Rhein Tech Laboratories, Inc. 360 Herndon Parkway Suite 1400 Herndon, VA 20170 http://www.rheintech.com Client: UTStarcom Model: UTS-FSU811 FCC ID: O6YUTS-FSU811 FCC: Part 24 Report #: 2004005 Rev 0.01

APPENDIX A: RF EXPOSURE COMPLIANCE

FCC Rules and Regulations Part 1.1307, 1.1310, 2.1091, 2.1093:

1. General Information:

FCCID: O6YUTS-FSU811 Environment: General Population/Uncontrolled Exposure Device category: Mobile per Part 2.1091 Modulation Type/Mode: PHS (TDMA-TDD)

2. Operating Configurations and Test Conditions:

2.1 Antenna Type(s):

Antenna	Туре	Gain (dBi)	Numeric Gain
Whip	Omni	2.5	1.78
Rod	Omni	4.5	2.82
65° Directional	Patch	10	10

Frequency Range	Frequency Tolerance (ppm)	Emission Designator
1880.15-1909.85 1.7		263KDXW

10 dBi Antenna				
Output Power (Worst Case)	Time averaging as an inherent property (100 % Duty Cycle) (W)	Time averaging as an inherent property (12.1 % Duty Cycle, -9.2 dB) (W)		
EIRP	0.120 (20.8 dBm)	0.015 (11.6 dBm)		
Conducted	0.060 (17.8 dBm)	0.007 (8.6 dBm)		

3. MPE Calculation:

The maximum distance from the antenna at which MPE is met or exceeded, is calculated from the equation relating field strength E in V/m, transmit power P in Watts, transmit antenna numeric gain G, and separation distance in meters:

The Electric field generated for a 1mW/cm² exposure (S) is calculated as follows:

$$S = \frac{E^2}{Z}$$

where: S = Power density E = Electric fieldZ = Impedance.

$$E(V/m) = \sqrt{S \times Z}$$
 1 mW/cm² = 10 W/m²

Rhein Tech Laboratories, Inc. 360 Herndon Parkway Suite 1400 Herndon, VA 20170 http://www.rheintech.com Client:UTStarcomModel:UTS-FSU811FCC ID:O6YUTS-FSU811FCC:Part 24Report #:2004005 Rev 0.01

The impedance of free space is 337 ohms, where E and H fields are perpendicular.

Thus:

$$E(V/m) = \sqrt{10 \times 377} = 61.4 \text{ V/m}$$

MPE Calculation:

The maximum distance, from the antenna at which MPE is met or exceeded, is calculated from the equation relating field strength E in V/m, transmit power P in Watts, transmit antenna numeric gain G, and separation distance in meters above and solving for d below:

$$E(V/m) = \frac{\sqrt{30 \times P \times G}}{d} \quad \text{and} \quad d = \frac{\sqrt{30 \times P \times G}}{E(V/m)} \quad \text{Power density:} \quad P_d(mW/cm^2) = \frac{E^2}{3770}$$

The limit for general population/uncontrolled exposure environment above 1500MHz is 1 mW/cm^2 .

SEPARATION DISTANCE:

Separation	Antenna Gain (dBi)		
Distance ^A	10	Duty Cycle (%)	
Power ^B (Watt)	(cm)	(,,)	
0.007	2.3	12.1	
0.060	7	100.0	

12.1% duty cycle =
$$0.023m = \frac{\sqrt{30 \times 0.007 \times 10}}{61.4}$$

100% duty cycle =
$$0.07m = \frac{\sqrt{30 \times 0.060 \times 10}}{61.4}$$

$$S = \frac{P \times G}{4 \times \pi \times d^2}$$

Where:

S= Power density

Calculations:

P=Transmitter conducted power in watts

G=Numeric gain

D=distance to radiation center

Fundamental Operating Frequency: 1880.15-1909.85 MHz Maximum Rated Output Power: 80mW Measured conducted power: 0.060W (17.8 dBm) Antenna Gain = 10 dBi; Numeric Gain = 10

Client: UTStarcom
 Model:
 UTS-FSU811

 FCC ID:
 O6YUTS-FSU811

 FCC:
 Part 24

 Report #:
 2004005 Rev 0.01

At 100% Duty Cycle

 $S = 60 \text{ x } 10/4 \text{ x } \pi \text{ x } 20^2 = 0.119 \text{ mW/ cm}^2$ at 20 cm

At 12.1 % Duty Cycle

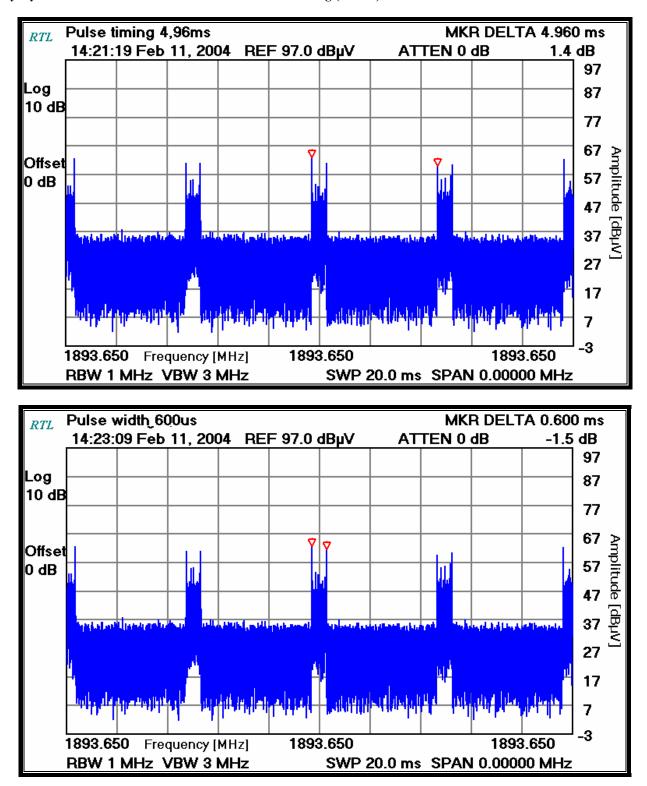
S= 7 x 10/4 x π x 20² = 0.01 mW/ cm² at 20 cm

Antenna Gain = 10 dBi Conducted Power (mW) = 60		
Separation Distance		
Power Density Limit	Calculated Power density at 20 cm distance	
1 mW/cm ²	0.119 mW/ cm^2	

<u>Notes:</u> $\frac{N}{A}$ = Distances are calculated for the largest (worst-case) separation distance as applicable

 B = Measured radiated output power EIRP

CONCLUSION:


The device complies with the MPE requirements by providing a safe separation distance between the antenna, including any radiating structure, and any persons.

Proposed RF exposure safety information to include in User's Manual:

CAUTION: Antenna Installation Requirement

The antenna(s) used for this transmitter must be installed to provide a separation distance of at least 20 cm from all persons and must not be co-located or operating in conjunction with any other antenna or transmitter.

Rhein Tech Laboratories, Inc. 360 Herndon Parkway Suite 1400 Herndon, VA 20170 http://www.rheintech.com Client:UTStarcomModel:UTS-FSU811FCC ID:O6YUTS-FSU811FCC:Part 24Report #:2004005 Rev 0.01

Duty Cycle Calculation: 0.6 ms / 4.96 ms = 0.121 and $10 \log (12.1\%) = -9.2 \text{ dB}$