

Test Report

Report No.: MTi221125003-01E1

Date of issue: 2023-01-12

Applicant: Shenzhen Baseus Technology Co., Ltd.

Product: Digital Power Bank 420W

Model(s): BPE42B

FCC ID: 2A482-BPE42B

Shenzhen Microtest Co., Ltd. http://www.mtitest.com

Instructions

- 1. This test report shall not be partially reproduced without the written consent of the laboratory.
- 2. The test results in this test report are only responsible for the samples submitted
- 3. This test report is invalid without the seal and signature of the laboratory.
- 4. This test report is invalid if transferred, altered, or tampered with in any form without authorization.
- Any objection to this test report shall be submitted to the laboratory withindays from the date of receipt of the report.

Table of contents

1	1 General Description	5
	1.1 Description of EUT	
	1.2 Description of test modes	
	1.3 Environmental conditions for testing	
	1.4 Description of support units	7
2	2 Measurement uncertainty	8
3	3 Summary of Test Result	9
4	4 Test Laboratory	10
5	5 Equipment List	11
6	• •	
	6.1 Antenna requirement	12
	6.2 AC power line conducted emissions	
	6.3 Radiated spurious emission	
	6.4 DTS bandwidth	25
	6.5 Maximum conducted output power	26
	6.6 Power spectral density	
	6.7 Band edge (Conducted)	
	6.8 Conducted spurious emissions	
	6.9 Duty Cycle	
A	Appendix A: DTS Bandwidth	31
Α	Appendix B: Maximum conducted output power	34
Α	Appendix C: Maximum power spectral density	37
Α	Appendix D: Band edge measurements	40
Α	Appendix E: Conducted Spurious Emission	42
	Appendix F: Duty Cycle	
Ρ	Photographs of the Test Setup	52
Р	Photographs of the EUT	53

Applicant: Shenzhen Baseus Technology Co., Ltd. 2nd Floor, Building B, Baseus Intelligence Park, No.2008, Xuegang Address: Rd, Gangtou Community, Bantian Street, Longgang District, Shenzhen Manufacturer: Shenzhen Baseus Technology Co., Ltd. 2nd Floor, Building B, Baseus Intelligence Park, No.2008, Xuegang Address: Rd, Gangtou Community, Bantian Street, Longgang District, Shenzhen Shenzhen PILOT Technology Co., Ltd **Factory:** A1 Building, No.7 Shankeng Road, Shankeng Industrial Park, Shanxia Address: Community, Pinghu Street, Longgang District, Shenzhen, China **Product description** Digital Power Bank 420W Product name: Trademark: **Baseus** BPE42B Model name: Serial Model: N/A Standards: FCC 47 CFR Part 15 Subpart C Test method: ANSI C63.10-2013 **Date of Test** 2022-12-20~2023-01-12 Date of test: Test result: **Pass**

Test Engineer	:	Yanice Xie
		(Yanice Xie)
Reviewed By:	:	leor chen
		(Leon Chen)
Approved By:	:	tom Xue
		(Tom Xue)

11. .

1 General Description

1.1 Description of EUT

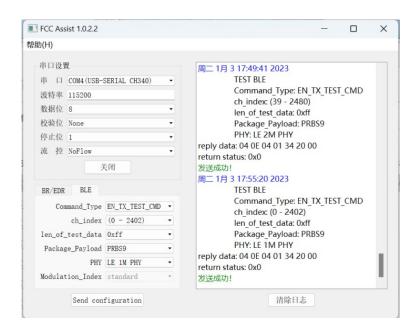
Product name:	Digital Power Bank 420W
Model name:	BPE42B
Series Model:	N/A
Model difference:	N/A
Electrical rating:	Capacity: 90000mAh/288Wh Solar DC Input: 12-25V=8A 100W Max. Type-C1 Input: 5V=3A, 9V=3A, 12V=3A, 15V=3A, 20V=5A, 28V=5A 140W Max. AC Output: 100V-120V~, 3.82A, 60Hz, 420W(Pure Sine Wave; Peak power: 840W) USB1/USB2 Output: 5V=3A, 9V=3A, 10V=2A, 12V=2.5A Type-C1 Output: 5V=3A, 9V=3A, 12V=3A, 15V=3A, 20V=5A, 28V=5A 140W Max. Type-C2 Output: 5V=3A, 9V=3A, 12V=2.5A Type-C1+Type-C2 Output: 100W+30W USB1+USB2 Output: 5V=5A USB1+Type C1 Output: 30W+100W USB 2+Type C2 Output: 5V=5A Type-C1+(Type-C2+USB1+USB2) Output: 100W+25W DC+Car Charger Output: 13.5V=7.4A 100W Max. Total output: 420W
Hardware version:	V1.0
Software version:	V1.0
Accessories:	N/A
Test sample(s) number:	MTi221125003-01S1001
RF specification:	
Bluetooth version:	V5.3
Operation frequency:	2402 MHz ~ 2480 MHz
Modulation type:	GFSK
Antenna(s) information: Max. peak conducted output power:	Antenna type: PCB antenna Antenna gain: -0.58 dBi -2.52 dBm

1.2 Description of test modes

1.2.1 Operation channel list

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466

Address: 101, No.7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China Tel: (86-755)88850135 Fax: (86-755) 88850136 Web: www.mtitest.com E-mail: mti@51mti.com



3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

Note: The test software has been used to control EUT for working in engineering mode, that enables selectable channel, and capable of continuous transmitting mode.

Mode	Test Software		FCC_assist_1.0.2.2	
iviode	Channel	2402MHz	2440MHz	2480MHz
BLE_1M	Danisa	Default	Default	Default
BLE_2M	Power setting	Default	Default	Default

The test software:

1.3 Environmental conditions for testing

Environment of test site:

Temperature:	15°C~35°C
Humidity:	20 % RH ~ 75 % RH

1.4 Description of support units

Support equipment list					
Description Model Serial No. Manufacturer					
Mobile phone	Mate 30	/	HUAWEI		
Support cable list					
Description	Length (m)	From	То		
/	/	/	/		

Address: 101, No.7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China Tel: (86-755)88850135 Fax: (86-755) 88850136 Web: www.mtitest.com E-mail: mti@51mti.com

2 Measurement uncertainty

Parameter	Measurement uncertainty	
AC power line conducted emission (9 kHz~30 MHz)	±2.5 dB	
Occupied Bandwidth	±3 %	
Conducted RF output power	±0.16 dB	
Conducted spurious emissions	±0.21 dB	
Radiated emission (9 kHz ~ 30 MHz)	±4.0 dB	
Radiated emission (30 MHz~1 GHz)	±4.2 dB	
Radiated emission (above 1 GHz)	±4.3 dB	

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3 Summary of Test Result

No.	FCC reference	Description of test	Result
1	§ 15.203	Antenna requirement	Pass
2	§ 15.207	AC power line conducted emissions	Pass
3	§ 15.247(d), 15.209, 15.205	Radiated spurious emissions	Pass
4	§ 15.247(a)(2)	DTS bandwidth	Pass
5	§ 15.247(b)(3)	Maximum conducted output power	Pass
6	§ 15.247(e)	Power Spectral Density	Pass
7	§ 15.247(d)	Conducted emission at the band edge	Pass
8	§ 15.247(d)	Conducted spurious emissions	Pass
9	/	Duty Cycle	Pass

4 Test Laboratory

Test laboratory:	Shenzhen Microtest Co., Ltd.
Test site location:	101, No.7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Telephone:	(86-755)88850135
Fax:	(86-755)88850136
CNAS Registration No.:	CNAS L5868
FCC Registration No.:	448573

5 Equipment List

No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due
MTi-E002	EMI Test Receiver	R&S	ESCI3	101368	2022/05/05	2023/05/04
MTi-E023	Artificial power network	Schwarzbeck	NSLK8127	NSLK8127# 841	2022/05/05	2023/05/04
MTi-E025	Artificial power network	Schwarzbeck	NSLK8127	8127183	2022/05/05	2023/05/04
MTI-E043	EMI test receiver	R&S	ESCI7	101166	2022/05/05	2023/05/04
MTI-E046	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00044	2021/05/30	2023/05/29
MTI-E044	Broadband antenna	Schwarzbeck	VULB9163	9163-1338	2021/05/30	2023/05/29
MTI-E045	Horn antenna	Schwarzbeck	BBHA9120D	9120D-2278	2021/05/30	2023/05/29
MTI-E047	Pre-amplifier	Hewlett-Packard	8447F	3113A06184	2022/05/05	2023/05/04
MTI-E048	Pre-amplifier	Agilent	8449B	3008A01120	2022/05/05	2023/05/04
MTi-E120	Broadband antenna	Schwarzbeck	VULB9163	9163-1419	2021/05/30	2023/05/29
MTi-E121	Pre-amplifier	Hewlett-Packard	8447D	2944A09365	2022/04/15	2023/04/14
MTi-E123	Pre-amplifier	Agilent	8449B	3008A04723	2022/05/05	2023/05/04
MTi-E135	Horn antenna	Schwarzbeck	BBHA 9170	00987	2021/05/30	2023/05/29
MTi-E136	Pre-amplifier	Space-Dtronics	EWLAN1840G -G45	210405001	2022/05/05	2023/05/04
MTi-E062	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2022/05/05	2023/05/04
MTi-E067	RF Control Unit	Tonscend	JS0806-1	19D8060152	2022/05/05	2023/05/04
MTi-E068	RF Control Unit	Tonscend	JS0806-2	19D8060153	2022/05/05	2023/05/04
MTi-E069	Band Reject Filter Group	Tonscend	JS0806-F	19D8060160	2022/05/05	2023/05/04
MTI-E010S	EMI Measurement Software	Farad	EZ-EMC Ver. EMEC-3A1	/	/	/
MTI-E014S		Tonscend	TS®JS1120 V2.6.88.0330	/	/	/

Note: the calibration interval of the test equipment is 12 or 24 months and the calibrations are traceable to international system unit(SI)

6 Test Result

6.1 Antenna requirement

§ 15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §§15.211, 15.213, 15.217, 15.219, 15.221, or §15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

Description of the antenna of EUT

The antenna of the EUT is permanently attached.

Conclusion:

The EUT complies with the requirement of § 15.203.

6.2 AC power line conducted emissions

6.2.1 Limits


Frequency (MHz)	Detector type / Bandwidth	Limit-Quasi-peak dBµV	Limit-Average dBµV
0.15 -0.5		66 to 56	56 to 46
0.5 -5	Average / 9 kHz	56	46
5 -30		60	50

Note 1: the limit decreases with the logarithm of the frequency in the range of 0.15 MHz to 0.5 MHz.

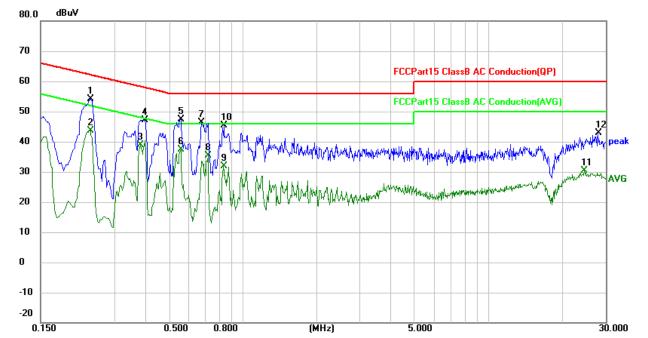
6.2.2 Test Procedures

- a) Test method: ANSI C63.10-2013 Section 6.2.
- b) The EUT is connected to the main power through a line impedance stabilization network (LISN). All support equipment is powered from additional LISN(s).
- c) Emissions were measured on each current carrying line of the EUT using an EMI test receiver connected to the LISN powering the EUT.
- d) The test receiver scanned from 150 kHz to 30 MHz for emissions in each of the test modes described in Item 1.2.
- e) The test data of the worst-case condition(s) was recorded.

6.2.3 Test setup

For the actual test configuration, please refer to the related item – Photographs of the test setup.

6.2.4 Test Result


Notes:

All modes of operation of the EUT were investigated, and only the worst-case results are reported.

Calculation formula:

Measurement (dB μ V) = Reading Level (dB μ V) + Correct Factor (dB) Over (dB) = Measurement (dB μ V) - Limit (dB μ V)

Test mode:	TX	Phase:	Ľ	
Power supply:	Power by AC/DC adapter (AC 120V/60Hz)	Test site:	CE chamber 1	
80.0 dBuV				

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB	dBu∀	dBu∀	dB	Detector
1	*	0.2380	43.36	10.75	54.11	62.17	-8.06	peak
2		0.2380	32.78	10.75	43.53	52.17	-8.64	AVG
3		0.3820	27.85	11.05	38.90	48.24	-9.34	AVG
4		0.3980	35.97	11.10	47.07	57.90	-10.83	peak
5		0.5580	36.03	11.45	47.48	56.00	-8.52	peak
6		0.5580	26.03	11.45	37.48	46.00	-8.52	AVG
7		0.6780	34.58	11.72	46.30	56.00	-9.70	peak
8		0.7220	23.57	11.81	35.38	46.00	-10.62	AVG
9		0.8340	19.87	12.05	31.92	46.00	-14.08	AVG
10		0.8380	33.30	12.07	45.37	56.00	-10.63	peak
11		24.5940	19.52	10.77	30.29	50.00	-19.71	AVG
12		27.9620	32.08	10.84	42.92	60.00	-17.08	peak

est mode:	TX	Phase:	N
ower supply:	Power by AC/DC adapter (AC 120V/60Hz)	Test site:	CE chamber 1
80.0 dBuV			
70		FCCPart15 ClassB AC	Conduction(QP)
50 40		FCCPart15 ClassB AC	12
20		MANAGEMENTALANDERPROPRIATION	peak
0			
-10			

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB	dBu∀	dBu∀	dB	Detector
1	*	0.2300	36.28	10.67	46.95	52.45	-5.50	AVG
2		0.2380	45.19	10.69	55.88	62.17	-6.29	peak
3		0.3980	34.37	11.04	45.41	57.90	-12.49	peak
4		0.3980	27.27	11.04	38.31	47.90	-9.59	AVG
5		0.5580	34.45	11.45	45.90	56.00	-10.10	peak
6		0.5580	19.43	11.45	30.88	46.00	-15.12	AVG
7		0.8300	18.30	12.03	30.33	46.00	-15.67	AVG
8		0.9860	31.00	12.31	43.31	56.00	-12.69	peak
9		1.2020	14.27	12.76	27.03	46.00	-18.97	AVG
10		1.4900	26.03	13.38	39.41	56.00	-16.59	peak
11		17.9540	23.49	10.61	34.10	50.00	-15.90	AVG
12		18.1940	36.61	10.62	47.23	60.00	-12.77	peak

6.3 Radiated spurious emission

6.3.1 Limits

§ 15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

§ 15.209 Radiated emission limits at restricted bands:

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Note 1: the tighter limit applies at the band edges.

Note 2: the emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector

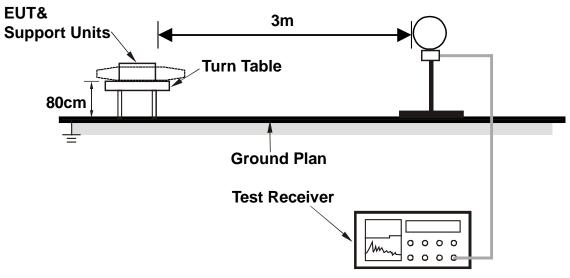
§ 15.35 (b) requirements:

When average radiated emission measurements are specified in this part, including average emission measurements below 1000 MHz, there also is a limit on the peak level of the radio frequency emissions. Unless otherwise specified, e.g., see §§ 15.250, 15.252, 15.253(d), 15.255, 15.256, and 15.509 through 15.519, the limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test.

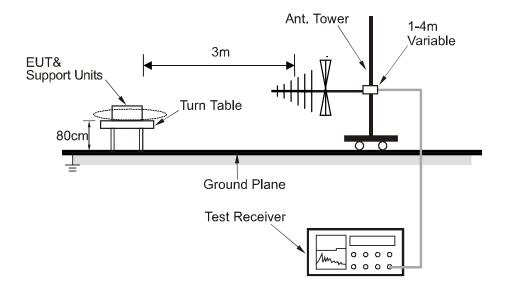
According to ANSI C63.10-2013, the tests shall be performed in the frequency range shown in the following table:

Frequency range of measurements for unlicensed wireless device

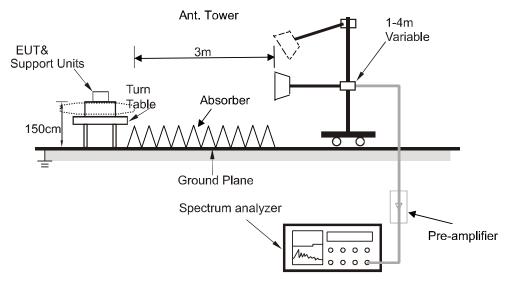
Lowest frequency generated in the device	Upper frequency range of measurement
9 kHz to below 10 GHz	10th harmonic of highest fundamental frequency or to 40 GHz, whichever is lower
At or above 10 GHz to below 30 GHz	5th harmonic of highest fundamental frequency or to 100 GHz, whichever is lower
At or above 30 GHz	5th harmonic of highest fundamental frequency or to 200 GHz, whichever is lower, unless otherwise specified


Frequency range of measurements for unlicensed wireless device with digital device

Highest frequency generated or used in the device or on which the device operates or tunes	Upper frequency range of measurement
Below 1.705 MHz	30 MHz
1.705 MHz to 108 MHz	1000 MHz
108 MHz to 500 MHz	2000 MHz
500 MHz to 1000 MHz	5000 MHz
Above 1000 MHz	5th harmonic of the highest frequency or 40 GHz, whichever is lower



6.3.2 Test setup


Below 30MHz:

30MHz~1GHz:

Above 1GHz:

For the actual test configuration, please refer to the related item – Photographs of the test setup.

6.3.3 Test procedure

- a) Test method: ANSI C63.10-2013 Section 6.3, 6.4, 6.5, 6.6, 11.11, 11.12, 11.13.
- b) The EUT is placed on an on-conducting table 0.8 meters above the ground plane for measurement below 1GHz, 1.5 meters above the ground plane for measurement above 1GHz.
- c) Emission blew 18 GHz were measured at a 3 meters test distance, above 18 GHz were measured at 1-meter test distance with the application of a distance correction factor
- d) The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Test instrument setup

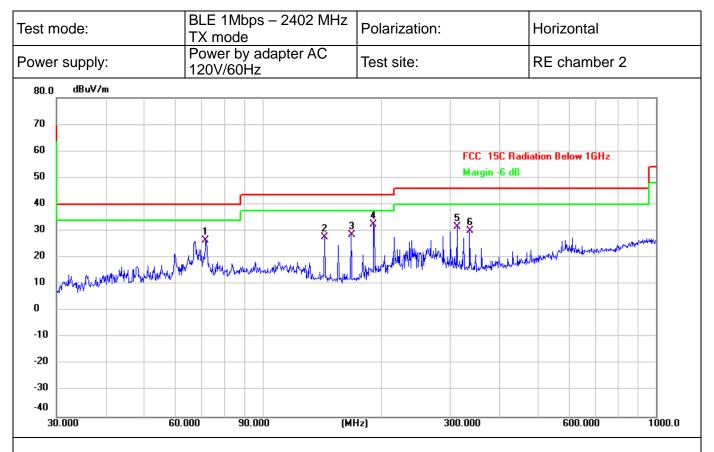
Frequency	Test receiver / Spectrum analyzer setting
9 kHz ~ 150 kHz	Quasi Peak / RBW: 200 Hz
150 kHz ~ 30 MHz	Quasi Peak / RBW: 9 kHz
30 MHz ~ 1 GHz	Quasi Peak / RBW: 120 kHz
Above 1 GHz	Peak / RBW: 1 MHz, VBW: 3MHz, Peak detector AVG / RBW: 1 MHz, VBW: 3MHz, Average detector

6.3.4 Test results

Notes:

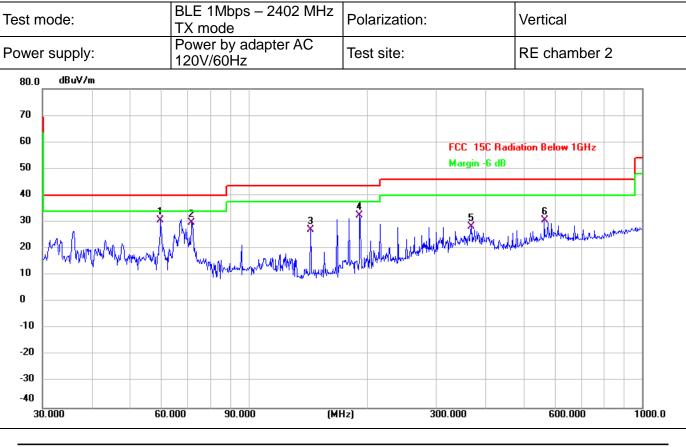
The amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

All modes of operation of the EUT were investigated, and only the worst-case results are reported. There were no emissions found below 30MHz within 20dB of the limit.


Calculation formula:

Measurement ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Correct Factor (dB/m) Over (dB) = Measurement ($dB\mu V/m$) – Limit ($dB\mu V/m$)

Page 20 of 53 Report No.: MTi221125003-01E1


Radiated emissions between 30MHz - 1GHz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector
1		71.8320	38.07	-11.64	26.43	40.00	-13.57	QP
2	,	143.8295	40.46	-12.71	27.75	43.50	-15.75	QP
3		167.8243	40.14	-11.72	28.42	43.50	-15.08	QP
4	*	191.7450	42.96	-10.52	32.44	43.50	-11.06	QP
5	;	312.1794	39.11	-7.59	31.52	46.00	-14.48	QP
6	,	336.0352	37.03	-7.00	30.03	46.00	-15.97	QP

Radiated emissions between 30MHz - 1GHz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector
1	*	59.8588	41.93	-11.19	30.74	40.00	-9.26	QP
2		71.8320	41.28	-11.64	29.64	40.00	-10.36	QP
3		143.8295	39.84	-12.71	27.13	43.50	-16.37	QP
4		191.7450	43.07	-10.52	32.55	43.50	-10.95	QP
5		368.1116	35.36	-6.98	28.38	46.00	-17.62	QP
6		564.6389	34.01	-3.45	30.56	46.00	-15.44	QP

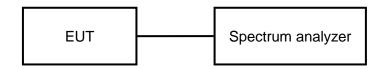
Radiated emissions 1 GHz ~ 25 GHz

Frequency	Reading Level	Correct Factor	Measurement	Limits	Over	Detector	Polarization			
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Peak/AVG	H/V			
BLE 1Mbps - 2402 MHz TX mode										
4804.000	39.73	0.74	40.47	74.00	-33.53	Peak	V			
4804.000	33.41	0.74	34.15	54.00	-19.85	AVG	V			
7206.000	41.23	6.02	47.25	74.00	-26.75	Peak	V			
7206.000	35.17	6.02	41.19	54.00	-12.81	AVG	V			
9608.000	41.04	5.88	46.92	74.00	-27.08	Peak	V			
9608.000	34.70	5.88	40.58	54.00	-13.42	AVG	V			
4804.000	40.12	0.74	40.86	74.00	-33.14	Peak	Н			
4804.000	33.51	0.74	34.25	54.00	-19.75	AVG	Н			
7206.000	40.57	6.02	46.59	74.00	-27.41	Peak	Н			
7206.000	34.29	6.02	40.31	54.00	-13.69	AVG	Н			
9608.000	42.06	5.88	47.94	74.00	-26.06	Peak	Н			
9608.000	35.70	5.88	41.58	54.00	-12.42	AVG	Н			
		BLE	1Mbps - 244	40 MHz TX m	ode					
4880.000	41.21	1.04	42.25	74.00	-31.75	Peak	V			
4880.000	35.08	1.04	36.12	54.00	-17.88	AVG	V			
7320.000	40.42	5.93	46.35	74.00	-27.65	Peak	V			
7320.000	34.30	5.93	40.23	54.00	-13.77	AVG	V			
9760.000	40.59	6.55	47.14	74.00	-26.86	Peak	V			
9760.000	34.50	6.55	41.05	54.00	-12.95	AVG	V			
4880.000	40.11	1.04	41.15	74.00	-32.85	Peak	Н			
4880.000	33.98	1.04	35.02	54.00	-18.98	AVG	Н			
7320.000	41.37	5.93	47.30	74.00	-26.70	Peak	Н			
7320.000	35.20	5.93	41.13	54.00	-12.87	AVG	Н			
9760.000	41.00	6.55	47.55	74.00	-26.45	Peak	Н			
9760.000	34.71	6.55	41.26	54.00	-12.74	AVG	Н			

Frequency	Reading Level	Correct Factor	Measurement	Limits	Over	Detector	Polarization				
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Peak/AVG	H/V				
BLE 1Mbps - 2480 MHz TX mode											
4960.000	41.85	1.50	43.35	74.00	-30.65	Peak	V				
4960.000	35.73	1.50	37.23	54.00	-16.77	AVG	V				
7440.000	40.47	5.61	46.08	74.00	-27.92	Peak	V				
7440.000	34.49	5.61	40.10	54.00	-13.90	AVG	V				
9920.000	41.63	6.10	47.73	74.00	-26.27	Peak	V				
9920.000	35.22	6.10	41.32	54.00	-12.68	AVG	V				
4960.000	41.66	1.50	43.16	74.00	-30.84	Peak	Н				
4960.000	35.52	1.50	37.02	54.00	-16.98	AVG	Н				
7440.000	40.25	5.61	45.86	74.00	-28.14	Peak	Н				
7440.000	33.73	5.61	39.34	54.00	-14.66	AVG	Н				
9920.000	41.02	6.10	47.12	74.00	-26.88	Peak	Н				
9920.000	34.96	6.10	41.06	54.00	-12.94	AVG	Н				

Radiated emissions at band edge

Reading Level	Correct Factor	Measurement	Limits	Over	Detector	Polarization
(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Peak/AVG	H/V
	ı	BLE 1Mbps – L	ow band-edg	е		
(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Peak/AVG	H/V
47.48	-8.08	39.40	74.00	-34.60	Peak	V
36.39	-8.08	28.31	54.00	-25.69	AVG	V
48.06	-7.71	40.35	74.00	-33.65	Peak	V
37.30	-7.71	29.59	54.00	-24.41	AVG	V
47.06	-8.08	38.98	74.00	-35.02	Peak	Н
37.32	-8.08	29.24	54.00	-24.76	AVG	Н
48.42	-7.71	40.71	74.00	-33.29	Peak	Н
38.50	-7.71	30.79	54.00	-23.21	AVG	Н
	E	BLE 1Mbps – F	ligh band-edg	е		
52.68	-7.24	45.44	74.00	-28.56	Peak	V
42.60	-7.24	35.36	54.00	-18.64	AVG	V
49.12	-7.17	41.95	74.00	-32.05	Peak	V
39.07	-7.17	31.90	54.00	-22.10	AVG	V
49.38	-7.24	42.14	74.00	-31.86	Peak	Н
38.85	-7.24	31.61	54.00	-22.39	AVG	Н
48.52	-7.17	41.35	74.00	-32.65	Peak	Н
37.95	-7.17	30.78	54.00	-23.22	AVG	Н
	Level (dBµV) (dBµV) 47.48 36.39 48.06 37.30 47.06 37.32 48.42 38.50 52.68 42.60 49.12 39.07 49.38 38.85 48.52	Level Factor (dBμV) (dB/m) 47.48 -8.08 36.39 -8.08 48.06 -7.71 37.30 -7.71 47.06 -8.08 37.32 -8.08 48.42 -7.71 38.50 -7.71 52.68 -7.24 49.12 -7.17 39.07 -7.17 49.38 -7.24 48.52 -7.17	Level Factor Measurement (dBμV/m) (dBμV) (dB/m) (dBμV/m) 47.48 -8.08 39.40 36.39 -8.08 28.31 48.06 -7.71 40.35 37.30 -7.71 29.59 47.06 -8.08 38.98 37.32 -8.08 29.24 48.42 -7.71 40.71 38.50 -7.71 30.79 BLE 1Mbps - F 52.68 -7.24 45.44 42.60 -7.24 35.36 49.12 -7.17 41.95 39.07 -7.17 31.90 49.38 -7.24 42.14 38.85 -7.24 31.61 48.52 -7.17 41.35	Level (dBμV) Factor (dB/m) Measurement (dBμV/m) Limits (dBμV/m) BLE 1Mbps – Low band-edg (dBμV) (dB/m) (dBμV/m) (dBμV/m) 47.48 -8.08 39.40 74.00 36.39 -8.08 28.31 54.00 48.06 -7.71 40.35 74.00 37.30 -7.71 29.59 54.00 47.06 -8.08 38.98 74.00 37.32 -8.08 29.24 54.00 48.42 -7.71 40.71 74.00 38.50 -7.71 30.79 54.00 BLE 1Mbps – High band-edg 52.68 -7.24 45.44 74.00 49.12 -7.17 41.95 74.00 39.07 -7.17 31.90 54.00 49.38 -7.24 42.14 74.00 38.85 -7.24 31.61 54.00 48.52 -7.17 41.35 74.00	Level (dBμV) Factor (dBμV/m) Measurement (dBμV/m) Limits (dBμV/m) Over (dBμV/m) BLE 1Mbps – Low band-edge (dBμV) (dB/m) (dBμV/m) (dBμV/m) (dBμV/m) (dBμV/m) 47.48 -8.08 39.40 74.00 -34.60 36.39 -8.08 28.31 54.00 -25.69 48.06 -7.71 40.35 74.00 -33.65 37.30 -7.71 29.59 54.00 -24.41 47.06 -8.08 38.98 74.00 -35.02 37.32 -8.08 29.24 54.00 -24.76 48.42 -7.71 40.71 74.00 -33.29 38.50 -7.71 30.79 54.00 -23.21 BLE 1Mbps – High band-edge 52.68 -7.24 45.44 74.00 -32.05 49.12 -7.17 41.95 74.00 -32.05 39.07 -7.17 31.90 54.00 -22.10 49.38 -7.24	Level (dBμV) Factor (dBμV/m) Measurement (dBμV/m) Limits Over (dBμV/m) Detector Detector BLE 1Mbps – Low band-edge (dBμV) (dBμV/m) (dBμV/m) <t< td=""></t<>



6.4 DTS bandwidth

6.4.1 Limits

Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

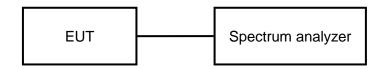
6.4.2 Test setup

6.4.3 Test procedures

Test method: ANSI C63.10-2013 Section 11.8.1

6.4.4 Test results

Note: See the appendix A



6.5 Maximum conducted output power

6.5.1 Limits

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt.

6.5.2 Test setup

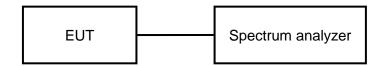
6.5.3 Test procedure

Test method for peak power: ANSI C63.10-2013 Section 11.9.1.1

Test method for average power: ANSI C63.10-2013 Section 11.9.2.3.1 Method AVGPM

6.5.4 Test results

Note: see the appendix B



6.6 Power spectral density

6.6.1 Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

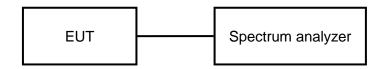
6.6.2 Test setup

6.6.3 Test Procedure

Test method: ANSI C63.10-2013 Section 11.10.2

6.6.4 Test Results

Note: see the appendix C



6.7 Band edge (Conducted)

6.7.1 Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

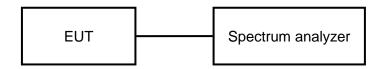
6.7.2 Test setup

6.7.3 Test procedure

Test method: ANSI C63.10-2013 Section 11.13

6.7.4 Test results

Note: see the appendix D



6.8 Conducted spurious emissions

6.8.1 Limits

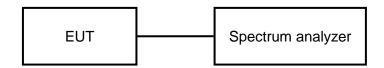
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

6.8.2 Test setup

6.8.3 Test procedure

Test method: ANSI C63.10-2013 Section 11.11

6.8.4 Test results


Note: see the appendix E

6.9 Duty Cycle

6.9.1 Conformance Limit

None, for reporting purposes only.

6.9.2 Test setup

6.9.3 Test procedure

Test method: KDB 558074 section 6, zero-span spectrum analyzer method.

6.9.4 Test Results

Note: see the appendix F