.1	1.6
Right cheek	20	QPSK	21350/2560	1:1	0.153	0.1	20.86	21.5	1.159	0.177	22.1	1.6
Right tilted	20	QPSK	21350/2560	1:1	0.15	0.08	20.86	21.5	1.159	0.174	22.1	1.6
			Bod	y worn T	est data(S	eparate 1	5mm 1RB_0	offset)				
Front side	20	QPSK	21350/2560	1:1	0.183	0.04	21.87	22.5	1.156	0.212	22.1	1.6
Back side	20	QPSK	21350/2560	1:1	0.186	-0.07	21.87	22.5	1.156	0.215	22.1	1.6
			В	ody worn	Test data	(Separate	15mm 50%	6RB)				
Front side	20	QPSK	21350/2560	1:1	0.174	0.06	20.86	21.5	1.159	0.202	22.1	1.6
Back side	20	QPSK	21350/2560	1:1	0.126	0.19	20.86	21.5	1.159	0.146	22.1	1.6
			Но	tspot Tes	st data(Sep	arate 10n	nm 1RB_0 o	offset)				
Front side	20	QPSK	21350/2560	1:1	0.348	-0.03	21.87	22.5	1.156	0.402	22.1	1.6
Back side	20	QPSK	21350/2560	1:1	0.429	0.09	21.87	22.5	1.156	0.496	22.1	1.6
Left side	20	QPSK	21350/2560	1:1	0.298	0.03	21.87	22.5	1.156	0.345	22.1	1.6
Right side	20	QPSK	21350/2560	1:1	0.0407	0.08	21.87	22.5	1.156	0.047	22.1	1.6
Bottom side	20	QPSK	21350/2560	1:1	0.628	0.08	21.87	22.5	1.156	0.726	22.1	1.6
				Hotspot 7	Test data (Separate '	10mm 50%F	RB)				
Front side	20	QPSK	21350/2560	1:1	0.33	0.16	20.86	21.5	1.159	0.382	22.1	1.6
Back side	20	QPSK	21350/2560	1:1	0.429	0.06	20.86	21.5	1.159	0.497	22.1	1.6
Left side	20	QPSK	21350/2560	1:1	0.27	0.06	20.86	21.5	1.159	0.313	22.1	1.6
Right side	20	QPSK	21350/2560	1:1	0.0369	0.02	20.86	21.5	1.159	0.043	22.1	1.6
Bottom side	20	QPSK	21350/2560	1:1	0.584	0.1	20.86	21.5	1.159	0.677	22.1	1.6

Report No.: SZEM170800849702

Rev.01

Page: 68 of 78

	The worst case on the original test report (Ref.No.: SZEM1708008497RG).												
Test position	B W.	Test mode	Test Ch./Freq.	Duty Cycle	SAR (W/kg) 1-g	Power Drift(d B)	Condu cted power (dBm)	Tune up Limit (dBm)	Scaled factor	Scaled SAR (W/kg)	Liquid Temp.	SAR limit (W/kg)	
					Head Tes	t data(1RI	B_0 offset)						
Left cheek	20	QPSK	21350/2560	1:1	0.352	-0.04	21.87	22.5	1.156	0.407	22.1	1.6	
			Е	ody worr	n Test data	(Separate	15mm 1R	B_0 offse	t)				
Back side	20	QPSK	21350/2560	1:1	0.231	-0.05	21.87	22.5	1.156	0.267	22.1	1.6	
	Hotspot Test data(Separate 10mm 1RB_0 offset)												
Bottom side	20	QPSK	21350/2560	1:1	0.636	0.18	21.87	22.5	1.156	0.735	22.1	1.6	

Table 22: SAR of LTE Band 7 for Head and Body.

- 1) The maximum Scaled SAR value is marked in bold. Graph results refer to Appendix B
- 2) If the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).

Report No.: SZEM170800849702

Rev.01

Page: 69 of 78

5.4.3 SAR Result of WIFI

This is the original test report (Ref.No.: SZEM1612010850RG).

Test position	Test mode	Test Ch./Fre q.	Duty Cycle	Duty Cycle Scaled factor	SAR (W/kg) 1-g	Powe r drift (dB)	Condu cted power (dBm)	Tune up Limit (dBm)	Scaled factor	Scaled SAR (W/kg)	Liqui d Temp	SAR limit (W/kg)
					Head	Test data		-				
Left cheek	802.11b	1/2412	1:1	1	0.229	0	16.51	17	1.119	0.256	22	1.6
Left tilted	802.11b	1/2412	1:1	1	0.26	0.05	16.51	17	1.119	0.291	22	1.6
Right cheek	802.11b	1/2412	1:1	1	0.567	0.05	16.51	17	1.119	0.635	22	1.6
Right tilted	802.11b	1/2412	1:1	1	0.556	0.06	16.51	17	1.119	0.622	22	1.6
				Body v	worn Test d	ata(Sepa	rate 15mm	1)				
Front side	802.11b	1/2412	1:1	1	0.038	-0.09	16.51	17	1.119	0.043	22	1.6
Back side	802.11b	1/2412	1:1	1	0.068	0.07	16.51	17	1.119	0.076	22	1.6
				Hotsp	oot Test dat	ta (Separa	ate 10mm)					
Front side	802.11b	1/2412	1:1	1	0.077	-0.1	16.51	17	1.119	0.086	22	1.6
Back side	802.11b	1/2412	1:1	1	0.158	0.08	16.51	17	1.119	0.177	22	1.6
Left side	802.11b	1/2412	1:1	1	0.0643	-0.1	16.51	17	1.119	0.072	22	1.6
Right side	802.11b	1/2412	1:1	1	0.00978	-0.03	16.51	17	1.119	0.011	22	1.6
Top side	802.11b	1/2412	1:1	1	0.1	0.03	16.51	17	1.119	0.112	22	1.6
	Т	he worst	case o	n the orig	ginal test	report (F	Ref.No.:	SZEM17	0800849	7RG).		
Test position	Test mode	Test Ch./Fre q.	Duty Cycle	Duty Cycle Scaled factor	SAR (W/kg) 1-g	Powe r drift (dB)	Condu cted power (dBm)	Tune up Limit (dBm)	Scaled factor	Scaled SAR (W/kg)	Liqui d Temp	SAR limit (W/kg)
					Head	Test data						
Right cheek	802.11b	1/2412	1:1	1	0.451	0.08	16.51	17	1.119	0.505	22	1.6
				Body v	worn Test d	ata(Sepa	rate 15mm	1)				
Back side	802.11b	1/2412	1:1	1	0.053	0.01	16.51	17	1.119	0.059	22	1.6
				Hotsp	oot Test dat	ta (Separa	ate 10mm)					
Back side	802.11b	1/2412	1:1	1	0.127	-0.09	16.51	17	1.119	0.142	22	1.6

Table 23: SAR of WIFI for Head and Body

- 1) The maximum Scaled SAR value is marked in bold. Graph results refer to Appendix B
- 2) If the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).
- 3) Each channel was tested at the lowest data rate.
- 4) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, 802.11g/n OFDM SAR Test is not required.

Report No.: SZEM170800849702

Rev.01

Page: 70 of 78

5.5 Multiple Transmitter Evaluation

5.5.1 Simultaneous SAR SAR test evaluation

1) Estimated SAR

When the standalone SAR test exclusion is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to determine simultaneous transmission SAR test exclusion:

• (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[√f(GHz)/x] W/kg for test separation distances ≤ 50 mm;

Where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

• 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm.

Estimated SAR Result

	F=====================================			Test	Estimated
Freq. Band	Frequency (GHz)	Test Position	max. power(dBm)	Separation (mm)	1g SAR (W/kg)
		Head	6	0	0.167
Bluetooth	2.48	Body-worn	6	15	0.056
		hotspot	6	10	0.084

2) Simultaneous Transmission

NO.	Simultaneous Transmission Configuration	Head	Body worn	Hotspot
1	GSM(Voice) + WiFi	Yes	Yes	No
2	GSM(Voice) + BT	Yes	Yes	No
3	WCDMA(Voice) + WiFi	Yes	Yes	No
4	WCDMA(Voice) + BT	Yes	Yes	No
5	GPRS / EDGE(Data) + WiFi	No	No	Yes
6	GPRS / EDGE(Data) + BT	No	No	Yes
7	WCDMA(Data) + WiFi	No	No	Yes
8	WCDMA(Data) + BT	No	No	Yes
9	LTE(Data) + WiFi	Yes	Yes	Yes
10	LTE(Data) + BT	Yes	Yes	Yes
11	BT+WIFI (They share the same antenna and cannot transmit at the same time by design.)	No	No	No

Report No.: SZEM170800849702

Rev.01

Page: 71 of 78

3) Simultaneous Transmission SAR Summation Scenario for head

WWAN Band	Exposure position	① MAX.WWAN SAR(W/kg)	②MAX.WLAN SAR(W/kg)	③ MAX.BT SAR(W/kg)	Summed SAR①+	Summed SAR①+	Case NO.
	Left Touch	0.107	0.256	0.167	0.363	0.274	No
CCMOEO	Left Tilt	0.053	0.291	0.167	0.344	0.220	No
GSM850	Right Touch	0.186	0.635	0.167	0.821	0.353	No
	Right Tilt	0.048	0.622	0.167	0.670	0.215	No
	Left Touch	0.198	0.256	0.167	0.454	0.365	No
GSM1900	Left Tilt	0.099	0.291	0.167	0.390	0.266	No
GSW1900	Right Touch	0.116	0.635	0.167	0.751	0.283	No
	Right Tilt	0.097	0.622	0.167	0.719	0.264	No
	Left Touch	0.531	0.256	0.167	0.787	0.698	No
WCDMA	Left Tilt	0.240	0.291	0.167	0.531	0.407	No
Band II	Right Touch	0.324	0.635	0.167	0.959	0.491	No
	Right Tilt	0.243	0.622	0.167	0.865	0.410	No
	Left Touch	0.271	0.256	0.167	0.527	0.438	No
WCDMA	Left Tilt	0.101	0.291	0.167	0.392	0.268	No
Band IV	Right Touch	0.235	0.635	0.167	0.870	0.402	No
	Right Tilt	0.082	0.622	0.167	0.704	0.249	No
	Left Touch	0.167	0.256	0.167	0.423	0.334	No
WCDMA	Left Tilt	0.091	0.291	0.167	0.382	0.258	No
Band V	Right Touch	0.224	0.635	0.167	0.859	0.391	No
	Right Tilt	0.083	0.622	0.167	0.705	0.250	No
	Left Touch	0.470	0.256	0.167	0.726	0.637	No
LTE Band	Left Tilt	0.162	0.291	0.167	0.453	0.329	No
2	Right Touch	0.241	0.635	0.167	0.876	0.408	No
	Right Tilt	0.162	0.622	0.167	0.784	0.329	No
	Left Touch	0.294	0.256	0.167	0.550	0.461	No
LTE Band	Left Tilt	0.078	0.291	0.167	0.369	0.245	No
4	Right Touch	0.178	0.635	0.167	0.813	0.345	No
	Right Tilt	0.065	0.622	0.167	0.687	0.232	No
	Left Touch	0.120	0.256	0.167	0.376	0.287	No
LTE Band	Left Tilt	0.079	0.291	0.167	0.370	0.246	No
5	Right Touch	0.256	0.635	0.167	0.891	0.423	No
	Right Tilt	0.065	0.622	0.167	0.687	0.232	No
	Left Touch	0.407	0.256	0.167	0.663	0.574	No
LTE Band	Left Tilt	0.079	0.291	0.167	0.370	0.246	No
7	Right Touch	0.180	0.635	0.167	0.815	0.347	No
	Right Tilt	0.174	0.622	0.167	0.796	0.341	No

Report No.: SZEM170800849702

Rev.01

Page: 72 of 78

4) Simultaneous Transmission SAR Summation Scenario for body worn

WWAN Band	Exposure position	① MAX.WWAN SAR(W/kg)	②MAX.WLAN SAR(W/kg)	③MAX.BT SAR(W/kg)	Summed SAR①+ ②	Summed SAR①+ ③	Case NO.
GSM850	Front	0.163	0.043	0.056	0.206	0.219	No
GSIVIOSU	Back	0.217	0.076	0.056	0.293	0.273	No
GSM1900	Front	0.115	0.043	0.056	0.158	0.171	No
GSWI1900	Back	0.164	0.076	0.056	0.240	0.220	No
WCDMA	Front	0.292	0.043	0.056	0.335	0.348	No
Band II	Back	0.373	0.076	0.056	0.449	0.429	No
WCDMA	Front	0.328	0.043	0.056	0.371	0.384	No
Band IV	Back	0.340	0.076	0.056	0.416	0.396	No
WCDMA	Front	0.203	0.043	0.056	0.246	0.259	No
Band V	Back	0.260	0.076	0.056	0.336	0.316	No
LTE Band	Front	0.310	0.043	0.056	0.353	0.366	No
2	Back	0.359	0.076	0.056	0.435	0.415	No
LTE Band	Front	0.211	0.043	0.056	0.254	0.267	No
4	Back	0.231	0.076	0.056	0.307	0.287	No
LTE Band	Front	0.151	0.043	0.056	0.194	0.207	No
5	Back	0.300	0.076	0.056	0.376	0.356	No
LTE Band	Front	0.212	0.043	0.056	0.255	0.268	No
7	Back	0.267	0.076	0.056	0.343	0.323	No

Report No.: SZEM170800849702

Rev.01

Page: 73 of 78

5) Simultaneous Transmission SAR Summation Scenario for hotspot

WWAN Band	Exposure position	① MAX.WWAN SAR(W/kg)	②MAX.WLAN SAR(W/kg)	③MAX.BT SAR(W/kg)	Summed SAR①+	Summed SAR①+	Case NO.
	Front	0.366	0.086	0.084	0.452	0.450	No
	Back	0.659	0.177	0.084	0.836	0.743	No
0014050	Left	0.435	0.072	0.084	0.507	0.519	No
GSM850	Right	0.391	0.011	0.084	0.402	0.475	No
	Тор	0.000	0.112	0.084	0.112	0.084	No
	Bottom	0.157	0.000	0.084	0.157	0.241	No
	Front	0.401	0.086	0.084	0.487	0.485	No
	Back	0.502	0.177	0.084	0.679	0.586	No
GSM1900	Left	0.207	0.072	0.084	0.279	0.291	No
G2M1900	Right	0.113	0.011	0.084	0.124	0.197	No
	Тор	0.000	0.112	0.084	0.112	0.084	No
	Bottom	0.739	0.000	0.084	0.739	0.823	No
	Front	0.549	0.086	0.084	0.635	0.633	No
	Back	0.597	0.177	0.084	0.774	0.681	No
WCDMA	Left	0.269	0.072	0.084	0.341	0.353	No
Band II	Right	0.142	0.011	0.084	0.153	0.226	No
	Тор	0.000	0.112	0.084	0.112	0.084	No
	Bottom	0.783	0.000	0.084	0.783	0.867	No
	Front	0.649	0.086	0.084	0.735	0.733	No
	Back	0.695	0.177	0.084	0.872	0.779	No
WCDMA	Left	0.442	0.072	0.084	0.514	0.526	No
Band IV	Right	0.220	0.011	0.084	0.231	0.304	No
	Тор	0.000	0.112	0.084	0.112	0.084	No
	Bottom	0.651	0.000	0.084	0.651	0.735	No
	Front	0.218	0.086	0.084	0.304	0.302	No
	Back	0.295	0.177	0.084	0.472	0.379	No
WCDMA	Left	0.266	0.072	0.084	0.338	0.350	No
Band V	Right	0.317	0.011	0.084	0.328	0.401	No
	Тор	0.000	0.112	0.084	0.112	0.084	No
	Bottom	0.099	0.000	0.084	0.099	0.183	No
LTE Band	Front	0.539	0.086	0.084	0.625	0.623	No

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="https://www.sgs.com/en/Terms-and-Conditions/Terms

Report No.: SZEM170800849702

Rev.01

Page: 74 of 78

2	Back	0.586	0.177	0.084	0.763	0.670	No
	Left	0.358	0.072	0.084	0.430	0.442	No
	Right	0.139	0.011	0.084	0.150	0.223	No
	Тор	0.000	0.112	0.084	0.112	0.084	No
	Bottom	0.732	0.000	0.084	0.732	0.816	No
	Front	0.439	0.086	0.084	0.525	0.523	No
	Back	0.504	0.177	0.084	0.681	0.588	No
LTE Band	Left	0.267	0.072	0.084	0.339	0.351	No
4	Right	0.122	0.011	0.084	0.133	0.206	No
	Тор	0.000	0.112	0.084	0.112	0.084	No
	Bottom	0.465	0.000	0.084	0.465	0.549	No
	Front	0.181	0.086	0.084	0.267	0.265	No
	Back	0.238	0.177	0.084	0.415	0.322	No
LTE Band	Left	0.219	0.072	0.084	0.291	0.303	No
5	Right	0.296	0.011	0.084	0.307	0.380	No
	Тор	0.000	0.112	0.084	0.112	0.084	No
	Bottom	0.072	0.000	0.084	0.072	0.156	No
	Front	0.402	0.086	0.084	0.488	0.486	No
	Back	0.497	0.177	0.084	0.674	0.581	No
LTE Band	Left	0.345	0.072	0.084	0.417	0.429	No
7	Right	0.047	0.011	0.084	0.058	0.131	No
	Тор	0.000	0.112	0.084	0.112	0.084	No
	Bottom	0.735	0.000	0.084	0.735	0.819	No

Report No.: SZEM170800849702

Rev.01

Page: 75 of 78

6	Equipment	list							
Test Platform		SPEAG DASY5 Professional							
	Location	SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch							
	Description	SAR Test System (Frequency range 300MHz-6GHz)							
S	oftware Reference	DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)							
		ŀ	lardware Refere	ence					
	Equipment	Manufacturer	Manufacturer Model		Calibration Date	Due date of calibration			
\boxtimes	Robot	Staubli	RX90L	F03/5V32A1/A01	NCR	NCR			
\boxtimes	Twin Phantom	SPEAG	SAM 1	1912	NCR	NCR			
\boxtimes	Twin Phantom	SPEAG	SAM 2	1913	NCR	NCR			
\boxtimes	DAE	SPEAG	DAE4	719	2017-07-06	2018-07-05			
\boxtimes	DAE	SPEAG	DAE4	1267	2017-02-23	2018-02-22			
\boxtimes	E-Field Probe	SPEAG	EX3DV4	3789	2017-01-13	2018-01-12			
\boxtimes	E-Field Probe	SPEAG	EX3DV4	3962	2016-12-19	2017-12-18			
	Validation Kits	SPEAG	D750V3	1160	2016-06-22	2019-06-21			
\boxtimes	Validation Kits	SPEAG	D835V2	4d105	2016-12-08	2019-12-07			
\boxtimes	Validation Kits	SPEAG	D1750V2	1149	2016-06-23	2019-06-22			
\boxtimes	Validation Kits	SPEAG	D1950V3	1138	2016-12-07	2019-12-06			
	Validation Kits	SPEAG	D2300V2	1072	2016-06-21	2019-06-20			
\boxtimes	Validation Kits	SPEAG	D2450V2	733	2016-12-07	2019-12-06			
\boxtimes	Validation Kits	SPEAG	D2600V2	1125	1125 2016-06-22				
\boxtimes	Agilent Network Analyzer	Agilent	E5071C	MY46523590	2017-03-06	2018-03-05			
\boxtimes	Dielectric Probe Kit	Agilent	85070E	US01440210	NCR	NCR			
\boxtimes	Radio Communicatio Analyzer	n Anritsu Corporation	MT8820C	6201465414	2017-04-14	2018-04-13			
\boxtimes	RF Bi-Directional Coupler	Agilent	86205-60001	MY31400031	NCR	NCR			
\boxtimes	Signal Generator	Agilent	N5171B	MY53050736	2017-03-06	2018-03-05			
\boxtimes	Preamplifier	Mini-Circuits	ZHL-42W	15542	NCR	NCR			
\boxtimes	Power Meter	Agilent	E4416A	GB41292095	2017-03-06	2018-03-05			
\boxtimes	Power Sensor	Agilent	8481H	MY41091234	1234 2017-03-05 20				
\boxtimes	Power Sensor	R&S	NRP-Z92	100025 2017-03-06		2018-03-05			
\boxtimes	Attenuator	SHX	TS2-3dB	30704	NCR	NCR			
\boxtimes	Coaxial low pass filte	er Mini-Circuits	VLF-2500(+)	NA	NCR	NCR			
	Coaxial low pass filte	er Microlab Fxr	LA-F13	NA	NCR	NCR			
\boxtimes	50 Ω coaxial load	Mini-Circuits	KARN-50+	00850	NCR	NCR			
\boxtimes	DC POWER SUPPL	Y SAKO	SK1730SL5A	NA	NCR	NCR			
\boxtimes	Speed reading thermometer	MingGao	T809	NA	2017-03-08	2018-03-07			
\boxtimes	Humidity and Temperature Indicate	or KIMTOKA	KIMTOKA	NA	2017-03-08	2018-03-07			

Report No.: SZEM170800849702

Rev.01

Page: 76 of 78

7 Measurement Uncertainty

Measurements and results are all in compliance with the standards listed in this report. All measurements and results are recorded and maintained at the laboratory performing the tests and measurement uncertainties are taken into account when comparing measurements to pass/ fail criteria. The Expanded uncertainty (95%)

CONFIDENCE INTERVAL) is 21.36%.

А	b1	С	d	e = f(d,k)	g	i = C*g/e	k
Uncertainty Component	Section in P1528	Tol (%)	Prob . Dist.	Div.	Ci (1g)	1g ui (%)	Vi (Veff)
Probe calibration	E.2.1	6.3	N	1	1	6.30	8
Axial isotropy	E.2.2	0.5	R	$\sqrt{3}$	(1 – Cp)1/2	0.20	8
hemispherical isotropy	E.2.2	2.6	R	$\sqrt{3}$	√Cp	1.06	8
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	1	0.58	8
Linearity	E.2.4	0.6	R	$\sqrt{3}$	1	0.35	8
System detection limit	E.2.5	0.25	R	$\sqrt{3}$	1	0.14	8
Readout electronics	E.2.6	0.3	N	1	1	0.30	8
Response time	E.2.7	0	R	$\sqrt{3}$	1	0.00	8
Integration time	E.2.8	2.6	R	$\sqrt{3}$	1	1.50	8
RF ambient Condition –Noise	E.6.1	3	R	$\sqrt{3}$	1	1.73	8
RF ambient Condition - reflections	E.6.1	3	R	$\sqrt{3}$	1	1.73	8
Probe positioning- mechanical tolerance	E.6.2	1.5	R	$\sqrt{3}$	1	0.87	80
Probe positioning- with respect to phantom	E.6.3	2.9	R	$\sqrt{3}$	1	1.67	8
Max. SAR evaluation	E.5.2	1	R	$\sqrt{3}$	1	0.58	∞
Test sample positioning	E.4.2	3.7	N	1	1	3.70	9
Device holder uncertainty	E.4.1	3.6	N	1	1	3.60	8
Output power variation –SAR drift measurement	6.6.2	5	R	$\sqrt{3}$	1	2.89	8
Phantom uncertainty (shape and thickness tolerances)	E.3.1	4	R	$\sqrt{3}$	1	2.31	8
Liquid conductivity - deviation from target values	E.3.2	5	R	$\sqrt{3}$	0.64	1.85	80
Liquid conductivity - measurement uncertainty	E.3.2	5.78	N	1	0.64	3.68	5
Liquid permittivity - deviation from target values	E.3.3	5	R	$\sqrt{3}$	0.6	1.73	80
Liquid permittivity - measurement uncertainty	E.3.3	0.62	N	1	0.6	0.372	5
Combined standard uncertainty				RSS		10.68	430
Expanded uncertainty (95% CONFIDENCE INTERVAL)				K=2		21.36	

Table 24: Measurement Uncertainty

Report No.: SZEM170800849702

Rev.01

Page: 77 of 78

8 Calibration certificate

Please see the Appendix C

9 Photographs

Please see the Appendix D

Report No.: SZEM170800849702

Rev.01

Page: 78 of 78

Appendix A: Detailed System Validation Results

Appendix B: Detailed Test Results

Appendix C: Calibration certificate

Appendix D: Photographs

---END---

Report No.: SZEM170800849702

Appendix A

Detailed System Validation Results

System Performance Check for Head
System Performance Check 835 MHz Head
System Performance Check 1750 MHz Head
System Performance Check 1900 MHz Head
System Performance Check 2450 MHz Head
System Performance Check 2600 MHz Head
2. System Performance Check for Body
System Performance Check 835 MHz Body
System Performance Check 1750 MHz Body
System Performance Check 1900 MHz Body
System Performance Check 2450 MHz Body
System Performance Check 2600 MHz Body

Test Laboratory: SGS-SAR/HAC Lab

System Performance Check 835 MHz Head

DUT: D835V2; Type: D835V2; Serial: 4d105

Communication System: UID 0, CW (0); Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL835; Medium parameters used: f = 835 MHz; $\sigma = 0.905$ S/m; $\varepsilon_r = 42.113$; $\rho = 1000$

 kg/m^3

Phantom section: Flat Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN3789; ConvF(8.61, 8.61, 8.61); Calibrated: 2017/1/13;

• Sensor-Surface: 2mm (Mechanical Surface Detection), z = -2.0, 31.0

• Electronics: DAE4 Sn719; Calibrated: 2017/7/6

• Phantom: SAM1; Type: SAM; Serial: 1912

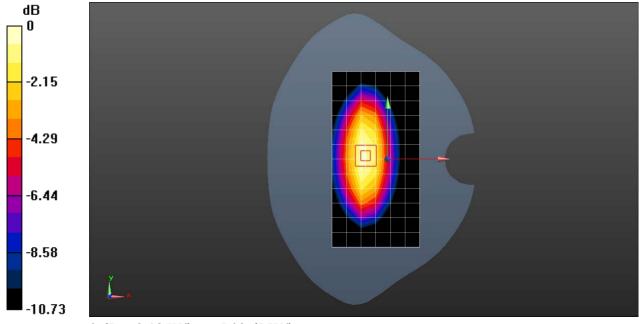
• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/d=15mm, Pin=250mW/Area Scan (7x13x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (measured) = 3.01 W/kg

Body/d=15mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,


dy=8mm, dz=5mm

Reference Value = 52.18 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 3.75 W/kg

SAR(1 g) = 2.49 W/kg; SAR(10 g) = 1.62 W/kg

Maximum value of SAR (measured) = 3.18 W/kg

0 dB = 3.18 W/kg = 5.02 dBW/kg

Test Laboratory: SGS-SAR/HAC Lab

System Performance Check 1750 MHz Head

DUT: D1750V2; Type: D1750V2; Serial: 1149

Communication System: UID 0, CW (0); Frequency: 1750 MHz; Duty Cycle: 1:1

Medium: HSL1750; Medium parameters used: f = 1750 MHz; $\sigma = 1.332$ S/m; $\varepsilon_r = 40.757$; $\rho = 1000$

 kg/m^3

Phantom section: Flat Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN3789; ConvF(7.55, 7.55, 7.55); Calibrated: 2017/1/13;

• Sensor-Surface: 2mm (Mechanical Surface Detection), z = -2.0, 31.0

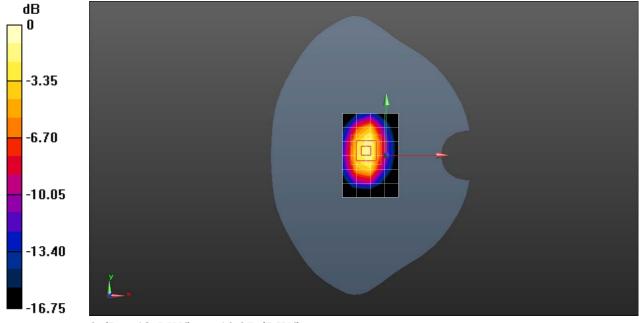
• Electronics: DAE4 Sn719; Calibrated: 2017/7/6

• Phantom: SAM2; Type: SAM; Serial: 1913

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/d=10mm, Pin=250mW/Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 9.95 W/kg

Body/d=10mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,


dy=8mm, dz=5mm

Reference Value = 78.76 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 15.6 W/kg

SAR(1 g) = 8.77 W/kg; SAR(10 g) = 4.69 W/kg

Maximum value of SAR (measured) = 12.5 W/kg

0 dB = 12.5 W/kg = 10.97 dBW/kg

Test Laboratory: SGS-SAR/HAC Lab

System Performance Check 1900 MHz Head

DUT: D1900V2; Type: D1900V2; Serial: 5d028

Communication System: UID 0, CW (0); Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL1900; Medium parameters used: f = 1900 MHz; $\sigma = 1.372$ S/m; $\varepsilon_r = 40.64$; $\rho = 1000$

 kg/m^3

Phantom section: Flat Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN3789; ConvF(7.37, 7.37, 7.37); Calibrated: 2017/1/13;

• Sensor-Surface: 2mm (Mechanical Surface Detection), z = -2.0, 31.0

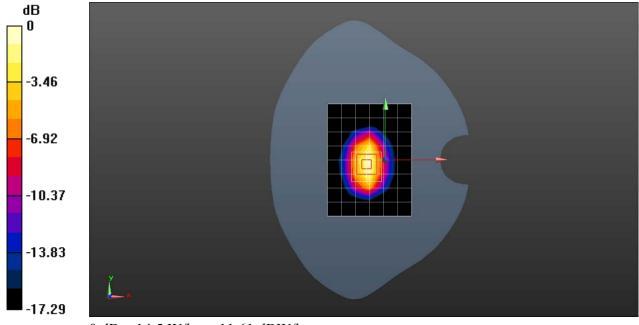
• Electronics: DAE4 Sn719; Calibrated: 2017/7/6

• Phantom: SAM2; Type: SAM; Serial: 1913

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/d=10mm, Pin=250mW/Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 13.2 W/kg

Body/d=10mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,


dy=8mm, dz=5mm

Reference Value = 88.44 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 18.2 W/kg

SAR(1 g) = 10.4 W/kg; SAR(10 g) = 5.54 W/kg

Maximum value of SAR (measured) = 14.5 W/kg

0 dB = 14.5 W/kg = 11.61 dBW/kg

Test Laboratory: SGS-SAR/HAC Lab

System Performance Check 2450MHz Head

DUT: D2450V2; Type: D2450V2; Serial: 733

Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL2450; Medium parameters used: f = 2450 MHz; $\sigma = 1.823$ S/m; $\epsilon_r = 39.147$; $\rho = 1000$

 kg/m^3

Phantom section: Flat Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN3962; ConvF(7.33, 7.33, 7.33); Calibrated: 2016/12/19;

• Sensor-Surface: 2mm (Mechanical Surface Detection), z = -2.0, 31.0

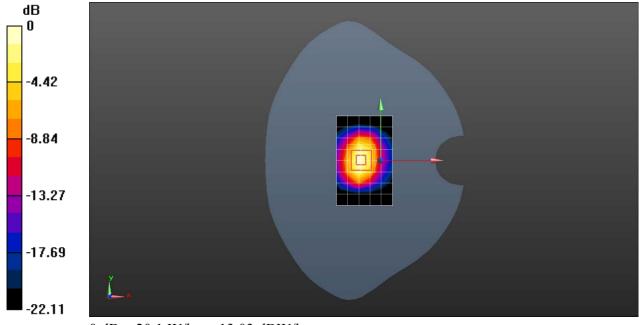
• Electronics: DAE4 Sn1267; Calibrated: 2017/2/23

• Phantom: SAM1; Type: SAM; Serial: 1912

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/d=10mm, Pin=250mW/Area Scan (6x9x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 19.4 W/kg

Body/d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 86.94 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 26.8 W/kg

SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.16 W/kg

Maximum value of SAR (measured) = 20.1 W/kg

0 dB = 20.1 W/kg = 13.03 dBW/kg

Test Laboratory: SGS-SAR/HAC Lab

System Performance Check 2600MHz Head

DUT: D2600V2; Type: D2600V2; Serial: 1125

Communication System: UID 0, CW (0); Frequency: 2600 MHz; Duty Cycle: 1:1

Medium: HSL2600; Medium parameters used: f = 2600 MHz; $\sigma = 1.982$ S/m; $\epsilon_r = 38.658$; $\rho = 1000$

 kg/m^3

Phantom section: Flat Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN3962; ConvF(7.39, 7.39, 7.39); Calibrated: 2016/12/19;

• Sensor-Surface: 2mm (Mechanical Surface Detection), z = -2.0, 31.0

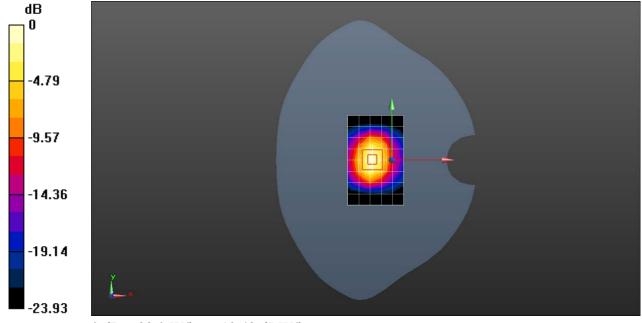
• Electronics: DAE4 Sn1267; Calibrated: 2017/2/23

• Phantom: SAM2; Type: SAM; Serial: 1913

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/d=10mm, Pin=250mW/Area Scan (6x9x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 21.3 W/kg

Body/d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 86.26 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 30.3 W/kg

SAR(1 g) = 14.2 W/kg; SAR(10 g) = 6.36 W/kg

Maximum value of SAR (measured) = 22.0 W/kg

0 dB = 22.0 W/kg = 13.42 dBW/kg

Test Laboratory: SGS-SAR/HAC Lab

System Performance Check 835 MHz Body

DUT: D835V2; Type: D835V2; Serial: 4d105

Communication System: UID 0, CW (0); Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL835; Medium parameters used: f = 835 MHz; $\sigma = 0.986$ S/m; $\epsilon_r = 53.853$; $\rho = 1000$

 kg/m^3

Phantom section: Flat Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN3789; ConvF(8.8, 8.8, 8.8); Calibrated: 2017/1/13;

• Sensor-Surface: 2mm (Mechanical Surface Detection), z = -2.0, 31.0

• Electronics: DAE4 Sn719; Calibrated: 2017/7/6

• Phantom: SAM2; Type: SAM; Serial: 1913

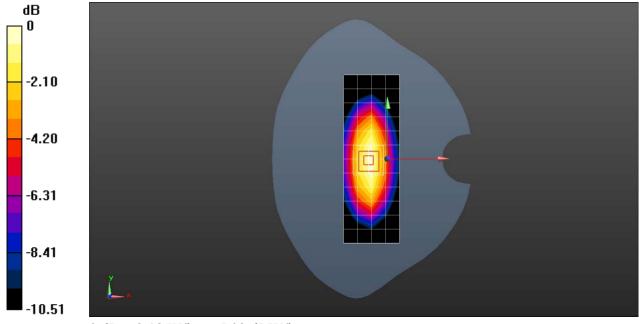
• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/d=15mm, Pin=250mW/Area Scan (5x13x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (measured) = 3.11 W/kg

Body/d=15mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,


dy=8mm, dz=5mm

Reference Value = 52.00 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 3.72 W/kg

SAR(1 g) = 2.51 W/kg; SAR(10 g) = 1.65 W/kg

Maximum value of SAR (measured) = 3.18 W/kg

0 dB = 3.18 W/kg = 5.02 dBW/kg

Test Laboratory: SGS-SAR/HAC Lab

System Performance Check 1750 MHz Body

DUT: D1750V2; Type: D1750V2; Serial: 1149

Communication System: UID 0, CW (0); Frequency: 1750 MHz; Duty Cycle: 1:1

Medium: MSL1750; Medium parameters used: f = 1750 MHz; $\sigma = 1.537$ S/m; $\epsilon_r = 53.088$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN3962; ConvF(8.41, 8.41, 8.41); Calibrated: 2016/12/19;

• Sensor-Surface: 2mm (Mechanical Surface Detection), z = -2.0, 31.0

• Electronics: DAE4 Sn1267; Calibrated: 2017/2/23

• Phantom: SAM1; Type: SAM; Serial: 1912

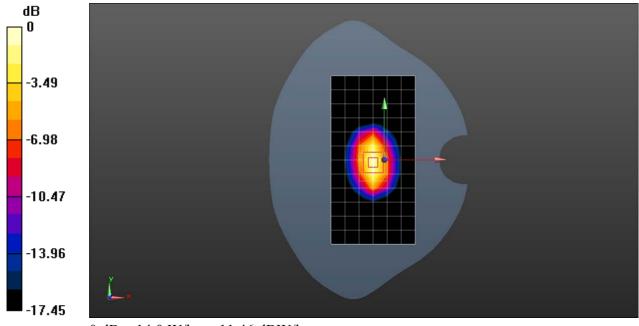
• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/d=10mm, Pin=250mW/Area Scan (7x13x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (measured) = 13.5 W/kg

Body/d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 79.30 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 17.6 W/kg

SAR(1 g) = 9.78 W/kg; SAR(10 g) = 5.2 W/kg

Maximum value of SAR (measured) = 14.0 W/kg

0 dB = 14.0 W/kg = 11.46 dBW/kg

Test Laboratory: SGS-SAR/HAC Lab

System Performance Check 1900 MHz Body

DUT: D1900V2; Type: D1900V2; Serial: 5d028

Communication System: UID 0, CW (0); Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL1900; Medium parameters used: f = 1900 MHz; $\sigma = 1.51$ S/m; $\epsilon_r = 53.234$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN3962; ConvF(7.82, 7.82, 7.82); Calibrated: 2016/12/19;

• Sensor-Surface: 2mm (Mechanical Surface Detection), z = -2.0, 31.0

• Electronics: DAE4 Sn1267; Calibrated: 2017/2/23

• Phantom: SAM1; Type: SAM; Serial: 1912

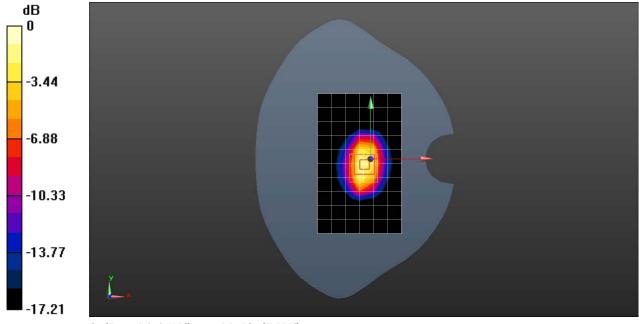
• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/d=10mm, Pin=250mW/Area Scan (7x11x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (measured) = 11.5 W/kg

Body/d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 60.09 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 18.3 W/kg

SAR(1 g) = 10.3 W/kg; SAR(10 g) = 5.43 W/kg

Maximum value of SAR (measured) = 14.4 W/kg

0 dB = 14.4 W/kg = 11.58 dBW/kg

Test Laboratory: SGS-SAR/HAC Lab

System Performance Check 2450MHz Body

DUT: D2450V2; Type: D2450V2; Serial: 733

Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL2450; Medium parameters used: f = 2450 MHz; $\sigma = 1.966$ S/m; $\varepsilon_r = 53.314$; $\rho = 1000$

 kg/m^3

Phantom section: Flat Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN3962; ConvF(7.46, 7.46, 7.46); Calibrated: 2016/12/19;

• Sensor-Surface: 2mm (Mechanical Surface Detection), z = -2.0, 31.0

• Electronics: DAE4 Sn1267; Calibrated: 2017/2/23

• Phantom: SAM1; Type: SAM; Serial: 1912

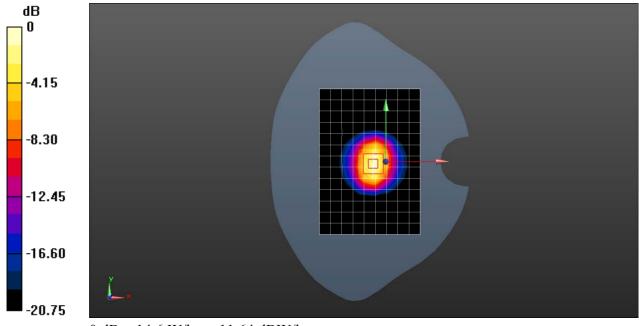
• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/d=10mm, Pin=250mW/Area Scan (10x14x1): Measurement grid: dx=12mm,

dy=12mm

Maximum value of SAR (measured) = 13.4 W/kg

Body/d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 79.74 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 25.2 W/kg

SAR(1 g) = 12.6 W/kg; SAR(10 g) = 5.92 W/kg

Maximum value of SAR (measured) = 14.6 W/kg

0 dB = 14.6 W/kg = 11.64 dBW/kg

Test Laboratory: SGS-SAR/HAC Lab

System Performance Check 2600MHz Body

DUT: D2600V2; Type: D2600V2; Serial: 1125

Communication System: UID 0, CW (0); Frequency: 2600 MHz; Duty Cycle: 1:1

Medium: MSL2600; Medium parameters used: f = 2600 MHz; $\sigma = 2.132$ S/m; $\epsilon_r = 52.944$; $\rho = 1000$

 kg/m^3

Phantom section: Flat Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN3962; ConvF(7.26, 7.26, 7.26); Calibrated: 2016/12/19;

• Sensor-Surface: 2mm (Mechanical Surface Detection), z = -2.0, 31.0

• Electronics: DAE4 Sn1267; Calibrated: 2017/2/23

• Phantom: SAM1; Type: SAM; Serial: 1912

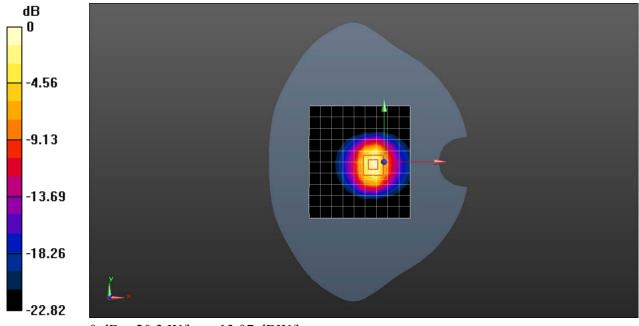
• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/d=10mm, Pin=250mW/Area Scan (10x11x1): Measurement grid: dx=12mm,

dy=12mm

Maximum value of SAR (measured) = 17.2 W/kg

Body/d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 76.35 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 27.1 W/kg

SAR(1 g) = 13.1 W/kg; SAR(10 g) = 5.94 W/kg

Maximum value of SAR (measured) = 20.3 W/kg

0 dB = 20.3 W/kg = 13.07 dBW/kg

Report No.: SZEM170800849702

Appendix B

Detailed Test Results

1. GSM
GSM850 for Head &Body
GSM1900 for Head &Body
2. WCDMA
WCDMA Band II for Head &Body
WCDMA Band IV for Head &Body
WCDMA Band V for Head &Body
3. LTE
LTE Band 2 for Head &Body
LTE Band 4 for Head &Body
LTE Band 5 for Head &Body
LTE Band 7 for Head &Body
4. WIFI
WIFI for Head &Body

Test Laboratory: SGS-SAR/HAC Lab

Hisense F23 GSM850 190CH Right cheek

DUT: Hisense F23; Type: Smart Phone; Serial: PF8HKRLJSKJFOVSK

Communication System: UID 0, GSM Only Communication System (0); Frequency: 836.6

MHz;Duty Cycle: 1:8.30042

Medium: HSL835; Medium parameters used: f = 837 MHz; $\sigma = 0.912$ S/m; $\epsilon_r = 42.17$; $\rho = 1000$

kg/m³

Phantom section: Right Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN3789; ConvF(8.61, 8.61, 8.61); Calibrated: 2017/1/13;

• Sensor-Surface: 2mm (Mechanical Surface Detection), z = -2.0, 31.0

• Electronics: DAE4 Sn719; Calibrated: 2017/7/6

• Phantom: SAM1; Type: SAM; Serial: 1912

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Head/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.177 W/kg

Configuration/Head/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.550 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.198 W/kg

SAR(1 g) = 0.159 W/kg; SAR(10 g) = 0.123 W/kg

Maximum value of SAR (measured) = 0.179 W/kg

0 dB = 0.179 W/kg = -7.47 dBW/kg

Test Laboratory: SGS-SAR/HAC Lab

Hisense F23 GSM850 190CH Back side 15mm

DUT: Hisense F23; Type: Smart Phone; Serial: 9TBMNN4THMORS4MN

Communication System: UID 0, GSM Only Communication System (0); Frequency: 836.6

MHz;Duty Cycle: 1:8.30042

Medium: MSL835; Medium parameters used: f = 837 MHz; $\sigma = 0.983$ S/m; $\varepsilon_r = 53.905$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN3789; ConvF(8.8, 8.8, 8.8); Calibrated: 2017/1/13;

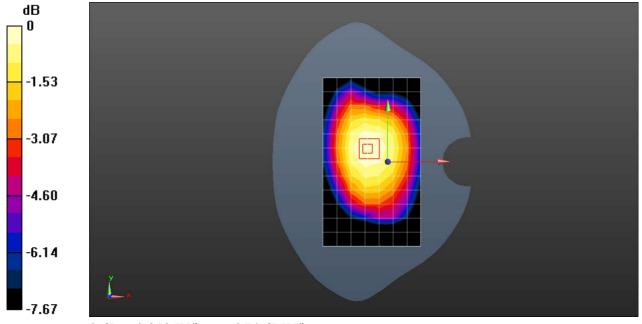
• Sensor-Surface: 2mm (Mechanical Surface Detection), z = -2.0, 31.0

• Electronics: DAE4 Sn719; Calibrated: 2017/7/6

• Phantom: SAM2; Type: SAM; Serial: 1913

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.211 W/kg


Configuration/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.53 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.234 W/kg

SAR(1 g) = 0.183 W/kg; SAR(10 g) = 0.141 W/kg

Maximum value of SAR (measured) = 0.212 W/kg

0 dB = 0.212 W/kg = -6.74 dBW/kg

Test Laboratory: SGS-SAR/HAC Lab

Hisense F23 GSM850 GPRS 4TS 190CH Back side 10mm

DUT: Hisense F23; Type: Smart Phone; Serial: 9TBMNN4THMORS4MN

Communication System: UID 0, GPRS/EGPRS Mode(4up) Communication System (0); Frequency:

836.6 MHz; Duty Cycle: 1:2.0797

Medium: MSL835; Medium parameters used: f = 837 MHz; $\sigma = 0.983$ S/m; $\varepsilon_r = 53.905$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN3789; ConvF(8.8, 8.8, 8.8); Calibrated: 2017/1/13;

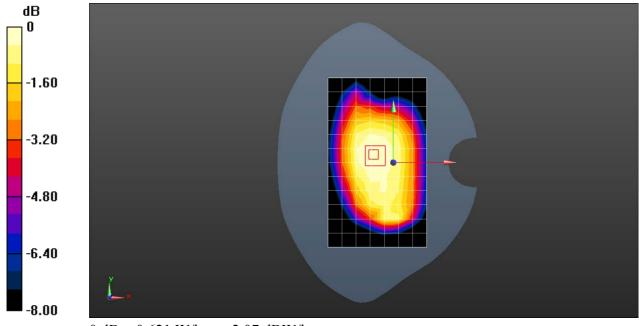
• Sensor-Surface: 2mm (Mechanical Surface Detection), z = -2.0, 31.0

• Electronics: DAE4 Sn719; Calibrated: 2017/7/6

• Phantom: SAM2; Type: SAM; Serial: 1913

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.627 W/kg


Configuration/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.78 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.688 W/kg

SAR(1 g) = 0.541 W/kg; SAR(10 g) = 0.419 W/kg

Maximum value of SAR (measured) = 0.621 W/kg

0 dB = 0.621 W/kg = -2.07 dBW/kg

Test Laboratory: SGS-SAR/HAC Lab

Hisense F23 GSM1900 512CH Left cheek

DUT: Hisense F23; Type: Smart Phone; Serial: PF8HKRLJSKJFOVSK

Communication System: UID 0, GSM Only Communication System (0); Frequency: 1850.2

MHz;Duty Cycle: 1:8.30042

Medium: HSL1900; Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.353$ S/m; $\varepsilon_r =$

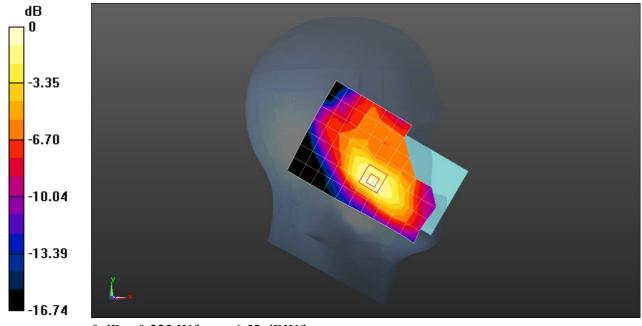
40.778; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

DASY 5 Configuration:

- Probe: EX3DV4 SN3789; ConvF(7.37, 7.37, 7.37); Calibrated: 2017/1/13;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = -2.0, 31.0
- Electronics: DAE4 Sn719; Calibrated: 2017/7/6
- Phantom: SAM2; Type: SAM; Serial: 1913
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Head/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.206 W/kg


Configuration/Head/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.838 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 0.272 W/kg

SAR(1 g) = 0.169 W/kg; SAR(10 g) = 0.101 W/kg

Maximum value of SAR (measured) = 0.223 W/kg

0 dB = 0.223 W/kg = -6.52 dBW/kg

Test Laboratory: SGS-SAR/HAC Lab

Hisense F23 GSM1900 512CH Back side 15mm

DUT: Hisense F23; Type: Smart Phone; Serial: 9TBMNN4THMORS4MN

Communication System: UID 0, GPRS/EGPRS Mode(4up) Communication System (0); Frequency: 1850.2 MHz;Duty Cycle: 1:2.0797

Medium: MSL1900; Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.479$ S/m; $\varepsilon_r =$

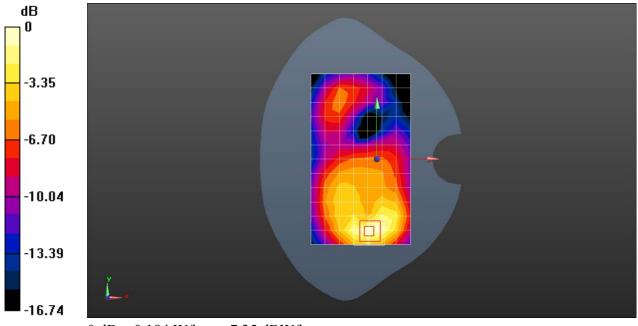
53.547; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 SN3962; ConvF(7.82, 7.82, 7.82); Calibrated: 2016/12/19;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = -2.0, 31.0
- Electronics: DAE4 Sn1267; Calibrated: 2017/2/23
- Phantom: SAM1; Type: SAM; Serial: 1912
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.183 W/kg


Configuration/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.082 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.214 W/kg

SAR(1 g) = 0.140 W/kg; SAR(10 g) = 0.083 W/kg

Maximum value of SAR (measured) = 0.184 W/kg

0 dB = 0.184 W/kg = -7.35 dBW/kg

Test Laboratory: SGS-SAR/HAC Lab

Hisense F23 GSM1900 GPRS 4TS 512CH Bottom side 10mm

DUT: Hisense F23; Type: Smart Phone; Serial: 9TBMNN4THMORS4MN

Communication System: UID 0, GPRS/EGPRS Mode(4up) Communication System (0); Frequency: 1850.2 MHz;Duty Cycle: 1:2.0797

Medium: MSL1900; Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.479$ S/m; $\varepsilon_r =$

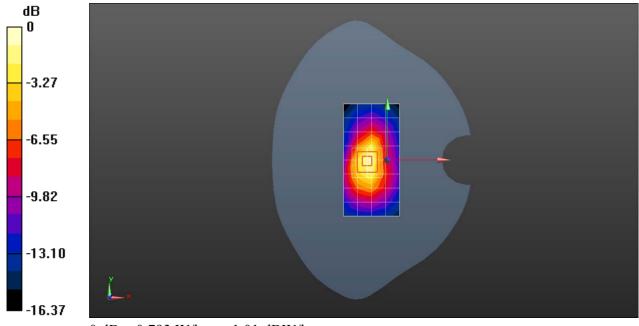
53.547; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 SN3962; ConvF(7.82, 7.82, 7.82); Calibrated: 2016/12/19;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = -2.0, 31.0
- Electronics: DAE4 Sn1267; Calibrated: 2017/2/23
- Phantom: SAM1; Type: SAM; Serial: 1912
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.690 W/kg


Configuration/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.82 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.928 W/kg

SAR(1 g) = 0.599 W/kg; SAR(10 g) = 0.332 W/kg

Maximum value of SAR (measured) = 0.793 W/kg

0 dB = 0.793 W/kg = -1.01 dBW/kg

Test Laboratory: SGS-SAR/HAC Lab

Hisense F23 WCDMA Band II 9400CH Left cheek

DUT: Hisense F23; Type: Smart Phone; Serial: PF8HKRLJSKJFOVSK

Communication System: UID 0, WCDMA (0); Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: HSL1900; Medium parameters used: f = 1880 MHz; $\sigma = 1.36$ S/m; $\epsilon_r = 40.732$; $\rho = 1000$

 kg/m^3

Phantom section: Left Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN3789; ConvF(7.37, 7.37, 7.37); Calibrated: 2017/1/13;

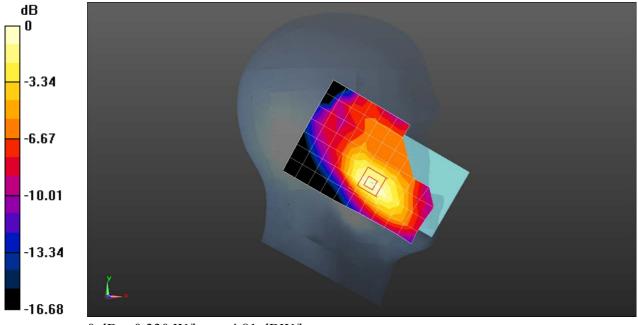
• Sensor-Surface: 2mm (Mechanical Surface Detection), z = -2.0, 31.0

• Electronics: DAE4 Sn719; Calibrated: 2017/7/6

• Phantom: SAM2; Type: SAM; Serial: 1913

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Head/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.331 W/kg


Configuration/Head/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.106 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.412 W/kg

SAR(1 g) = 0.257 W/kg; SAR(10 g) = 0.152 W/kg

Maximum value of SAR (measured) = 0.330 W/kg

0 dB = 0.330 W/kg = -4.81 dBW/kg

Test Laboratory: SGS-SAR/HAC Lab

Hisense F23 WCDMA Band II 9400CH Back side 15mm

DUT: Hisense F23; Type: Smart Phone; Serial: 9TBMNN4THMORS4MN

Communication System: UID 0, WCDMA (0); Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: MSL1900; Medium parameters used: f = 1880 MHz; $\sigma = 1.502$ S/m; $\epsilon_r = 53.457$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN3962; ConvF(7.82, 7.82, 7.82); Calibrated: 2016/12/19;

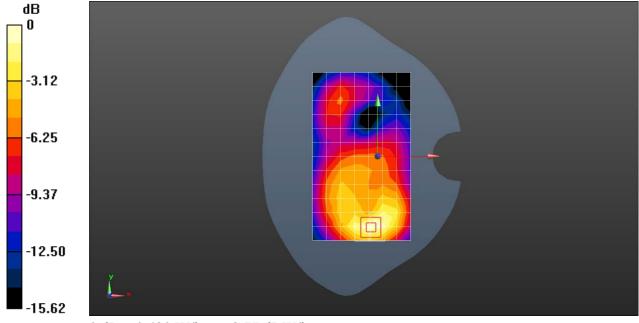
• Sensor-Surface: 2mm (Mechanical Surface Detection), z = -2.0, 31.0

• Electronics: DAE4 Sn1267; Calibrated: 2017/2/23

• Phantom: SAM1; Type: SAM; Serial: 1912

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.417 W/kg


Configuration/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.000 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.490 W/kg

SAR(1 g) = 0.320 W/kg; SAR(10 g) = 0.189 W/kg

Maximum value of SAR (measured) = 0.420 W/kg

0 dB = 0.420 W/kg = -3.77 dBW/kg

Test Laboratory: SGS-SAR/HAC Lab

Hisense F23 WCDMA Band II 9400CH Bottom side 10mm

DUT: Hisense F23; Type: Smart Phone; Serial: 9TBMNN4THMORS4MN

Communication System: UID 0, WCDMA (0); Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: MSL1900; Medium parameters used: f = 1880 MHz; $\sigma = 1.502$ S/m; $\epsilon_r = 53.457$; $\rho = 1000$

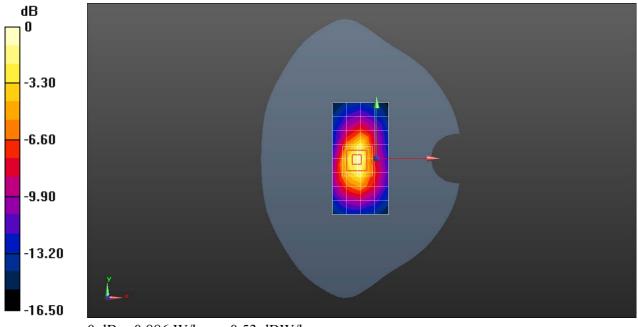
 kg/m^3

Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 SN3962; ConvF(7.82, 7.82, 7.82); Calibrated: 2016/12/19;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = -2.0, 31.0
- Electronics: DAE4 Sn1267; Calibrated: 2017/2/23
- Phantom: SAM1; Type: SAM; Serial: 1912
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.799 W/kg


Configuration/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.06 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 1.07 W/kg

SAR(1 g) = 0.673 W/kg; SAR(10 g) = 0.369 W/kg

Maximum value of SAR (measured) = 0.886 W/kg

0 dB = 0.886 W/kg = -0.53 dBW/kg

Test Laboratory: SGS-SAR/HAC Lab

Hisense F23 WCDMA Band IV RMC 1412CH Left cheek

DUT: Hisense F23; Type: Smart Phone; Serial: PF8HKRLJSKJFOVSK

Communication System: UID 0, WCDMA (0); Frequency: 1732.4 MHz; Duty Cycle: 1:1

Medium: HSL1750; Medium parameters used (interpolated): f = 1732.4 MHz; $\sigma = 1.32$ S/m; $\varepsilon_r =$

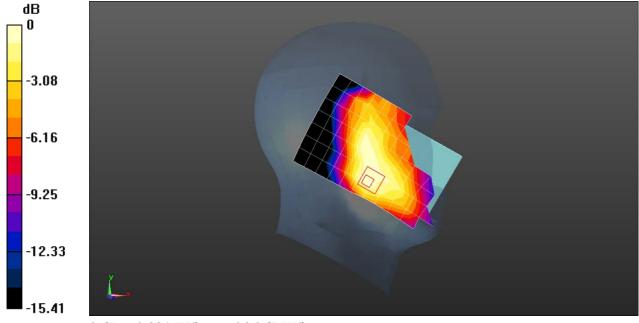
40.669; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

DASY 5 Configuration:

- Probe: EX3DV4 SN3789; ConvF(7.55, 7.55, 7.55); Calibrated: 2017/1/13;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = -2.0, 31.0
- Electronics: DAE4 Sn719; Calibrated: 2017/7/6
- Phantom: SAM2; Type: SAM; Serial: 1913
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Head/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.213 W/kg


Configuration/Head/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.083 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.271 W/kg

SAR(1 g) = 0.184 W/kg; SAR(10 g) = 0.122 W/kg

Maximum value of SAR (measured) = 0.231 W/kg

0 dB = 0.231 W/kg = -6.36 dBW/kg

Test Laboratory: SGS-SAR/HAC Lab

Hisense F23 WCDMA Band IV 1412CH Back side 15mm

DUT: Hisense F23; Type: Smart Phone; Serial: 9TBMNN4THMORS4MN

Communication System: UID 0, WCDMA (0); Frequency: 1732.4 MHz; Duty Cycle: 1:1

Medium: MSL1750; Medium parameters used (interpolated): f = 1732.4 MHz; $\sigma = 1.523$ S/m; $\varepsilon_r =$

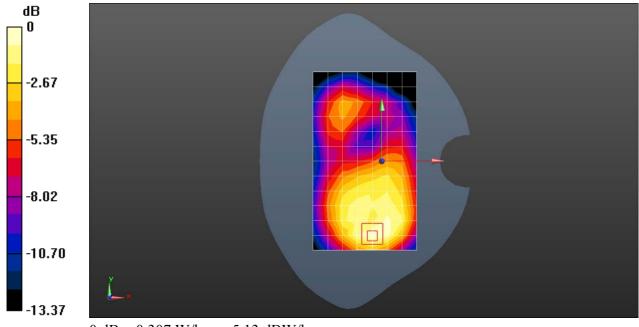
52.962; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 SN3962; ConvF(8.41, 8.41, 8.41); Calibrated: 2016/12/19;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = -2.0, 31.0
- Electronics: DAE4 Sn1267; Calibrated: 2017/2/23
- Phantom: SAM1; Type: SAM; Serial: 1912
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.312 W/kg


Configuration/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.659 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 0.352 W/kg

SAR(1 g) = 0.242 W/kg; SAR(10 g) = 0.153 W/kg

Maximum value of SAR (measured) = 0.307 W/kg

0 dB = 0.307 W/kg = -5.13 dBW/kg

Test Laboratory: SGS-SAR/HAC Lab

Hisense F23 WCDMA Band IV RMC 1412CH Back side 10mm

DUT: Hisense F23; Type: Smart Phone; Serial: 9TBMNN4THMORS4MN

Communication System: UID 0, WCDMA (0); Frequency: 1732.4 MHz; Duty Cycle: 1:1

Medium: MSL1750; Medium parameters used (interpolated): f = 1732.4 MHz; $\sigma = 1.523$ S/m; $\varepsilon_r =$

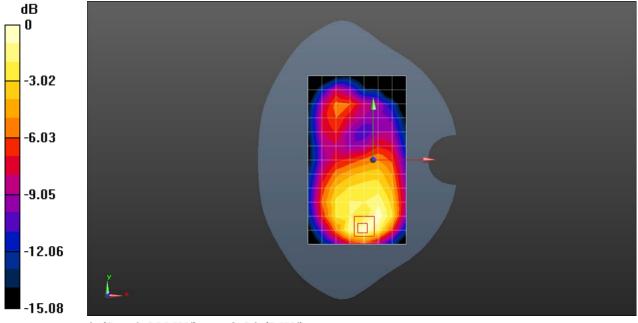
52.962; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 SN3962; ConvF(8.41, 8.41, 8.41); Calibrated: 2016/12/19;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = -2.0, 31.0
- Electronics: DAE4 Sn1267; Calibrated: 2017/2/23
- Phantom: SAM1; Type: SAM; Serial: 1912
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.539 W/kg


Configuration/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.575 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.655 W/kg

SAR(1 g) = 0.422 W/kg; SAR(10 g) = 0.255 W/kg

Maximum value of SAR (measured) = 0.555 W/kg

0 dB = 0.555 W/kg = -2.56 dBW/kg

Test Laboratory: SGS-SAR/HAC Lab

Hisense F23 WCDMA Band V 4182CH Right cheek

DUT: Hisense F23; Type: Smart Phone; Serial: PF8HKRLJSKJFOVSK

Communication System: UID 0, WCDMA (0); Frequency: 836.4 MHz; Duty Cycle: 1:1

Medium: HSL835; Medium parameters used (interpolated): f = 836.4 MHz; $\sigma = 0.908$ S/m; $\varepsilon_r =$

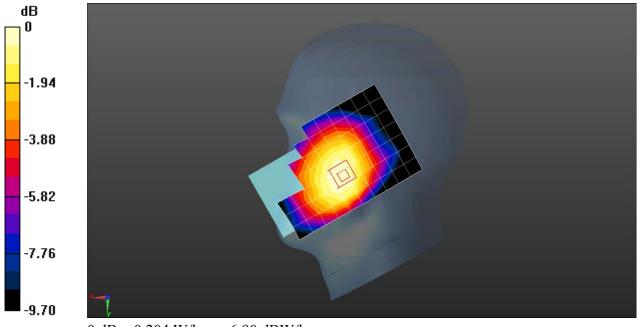
42.21; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

DASY 5 Configuration:

- Probe: EX3DV4 SN3789; ConvF(8.61, 8.61, 8.61); Calibrated: 2017/1/13;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = -2.0, 31.0
- Electronics: DAE4 Sn719; Calibrated: 2017/7/6
- Phantom: SAM1; Type: SAM; Serial: 1912
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Head/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.212 W/kg


Configuration/Head/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.851 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.225 W/kg

SAR(1 g) = 0.180 W/kg; SAR(10 g) = 0.139 W/kg

Maximum value of SAR (measured) = 0.204 W/kg

0 dB = 0.204 W/kg = -6.90 dBW/kg

Test Laboratory: SGS-SAR/HAC Lab

Hisense F23 WCDMA Band V 4182CH Back side 15mm

DUT: Hisense F23; Type: Smart Phone; Serial: PF8HKRLJSKJFOVSK

Communication System: UID 0, WCDMA (0); Frequency: 836.4 MHz; Duty Cycle: 1:1

Medium: MSL835; Medium parameters used (interpolated): f = 836.4 MHz; $\sigma = 0.984$ S/m; $\varepsilon_r =$

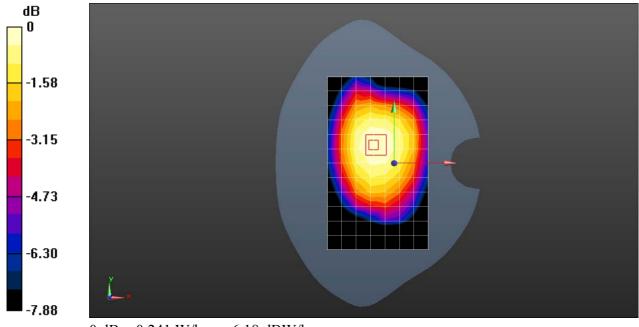
53.752; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 SN3789; ConvF(8.8, 8.8, 8.8); Calibrated: 2017/1/13;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = -2.0, 31.0
- Electronics: DAE4 Sn719; Calibrated: 2017/7/6
- Phantom: SAM2; Type: SAM; Serial: 1913
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Head/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.238 W/kg


Configuration/Head/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.84 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.265 W/kg

SAR(1 g) = 0.209 W/kg; SAR(10 g) = 0.160 W/kg

Maximum value of SAR (measured) = 0.241 W/kg

0 dB = 0.241 W/kg = -6.18 dBW/kg

Test Laboratory: SGS-SAR/HAC Lab

Hisense F23 WCDMA Band V 4182CH Right side 10mm

DUT: Hisense F23; Type: Smart Phone; Serial: PF8HKRLJSKJFOVSK

Communication System: UID 0, WCDMA (0); Frequency: 836.4 MHz; Duty Cycle: 1:1

Medium: MSL835; Medium parameters used (interpolated): f = 836.4 MHz; $\sigma = 0.984$ S/m; $\varepsilon_r =$

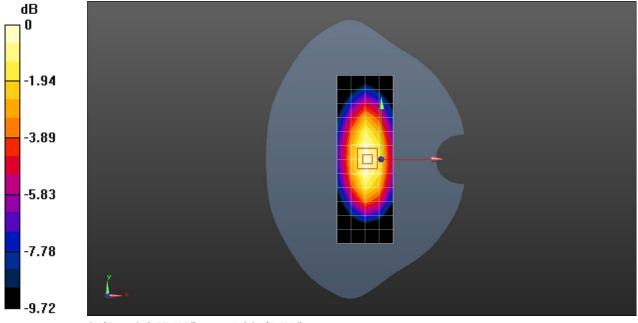
53.752; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 SN3789; ConvF(8.8, 8.8, 8.8); Calibrated: 2017/1/13;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = -2.0, 31.0
- Electronics: DAE4 Sn719; Calibrated: 2017/7/6
- Phantom: SAM2; Type: SAM; Serial: 1913
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (5x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.254 W/kg


Configuration/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.92 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.298 W/kg

SAR(1 g) = 0.208 W/kg; SAR(10 g) = 0.142 W/kg

Maximum value of SAR (measured) = 0.257 W/kg

0 dB = 0.257 W/kg = -5.90 dBW/kg

Test Laboratory: SGS-SAR/HAC Lab

Hisense F23 LTE Band 2 20MHz bandwidth QPSK 1RB0 Offset 18900CH Left cheek

DUT: Hisense F23; Type: Smart Phone; Serial: PF8HKRLJSKJFOVSK

Communication System: UID 0, LTE-FDD BW 20MHz (0); Frequency: 1880 MHz; Duty Cycle: 1:1

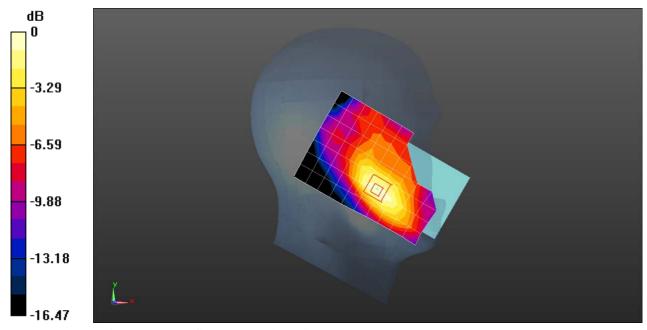
Medium: HSL1900;Medium parameters used: f = 1880 MHz; σ = 1.36 S/m; ϵ_r = 40.732; ρ = 1000

 kg/m^3

Phantom section: Left Section

DASY 5 Configuration:

- Probe: EX3DV4 SN3789; ConvF(7.37, 7.37, 7.37); Calibrated: 2017/1/13;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = -2.0, 31.0
- Electronics: DAE4 Sn719; Calibrated: 2017/7/6
- Phantom: SAM2; Type: SAM; Serial: 1913
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)


Configuration/Head/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.498 W/kg

Configuration/Head/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.687 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.589 W/kg

SAR(1 g) = 0.372 W/kg; SAR(10 g) = 0.222 W/kgMaximum value of SAR (measured) = 0.482 W/kg

0 dB = 0.482 W/kg = -3.17 dBW/kg

Test Laboratory: SGS-SAR/HAC Lab

Hisense F23 LTE Band 2 20MHz bandwidth QPSK 1RB0 Offset 18900CH Back side 15mm

DUT: Hisense F23; Type: Smart Phone; Serial: 9TBMNN4THMORS4MN

Communication System: UID 0, LTE-FDD BW 20MHz (0); Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: MSL1900; Medium parameters used: f = 1880 MHz; $\sigma = 1.502$ S/m; $\epsilon_r = 53.457$; $\rho = 1000$

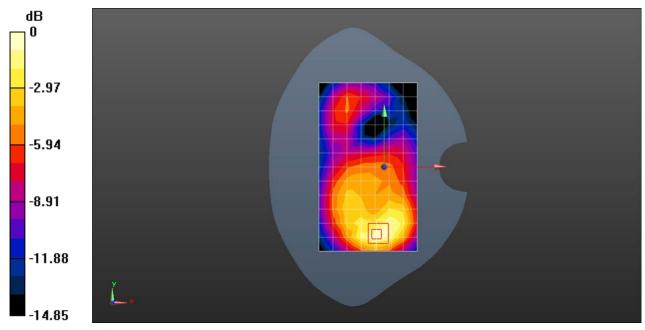
kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 SN3962; ConvF(7.82, 7.82, 7.82); Calibrated: 2016/12/19;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = -2.0, 31.0
- Electronics: DAE4 Sn1267; Calibrated: 2017/2/23
- Phantom: SAM1; Type: SAM; Serial: 1912
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.405 W/kg


Configuration/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.947 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.480 W/kg

SAR(1 g) = 0.315 W/kg; SAR(10 g) = 0.187 W/kg

Maximum value of SAR (measured) = 0.413 W/kg

0 dB = 0.413 W/kg = -3.84 dBW/kg

Test Laboratory: SGS-SAR/HAC Lab

Hisense F23 LTE Band 2 20MHz bandwidth QPSK 1RB0 Offset 18900CH Bottom side 10mm

DUT: Hisense F23; Type: Smart Phone; Serial: 9TBMNN4THMORS4MN

Communication System: UID 0, LTE-FDD BW 20MHz (0); Frequency: 1880 MHz; Duty Cycle: 1:1

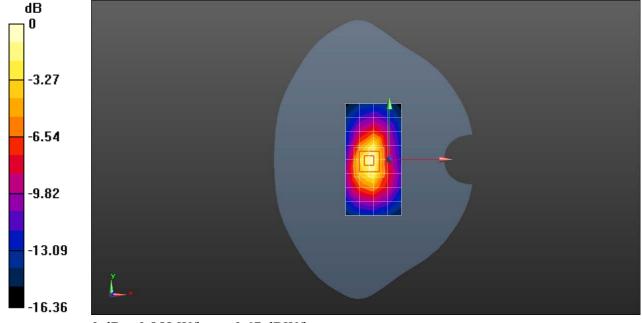
Medium: MSL1900; Medium parameters used: f = 1880 MHz; $\sigma = 1.502$ S/m; $\epsilon_r = 53.457$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 SN3962; ConvF(7.82, 7.82, 7.82); Calibrated: 2016/12/19;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = -2.0, 31.0
- Electronics: DAE4 Sn1267; Calibrated: 2017/2/23
- Phantom: SAM1; Type: SAM; Serial: 1912
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)


Configuration/Body/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.777 W/kg

Configuration/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.47 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 1.02 W/kg

SAR(1 g) = 0.642 W/kg; SAR(10 g) = 0.352 W/kgMaximum value of SAR (measured) = 0.858 W/kg

0 dB = 0.858 W/kg = -0.67 dBW/kg

Test Laboratory: SGS-SAR/HAC Lab

Hisense F23 LTE Band 4 20MHz bandwidth QPSK 1RB0 Offset 20050CH Left cheek

DUT: Hisense F23; Type: Smart Phone; Serial: PF8HKRLJSKJFOVSK

Communication System: UID 0, LTE-FDD BW 20MHz (0); Frequency: 1720 MHz; Duty Cycle: 1:1

Medium: HSL1750;Medium parameters used: f = 1720 MHz; σ = 1.31 S/m; ϵ_r = 40.774; ρ = 1000

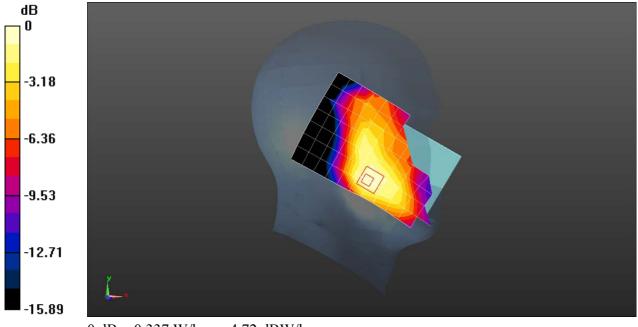
 kg/m^3

Phantom section: Left Section

DASY 5 Configuration:

- Probe: EX3DV4 SN3789; ConvF(7.55, 7.55, 7.55); Calibrated: 2017/1/13;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = -2.0, 31.0
- Electronics: DAE4 Sn719; Calibrated: 2017/7/6
- Phantom: SAM2; Type: SAM; Serial: 1913
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Head/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.331 W/kg


Configuration/Head/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.1410 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.396 W/kg

SAR(1 g) = 0.269 W/kg; SAR(10 g) = 0.179 W/kg

Maximum value of SAR (measured) = 0.337 W/kg

0 dB = 0.337 W/kg = -4.72 dBW/kg

Test Laboratory: SGS-SAR/HAC Lab

Hisense F23 LTE Band 4 20MHz bandwidth QPSK 50RB0 Offset 20300CH Back side 15mm

DUT: Hisense F23; Type: Smart Phone; Serial: 9TBMNN4THMORS4MN

Communication System: UID 0, LTE-FDD BW 20MHz (0); Frequency: 1745 MHz; Duty Cycle: 1:1

Medium: MSL1750; Medium parameters used: f = 1745 MHz; $\sigma = 1.539$ S/m; $\epsilon_r = 53.057$; $\rho = 1000$

 kg/m^3

Phantom section: Flat Section

DASY 5 Configuration:

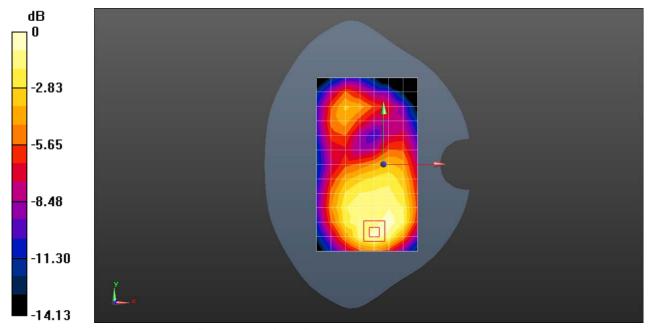
• Probe: EX3DV4 - SN3962; ConvF(8.41, 8.41, 8.41); Calibrated: 2016/12/19;

• Sensor-Surface: 2mm (Mechanical Surface Detection), z = -2.0, 31.0

• Electronics: DAE4 Sn1267; Calibrated: 2017/2/23

• Phantom: SAM1; Type: SAM; Serial: 1912

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)


Configuration/Body/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.245 W/kg

Configuration/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.817 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.305 W/kg

SAR(1 g) = 0.208 W/kg; SAR(10 g) = 0.133 W/kgMaximum value of SAR (measured) = 0.264 W/kg

0 dB = 0.264 W/kg = -5.78 dBW/kg

Test Laboratory: SGS-SAR/HAC Lab

Hisense F23 LTE Band 4 20MHz bandwidth QPSK 50RB0 Offset 20300CH Back side 10mm

DUT: Hisense F23; Type: Smart Phone; Serial: 9TBMNN4THMORS4MN

Communication System: UID 0, LTE-FDD BW 20MHz (0); Frequency: 1745 MHz; Duty Cycle: 1:1

Medium: MSL1750; Medium parameters used: f = 1745 MHz; $\sigma = 1.539$ S/m; $\epsilon_r = 53.057$; $\rho = 1000$

 kg/m^3

Phantom section: Flat Section

DASY 5 Configuration:

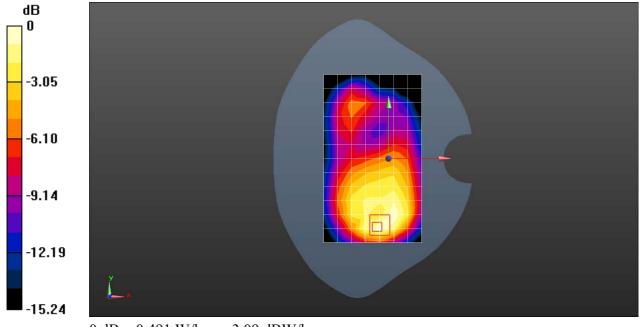
• Probe: EX3DV4 - SN3962; ConvF(8.41, 8.41, 8.41); Calibrated: 2016/12/19;

• Sensor-Surface: 2mm (Mechanical Surface Detection), z = -2.0, 31.0

• Electronics: DAE4 Sn1267; Calibrated: 2017/2/23

• Phantom: SAM1; Type: SAM; Serial: 1912

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)


Configuration/Body/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.484 W/kg

Configuration/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.233 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.590 W/kg

SAR(1 g) = 0.375 W/kg; SAR(10 g) = 0.227 W/kgMaximum value of SAR (measured) = 0.491 W/kg

0 dB = 0.491 W/kg = -3.09 dBW/kg

Test Laboratory: SGS-SAR/HAC Lab

Hisense F23 LTE Band 5 10MHz bandwidth QPSK 1RB0 Offset 20525CH Right cheek

DUT: Hisense F23; Type: Smart Phone; Serial: PF8HKRLJSKJFOVSK

Communication System: UID 0, LTE-FDD BW 10MHZ (0); Frequency: 836.5 MHz; Duty Cycle: 1:1

Medium: HSL835; Medium parameters used (interpolated): f = 836.5 MHz; $\sigma = 0.908$ S/m; $\varepsilon_r =$

42.203; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN3789; ConvF(8.61, 8.61, 8.61); Calibrated: 2017/1/13;

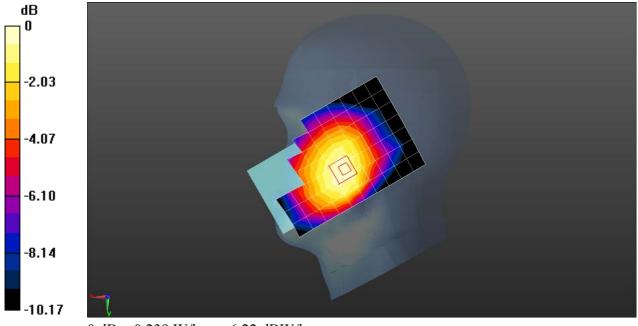
• Sensor-Surface: 2mm (Mechanical Surface Detection), z = -2.0, 31.0

• Electronics: DAE4 Sn719; Calibrated: 2017/7/6

• Phantom: SAM1; Type: SAM; Serial: 1912

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Head/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.233 W/kg


Configuration/Head/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.264 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.267 W/kg

SAR(1 g) = 0.212 W/kg; SAR(10 g) = 0.163 W/kg

Maximum value of SAR (measured) = 0.239 W/kg

0 dB = 0.239 W/kg = -6.22 dBW/kg

Test Laboratory: SGS-SAR/HAC Lab

Hisense F23 LTE Band 5 10MHz bandwidth QPSK 1RB0 Offset 20525CH Back side 15mm

DUT: Hisense F23; Type: Smart Phone; Serial: PF8HKRLJSKJFOVSK

Communication System: UID 0, LTE-FDD BW 10MHZ (0); Frequency: 836.5 MHz; Duty Cycle: 1:1

Medium: MSL835; Medium parameters used (interpolated): f = 836.5 MHz; $\sigma = 0.984$ S/m; $\varepsilon_r =$

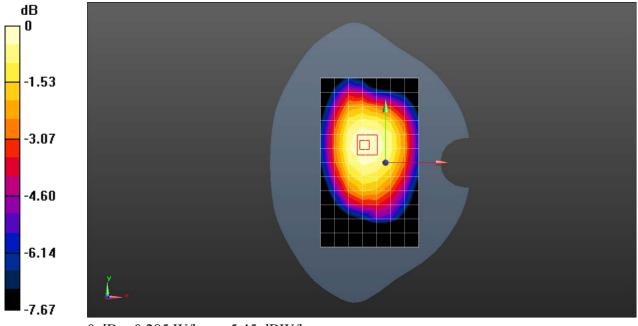
53.778; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 SN3789; ConvF(8.8, 8.8, 8.8); Calibrated: 2017/1/13;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = -2.0, 31.0
- Electronics: DAE4 Sn719; Calibrated: 2017/7/6
- Phantom: SAM2; Type: SAM; Serial: 1913
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.283 W/kg


Configuration/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.51 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.315 W/kg

SAR(1 g) = 0.248 W/kg; SAR(10 g) = 0.190 W/kg

Maximum value of SAR (measured) = 0.285 W/kg

0 dB = 0.285 W/kg = -5.45 dBW/kg

Test Laboratory: SGS-SAR/HAC Lab

Hisense F23 LTE Band 5 10MHz bandwidth QPSK 1RB0 Offset 20525CH Right side 10mm

DUT: Hisense F23; Type: Smart Phone; Serial: PF8HKRLJSKJFOVSK

Communication System: UID 0, LTE-FDD BW 10MHZ (0); Frequency: 836.5 MHz; Duty Cycle: 1:1

Medium: MSL835; Medium parameters used (interpolated): f = 836.5 MHz; $\sigma = 0.984$ S/m; $\varepsilon_r =$

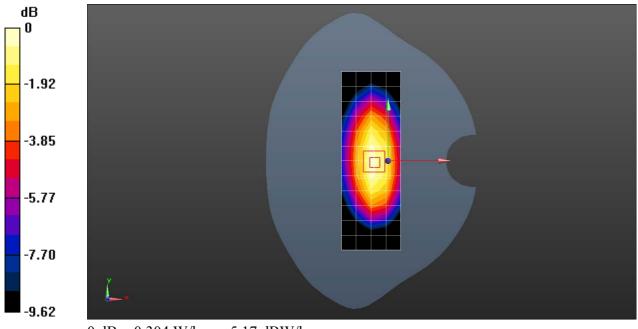
53.778; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 SN3789; ConvF(8.8, 8.8, 8.8); Calibrated: 2017/1/13;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = -2.0, 31.0
- Electronics: DAE4 Sn719; Calibrated: 2017/7/6
- Phantom: SAM2; Type: SAM; Serial: 1913
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (5x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.296 W/kg


Configuration/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.15 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.352 W/kg

SAR(1 g) = 0.245 W/kg; SAR(10 g) = 0.168 W/kg

Maximum value of SAR (measured) = 0.304 W/kg

0 dB = 0.304 W/kg = -5.17 dBW/kg

Test Laboratory: SGS-SAR/HAC Lab

Hisense F23 LTE Band 7 20MHz bandwidth QPSK 1RB0 Offset 21350CH Left cheek

DUT: Hisense F23; Type: Smart Phone; Serial: PF8HKRLJSKJFOVSK

Communication System: UID 0, LTE-FDD BW 20MHz (0); Frequency: 2560 MHz; Duty Cycle: 1:1

Medium: HSL2600; Medium parameters used: f = 2560 MHz; $\sigma = 1.943$ S/m; $\varepsilon_r = 38.776$; $\rho = 1000$

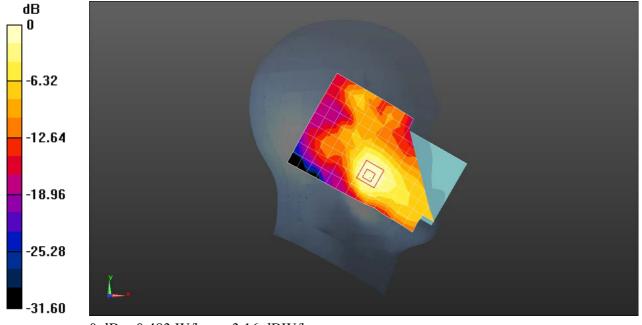
 kg/m^3

Phantom section: Left Section

DASY 5 Configuration:

- Probe: EX3DV4 SN3962; ConvF(7.39, 7.39, 7.39); Calibrated: 2016/12/19;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = -2.0, 31.0
- Electronics: DAE4 Sn1267; Calibrated: 2017/2/23
- Phantom: SAM2; Type: SAM; Serial: 1913
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Head/Area Scan (10x16x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.480 W/kg


Configuration/Head/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.845 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.610 W/kg

SAR(1 g) = 0.352 W/kg; SAR(10 g) = 0.191 W/kg

Maximum value of SAR (measured) = 0.483 W/kg

0 dB = 0.483 W/kg = -3.16 dBW/kg

Test Laboratory: SGS-SAR/HAC Lab

Hisense F23 LTE Band 7 20MHz bandwidth QPSK 1RB0 Offset 21350CH Back side 15mm

DUT: Hisense F23; Type: Smart Phone; Serial: PF8HKRLJSKJFOVSK

Communication System: UID 0, LTE-FDD BW 20MHz (0); Frequency: 2560 MHz; Duty Cycle: 1:1

Medium: MSL2600; Medium parameters used: f = 2560 MHz; σ = 2.093 S/m; ϵ_r = 53.007; ρ = 1000

 kg/m^3

Phantom section: Flat Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN3962; ConvF(7.26, 7.26, 7.26); Calibrated: 2016/12/19;

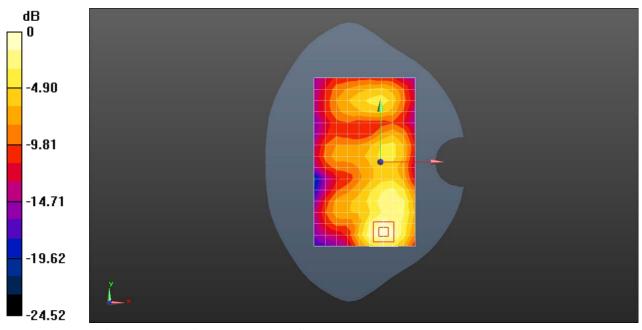
• Sensor-Surface: 2mm (Mechanical Surface Detection), z = -2.0, 31.0

• Electronics: DAE4 Sn1267; Calibrated: 2017/2/23

• Phantom: SAM1; Type: SAM; Serial: 1912

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (10x16x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.306 W/kg


Configuration/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.110 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.425 W/kg

SAR(1 g) = 0.231 W/kg; SAR(10 g) = 0.119 W/kg

Maximum value of SAR (measured) = 0.326 W/kg

0 dB = 0.326 W/kg = -4.87 dBW/kg

Test Laboratory: SGS-SAR/HAC Lab

Hisense F23 LTE Band 7 20MHz bandwidth QPSK 1RB0 Offset 21350CH **Bottom side 10mm**

DUT: Hisense F23; Type: Smart Phone; Serial: PF8HKRLJSKJFOVSK

Communication System: UID 0, LTE-FDD BW 20MHz (0); Frequency: 2560 MHz; Duty Cycle: 1:1

Medium: MSL2600; Medium parameters used: f = 2560 MHz; $\sigma = 2.093$ S/m; $\varepsilon_r = 53.007$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN3962; ConvF(7.26, 7.26, 7.26); Calibrated: 2016/12/19;

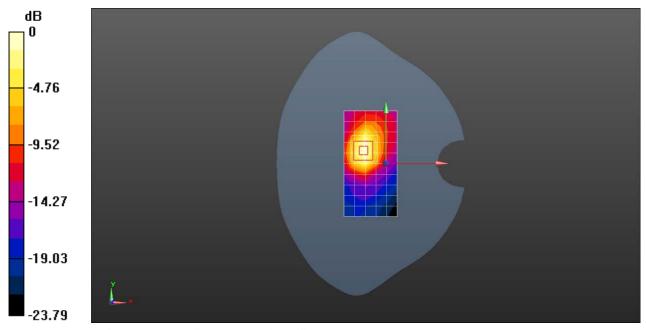
• Sensor-Surface: 2mm (Mechanical Surface Detection), z = -2.0, 31.0

• Electronics: DAE4 Sn1267; Calibrated: 2017/2/23

• Phantom: SAM1; Type: SAM; Serial: 1912

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (6x11x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.899 W/kg


Configuration/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.34 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 1.16 W/kg

SAR(1 g) = 0.636 W/kg; SAR(10 g) = 0.310 W/kg

Maximum value of SAR (measured) = 0.913 W/kg

0 dB = 0.913 W/kg = -0.40 dBW/kg

Test Laboratory: SGS-SAR/HAC Lab

Hisense F23 802.11b 1CH Right cheek

DUT: Hisense F23; Type: Smart Phone; Serial: PF8HKRLJSKJFOVSK

Communication System: UID 0, WI-FI(2.4GHz) (0); Frequency: 2412 MHz; Duty Cycle: 1:1

Medium: HSL2450; Medium parameters used: f = 2412 MHz; $\sigma = 1.785$ S/m; $\epsilon_r = 39.252$; $\rho = 1000$

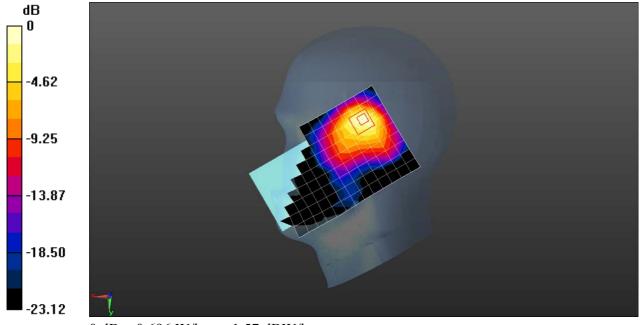
 kg/m^3

Phantom section: Right Section

DASY 5 Configuration:

- Probe: EX3DV4 SN3962; ConvF(7.33, 7.33, 7.33); Calibrated: 2016/12/19;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = -2.0, 31.0
- Electronics: DAE4 Sn1267; Calibrated: 2017/2/23
- Phantom: SAM2; Type: SAM; Serial: 1913
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Head/Area Scan (10x16x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.569 W/kg


Configuration/Head/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.786 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.953 W/kg

SAR(1 g) = 0.451 W/kg; SAR(10 g) = 0.218 W/kg

Maximum value of SAR (measured) = 0.696 W/kg

0 dB = 0.696 W/kg = -1.57 dBW/kg

Test Laboratory: SGS-SAR/HAC Lab

Hisense F23 802.11b 1CH Back side 15mm

DUT: Hisense F23; Type: Smart Phone; Serial: PF8HKRLJSKJFOVSK

Communication System: UID 0, WI-FI(2.4GHz) (0); Frequency: 2412 MHz; Duty Cycle: 1:1

Medium: MSL2450; Medium parameters used: f = 2412 MHz; $\sigma = 1.917$ S/m; $\epsilon_r = 53.484$; $\rho = 1000$

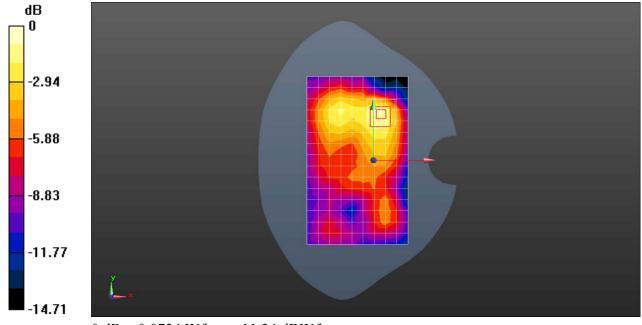
 kg/m^3

Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 SN3962; ConvF(7.46, 7.46, 7.46); Calibrated: 2016/12/19;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = -2.0, 31.0
- Electronics: DAE4 Sn1267; Calibrated: 2017/2/23
- Phantom: SAM1; Type: SAM; Serial: 1912
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (10x16x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.0622 W/kg


Configuration/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.449 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.0910 W/kg

SAR(1 g) = 0.053 W/kg; SAR(10 g) = 0.029 W/kg

Maximum value of SAR (measured) = 0.0734 W/kg

0 dB = 0.0734 W/kg = -11.34 dBW/kg

Test Laboratory: SGS-SAR/HAC Lab

Hisense F23 802.11b 1CH Back side 10mm

DUT: Hisense F23; Type: Smart Phone; Serial: PF8HKRLJSKJFOVSK

Communication System: UID 0, WI-FI(2.4GHz) (0); Frequency: 2412 MHz; Duty Cycle: 1:1

Medium: MSL2450; Medium parameters used: f = 2412 MHz; $\sigma = 1.917$ S/m; $\epsilon_r = 53.484$; $\rho = 1000$

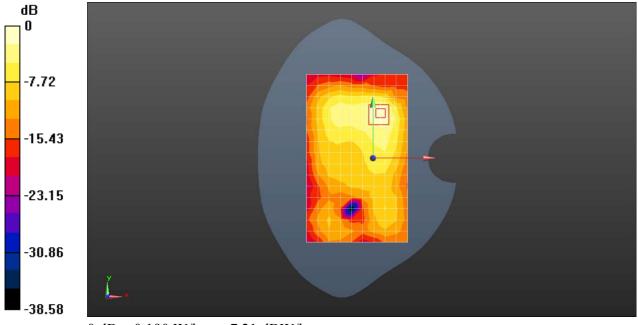
 kg/m^3

Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 SN3962; ConvF(7.46, 7.46, 7.46); Calibrated: 2016/12/19;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = -2.0, 31.0
- Electronics: DAE4 Sn1267; Calibrated: 2017/2/23
- Phantom: SAM1; Type: SAM; Serial: 1912
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (10x16x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.146 W/kg


Configuration/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.639 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.250 W/kg

SAR(1 g) = 0.127 W/kg; SAR(10 g) = 0.063 W/kg

Maximum value of SAR (measured) = 0.190 W/kg

0 dB = 0.190 W/kg = -7.21 dBW/kg