3.2.11 OTA Passive Efficiency&Gain Test--B13--diversity: | Error. | Btt: | Ett: | Coin | Dane | Dtt: | Dtt: | Coin | |--|---|--|---|---|---|---|--| | Freq
(MHz) | Effi
(%) | Effi
(dB) | Gain
(dBi) | Freq
(MHz) | Effi
(%) | Effi
(dB) | Gain
(dBi) | | 740 | 21.26 | -6.72 | -2.9 | 1910 | 23, 44 | -6.3 | -1, 27 | | 750 | 22. 11 | -6. 55 | -3. 24 | 1920 | 23. 44 | -6.38 | -1.37 | | 760 | 21.82 | -6.61 | -2.85 | 1930 | 22. 91 | -6.4 | -1.42 | | 770 | 20. 22 | -6.94 | -3. 45 | 1940 | 23. 2 | -6.35 | -1.56 | | 780 | 22. 68 | -6. 44 | -2.56 | 1950 | 22. 71 | -6.44 | -1.4 | | 790 | 22.7 | -6.44 | -3.55 | 1960 | 22. 2 | -6.54 | -1.4 | | 800 | 24. 29 | -6.15 | -2.7 | 1970 | 23.54 | -6.28 | -0.8 | | 810 | 20.44 | -6.9 | -3.69 | 1980 | 24.02 | -6.19 | -0.65 | | | | | | 1990 | 22.96 | -6.39 | -0.57 | | 1700 | 28. 57 | -5. 44 | -1.86 | 2000 | 22. 31 | -6.51 | -0.61 | | 1710 | 25. 88 | -5.87 | -2.56 | 2010 | 22.8 | -6.42 | -0.86 | | 1720 | 23. 95 | -6. 21 | -2. 98 | 2020 | 23.96 | -6.21 | -0.79 | | 1730 | 23.16 | -6.35 | -3.17 | 2030 | 23. 21 | -6.34 | -0.73 | | 1740 | 22.34 | -6.51 | -3.24 | 2040 | 22. 26 | -6.52 | -0.82 | | 1750 | 20.86 | -6.81 | -3.49 | 2050 | 22.65 | -6.45 | -0.63 | | 1760 | 20.79 | -6.82 | -3.51 | 2060 | 22.13 | -6.55 | -0.63 | | 1770
1780 | 21.93
22.98 | -6.59
-6.39 | -2.84
-2.46 | 2070
2080 | 21.68
21.57 | -6.64
-6.66 | -0.61
-0.48 | | 1790 | 22. 49 | -6.48 | -2. 2 | 2090 | 21.65 | -6.64 | -0.36 | | 1800 | 22. 45 | -6. 41 | -2 | 2100 | 22 | -6.58 | -0.24 | | 1810 | 24.36 | -6.13 | -1.46 | 2110 | 21.46 | -6.68 | -0.39 | | 1820 | 24. 9 | -6.04 | -1.19 | 2120 | 21.59 | -6.66 | -0.44 | | 1830 | 24. 52 | -6.11 | -1.19 | 2130 | 22. 52 | -6.47 | -0.34 | | 1840 | 24. 74 | -6.07 | -1.07 | 2140 | 23. 3 | -6.33 | -0.3 | | 1850 | 25.15 | -5. 99 | -0.99 | 2150 | 24. 52 | -6.11 | -0.14 | | 1860 | 25.63 | -5. 91 | -0.96 | 2160 | 26.38 | -5.79 | 0.12 | | 1870 | 25.09 | -6 | -1.1 | 2170 | 28.01 | -5.53 | 0.39 | | 1880 | 24.69 | -6.08 | -1.15 | 2180 | 29.38 | -5.32 | 0.57 | | 1890 | 24. 91 | -6.04 | -1.1 | 2190 | 29.76 | -5. 26 | 0.76 | | 1900 | 24. 33 | -6.14 | -1.2 | 2200 | 30.26 | -5.19 | 0.86 | | | | | | | | | | | Freq | Effi | Effi | Gain | Freq | Effi | Effi | Gain | | Freq
(MHz) | Effi
(%) | Effi
(dB) | Gain
(dBi) | Freq
(MHz) | Effi
(%) | Effi
(dB) | Gain
(dBi) | | (MHz)
2210 | 100000000000000000000000000000000000000 | Manager and a | 500000000000000000000000000000000000000 | 100000000000000000000000000000000000000 | 100000000000000000000000000000000000000 | 300000000000000000000000000000000000000 | 100000000000000000000000000000000000000 | | (MHz)
2210
2220 | (%)
31.14
31 | (dB)
-5.07
-5.09 | (dBi)
1.01
1.14 | (MHz)
2510
2520 | (%)
32.24
32.12 | (dB)
-4. 92
-4. 93 | (dBi)
1.01
1.07 | | (MHz)
2210
2220
2230 | (%)
31.14
31
32.07 | (dB)
-5.07
-5.09
-4.94 | (dBi)
1.01
1.14
1.41 | 2510
2520
2530 | (%)
32. 24
32. 12
31. 41 | (dB)
-4. 92
-4. 93
-5. 03 | (dBi)
1.01
1.07
0.96 | | (MHz)
2210
2220
2230
2240 | (%)
31.14
31
32.07
32.71 | (dB)
-5.07
-5.09
-4.94
-4.85 | (dBi)
1.01
1.14
1.41
1.6 | (MHz)
2510
2520
2530
2540 | (%)
32. 24
32. 12
31. 41
31. 16 | (dB)
-4. 92
-4. 93
-5. 03
-5. 06 | (dBi)
1.01
1.07
0.96 | | (MHz)
2210
2220
2230
2240
2250 | (%)
31.14
31
32.07
32.71
33.55 | (dB) -5.07 -5.09 -4.94 -4.85 -4.74 | (dBi)
1.01
1.14
1.41
1.6
1.66 | (MHz)
2510
2520
2530
2540
2550 | (%)
32. 24
32. 12
31. 41
31. 16
30. 75 | (dB) -4. 92 -4. 93 -5. 03 -5. 06 -5. 12 | (dBi)
1.01
1.07
0.96
1
0.88 | | (MHz) 2210 2220 2230 2240 2250 2260 | (%)
31.14
31
32.07
32.71
33.55
34.28 | (dB) -5.07 -5.09 -4.94 -4.85 -4.74 -4.65 | (dBi)
1.01
1.14
1.41
1.6
1.66
1.76 | (MHz) 2510 2520 2530 2540 2550 2560 | (%)
32.24
32.12
31.41
31.16
30.75
30.06 | (dB) -4.92 -4.93 -5.03 -5.06 -5.12 -5.22 | (dBi)
1.01
1.07
0.96
1
0.88
0.83 | | (MHz) 2210 2220 2230 2240 2250 2260 2270 | (%) 31.14 31 32.07 32.71 33.55 34.28 34.64 | (dB) -5. 07 -5. 09 -4. 94 -4. 85 -4. 74 -4. 65 -4. 6 | (dBi) 1.01 1.14 1.41 1.6 1.66 1.76 1.67 | 2510
2520
2530
2540
2550
2560
2570 | (%)
32.24
32.12
31.41
31.16
30.75
30.06
30.44 | (dB) -4. 92 -4. 93 -5. 03 -5. 06 -5. 12 -5. 22 -5. 17 | (dBi)
1.01
1.07
0.96
1
0.88
0.83
0.99 | | (MHz) 2210 2220 2230 2240 2250 2260 2270 2280 | (%)
31.14
31
32.07
32.71
33.55
34.28 | (dB) -5. 07 -5. 09 -4. 94 -4. 85 -4. 74 -4. 65 -4. 88 | (dBi) 1.01 1.14 1.41 1.6 1.66 1.76 1.67 | (MHz) 2510 2520 2530 2540 2550 2560 | (%)
32.24
32.12
31.41
31.16
30.75
30.06 | (dB) -4.92 -4.93 -5.03 -5.06 -5.12 -5.22 | (dBi) 1.01 1.07 0.96 1 0.88 0.83 0.99 1.1 | | (MHz) 2210 2220 2230 2240 2250 2260 2270 | (%)
31.14
31
32.07
32.71
33.55
34.28
34.64
32.53 | (dB) -5. 07 -5. 09 -4. 94 -4. 85 -4. 74 -4. 65 -4. 6 | (dBi) 1.01 1.14 1.41 1.6 1.66 1.76 1.67 | 2510
2520
2530
2540
2550
2560
2570
2580 | (%) 32.24 32.12 31.41 31.16 30.75 30.06 30.44 30.72 | (dB) -4. 92 -4. 93 -5. 03 -5. 06 -5. 12 -5. 22 -5. 17 -5. 13 | (dBi)
1.01
1.07
0.96
1
0.88
0.83
0.99 | | 2210
2220
2230
2240
2250
2260
2270
2280
2290 | (%)
31.14
31
32.07
32.71
33.55
34.28
34.64
32.53
33.48 | (dB) -5.07 -5.09 -4.94 -4.85 -4.74 -4.65 -4.6 -4.88 -4.75 | (dBi) 1.01 1.14 1.41 1.6 1.66 1.76 1.67 1.67 | (MHz) 2510 2520 2530 2540 2550 2560 2570 2580 2590 | (%) 32. 24 32. 12 31. 41 31. 16 30. 75 30. 06 30. 44 30. 72 31. 63 | (dB) -4. 92 -4. 93 -5. 03 -5. 06 -5. 12 -5. 22 -5. 17 -5. 13 -5 | (dBi) 1.01 1.07 0.96 1 0.88 0.83 0.99 1.1 1.27 | | 2210
2220
2230
2240
2250
2250
2260
2270
2280
2290
2300 | (%) 31.14 31 32.07 32.71 33.55 34.28 34.64 32.53 33.48 33.6 | (dB) -5.07 -5.09 -4.94 -4.85 -4.74 -4.65 -4.6 -4.88 -4.75 -4.74 | (dBi) 1.01 1.14 1.41 1.6 1.66 1.76 1.67 1.72 1.67 1.57 1.71 1.69 | (MHz) 2510 2520 2530 2540 2550 2560 2570 2580 2590 2600 | (%) 32. 24 32. 12 31. 41 31. 16 30. 75 30. 06 30. 44 30. 72 31. 63 32. 34 32. 4 31. 6 | (dB) -4. 92 -4. 93 -5. 03 -5. 06 -5. 12 -5. 22 -5. 17 -5. 13 -5 -4. 9 -4. 9 -5 | (dBi) 1. 01 1. 07 0. 96 1 0. 88 0. 83 0. 99 1. 1 1. 27 1. 34 1. 55 1. 43 | | 2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330 | (%) 31. 14 31 32. 07 32. 71 33. 55 34. 28 34. 64 32. 53 33. 48 33. 6 34. 04 34. 58 | (dB) -5.07 -5.09 -4.94 -4.85 -4.74 -4.65 -4.6 -4.88 -4.75 -4.74 -4.68 -4.61 -4.53 | (dBi) 1.01 1.14 1.41 1.66 1.66 1.76 1.67 1.72 1.67 1.57 1.71 1.69 1.73 | (MHz) 2510 2520 2530 2540 2550 2560 2570 2580 2590 2600 2610 2620 2630 | (%) 32. 24 32. 12 31. 41 31. 16 30. 75 30. 06 30. 44 30. 72 31. 63 32. 34 31. 6 31. 23 | (dB) -4. 92 -4. 93 -5. 03 -5. 06 -5. 12 -5. 12 -5. 13 -5 -4. 9 -4. 9 -5. 05 | (dBi) 1. 01 1. 07 0. 96 1. 0. 88 0. 83 0. 99 1. 1 1. 27 1. 34 1. 55 1. 43 1. 37 | | 2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340 | (%) 31.14 31 32.07 32.71 33.55 34.28 34.64 32.53 33.48 33.6 34.04 34.58 35.2 | (dB) -5.07 -5.09 -4.94 -4.85 -4.74 -4.65 -4.75 -4.74 -4.68 -4.61 -4.53 -4.62 | (dBi) 1.01 1.14 1.41 1.6 1.66 1.76 1.67 1.72 1.67 1.57 1.57 1.71 1.69 1.73 1.64 | (MHz) 2510 2520 2530 2540 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 | (%) 32. 24 32. 12 31. 41 31. 16 30. 75 30. 06 30. 44 30. 72 31. 63 32. 34 31. 6 31. 23 31. 5 | (dB) -4. 92 -4. 93 -5. 03 -5. 06 -5. 12 -5. 12 -5. 13 -5 -4. 9 -4. 9 -5 -5. 05 -5. 02 | (dBi) 1.01 1.07 0.96 1 0.88 0.83 0.99 1.1 1.27 1.34 1.55 1.43 1.37 1.31 | | 2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350 | (%) 31.14 31 32.07 32.71 32.55 34.28 34.64 32.53 33.48 33.6 34.04 34.58 35.2 34.5 | (dB) -5.07 -5.09 -4.94 -4.85 -4.74 -4.65 -4.88 -4.75 -4.61 -4.63 -4.61 -4.53 -4.67 | (dBi) 1.01 1.14 1.41 1.6 1.66 1.76 1.67 1.72 1.67 1.57 1.71 1.69 1.73 1.64 | (MHz) 2510 2520 2530 2540 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 | (%) 32. 24 32. 12 31. 41 31. 16 30. 75 30. 06 30. 44 30. 72 31. 63 32. 34 31. 6 31. 23 31. 5 30. 59 | (dB) -4. 92 -4. 93 -5. 03 -5. 12 -5. 12 -5. 17 -5. 13 -5 -4. 9 -5 -5. 05 -5. 02 -5. 14 | (dBi) 1. 01 1. 07 0. 96 1 0. 88 0. 83 0. 99 1. 1 1. 27 1. 34 1. 55 1. 43 1. 37 1. 31 1. 15 | | 2210
2220
2230
2240
2250
2260
2270
2280
2300
2310
2320
2330
2340
2350
2360 | (%) 31.14 31 32.07 32.71 33.55 34.28 34.64 32.53 33.48 33.6 34.04 34.58 35.2 34.5 34.08 | (dB) -5.07 -5.09 -4.94 -4.85 -4.74 -4.65 -4.75 -4.74 -4.68 -4.61 -4.53 -4.62 -4.67 -4.64 |
(dBi) 1.01 1.14 1.41 1.6 1.66 1.76 1.67 1.72 1.67 1.57 1.71 1.69 1.73 1.64 1.58 1.66 | (MHz) 2510 2520 2530 2540 2550 2560 2570 2580 2590 2610 2620 2630 2640 2650 2660 | (%) 32. 24 32. 12 31. 41 31. 16 30. 75 30. 06 30. 44 30. 72 31. 63 32. 34 31. 6 31. 23 31. 5 30. 59 28. 47 | (dB) -4. 92 -4. 93 -5. 03 -5. 06 -5. 12 -5. 22 -5. 17 -5. 13 -5 -4. 9 -4. 9 -5. 05 -5. 02 -5. 04 | (dBi) 1. 01 1. 07 0. 96 1 0. 88 0. 83 0. 99 1. 1 1. 27 1. 34 1. 55 1. 43 1. 37 1. 31 1. 15 0. 77 | | 2210
2220
2230
2240
2250
2250
2250
2260
2270
2280
2300
2310
2320
2330
2340
2350
2360
2370 | (%) 31.14 31 32.07 32.71 33.55 34.28 34.64 32.53 33.48 33.6 34.04 34.58 35.2 34.5 34.08 34.34 33.8 | (dB) -5.07 -5.09 -4.94 -4.85 -4.65 -4.6 -4.88 -4.75 -4.61 -4.63 -4.61 -4.53 -4.62 -4.64 -4.71 | (dBi) 1.01 1.14 1.41 1.6 1.66 1.76 1.67 1.72 1.67 1.71 1.69 1.73 1.73 1.58 1.66 1.66 | (MHz) 2510 2520 2530 2540 2550 2560 2570 2580 2590 2610 2620 2630 2640 2650 2660 2670 | (%) 32. 24 32. 12 31. 41 31. 16 30. 75 30. 06 30. 44 30. 72 31. 63 32. 34 32. 4 31. 6 31. 23 31. 5 30. 59 28. 47 26. 48 | (dB) -4. 92 -4. 93 -5. 03 -5. 06 -5. 12 -5. 22 -5. 17 -5. 13 -5 -4. 9 -4. 9 -5. 05 -5. 02 -5. 14 -5. 46 -5. 77 | (dBi) 1. 01 1. 07 0. 96 1 0. 88 0. 83 0. 99 1. 1 1. 27 1. 34 1. 55 1. 43 1. 37 1. 31 1. 15 0. 77 0. 01 | | 2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370 | (%) 31. 14 31 32. 07 32. 71 33. 55 34. 28 34. 64 32. 53 33. 48 33. 6 34. 04 34. 58 35. 2 34. 5 34. 08 34. 38 33. 6 | (dB) -5.07 -5.09 -4.94 -4.85 -4.74 -4.65 -4.74 -4.68 -4.74 -4.68 -4.61 -4.53 -4.62 -4.67 -4.64 | (dBi) 1.01 1.14 1.41 1.6 1.66 1.76 1.67 1.72 1.67 1.71 1.69 1.73 1.64 1.58 | (MHz) 2510 2520 2530 2540 2550 2560 2570 2580 2590 2610 2620 2630 2640 2650 2650 2670 2680 | (%) 32. 24 32. 12 31. 41 30. 75 30. 06 30. 44 30. 72 31. 63 31. 63 31. 5 30. 59 28. 47 26. 48 26. 13 | (dB) -4. 92 -4. 93 -5. 03 -5. 06 -5. 12 -5. 22 -5. 17 -5. 13 -5 -4. 9 -4. 9 -5. 05 -5. 02 -5. 14 -5. 46 -5. 77 -5. 83 | (dBi) 1. 01 1. 07 0. 96 1 0. 88 0. 83 0. 99 1. 1 1. 27 1. 34 1. 55 1. 43 1. 37 1. 31 1. 15 0. 77 0. 01 0. 01 | | 2210
2220
2230
2240
2250
2250
2250
2260
2270
2280
2300
2310
2320
2330
2340
2350
2360
2370 | (%) 31.14 31 32.07 32.71 33.55 34.28 34.64 32.53 33.48 33.6 34.04 34.58 35.2 34.5 34.08 34.34 33.8 33.67 | (dB) -5.07 -5.09 -4.94 -4.85 -4.74 -4.65 -4.6 -4.88 -4.75 -4.74 -4.68 -4.61 -4.53 -4.62 -4.67 -4.71 -4.73 | (dBi) 1.01 1.14 1.41 1.66 1.66 1.76 1.67 1.72 1.67 1.57 1.71 1.69 1.73 1.64 1.58 1.66 1.58 1.53 | (MHz) 2510 2520 2530 2540 2550 2560 2570 2580 2590 2610 2620 2630 2640 2650 2660 2670 | (%) 32. 24 32. 12 31. 41 31. 16 30. 75 30. 06 30. 44 30. 72 31. 63 32. 34 31. 6 31. 23 31. 5 30. 59 28. 47 26. 48 26. 13 24. 39 | (dB) -4. 92 -4. 93 -5. 03 -5. 06 -5. 12 -5. 12 -5. 13 -5 -4. 9 -4. 9 -5. 05 -5. 02 -5. 14 -5. 46 -5. 77 -5. 83 -6. 13 | (dBi) 1. 01 1. 07 0. 96 1 0. 88 0. 83 0. 99 1. 1 1. 27 1. 34 1. 55 1. 43 1. 37 1. 31 1. 15 0. 77 0. 01 | | 2210 2220 2230 2240 2250 2260 2270 2280 2290 2290 2300 2310 2320 2330 2340 2350 2360 2370 2380 2380 | (%) 31. 14 31 32. 07 32. 71 33. 55 34. 28 34. 64 32. 53 33. 48 33. 6 34. 04 34. 58 35. 2 34. 5 34. 08 34. 38 33. 6 | (dB) -5.07 -5.09 -4.94 -4.85 -4.74 -4.65 -4.74 -4.68 -4.74 -4.68 -4.61 -4.53 -4.62 -4.67 -4.64 | (dBi) 1.01 1.14 1.41 1.6 1.66 1.76 1.67 1.72 1.67 1.71 1.69 1.73 1.64 1.58 | (MHz) 2510 2520 2530 2540 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2670 2680 2690 | (%) 32. 24 32. 12 31. 41 30. 75 30. 06 30. 44 30. 72 31. 63 31. 63 31. 5 30. 59 28. 47 26. 48 26. 13 | (dB) -4. 92 -4. 93 -5. 03 -5. 06 -5. 12 -5. 22 -5. 17 -5. 13 -5 -4. 9 -4. 9 -5. 05 -5. 02 -5. 14 -5. 46 -5. 77 -5. 83 | (dBi) 1. 01 1. 07 0. 96 1. 0. 88 0. 83 0. 99 1. 1 1. 27 1. 34 1. 35 1. 43 1. 37 1. 31 1. 15 0. 77 0. 01 0. 01 -0. 44 | | 2210 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 2370 2380 2370 2380 2390 2400 | (%) 31.14 31 32.07 32.71 33.55 34.28 34.64 32.53 33.48 33.6 34.04 34.58 35.2 34.5 34.08 34.34 33.8 33.67 32.03 31.99 | (dB) -5.07 -5.09 -4.94 -4.85 -4.74 -4.65 -4.6 -4.88 -4.75 -4.74 -4.68 -4.61 -4.53 -4.62 -4.67 -4.64 -4.71 -4.73 -4.94 | (dBi) 1.01 1.14 1.41 1.66 1.66 1.76 1.67 1.72 1.67 1.57 1.57 1.59 1.73 1.64 1.58 1.66 1.58 1.66 1.58 1.66 | (MHz) 2510 2520 2530 2540 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2670 2680 2690 | (%) 32. 24 32. 12 31. 41 31. 16 30. 75 30. 06 30. 44 30. 72 31. 63 32. 34 31. 6 31. 23 31. 5 30. 59 28. 47 26. 48 26. 13 24. 39 | (dB) -4. 92 -4. 93 -5. 03 -5. 06 -5. 12 -5. 12 -5. 13 -5 -4. 9 -4. 9 -5. 05 -5. 02 -5. 14 -5. 46 -5. 77 -5. 83 -6. 13 | (dBi) 1. 01 1. 07 0. 96 1. 0. 88 0. 83 0. 99 1. 1 1. 27 1. 34 1. 35 1. 43 1. 37 1. 31 1. 15 0. 77 0. 01 0. 01 -0. 44 | | 2210 2220 2230 2240 2250 2260 2270 2280 2290 2310 2310 2320 2330 2340 2350 2360 2370 2380 2390 2400 2410 | (%) 31.14 31 32.07 32.71 33.55 34.28 34.64 32.53 33.48 33.6 34.04 34.58 35.2 34.5 34.08 34.34 33.8 33.67 32.03 31.99 31.88 31.48 31.53 | (dB) -5.07 -5.09 -4.94 -4.85 -4.74 -4.65 -4.88 -4.75 -4.74 -4.68 -4.61 -4.53 -4.62 -4.67 -4.64 -4.73 -4.94 -4.95 -4.96 | (dBi) 1.01 1.14 1.41 1.6 1.66 1.76 1.67 1.72 1.67 1.57 1.71 1.69 1.73 1.64 1.58 1.66 1.66 1.58 1.58 1.58 1.58 1.59 | (MHz) 2510 2520 2530 2540 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2670 2680 2690 | (%) 32. 24 32. 12 31. 41 31. 16 30. 75 30. 06 30. 44 30. 72 31. 63 32. 34 31. 6 31. 23 31. 5 30. 59 28. 47 26. 48 26. 13 24. 39 | (dB) -4. 92 -4. 93 -5. 03 -5. 06 -5. 12 -5. 12 -5. 13 -5 -4. 9 -4. 9 -5. 05 -5. 02 -5. 14 -5. 46 -5. 77 -5. 83 -6. 13 | (dBi) 1. 01 1. 07 0. 96 1. 0. 88 0. 83 0. 99 1. 1 1. 27 1. 34 1. 35 1. 43 1. 37 1. 31 1. 15 0. 77 0. 01 0. 01 -0. 44 | | (MHz) 2210 2220 2230 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2350 2360 2370 2380 2390 2410 2420 2430 2440 | (%) 31.14 31 32.07 32.71 33.55 34.28 34.64 32.53 33.48 33.6 34.04 34.58 35.2 34.5 34.08 35.2 34.5 34.08 31.48 33.8 33.67 32.03 31.99 31.88 31.48 31.53 32.27 | (dB) -5.07 -5.09 -4.94 -4.85 -4.74 -4.65 -4.6 -4.88 -4.75 -4.74 -4.68 -4.61 -4.53 -4.62 -4.67 -4.64 -4.71 -4.73 -4.95 -4.96 | (dBi) 1.01 1.14 1.41 1.66 1.66 1.76 1.67 1.72 1.67 1.71 1.69 1.73 1.64 1.58 1.66 1.58 1.53 1.6 1.54 1.54 1.54 1.47 | (MHz) 2510 2520 2530 2540 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2670 2680 2690 | (%) 32. 24 32. 12 31. 41 31. 16 30. 75 30. 06 30. 44 30. 72 31. 63 32. 34 31. 6 31. 23 31. 5 30. 59 28. 47 26. 48 26. 13 24. 39 | (dB) -4. 92 -4. 93 -5. 03 -5. 06 -5. 12 -5. 12 -5. 13 -5 -4. 9 -4. 9 -5. 05 -5. 02 -5. 14 -5. 46 -5. 77 -5. 83 -6. 13 | (dBi) 1. 01 1. 07 0. 96 1. 0. 88 0. 83 0. 99 1. 1 1. 27 1. 34 1. 35 1. 43 1. 37 1. 31 1. 15 0. 77 0. 01 0. 01 -0. 44 | | (MHz) 2210 2220 2230 2240 2250 2260 2270 2280 2290 2330 2330 2330 2340 2350 2350 2360 2370 2380 2390 2410 2410 2420 2420 2440 2450 | (%) 31.14 31 32.07 32.71 33.55 34.28 34.64 32.53 33.48 33.6 34.04 34.58 35.2 34.5 34.08 34.34 33.8 33.67 32.03 31.99 31.88 31.48 31.53 32.27 33.37 | (dB) -5.07 -5.09 -4.94 -4.85 -4.74 -4.65 -4.6 -4.88 -4.75 -4.61 -4.53 -4.62 -4.67 -4.64 -4.71 -4.73 -4.95 -4.96 -5.02 -5.01 -4.91 | (dBi) 1.01 1.14 1.41 1.6 1.66 1.76 1.67 1.72 1.67 1.57 1.71 1.69 1.73 1.64 1.58 1.58 1.53 1.6 1.54 1.54 1.47 1.43 1.15 | (MHz) 2510 2520 2530 2540 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2670 2680 2690 | (%) 32. 24 32. 12 31. 41 31. 16 30. 75 30. 06 30. 44 30. 72 31. 63 32. 34 31. 6 31. 23 31. 5 30. 59 28. 47 26. 48 26. 13 24. 39 | (dB) -4. 92 -4. 93 -5. 03 -5. 06 -5. 12 -5. 12 -5. 13 -5 -4. 9 -4. 9 -5. 05 -5. 02 -5. 14 -5. 46 -5. 77 -5. 83 -6. 13 | (dBi) 1. 01 1. 07 0. 96 1. 0. 88 0. 83 0. 99 1. 1 1. 27 1. 34 1. 35 1. 43 1. 37 1. 31 1. 15 0. 77 0. 01 0. 01 -0. 44 | | 2210 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 2370 2380 2400 2410 2420 2430 2440 2450 2460 | (%) 31.14 31 32.07 32.71 33.55 34.28 34.64 32.53 33.48 33.6 34.04 34.58 35.2 34.5 34.08 34.34 33.8 33.67 32.03 31.99 31.88 31.48 31.53 32.27 33.37 33.96 | (dB) -5.07 -5.09 -4.94 -4.85 -4.74 -4.65 -4.6 -4.88 -4.75 -4.74 -4.68 -4.61 -4.53 -4.62 -4.67 -4.64 -4.71 -4.73 -4.91 -4.95 -4.91 -4.77 -4.69 | (dBi) 1.01 1.14 1.41 1.6 1.66 1.76 1.67 1.72 1.67 1.57 1.71 1.69 1.73 1.64 1.58 1.66 1.58 1.53 1.6 1.54 1.54 1.54 1.15 | (MHz) 2510 2520 2530 2540 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2670 2680 2690 | (%) 32. 24 32. 12 31. 41 31. 16 30. 75 30. 06 30. 44 30. 72 31. 63 32. 34 31. 6 31. 23 31. 5 30. 59 28. 47 26. 48 26. 13 24. 39 | (dB) -4. 92 -4. 93 -5. 03 -5. 06 -5. 12 -5. 12 -5. 13 -5 -4. 9 -4. 9 -5. 05 -5. 02 -5. 14 -5. 46 -5. 77 -5. 83 -6. 13 | (dBi) 1. 01 1. 07 0. 96 1. 0. 88 0. 83 0. 99 1. 1 1. 27 1. 34 1. 35 1. 43 1. 37 1. 31 1. 15 0. 77 0. 01 0. 01 -0. 44 | | (MHz) 2210 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 2370 2380 2370 2440 2450 2440 2450 2460 2470 | (%) 31.14 31 32.07 32.71 33.55 34.28 34.64 32.53 33.48 33.6 34.04 34.58 35.2 34.5 34.08 34.34 33.8 33.67 32.03 31.99 31.88 31.48 31.53 32.27 33.37 33.96 34.1 | (dB) -5.07 -5.09 -4.94 -4.85 -4.74 -4.65 -4.61 -4.63 -4.61 -4.53 -4.62 -4.67 -4.64 -4.71 -4.73 -4.94 -4.95 -4.96 -5.02 -5.01 -4.91 -4.77 -4.69 -4.67 | (dBi) 1.01 1.14 1.41 1.6 1.66 1.76 1.67 1.72 1.67 1.57 1.57 1.58 1.66 1.58 1.58 1.66 1.58 1.54 1.54 1.47 1.43 1.15 1.12 | (MHz) 2510 2520 2530 2540 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2670 2680 2690 | (%) 32. 24 32. 12 31. 41 31. 16 30. 75 30. 06 30. 44 30. 72 31. 63 32. 34 31. 6 31. 23 31. 5 30. 59 28. 47 26. 48 26. 13 24. 39 | (dB) -4. 92 -4. 93 -5. 03 -5. 06 -5. 12 -5. 12 -5. 13 -5 -4. 9 -4. 9 -5. 05 -5. 02 -5. 14 -5. 46 -5. 77 -5. 83 -6. 13 | (dBi) 1. 01 1. 07 0. 96 1. 0. 88 0. 83 0. 99 1. 1 1. 27 1. 34 1. 35 1. 43 1. 37 1. 31 1. 15 0. 77 0. 01 0. 01 -0. 44 | | 2210 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 2370 2380 2340 2440 2420 2430 2440 24450 2460 2470
2480 | (%) 31.14 31 32.07 32.71 32.71 34.28 34.64 32.53 33.48 33.6 34.04 34.58 35.2 34.5 34.08 34.34 33.8 33.67 32.03 31.99 31.88 31.48 31.53 32.27 33.37 33.96 34.1 | (dB) -5.07 -5.09 -4.94 -4.85 -4.74 -4.65 -4.61 -4.53 -4.61 -4.53 -4.62 -4.67 -4.94 -4.95 -4.96 -5.02 -5.01 -4.91 -4.77 -4.69 -4.67 | (dBi) 1.01 1.14 1.41 1.6 1.66 1.76 1.67 1.72 1.67 1.57 1.71 1.69 1.73 1.64 1.58 1.66 1.66 1.58 1.58 1.54 1.151 1.12 1.24 1.32 | (MHz) 2510 2520 2530 2540 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2670 2680 2690 | (%) 32. 24 32. 12 31. 41 31. 16 30. 75 30. 06 30. 44 30. 72 31. 63 32. 34 31. 6 31. 23 31. 5 30. 59 28. 47 26. 48 26. 13 24. 39 | (dB) -4. 92 -4. 93 -5. 03 -5. 06 -5. 12 -5. 12 -5. 13 -5 -4. 9 -4. 9 -5. 05 -5. 02 -5. 14 -5. 46 -5. 77 -5. 83 -6. 13 | (dBi) 1. 01 1. 07 0. 96 1. 0. 88 0. 83 0. 99 1. 1 1. 27 1. 34 1. 35 1. 43 1. 37 1. 31 1. 15 0. 77 0. 01 0. 01 -0. 44 | | (MHz) 2210 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 2370 2380 2370 2440 2450 2440 2450 2460 2470 | (%) 31.14 31 32.07 32.71 33.55 34.28 34.64 32.53 33.48 33.6 34.04 34.58 35.2 34.5 34.08 34.34 33.8 33.67 32.03 31.99 31.88 31.48 31.53 32.27 33.37 33.96 34.1 | (dB) -5.07 -5.09 -4.94 -4.85 -4.74 -4.65 -4.61 -4.63 -4.61 -4.53 -4.62 -4.67 -4.64 -4.71 -4.73 -4.94 -4.95 -4.96 -5.02 -5.01 -4.91 -4.77 -4.69 -4.67 | (dBi) 1.01 1.14 1.41 1.6 1.66 1.76 1.67 1.72 1.67 1.57 1.57 1.58 1.66 1.58 1.58 1.66 1.58 1.54 1.54 1.47 1.43 1.15 1.12 | (MHz) 2510 2520 2530 2540 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2670 2680 2690 | (%) 32. 24 32. 12 31. 41 31. 16 30. 75 30. 06 30. 44 30. 72 31. 63 32. 34 31. 6 31. 23 31. 5 30. 59 28. 47 26. 48 26. 13 24. 39 | (dB) -4. 92 -4. 93 -5. 03 -5. 06 -5. 12 -5. 12 -5. 13 -5 -4. 9 -4. 9 -5. 05 -5. 02 -5. 14 -5. 46 -5. 77 -5. 83 -6. 13 | (dBi) 1. 01 1. 07 0. 96 1. 0. 88 0. 83 0. 99 1. 1 1. 27 1. 34 1. 35 1. 43 1. 37 1. 31 1. 15 0. 77 0. 01 0. 01 -0. 44 | # www. Topant.com.cn #### **Confidential requirement** #### 3.2.12 OTA Passive Efficiency&Gain Test--B20--diversity: | Freq
(MHz) | Effi
(%) | Effi
(dB) | Gain
(dBi) | Freq
(MHz) | Effi
(%) | Effi
(dB) | Gain
(dBi) | Freq
(MHz) | |---------------|-------------|--------------|---------------|---------------|-------------|--------------|---------------|---------------| | 790 | 21.97 | -6.58 | -3. 47 | 1910 | 23, 49 | -6. 29 | -1.63 | 2230 | | 800 | 27. 88 | -5. 55 | -2.5 | 1920 | 23.17 | -6.35 | -1.68 | 2240 | | 810 | 29.69 | -5. 27 | -2. 41 | 1930 | 23 | -6.38 | -1.72 | 2250 | | 820 | 31.92 | -4.96 | -2 | 1940 | 23.3 | -6.33 | -1.39 | 2260 | | 830 | 29.8 | -5. 26 | -2.18 | 1950 | 22.68 | -6. 44 | -1.08 | 2270 | | 840 | 26, 55 | -5. 76 | -2.46 | 1960 | 22, 27 | -6.52 | -1.13 | 2280 | | 850 | 28.56 | -5. 44 | -2.07 | 1970 | 23. 51 | -6.29 | -0.62 | 2290 | | 860 | 25. 51 | -5. 93 | -2.5 | 1980 | 24.16 | -6.17 | -0.5 | 2300 | | 870 | 22. 92 | -6.4 | -2.5 | 1990 | 23.15 | -6.35 | -0.43 | 2310 | | 880 | 20.57 | -6.87 | -3.27 | 2000 | 22.73 | -6.43 | -0.52 | 2320 | | | | 3);
: | | 2010 | 23. 33 | -6.32 | -0.74 | 2330 | | 1700 | 28.71 | -5. 42 | -1.3 | 2020 | 24. 67 | -6.08 | -0.44 | 2340 | | 1710 | 26.56 | -5. 76 | -1.79 | 2030 | 23. 94 | -6. 21 | -0.39 | 2350 | | 1720 | 25.05 | -6.01 | -2.15 | 2040 | 22. 95 | -6.39 | -0.47 | 2360 | | 1730 | 24.77 | -6.06 | -2.21 | 2050 | 23.38 | -6.31 | -0.32 | 2370 | | 1740 | 24. 26 | -6.15 | -2.3 | 2060 | 22.97 | -6.39 | -0.37 | 2380 | | 1750 | 22.77 | -6. 43 | -2.47 | 2070 | 22.67 | -6. 45 | -0.32 | 2390 | | 1760 | 22.77 | -6.43 | -2.53 | 2080 | 22.73 | -6.43 | -0.2 | 2400 | | 1770 | 24.12 | -6.18 | -2.26 | 2090 | 23. 27 | -6.33 | -0.06 | 2410 | | 1780 | 25.33 | -5.96 | -2.12 | 2100 | 24.09 | -6.18 | 0.07 | 2420 | | 1790 | 24. 53 | -6.1 | -2.31 | 2110 | 24. 22 | -6.16 | 0.13 | 2430 | | 1800 | 24.64 | -6.08 | -2.21 | 2120 | 24.95 | -6.03 | 0.25 | 2440 | | 1810 | 25.77 | -5.89 | -1.64 | 2130 | 26.38 | -5.79 | 0.47 | 2450 | | 1820 | 25. 8 | -5. 88 | -1.33 | 2140 | 27.44 | -5.62 | 0.62 | 2460 | | 1830 | 24.8 | -6.06 | -1.36 | 2150 | 28.77 | -5. 41 | 0.83 | 2470 | | 1840 | 24. 44 | -6.12 | -1.29 | 2160 | 30.66 | -5.13 | 1.04 | 2480 | | 1850 | 24. 4 | -6.13 | -1.34 | 2170 | 31.96 | -4.95 | 1.27 | 2490 | | 1860 | 24.63 | -6.09 | -1.28 | 2180 | 32.8 | -4.84 | 1.42 | 2500 | | 1870 | 24.03 | -6.19 | -1.48 | 2190 | 32.84 | -4.84 | 1.51 | 2510 | | 1880 | 23.79 | -6.24 | -1.54 | 2200 | 33.15 | -4.8 | 1.65 | 2520 | | 1890 | 24. 28 | -6.15 | -1.51 | 2210 | 33.64 | -4.73 | 1.82 | 2530 | | 1900 | 24.05 | -6.19 | -1.51 | 2220 | 33.01 | -4.81 | 1.77 | 2540 | | L | 1900 | 24.05 - | 6.19 -1. | 51 2220 | 33.01 | -4.81 | 1.77 | 2540 | |---|-------|-----------|-----------------------------------|--------------|-------|--------|--------|-------| | | | | | | | | | | | I | Freq | Effi | Effi | Gain | Freq | Effi | Effi | Gain | | I | (MHz) | (%) | (dB) | (dBi) | (MHz) | (%) | (dB) | (dBi) | | I | 2230 | 33.78 | -4.71 | 1.81 | 2550 | 30.01 | -5.23 | 1.01 | | I | 2240 | 34.15 | -4. 67 | 1.88 | 2560 | 29.38 | -5.32 | 1.05 | | I | 2250 | 34.79 | -4. 59 | 1.94 | 2570 | 29.84 | -5.25 | 1.13 | | I | 2260 | 35.18 | -4. 54 | 2.03 | 2580 | 30.31 | -5.18 | 1.23 | | l | 2270 | 35. 5 | -4.5 | 2.17 | 2590 | 31.19 | -5.06 | 1.35 | | l | 2280 | 33.3 | -4.78 | 1.79 | 2600 | 32.2 | -4.92 | 1.37 | | l | 2290 | 34.03 | -4.68 | 1.97 | 2610 | 32.1 | -4.93 | 1.38 | | l | 2300 | 34.08 | -4. 67 | 2 | 2620 | 31.57 | -5.01 | 1.23 | | l | 2310 | 34. 42 | -4.63 | 2.07 | 2630 | 31.13 | -5.07 | 1.12 | | l | 2320 | 34.81 | -4.58 | 2.01 | 2640 | 31.3 | -5.05 | 1.08 | | l | 2330 | 35.17 | -4. 54 | 1.96 | 2650 | 30.56 | -5.15 | 0.95 | | I | 2340 | 34. 37 | -4.64 | 1.9 | 2660 | 28. 4 | -5. 47 | 0.54 | | l | 2350 | 33.94 | -4.69 | 2.01 | 2670 | 26.31 | -5.8 | -0.12 | | l | 2360 | 33.99 | -4.69 | 2 | 2680 | 26.03 | -5.84 | -0.08 | | l | 2370 | 33.59 | -4.74 | 1.98 | 2690 | 24. 43 | -6.12 | -0.41 | | l | 2380 | 33.39 | -4.76 | 1.85 | 2700 | 23.17 | -6.35 | -0.67 | | I | 2390 | 31.93 | -4.96 | 1.66 | | | | 6 | | I | 2400 | 31.88 | -4.96 | 1.62 | | | | | | I | 2410 | 31.61 | -5 | 1.51 | | | | | | I | 2420 | 31.19 | -5.06 | 1.43 | | | | | | I | 2430 | 31.19 | -5.06 | 1.21 | | | | | | I | 2440 | 31.91 | -4.96 | 1.09 | | | | | | п | | 60 KUS | 90.5 (\$15.7 \$5.50 \$7.50 \$7.50 | 235 36 27 36 | | | | | 2460 2470 2480 2490 2500 2510 2520 2530 2540 33.34 33.49 33.66 32.92 32.16 31.52 31.38 30.63 30.44 -4.77 -4.75 -4.73 -4.83 -4.93 -5.01 -5.03 -5.14 -5.17 1.09 0.99 1.13 1.07 # www. Topant.com.cn #### **Confidential requirement # 3.2.13 OTA Passive Efficiency&Gain Test--B71--diversity: | | - 0.00 | | - | | -00- | | | |---|--
---|--|---|---|---|--| | Freq | Effi | Effi | Gain | Freq | Effi | Effi | Gain | | (MHz) | (%) | (dB) | (dBi) | (MHz) | (%) | (dB) | (dBi) | | 620 | 13. 27 | -8.77 | -5. 27 | 1910 | 26.73 | -5.73 | -0.85 | | 630 | 12.97 | -8.87 | -5.53 | 1920 | 26.44 | -5.78 | -0.7 | | 640 | 15. 22 | -8.18 | -4.59 | 1930 | 26.41 | -5. 78 | -0.46 | | 650 | 14.86 | -8.28 | -4.07 | 1940 | 26.73 | -5.73 | -0.2 | | 660 | 13.76 | -8.61 | -5. 41 | 1950 | 26.15 | -5.83 | -0.1 | | 670 | 13.8 | -8.6 | -5.15 | 1960 | 25.6 | -5.92 | -0.23 | | 680 | 13.2 | -8.79 | -5.36 | 1970 | 27.12 | -5.67 | 0.2 | | 11 | | | 17 | 1980 | 28 | -5.53 | 0.27 | | 1700 | 28. 33 | -5. 48 | -2.13 | 1990 | 26. 97 | -5.69 | 0.26 | | 1710 | 26.13 | -5.83 | -2.1 | 2000 | 26.55 | -5.76 | 0.29 | | 1720 | 24. 71 | -6.07 | -2.38 | 2010 | 27. 22 | -5.65 | 0.09 | | 1730 | 24. 26 | -6.15 | -2.11 | 2020 | 28.74 | -5.41 | -0.13 | | 1740 | 23.72 | -6.25 | -2.11 | 2030 | 27.82 | -5.56 | -0.27 | | 1750 | 22. 51 | -6.48 | -2.26 | 2040 | 26.59 | -5.75 | -0.42 | | 1760 | 22.9 | -6.4 | -2.07 | 2050 | 26.98 | -5.69 | -0.42 | | 1770 | 24. 54 | -6.1 | -1.91 | 2060 | 26. 42 | -5.78 | -0.49 | | 1780 | 25. 92 | -5.86 | -1.45 | 2070 | 26.08 | -5.84 | -0.57 | | 1790 | 25. 54 | -5.93 | -1.72 | 2080 | 26.39 | -5. 79 | -0.53 | | 1800 | 26.04 | -5.84 | -1.35 | 2090 | 27. 25 | -5.65 | -0.33 | | 1810 | 27. 9 | -5.54 | -1.13 | 2100 | 28. 38 | -5. 47 | -0.23 | | 1820 | 28.54 | -5. 44 | -0.8 | 2110 | 28. 71 | -5.42 | -0.19 | | 1830 | 28.04 | -5.52 | -0.91 | 2120 | 29.63 | -5. 28 | -0.01 | | 1840 | 28. 31 | -5.48 | -0.9 | 2130 | 31.51 | -5.01 | 0.31 | | 1850 | 28. 61 | -5. 43 | -0.89 | 2140 | 32. 93 | -4. 82 | 0.49 | | 1860 | 28. 94 | -5.38 | -0.87 | 2150 | 34.66 | -4.6 | 0.76 | | 1870 | 28. 26 | -5.49 | -1.11 | 2160 | 36.96 | -4.32 | 1.08 | | 1880 | 27.86 | -5.55 | -1.23 | 2170 | 38.5 | -4.15 | 1.36 | | 1890 | 28.34 | -5.48 | -1.09 | 2180 | 39. 47 | -4.04 | 1.58 | | | | | | | | | | | 1900 | 27, 69 | -5, 58 T | -0.82 | 2190 | 39, 21 | -4.07 | 1.6 | | 1900 | 27.69 | -5.58 | -0.82 | 2190 | 39. 21 | -4.07 | 1.6 | | Freq | Effi | Effi | Gain | Freq | Effi | Effi | Gain | | Freq
(MHz) | Effi
(%) | Effi
(dB) | Gain
(dBi) | Freq
(MHz) | Effi
(%) | Effi
(dB) | Gain
(dBi) | | Freq
(MHz)
2200 | Effi
(%)
39.78 | Effi
(dB)
-4 | Gain
(dBi)
1.71 | Freq
(MHz)
2490 | Effi
(%)
40.85 | Effi
(dB)
-3.89 | Gain
(dBi)
2.43 | | Freq
(MHz)
2200
2210 | Effi
(%)
39.78
40.49 | Effi
(dB)
-4
-3.93 | Gain
(dBi)
1.71
1.79 | Freq
(MHz)
2490
2500 | Effi
(%)
40.85
40.38 | Effi
(dB)
-3.89
-3.94 | Gain
(dBi)
2.43
2.28 | | Freq
(MHz)
2200
2210
2220 | Effi
(%)
39.78
40.49
39.92 | Effi
(dB)
-4
-3.93
-3.99 | Gain
(dBi)
1.71
1.79
1.72 | Freq
(MHz)
2490
2500
2510 | Effi
(%)
40.85
40.38
40.12 | Effi
(dB)
-3.89
-3.94
-3.97 | Gain
(dBi)
2.43
2.28
2.33 | | Freq
(MHz)
2200
2210
2220
2230 | Effi
(%)
39.78
40.49
39.92
40.71 | Effi
(dB)
-4
-3.93
-3.99
-3.99 | Gain
(dBi)
1.71
1.79
1.72
1.75 | Freq
(MHz)
2490
2500
2510
2520 | Effi
(%)
40.85
40.38
40.12
40.6 | Effi
(dB)
-3.89
-3.94
-3.97
-3.91 | Gain
(dBi)
2.43
2.28
2.33
2.3 | | Freq
(MHz)
2200
2210
2220
2230
2240 | Effi
(%)
39.78
40.49
39.92
40.71
41.31 | Effi
(dB)
-4
-3.93
-3.99
-3.9 | Gain
(dBi)
1.71
1.79
1.72
1.75
1.88 | Freq
(MHz)
2490
2500
2510
2520
2530 | Effi
(%)
40.85
40.38
40.12
40.6 | Effi
(dB)
-3.89
-3.94
-3.97
-3.91
-3.99 | Gain
(dBi)
2.43
2.28
2.33
2.3
2.3 | | Freq
(MHz)
2200
2210
2220
2230
2240
2250 | Effi
(%)
39.78
40.49
39.92
40.71
41.31
42.1 | Effi
(dB)
-4
-3.93
-3.99
-3.9
-3.84
-3.76 | Gain
(dBi)
1.71
1.79
1.72
1.75
1.88
2.05 | Freq
(MHz)
2490
2500
2510
2520
2530
2540 | Effi
(%)
40.85
40.38
40.12
40.6
39.9
39.87 | Effi
(dB)
-3.89
-3.94
-3.97
-3.91
-3.99
-3.99 | Cain
(dBi)
2.43
2.28
2.33
2.3
2.3
2.39
2.29 | | Freq
(MHz)
2200
2210
2220
2230
2240
2250
2260 | Effi
(%)
39.78
40.49
39.92
40.71
41.31
42.1
42.52 | Effi
(dB)
-4
-3.93
-3.99
-3.9
-3.84
-3.76
-3.71 | Gain
(dBi)
1.71
1.79
1.72
1.75
1.88
2.05
2.12 | Freq
(MHz)
2490
2500
2510
2520
2530
2540
2550 | Effi
(%)
40.85
40.38
40.12
40.6
39.9
39.87
38.95 | Effi
(dB)
-3.89
-3.94
-3.97
-3.91
-3.99
-3.99
-4.09 | Gain
(dBi)
2. 43
2. 28
2. 33
2. 3
2. 39
2. 29
2. 35 | | Freq
(MHz)
2200
2210
2220
2230
2240
2250
2260
2270 | Effi
(%)
39.78
40.49
39.92
40.71
41.31
42.1
42.52
42.66 | Effi
(dB)
-4
-3.93
-3.99
-3.9
-3.84
-3.76
-3.71 | Gain
(dBi)
1.71
1.79
1.72
1.75
1.88
2.05
2.12
2.24 | Freq
(MHz)
2490
2500
2510
2520
2530
2540
2550
2560 | Effi
(%)
40.85
40.38
40.12
40.6
39.9
39.87
38.95
37.85 | Effi
(dB)
-3.89
-3.94
-3.97
-3.91
-3.99
-4.09
-4.22 | Gain
(dBi)
2. 43
2. 28
2. 33
2. 39
2. 39
2. 29
2. 35
2. 04 | | Freq
(MHz)
2200
2210
2220
2230
2240
2250
2260
2270
2280 | Effi
(%)
39.78
40.49
39.92
40.71
41.31
42.1
42.52
42.66
39.49 | Effi
(dB)
-4
-3. 93
-3. 99
-3. 9
-3. 84
-3. 76
-3. 71
-3. 7 | Gain
(dBi)
1.71
1.79
1.72
1.75
1.88
2.05
2.12
2.24 | Freq
(MHz)
2490
2500
2510
2520
2530
2540
2550
2560
2570 | ### ################################## | Effi
(dB)
-3.89
-3.94
-3.97
-3.91
-3.99
-3.99
-4.09
-4.22
-4.2 | Gain
(dBi)
2. 43
2. 28
2. 33
2. 39
2. 29
2. 35
2. 04
2. 02 | | Freq
(MHz)
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290 | Effi
(%)
39.78
40.49
39.92
40.71
41.31
42.1
42.52
42.66
39.49
40.1 | Effi
(dB)
-4
-3.93
-3.99
-3.84
-3.76
-3.71
-3.7
-4.04
-3.97 | Gain
(dBi)
1.71
1.79
1.72
1.75
1.88
2.05
2.12
2.12
2.24
1.75
1.85 | Freq
(MHz)
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580 | Effi
(%)
40. 85
40. 38
40. 12
40. 6
39. 9
39. 87
38. 95
37. 85
38. 03
37. 84 | Effi
(dB)
-3.89
-3.94
-3.97
-3.91
-3.99
-4.09
-4.22
-4.2 | Gain
(dBi)
2. 43
2. 28
2. 33
2. 3
2. 39
2. 29
2. 29
2. 35
2. 04
2. 02
1. 66 | | Freq
(MHz)
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300 | Effi
(%)
39. 78
40. 49
39. 92
40. 71
41. 31
42. 1
42. 52
42. 66
39. 49
40. 1
39. 9 | Effi
(dB)
-4
-3.93
-3.99
-3.84
-3.76
-3.71
-3.7
-4.04
-3.97
-3.99 | Gain (dBi) 1.71 1.79 1.72 1.75 1.88 2.05 2.12 2.24 1.75 1.85 1.73 | Freq
(MHz)
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590 | Effi
(%)
40.85
40.38
40.12
40.6
39.9
39.87
38.95
37.85
38.03
37.84
38.32 | Effi
(dB)
-3.89
-3.94
-3.97
-3.91
-3.99
-4.09
-4.22
-4.2
-4.2 | Gain
(dBi)
2. 43
2. 28
2. 33
2. 39
2. 29
2. 29
2. 35
2. 04
2. 02
1. 66
1. 49 | | Freq
(MHz)
2200
2210
2220
2230
2240
2250
2260
2270
2270
2280
2290
2300
2310 | Effi
(%)
39. 78
40. 49
39. 92
40. 71
41. 31
42. 1
42. 52
42. 66
39. 49
40. 1
39. 9 | Effi
(dB)
-4
-3.93
-3.99
-3.84
-3.76
-3.71
-4.04
-3.97
-3.99
-3.94 | Gain (dBi) 1.71 1.79 1.72 1.75 1.88 2.05 2.12 2.24 1.75 1.85 1.73 1.73 | Freq
(MHz)
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600 | Effi
(%)
40.85
40.38
40.12
40.6
39.9
39.87
38.95
37.85
38.03
37.84
38.32
38.57 | Effi
(dB)
-3.89
-3.94
-3.97
-3.91
-3.99
-4.09
-4.22
-4.22
-4.17
-4.14 | Gain
(dBi)
2. 43
2. 28
2. 33
2. 39
2. 29
2. 35
2. 04
2. 02
1. 66
1. 49
1. 42 | | Freq
(MHz)
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320 | Effi
(%)
39. 78
40. 49
39. 92
40. 71
41. 31
42.
1
42. 52
42. 66
39. 49
40. 1
39. 9
40. 4 | Effi
(dB)
-4
-3.93
-3.99
-3.84
-3.76
-3.71
-3.7
-4.04
-3.97
-3.99
-3.94
-3.89 | Gain
(dBi)
1.71
1.79
1.72
1.75
1.88
2.05
2.12
2.24
1.75
1.85
1.73
1.73 | Freq
(MHz)
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610 | Bffi
(%)
40.85
40.38
40.12
40.6
39.9
39.87
38.95
37.85
38.03
37.84
38.32
38.57
37.69 | Effi
(dB)
-3.89
-3.94
-3.97
-3.91
-3.99
-4.09
-4.22
-4.2
-4.17
-4.14
-4.24 | Gain
(dBi)
2. 43
2. 28
2. 33
2. 39
2. 29
2. 35
2. 04
2. 02
1. 66
1. 49
1. 42
1. 35 | | Freq
(MHz)
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330 | Effi
(%)
39.78
40.49
39.92
40.71
41.31
42.1
42.52
42.66
39.49
40.1
39.9
40.4
40.83
41.48 | Effi
(dB)
-4
-3.93
-3.99
-3.9
-3.84
-3.76
-3.71
-3.7
-4.04
-3.97
-3.99
-3.89
-3.89 | Gain (dBi) 1.71 1.79 1.72 1.75 1.88 2.05 2.12 2.24 1.75 1.85 1.73 1.73 1.93 2.27 | Freq
(MHz)
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610 | Effi
(%)
40.85
40.38
40.12
40.6
39.9
39.87
38.95
37.85
38.03
37.84
38.32
38.57
37.69 | Effi
(dB)
-3.89
-3.94
-3.97
-3.91
-3.99
-4.09
-4.22
-4.2
-4.17
-4.14
-4.24
-4.44 | Gain
(dBi)
2. 43
2. 28
2. 33
2. 3
2. 39
2. 29
2. 35
2. 04
2. 02
1. 66
1. 49
1. 42
1. 35
1. 21 | | Freq
(MHz)
2200
2210
2220
2230
2240
2250
2270
2280
2290
2310
2310
2320
2330
2340 | Effi
(%)
39.78
40.49
39.92
40.71
41.31
42.1
42.52
42.66
39.49
40.1
39.9
40.4
40.83
41.48
40.59 | Effi
(dB)
-4
-3.93
-3.99
-3.84
-3.76
-3.71
-3.7
-4.04
-3.97
-3.99
-3.89
-3.82
-3.89 | Gain (dBi) 1.71 1.79 1.72 1.75 1.88 2.05 2.12 2.24 1.75 1.85 1.73 1.93 2.27 2.26 | Freq
(MHz)
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620 | Effi
(%)
40.85
40.38
40.12
40.6
39.9
39.87
38.95
37.85
38.03
37.84
38.32
38.57
37.69
35.99 | Effi
(dB)
-3.89
-3.94
-3.97
-3.91
-3.99
-4.09
-4.22
-4.2
-4.17
-4.14
-4.24
-4.457 | Gain
(dBi)
2. 43
2. 28
2. 33
2. 3
2. 39
2. 29
2. 29
2. 35
2. 04
2. 02
1. 66
1. 49
1. 42
1. 35
1. 21 | | Freq
(MHz)
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2320
2340
2350 | Effi
(%)
39.78
40.49
39.92
40.71
41.31
42.1
42.52
42.66
39.49
40.1
39.9
40.4
40.83
41.48
40.59
40.04 | Effi
(dB)
-4
-3.93
-3.99
-3.84
-3.76
-3.71
-3.7
-4.04
-3.97
-3.99
-3.89
-3.89
-3.82
-3.92
-3.98 | Gain (dBi) 1.71 1.79 1.72 1.75 1.88 2.05 2.12 2.24 1.75 1.85 1.73 1.73 1.93 2.27 2.26 2.39 | Freq
(MHz)
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2600
2610
2620
2630
2640 | Effi
(%)
40. 85
40. 38
40. 12
40. 6
39. 9
39. 87
38. 95
37. 85
38. 03
37. 84
38. 32
38. 57
37. 69
35. 99
34. 93
34. 73 | Effi
(dB)
-3.89
-3.94
-3.97
-3.91
-3.99
-4.09
-4.22
-4.2
-4.17
-4.14
-4.44
-4.57
-4.59 | Gain
(dBi)
2. 43
2. 28
2. 33
2. 39
2. 29
2. 29
2. 35
2. 04
2. 02
1. 66
1. 49
1. 42
1. 35
1. 21
1. 05
1. 16 | | Freq
(MHz)
2200
2210
2220
2230
2240
2250
2260
2270
2280
2300
2310
2320
2330
2340
2350
2360 | Effi
(%)
39.78
40.49
39.92
40.71
41.31
42.1
42.52
42.66
39.49
40.1
39.9
40.4
40.83
40.83
40.59
40.04 | Effi
(dB)
-4
-3.93
-3.99
-3.84
-3.70
-3.71
-3.7
-4.04
-3.97
-3.99
-3.89
-3.82
-3.92
-3.94
-3.94 | Gain (dBi) 1.71 1.79 1.72 1.75 1.88 2.05 2.12 2.24 1.75 1.85 1.73 1.73 1.93 2.27 2.26 2.39 2.42 | Freq
(MHz)
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2600
2610
2620
2630
2640
2650 | Effi
(%)
40. 85
40. 38
40. 12
40. 6
39. 9
39. 87
38. 95
37. 85
38. 03
37. 84
38. 32
38. 57
37. 69
35. 99
34. 93
34. 73 | Effi
(dB)
-3.89
-3.94
-3.97
-3.91
-3.99
-4.09
-4.22
-4.17
-4.14
-4.24
-4.57
-4.59
-4.75 | Gain (dBi) 2. 43 2. 28 2. 33 2. 39 2. 29 2. 35 2. 04 2. 02 1. 66 1. 49 1. 42 1. 35 1. 10 1. 05 1. 16 0. 99 | | Freq
(MHz)
2200
2210
2220
2230
2240
2250
2260
2270
2280
2300
2310
2320
2330
2340
2350
2360
2370 | Effi
(%)
39. 78
40. 49
39. 92
40. 71
41. 31
42. 1
42. 52
42. 66
39. 49
40. 1
39. 9
40. 4
40. 83
41. 48
40. 59
40. 04
40. 35 | Effi
(dB)
-4
-3.93
-3.99
-3.84
-3.76
-3.71
-3.7
-4.04
-3.97
-3.99
-3.82
-3.82
-3.82
-3.92
-3.98
-3.98 | Gain (dBi) 1.71 1.79 1.72 1.75 1.88 2.05 2.12 1.75 1.85 1.73 1.93 2.27 | Freq
(MHz)
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2600
2610
2620
2630
2640
2650
2660 | Effi
(%)
40. 85
40. 38
40. 12
40. 6
39. 9
39. 87
38. 95
37. 85
38. 03
37. 84
38. 32
38. 57
37. 69
35. 99
34. 93
34. 73
33. 47
30. 88 | Effi
(dB) -3.89 -3.94 -3.97 -3.91 -3.99 -4.09 -4.22 -4.2 -4.17 -4.14 -4.24 -4.57 -4.57 -4.59 -4.75 | Gain
(dBi)
2. 43
2. 28
2. 33
2. 39
2. 29
2. 35
2. 04
2. 02
1. 66
1. 49
1. 42
1. 35
1. 21
1. 05
1. 16
0. 99
0. 75 | | Freq
(MHz)
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2350
2360
2370 | Effi
(%)
39. 78
40. 49
39. 92
40. 71
41. 31
42. 1
42. 52
42. 66
39. 49
40. 1
39. 9
40. 4
40. 83
41. 48
40. 59
40. 04
40. 35
40. 03
39. 73 | Effi
(dB)
-4
-3.93
-3.99
-3.84
-3.76
-3.71
-3.7
-4.04
-3.97
-3.99
-3.94
-3.82
-3.92
-3.98
-3.98
-3.98 | Gain (dBi) 1.71 1.79 1.72 1.75 1.88 2.05 2.12 2.24 1.75 1.85 1.73 1.73 2.27 2.26 2.26 2.27 2.11 | Freq
(MHz)
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2690
2610
2620
2630
2640
2650
2650
2670 | Bffi
(%)
40. 85
40. 38
40. 12
40. 6
39. 9
39. 87
38. 95
37. 85
38. 03
37. 84
38. 32
38. 57
37. 69
35. 99
34. 93
34. 73
33. 47
30. 88
28. 64 | Effi
(dB) -3.89 -3.94 -3.97 -3.91 -3.99 -4.09 -4.22 -4.2 -4.17 -4.14 -4.24 -4.57 -4.59 -4.75 -5.1 -5.43 | Cain
(dBi)
2. 43
2. 28
2. 33
2. 39
2. 29
2. 35
2. 04
2. 02
1. 66
1. 49
1. 42
1. 35
1. 21
1. 05
1. 16
0. 99
0. 75
0. 34 | | Freq
(MHz)
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380 | Effi
(%)
39.78
40.49
39.92
40.71
41.31
42.52
42.66
39.49
40.1
39.9
40.4
40.83
41.48
40.59
40.04
40.03
39.73
37.5 | Effi
(dB)
-4
-3.93
-3.99
-3.9
-3.84
-3.76
-3.71
-3.7
-4.04
-3.97
-3.99
-3.94
-3.89
-3.92
-3.98
-3.98
-3.98
-3.98
-3.98
-3.98
-3.99 | Gain (dBi) 1.71 1.79 1.72 1.75 1.88 2.05 2.12 2.24 1.75 1.85 1.73 1.93 2.27 2.26 2.39 2.42 2.42 2.27 2.11 1.85 | Freq
(MHz)
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2600
2610
2620
2630
2640
2650
2650
2650 | Effi
(%)
40. 85
40. 38
40. 12
40. 6
39. 9
39. 87
38. 95
37. 85
38. 03
37. 84
38. 32
38. 57
37. 69
35. 99
34. 93
34. 73
33. 47
30. 88
28. 64
28. 43 | Effi
(dB) -3.89 -3.94 -3.97 -3.91 -3.99 -4.09 -4.22 -4.2 -4.17 -4.14 -4.24 -4.44 -4.57 -4.59 -4.75 -5.1 -5.43 | Gain
(dBi)
2. 43
2. 28
2. 33
2. 3
2. 39
2. 29
2. 35
2. 04
2. 02
1. 66
1. 49
1. 42
1. 35
1. 21
1. 05
1. 16
0. 99
0. 75
0. 34
0. 56 | | Freq (MHz) 2200 2210 2220 2230 2240 2250 2250 2260 2270 2280 2310 2310 2320 2330 2340 2350 2360 2370 2380 2370 2380 2390 2400 | Effi
(%)
39.78
40.49
39.92
40.71
41.31
42.1
42.52
42.66
39.49
40.1
39.9
40.4
40.83
41.48
40.59
40.04
40.35
39.73
37.5 | Effi (dB) -4 -3.93 -3.99 -3.94 -3.76 -3.71 -3.7 -4.04 -3.97 -3.94 -3.82 -3.92 -3.98 -3.94 -3.98 -4.01 -4.26 -4.28 | Gain (dBi) 1.71 1.79 1.72 1.75 1.88 2.05 2.12 2.24 1.75 1.85 1.73 1.93 2.27 2.26 2.39 2.42 2.27 2.11 1.85 1.84 | Freq
(MHz)
2490
2500
2510
2520
2530
2540
2550
2560
2570
2680
2600
2610
2620
2630
2640
2650
2670
2680 | Effi
(%)
40. 85
40. 38
40. 12
40. 6
39. 9
39. 87
38. 95
37. 85
38. 03
37. 84
38. 32
38. 57
37. 69
35. 99
34. 73
33. 47
30. 88
28. 64
28. 43 | Effi
(dB) -3.89 -3.94 -3.97 -3.91 -3.99 -4.09 -4.22 -4.2 -4.17 -4.14 -4.24 -4.44 -4.57 -4.59 -4.75 -5.1 -5.43 -5.46 -5.72 | Gain (dBi) 2. 43 2. 28 2. 33 2. 3 2. 39 2. 29 2. 25 2. 04 2. 02 1. 66 1. 49 1. 42 1. 35 1. 21 1. 05 1. 16 0. 99 0. 75 0. 34 0. 56 0. 41 | | Freq (MHz)
2200 2210 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 2310 2330 2340 2350 2360 2370 2380 2390 2410 | Effi
(%)
39.78
40.49
39.92
40.71
41.31
42.1
42.52
42.66
39.49
40.1
39.9
40.4
40.83
41.48
40.59
40.03
53.49
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
40.35
4 | Effi (dB) -4 -3.93 -3.99 -3.84 -3.76 -3.71 -3.7 -4.04 -3.97 -3.99 -3.89 -3.82 -3.92 -3.98 -3.94 -3.98 -3.94 -3.98 -4.01 -4.26 -4.28 -4.33 | Gain (dBi) 1.71 1.79 1.72 1.75 1.88 2.05 2.12 2.24 1.75 1.85 1.73 1.73 2.27 2.26 2.39 2.42 2.27 1.85 1.88 1.84 1.62 | Freq
(MHz)
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2600
2610
2620
2630
2640
2650
2650
2650 | Effi
(%)
40. 85
40. 38
40. 12
40. 6
39. 9
39. 87
38. 95
37. 85
38. 03
37. 84
38. 32
38. 57
37. 69
35. 99
34. 93
34. 73
33. 47
30. 88
28. 64
28. 43 | Effi
(dB) -3.89 -3.94 -3.97 -3.91 -3.99 -4.09 -4.22 -4.2 -4.17 -4.14 -4.24 -4.44 -4.57 -4.59 -4.75 -5.1 -5.43 | Gain
(dBi)
2. 43
2. 28
2. 33
2. 3
2. 39
2. 29
2. 35
2. 04
2. 02
1. 66
1. 49
1. 42
1. 35
1. 21
1. 05
1. 16
0. 99
0. 75
0. 34
0. 56 | | Freq (MHz) 2200 2210 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2340 2350 2360 2370 2380 2370 2380 2390 2410 2420 | Effi
(%)
39.78
40.49
39.92
40.71
41.31
42.1
42.52
42.66
39.49
40.1
39.9
40.4
40.83
41.48
40.59
40.04
40.35
40.03
39.73
37.5
37.34
36.87 | Effi (dB) -4 -3.93 -3.99 -3.84 -3.76 -3.71 -3.7 -4.04 -3.97 -3.99 -3.89 -3.89 -3.89 -3.94 -3.98 -4.01 -4.26 -4.28 -4.33 -4.37 | Gain (dBi) 1.71 1.79 1.72 1.75 1.88 2.05 2.12 2.24 1.75 1.85 1.73 1.73 2.27 2.26 2.39 2.42 2.27 2.11 1.85 1.85 1.85 1.73 | Freq
(MHz)
2490
2500
2510
2520
2530
2540
2550
2560
2570
2680
2600
2610
2620
2630
2640
2650
2670
2680 | Effi
(%)
40. 85
40. 38
40. 12
40. 6
39. 9
39. 87
38. 95
37. 85
38. 03
37. 84
38. 32
38. 57
37. 69
35. 99
34. 73
33. 47
30. 88
28. 64
28. 43 | Effi
(dB) -3.89 -3.94 -3.97 -3.91 -3.99 -4.09 -4.22 -4.2 -4.17 -4.14 -4.24 -4.44 -4.57 -4.59 -4.75 -5.1 -5.43 -5.46 -5.72 | Gain (dBi) 2. 43 2. 28 2. 33 2. 3 2. 39 2. 29 2. 25 2. 04 2. 02 1. 66 1. 49 1. 42 1. 35 1. 21 1. 05 1. 16 0. 99 0. 75 0. 34 0. 56 0. 41 | | Freq (MHz) 2200 2210 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2340 2350 2360 2370 2380 2370 2380 2390 2410 2420 2430 | Effi (%) 39.78 40.49 39.92 40.71 41.31 42.1 42.52 42.66 39.49 40.1 39.9 40.4 40.83 40.04 40.35 40.03 39.73 37.5 37.34 36.87 36.6 | Effi (dB) -4 -3.93 -3.99 -3.84 -3.76 -3.71 -3.7 -4.04 -3.97 -3.99 -3.82 -3.92 -3.98 -3.94 -3.98 -4.01 -4.26 -4.28 -4.33 -4.37 | Gain (dBi) 1.71 1.79 1.72 1.75 1.88 2.05 2.12 2.24 1.75 1.85 1.73 1.73 2.27 2.26 2.39 2.42 2.27 2.11 1.85 1.84 1.62 1.51 1.29 | Freq
(MHz)
2490
2500
2510
2520
2530
2540
2550
2560
2570
2680
2600
2610
2620
2630
2640
2650
2670
2680 | Effi
(%)
40. 85
40. 38
40. 12
40. 6
39. 9
39. 87
38. 95
37. 85
38. 03
37. 84
38. 32
38. 57
37. 69
35. 99
34. 73
33. 47
30. 88
28. 64
28. 43 | Effi
(dB) -3.89 -3.94 -3.97 -3.91 -3.99 -4.09 -4.22 -4.2 -4.17 -4.14 -4.24 -4.44 -4.57 -4.59 -4.75 -5.1 -5.43 -5.46 -5.72 | Gain (dBi) 2. 43 2. 28 2. 33 2. 3 2. 39 2. 29 2. 25 2. 04 2. 02 1. 66 1. 49 1. 42 1. 35 1. 21 1. 05 1. 16 0. 99 0. 75 0. 34 0. 56 0. 41 | | Freq
(MHz)
2200
2210
2220
2230
2240
2250
2260
2270
2280
2300
2310
2320
2330
2340
2350
2360
2370
2380
2400
2410
2420
2430 | Effi
(%)
39.78
40.49
39.92
40.71
41.31
42.52
42.66
39.49
40.1
39.9
40.4
40.83
41.48
40.59
40.04
39.73
37.5
37.34
36.87
36.6 | Effi
(dB)
-4
-3.93
-3.99
-3.84
-3.76
-3.71
-3.7
-4.04
-3.97
-3.99
-3.94
-3.82
-3.92
-3.92
-3.94
-4.01
-4.26
-4.28
-4.37
-4.37
-4.37 | Gain (dBi) 1.71 1.79 1.72 1.75 1.88 2.05 2.12 2.24 1.75 1.85 1.73 2.27 2.26 2.39 2.24 2.27 2.11 1.85 1.85 1.62 1.51 1.29 1.46 | Freq
(MHz)
2490
2500
2510
2520
2530
2540
2550
2560
2570
2680
2600
2610
2620
2630
2640
2650
2670
2680 | Effi
(%)
40. 85
40. 38
40. 12
40. 6
39. 9
39. 87
38. 95
37. 85
38. 03
37. 84
38. 32
38. 57
37. 69
35. 99
34. 73
33. 47
30. 88
28. 64
28. 43 | Effi
(dB) -3.89 -3.94 -3.97 -3.91 -3.99 -4.09 -4.22 -4.2 -4.17 -4.14 -4.24 -4.44 -4.57 -4.59 -4.75 -5.1 -5.43 -5.46 -5.72 | Gain (dBi) 2. 43 2. 28 2. 33 2. 3 2. 39 2. 29 2. 25 2. 04 2. 02 1. 66 1. 49 1. 42 1. 35 1. 21 1. 05 1. 16 0. 99 0. 75 0. 34 0. 56 0. 41 | | Freq
(MHz)
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2400
2410
2410
2420
2430
2440 | Effi
(%)
39.78
40.49
39.92
40.71
41.31
42.52
42.66
39.49
40.1
39.9
40.4
40.83
41.48
40.59
40.04
40.03
39.73
37.5
37.34
36.6
36.57
37.55
38.72 | Effi (dB) -4 -3.93 -3.99 -3.9 -3.84 -3.76 -3.71 -3.7 -4.04 -3.97 -3.99 -3.82 -3.92 -3.98 -3.94 -3.98 -4.01 -4.26 -4.28 -4.37 -4.37 -4.37 -4.25 -4.12 | Gain (dBi) 1.71 1.79 1.72 1.75 1.88 2.05 2.12 2.24 1.75 1.85 1.73 1.93 2.27 2.26 2.39 2.42 2.42 1.75 1.85 1.73 1.93 2.11 1.85 1.84 1.62 1.51 1.29 1.46 1.7 | Freq
(MHz)
2490
2500
2510
2520
2530
2540
2550
2560
2570
2680
2600
2610
2620
2630
2640
2650
2670
2680 | Effi
(%)
40. 85
40. 38
40. 12
40. 6
39. 9
39. 87
38. 95
37. 85
38. 03
37. 84
38. 32
38. 57
37. 69
35. 99
34. 73
33. 47
30. 88
28. 64
28. 43 | Effi
(dB) -3.89 -3.94 -3.97 -3.91 -3.99 -4.09 -4.22 -4.2 -4.17 -4.14 -4.24 -4.44 -4.57 -4.59 -4.75 -5.1 -5.43 -5.46 -5.72 | Gain (dBi) 2. 43 2. 28 2. 33 2. 3 2. 39 2. 29 2. 25 2. 04 2. 02 1. 66 1. 49 1. 42 1. 35 1. 21 1. 05 1. 16 0. 99 0. 75 0. 34 0. 56 0. 41 | | Freq (MHz) 2200 2210 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 2370 2380 2400 2410 2420 2430 2440 2450 2460 | Effi
(%)
39.78
40.49
39.92
40.71
41.31
42.1
42.52
42.66
39.49
40.1
39.9
40.4
40.83
41.48
40.59
40.04
40.35
39.73
37.5
37.34
36.87
36.6
36.57
37.55
38.72 | Effi (dB) -4 -3.93 -3.99 -3.9 -3.84 -3.76 -3.71 -3.7 -4.04 -3.97 -3.99 -3.82 -3.94 -3.89 -3.94 -3.89 -4.01 -4.26 -4.28 -4.33 -4.37 -4.25 -4.12 -4.03 | Gain (dBi) 1.71 1.79 1.72 1.75 1.88 2.05 2.12 2.24 1.75 1.85 1.73 1.93 2.27 2.26 2.39 2.42 2.27 2.11 1.85 1.84 1.62 1.51 1.29 1.46 1.7 2.09 |
Freq
(MHz)
2490
2500
2510
2520
2530
2540
2550
2560
2570
2680
2600
2610
2620
2630
2640
2650
2670
2680 | Effi
(%)
40. 85
40. 38
40. 12
40. 6
39. 9
39. 87
38. 95
37. 85
38. 03
37. 84
38. 32
38. 57
37. 69
35. 99
34. 73
33. 47
30. 88
28. 64
28. 43 | Effi
(dB) -3.89 -3.94 -3.97 -3.91 -3.99 -4.09 -4.22 -4.2 -4.17 -4.14 -4.24 -4.44 -4.57 -4.59 -4.75 -5.1 -5.43 -5.46 -5.72 | Gain (dBi) 2. 43 2. 28 2. 33 2. 3 2. 39 2. 29 2. 25 2. 04 2. 02 1. 66 1. 49 1. 42 1. 35 1. 21 1. 05 1. 16 0. 99 0. 75 0. 34 0. 56 0. 41 | | Freq
(MHz)
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2400
2410
2410
2420
2430
2440 | Effi
(%)
39.78
40.49
39.92
40.71
41.31
42.52
42.66
39.49
40.1
39.9
40.4
40.83
41.48
40.59
40.04
40.03
39.73
37.5
37.34
36.6
36.57
37.55
38.72 | Effi (dB) -4 -3.93 -3.99 -3.9 -3.84 -3.76 -3.71 -3.7 -4.04 -3.97 -3.99 -3.82 -3.92 -3.98 -3.94 -3.98 -4.01 -4.26 -4.28 -4.37 -4.37 -4.37 -4.25 -4.12 | Gain (dBi) 1.71 1.79 1.72 1.75 1.88 2.05 2.12 2.24 1.75 1.85 1.73 1.93 2.27 2.26 2.39 2.42 2.42 1.75 1.85 1.73 1.93 2.11 1.85 1.84 1.62 1.51 1.29 1.46 1.7 | Freq
(MHz)
2490
2500
2510
2520
2530
2540
2550
2560
2570
2680
2600
2610
2620
2630
2640
2650
2670
2680 | Effi
(%)
40. 85
40. 38
40. 12
40. 6
39. 9
39. 87
38. 95
37. 85
38. 03
37. 84
38. 32
38. 57
37. 69
35. 99
34. 73
33. 47
30. 88
28. 64
28. 43 | Effi
(dB) -3.89 -3.94 -3.97 -3.91 -3.99 -4.09 -4.22 -4.2 -4.17 -4.14 -4.24 -4.44 -4.57 -4.59 -4.75 -5.1 -5.43 -5.46 -5.72 | Gain (dBi) 2. 43 2. 28 2. 33 2. 3 2. 39 2. 29 2. 25 2. 04 2. 02 1. 66 1. 49 1. 42 1. 35 1. 21 1. 05 1. 16 0. 99 0. 75 0. 34 0. 56 0. 41 | # www. Topant.com.cn Confidential requirement # 3.2.14 OTA Passive Efficiency&Gain Test--BT&WIFI&GPS: | Freq
(MHz) | Effi
(%) | Effi
(dB) | Gain
(dBi) | Freq
(MHz) | Effi
(%) | Effi
(dB) | Gain
(dBi) | |---------------|-------------|--------------|---------------|---------------|-------------|--------------|---------------| | 1540 | 34. 41 | -4.63 | -0.49 | 2400 | 45.16 | -3.45 | 0.08 | | 1550 | 36.62 | -4.36 | -0.24 | 2410 | 44. 21 | -3.54 | -0.01 | | 1560 | 38. 43 | -4.15 | 0.3 | 2420 | 44.01 | -3.56 | 0.07 | | 1570 | 40.53 | -3.92 | 0.68 | 2430 | 44.04 | -3.56 | 0.3 | | 1580 | 40.88 | -3.88 | 0.72 | 2440 | 43.54 | -3.61 | 0.32 | | 1590 | 40.59 | -3.92 | 0.83 | 2450 | 42.76 | -3.69 | 0.43 | | | | XV 755-00- | | 2460 | 42.96 | -3.67 | 0.46 | | | | | | 2470 | 43.85 | -3.58 | 0.71 | | | | | | 2480 | 42.69 | -3.7 | 0.66 | | | | | | 2490 | 41.89 | -3.78 | 0.73 | | | | | | 2500 | 42, 51 | -3, 71 | 0.86 | | Freq | Effi | Effi | Gain | Freq | Effi | Effi | Gain | |-------|--------|--------|-------|-------|--------|--------|-------| | (MHz) | (%) | (dB) | (dBi) | (MHz) | (%) | (dB) | (dBi) | | 5100 | 56.35 | -2.49 | 3.48 | 5390 | 51.37 | -2.89 | 2.92 | | 5110 | 53.53 | -2.71 | 3.12 | 5400 | 50.45 | -2.97 | 2.85 | | 5120 | 52.18 | -2.82 | 3.04 | 5410 | 53.17 | -2.74 | 2.96 | | 5130 | 53.31 | -2.73 | 3.09 | 5420 | 54. 71 | -2.62 | 3.25 | | 5140 | 50.38 | -2.98 | 2.93 | 5430 | 56.51 | -2. 48 | 3.18 | | 5150 | 47.52 | -3.23 | 2.63 | 5440 | 54.77 | -2.61 | 2.96 | | 5160 | 46.14 | -3.36 | 2.39 | 5450 | 56.25 | -2.5 | 3.06 | | 5170 | 47.2 | -3.26 | 2.57 | 5460 | 57.98 | -2.37 | 3.28 | | 5180 | 45.64 | -3.41 | 2.35 | 5470 | 59.7 | -2.24 | 3.35 | | 5190 | 43.93 | -3.57 | 2.12 | 5480 | 58.12 | -2.36 | 3.19 | | 5200 | 45. 91 | -3.38 | 2.46 | 5490 | 54. 79 | -2.61 | 2.46 | | 5210 | 45.83 | -3.39 | 2.33 | 5500 | 55.7 | -2.54 | 2.78 | | 5220 | 47.76 | -3.21 | 2.48 | 5510 | 59.23 | -2.27 | 2.66 | | 5230 | 47.72 | -3. 21 | 2. 29 | 5520 | 61.6 | -2.1 | 2.93 | | 5240 | 49.64 | -3.04 | 2.7 | 5530 | 59.43 | -2.26 | 2.69 | | 5250 | 50.55 | -2.96 | 2.58 | 5540 | 55.61 | -2.55 | 2.05 | | 5260 | 52.55 | -2.79 | 2.72 | 5550 | 54.75 | -2.62 | 1.8 | | 5270 | 52.67 | -2.78 | 2.63 | 5560 | 55.75 | -2.54 | 1.8 | | 5280 | 52.68 | -2.78 | 2.79 | 5570 | 54. 23 | -2.66 | 1.8 | | 5290 | 54. 51 | -2.64 | 2.89 | 5580 | 50.73 | -2.95 | 1.32 | | 5300 | 53.57 | -2.71 | 2. 93 | 5590 | 50.21 | -2.99 | 0.89 | | 5310 | 54. 23 | -2.66 | 3.13 | 5600 | 49.71 | -3.04 | 0.98 | | 5320 | 52.12 | -2.83 | 3 | 5610 | 50.64 | -2.96 | 1.06 | | 5330 | 52.2 | -2.82 | 3.06 | 5620 | 48.31 | -3.16 | 0.82 | | 5340 | 52.83 | -2.77 | 3.09 | 5630 | 46.68 | -3.31 | 0.67 | | 5350 | 53.35 | -2.73 | 3.02 | 5640 | 47.16 | -3.26 | 0.69 | | 5360 | 50.35 | -2. 98 | 2.76 | 5650 | 46.11 | -3.36 | 0.6 | | 5370 | 50.3 | -2.98 | 2.9 | 5660 | 45.17 | -3. 45 | 0.69 | | 5380 | 52.73 | -2.78 | 3.13 | 5670 | 42.76 | -3.69 | 0.66 | # www. Topant.com.cn Confidential requirement #### 3.2.15 OTA Passive Efficiency&Gain Test--BT&WIFI&GPS: | Freq | Effi | Effi | Gain | |-------|--------|--------|-------| | (MHz) | (%) | (dB) | (dBi) | | 5680 | 41.51 | -3.82 | 0.95 | | 5690 | 41.53 | -3.82 | 0.85 | | 5700 | 40.21 | -3.96 | 0.93 | | 5710 | 38.05 | -4.2 | 0.97 | | 5720 | 43.57 | -4.37 | 0.81 | | 5730 | 44.79 | -4.23 | 0.79 | | 5740 | 43.81 | -4.34 | 0.99 | | 5750 | 42.54 | -4. 49 | 0.73 | | 5760 | 41.54 | -4.62 | 1.03 | | 5770 | 40.21 | -4.79 | 0.56 | | 5780 | 37.82 | -5.11 | 0.45 | | 5790 | 37.58 | -5.15 | 0.53 | | 5800 | 37.26 | -5.19 | 0 | | 5810 | 34.16 | -5. 66 | -0.36 | | 5820 | 34.49 | -5. 61 | -0.42 | | 5830 | 34.13 | -5. 67 | -0.5 | | 5840 | 33.16 | -5. 82 | -0.95 | | 5850 | 31.2 | -6.16 | -1.44 | | 5860 | 29.34 | -6. 51 | -1.7 | | 5870 | 29. 73 | -6. 43 | -1.51 | | 5880 | 28.62 | -6.65 | -1.11 | | 5890 | 27.21 | -6.94 | -1.42 | | 5900 | 25.7 | -7. 28 | -1.73 | | 5910 | 24. 29 | -7.62 | -2.04 | | 5920 | 24.67 | -7.53 | -1.65 | | 5930 | 23.99 | -7.7 | -2 | | 5940 | 23.02 | -7.95 | -2.54 | | 5950 | 21.79 | -8.3 | -2.27 | | 5960 | 22.36 | -8.13 | -2.37 | | 5970 | 22.55 | -8.08 | -2.12 | | 5980 | 21.7 | -8.33 | -2.75 | | 5990 | 21.44 | -8. 41 | -3.06 | | 6000 | 21.76 | -8.31 | -2.95 | # www. Topant.com.cn #### **Confidential requirement** #### 4. Attachment chart #### 4.1 VSWR parameter diagram--B850--MAIN #### 4.2 VSWR parameter diagram--B12--MAIN # www. Topant.com.cn #### **Confidential requirement** # 4.3 VSWR parameter diagram--B13--MAIN #### 4.4 VSWR parameter diagram--B20--MAIN # www. Topant.com.cn #### **Confidential requirement** #### 4.5 VSWR parameter diagram--B71--MAIN #### 4.6 VSWR parameter diagram--B850--diversity # www. Topant.com.cn #### **Confidential requirement** #### 4.7 VSWR parameter diagram--B12--diversity #### 4.8 VSWR parameter diagram--B13--diversity # www. Topant.com.cn #### **Confidential requirement** #### 4.9 VSWR parameter diagram--B20--diversity #### 4.9.1 VSWR parameter diagram--B71--diversity # www. Topant.com.cn #### **Confidential requirement** #### 4.9.2 VSWR parameter diagram--BT&WIFI&GPS # www. Topant.com.cn #### **Confidential requirement** # 5. Passive field pattern diagram--B5/18/19/26--830MHz--MAIN #### 5.1. Passive field pattern diagram--B1--1920MHz--MAIN #### 5.2. Passive field pattern diagram--B2/B5--1850MHz--MAIN # www. Topant.com.cn #### **Confidential requirement** # 5.3. Passive field pattern diagram--B3/4/66--1710MHz--MAIN # 5.4. Passive field pattern diagram--B7/41--2500MHz--MAIN # 5.5. Passive field pattern diagram--B12/17--710MHz----MAIN # www. Topant.com.cn #### **Confidential requirement** #### 5.6 Passive field pattern diagram--B13/14--780MHz----MAIN #### 5.7. Passive field pattern diagram--B20--840MHz----MAIN # 5.8 Passive field pattern diagram--B30--2310MHz----MAIN # 5.9 Passive field pattern diagram--B71--620MHz----MAIN # www. Topant.com.cn #### **Confidential requirement** # 6.0 Passive field pattern diagram--B1/4/66--2110MHz--diversity # 6.1. Passive field pattern diagram--B2/25--1930MHz--diversity # 6.2. Passive field pattern diagram--B3--1880MHz--diversity # www. Topant.com.cn #### **Confidential requirement** # 6.3. Passive field pattern diagram--B5/18/19/26--870MHz--diversity # 6.4. Passive field pattern diagram--B7/41--2690MHz--diversity # 6.5. Passive field pattern diagram--B30--2350MHz--diversity # www. Topant.com.cn #### **Confidential requirement** #### 6.6. Passive field pattern diagram--B12/17--740MHz--diversity #### 6.7. Passive field pattern diagram--B13/14--750MHz--diversity #### 6.8 Passive field pattern diagram--B20--820MHz--diversity # 6.9. Passive field pattern diagram--B71--620MHz--diversity # www. Topant.com.cn #### **Confidential requirement** # 7.0. Passive field pattern diagram--WIFI--2450MHz # 7.1. Passive field pattern diagram--WIFI--5670MHz # 7.2. Passive field pattern diagram--GPS--1570MHz # www. Topant.com.cn #### **Confidential requirement**