

JianYan Testing Group Shenzhen Co., Ltd.

Report No: JYTSZE201201304V01

FCC REPORT (BLE)

Applicant: b mobile HK Limited

Address of Applicant: Flat 18; 14/F Block 1; Golden Industrial Building;16-26 Kwai Tak

Street; Kwai Chung; New Territories; Hong Kong

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: AX1076+, AX1078

Trade mark: Bmobile

FCC ID: ZSW-30-092

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 07 Dec., 2020

Date of Test: 08 Dec., 2020 to 05 Jan., 2021

Date of report issued: 14 Jan., 2021

Test Result: PASS *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	06 Jan., 2021	Original
01	14 Jan., 2021	Update antenna gain.

Remark:

This report was amended on FCC ID: ZSW-30-092 follow FCC Class II Permissive Change. The differences between them as below: change the antenna, memory, and non-transmitter secondary circuit parts, supplement difference test. So the Conducted Emissions and Radiated Emission Method re-test.

Tested by: Mike DU Date: 14 Jan., 2021

Test Engineer

Reviewed by: 14 Jan., 2021

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	NTENTS	3
4	TES	T SUMMARY	4
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST ENVIRONMENT AND TEST MODE	6
	5.4	DESCRIPTION OF SUPPORT UNITS	6
	5.5	MEASUREMENT UNCERTAINTY	6
	5.6	LABORATORY FACILITY	6
	5.7	LABORATORY LOCATION	6
	5.8	TEST INSTRUMENTS LIST	7
6	TES	T RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT:	
	6.2	CONDUCTED EMISSION	9
	6.3	CONDUCTED OUTPUT POWER	12
	6.4	OCCUPY BANDWIDTH	
	6.5	Power Spectral Density	14
	6.6	BAND EDGE	
	6.6.1		
	6.6.2	2 Radiated Emission Method	16
	6.7	Spurious Emission	
	6.7.1		
	6.7.2	2 Radiated Emission Method	22
7	TES	T SETUP PHOTO	27
Ω	FIIT	CONSTRUCTIONAL DETAILS	20

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203 & 15.247 (b)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass*
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass*
Power Spectral Density	15.247 (e)	Pass*
Band Edge	15.247 (d)	Pass*
Spurious Emission	15.205 & 15.209	Pass

All measurement data were performed in accordance with ANSI C63.10: 2013 and KDB 558074 D01 15.247 Meas Guidance v05r02 of test method.

Remark

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. Pass*: refer to the FCC ID: ZSW-30-092, Report No.: CCISE190712904.

5 General Information

5.1 Client Information

Applicant:	b mobile HK Limited
Address:	Flat 18; 14/F Block 1; Golden Industrial Building;16-26 Kwai Tak Street; Kwai Chung; New Territories; Hong Kong
Manufacturer:	b mobile HK Limited
Address:	Flat 18; 14/F Block 1; Golden Industrial Building;16-26 Kwai Tak Street; Kwai Chung; New Territories; Hong Kong

5.2 General Description of E.U.T.

Product Name:	Mobile Phone
Model No.:	AX1076+, AX1078
Hardware version:	Bmobile_AX1076+_HW_V1.0
Software version:	Bmobile_AX1076+_TEM_PE_V001
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1.8 dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-2000mAh
AC adapter:	Input: AC100-240V, 50/60Hz, 0.15A Output: DC 5.0V, 500mA
Remark:	Model No.: AX1076+, AX1078 were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name.
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note.

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

5.3 Test environment and test mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Transmitting mode Keep the EUT in continuous transmitting with modulation				

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.38 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.36 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.110~116, Building B, Jinyuan Business Building, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.8 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2020	07-21-2021
Loop Antenna	SCHWARZBECK	FMZB1519B	044	03-07-2020	03-06-2021
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-07-2020	03-06-2021
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-07-2020	03-06-2021
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2020	06-21-2021
Horn Antenna	SCHWARZBECK	BBHA 9170	DD1140470500	11-18-2019	11-17-2020
nom Antenna	SCHWARZBECK	DDNA 9170	BBHA9170582	11-18-2020	11-17-2021
EMI Test Software	AUDIX	E3	Version: 6.110919b)
Pre-amplifier	HP	8447D	2944A09358	03-07-2020	03-06-2021
Pre-amplifier	CD	PAP-1G18	11804	03-07-2020	03-06-2021
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-05-2020	03-04-2021
Consistence and man	Dahda 9 Cahusara	ECD40	400000	11-18-2019	11-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2020	11-17-2021
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-05-2020	03-04-2021
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2020	03-06-2021
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2020	03-06-2021
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2020	03-06-2021
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0		

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-05-2020	03-04-2021	
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-05-2020	03-04-2021	
LISN	CHASE	MN2050D	1447	03-05-2020	03-04-2021	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2020	07-20-2021	
Cable	HP	10503A	N/A	03-05-2020	03-04-2021	
EMI Test Software	AUDIX	E3	Version: 6.110919b			

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

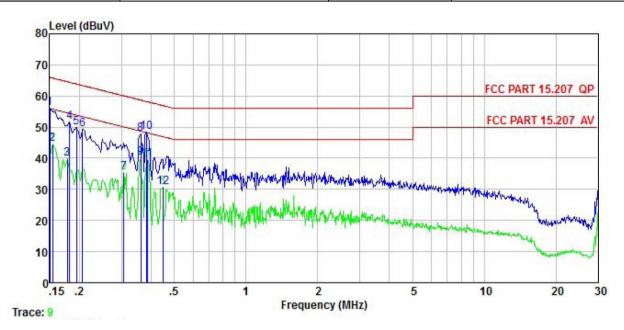
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

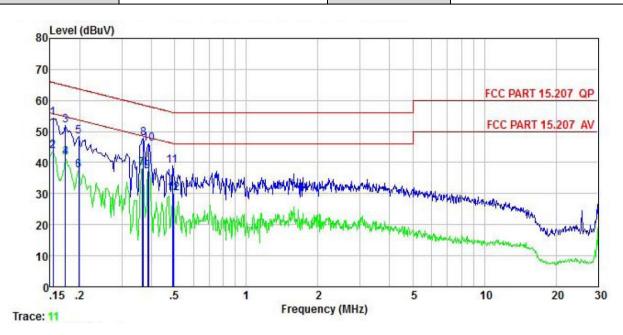
The BLE antenna is an Internal antenna which cannot replace by end-user, the best-case gain of the antenna is 1.8 dBi.


6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15	FCC Part 15 C Section 15.207			
Test Frequency Range:	150 kHz to 30 MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9kHz, VBW=30kHz				
Limit:		Limit ((dBuV)		
	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the logar				
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 				
Test setup:	Reference Plane LISN 40cm 80cm Filter AC power				
	Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m				
Test Instruments:	Refer to section 5.8 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

Product name:	Mobile Phone	Product model:	AX1076+
Test by:	Mike	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∇	dB	dB	dB	dBu₹	dBu∀	<u>d</u> B	
1	0.150	45.99	-0.57	-0.05	10.78	56.15	66.00	-9.85	QP
2	0.154	34.36	-0.57	-0.06	10.78	44.51	55.78	-11.27	Average
3	0.178	29.67	-0.58	-0.12	10.77	39.74	54.59	-14.85	Average
4	0.182	41.63	-0.58	-0.12	10.77	51.70	64.42	-12.72	QP
5	0.194	39.95	-0.59	-0.15	10.76	49.97	63.84	-13.87	QP
6	0.206	39.40	-0.59	-0.17	10.76	49.40	63.36	-13.96	QP
7	0.307	25.46	-0.54	-0.20	10.74	35.46	50.06	-14.60	Average
8	0.361	37.34	-0.51	0.17	10.73	47.73	58.69	-10.96	QP
1 2 3 4 5 6 7 8	0.361	29.76	-0.51	0.17	10.73	40.15	48.69	-8.54	Average
10	0.381	38.01	-0.49	0.31	10.72	48.55		-9.70	
11	0.385	29.02	-0.49	0.33	10.72	39.58	48.17	-8.59	Average
12	0.447	20.43	-0.46	0.05	10.74	30.76			Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	Mobile Phone	Product model:	AX1076+
Test by:	Mike	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	₫₿uѶ	<u>dB</u>	<u>ā</u> B	₫B	dBu₹	₫₿uѶ	<u>dB</u>	
1	0.154	44.10	-0.69	0.01	10.78	54.20		-11.58	
2	0.154	33.53	-0.69	0.01	10.78	43.63	55.78	-12.15	Average
3	0.174	41.78	-0.68	0.00	10.77	51.87	64.77	-12.90	QP
1 2 3 4 5 6 7 8 9	0.174	31.46	-0.68	0.00	10.77	41.55	54.77	-13.22	Average
5	0.198	38.24	-0.67	0.00	10.76	48.33	63.71	-15.38	QP
6	0.198	27.40	-0.67	0.00	10.76	37.49	53.71	-16.22	Average
7	0.365	27.89	-0.64	-0.04	10.73	37.94	48.61	-10.67	Average
8	0.369	37.73	-0.64	-0.04	10.73	47.78	58.52	-10.74	QP
9	0.385	27.10	-0.64	-0.05	10.72	37.13	48.17	-11.04	Average
10	0.389	35.98	-0.63	-0.05	10.72	46.02	58.08	-12.06	QP
11	0.489	28.86	-0.65	0.02	10.76	38.99	56.19	-17.20	QP
12	0.494	19.92	-0.65	0.03	10.76	30.06	46.10	-16.04	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)				
Limit:	30dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.8 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Refer to the FCC ID: ZSW-30-092, Report No.: CCISE190712904.				

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)				
Test Method:	ANSI C63.10:2013				
Limit:	>500kHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.8 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Refer to the FCC ID: ZSW-30-092, Report No.: CCISE190712904.				

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)			
Limit:	8 dBm/3KHz			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Refer to the FCC ID: ZSW-30-092, Report No.: CCISE190712904.			

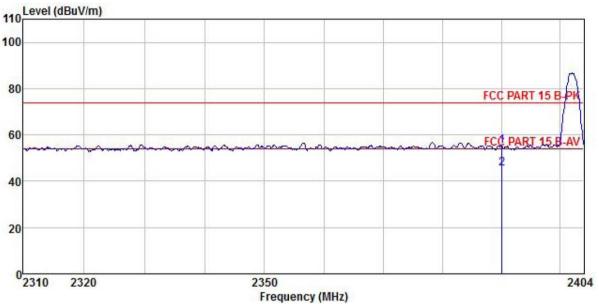
6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer					
	E.U.T					
	Non-Conducted Table					
	Ground Reference Plane					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Refer to the FCC ID: ZSW-30-092, Report No.: CCISE190712904.					

6.6.2 Radiated Emission Method

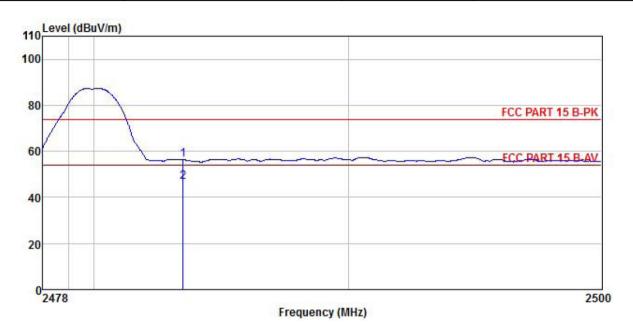
6.6.2	5.2 Radiated Emission Method									
	Test Requirement:	FCC Part 15 C Section 15.205 and 15.209								
	Test Frequency Range:	2.3GHz to 2.5GHz								
	Test Distance:	3m								
	Receiver setup:	Frequency	Detector	RBW	VBV		Remark			
		Above 1GHz	Peak	1MHz	3MH		Peak Value			
	12.26		RMS	1MHz	3MH	ΗZ	Average Value			
	Limit:	Frequer		<u>imit (dBuV/m @</u> 54.00	(3111)	Remark Average Value				
		Above 10	GHz —	74.00		Peak Value				
	Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 								
	Test setup:	AE Wags	Test Receive	Horn Antenna an und Reference Plane Pre- Amplifer Co	Antenna Tower					
	Test Instruments:	Refer to section	on 5.8 for det	ails						
	Test mode:	Refer to section	on 5.3 for deta	ails						
	Test results:	Passed			-					



Product Name:				Product Model:		AX1076+					
est By:				Test me	Test mode:			BLE Tx mode			
est Channel:	L	Lowest channel				Polariz	ation:		Vertica	ıl	
est Voltage:	A	AC 120/6	0Hz			Enviro	nment:		Temp:	24 ℃	Huni: 57%
187.117						•			•		
110 Level (aBuv/m)										
100											
80									FCC	PART 15	B-PK
60									FCC	PART 15	B-AV
2000								Carrie Ca		2	
40											
20											
0 <mark>2310</mark>	2320			2	350						2404
2010	2320				Frequency	(MHz)					2404
	_	ReadA	int enna	Cable	Aux P	reamp .	21	Limit	Over	220	
100					Factor F					Remark	
	MHz	dBu∜	₫B/m	₫B		dB dE	uV/m	dBuV/m	₫B		
	390.000	21.65	27.03	4.28	1.68	0.00 5	4.64	74.00	-19.36	Peak	
2 2	390.000	11.74	27.03	4.28	1.68	0.00 4	4. (3	54.00	-9.27	Averag	e

Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

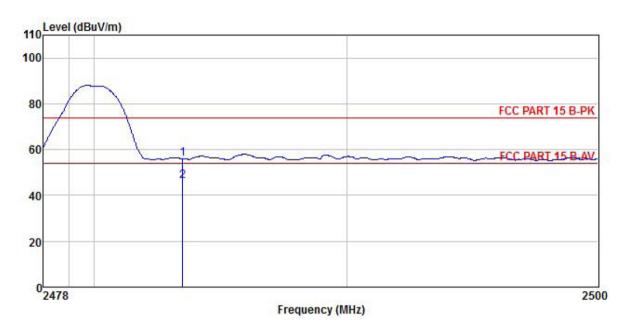
Product Name:	Mobile Phone	Product Model:	AX1076+						
Test By:	Mike	Test mode:	BLE Tx mode						
Test Channel:	Lowest channel	Polarization:	Horizontal						
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%						
110_Level (dBuV/m)									



	Freq		Antenna Factor					Limit Line		
	MHz	dBu∜	dB/m	dB	<u>d</u> B	dB	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000									

Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

Product Name:	Mobile Phone	Product Model:	AX1076+
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%



	Freq		Antenna Factor							
	MHz	MHz dBuV	7 — dB/m	<u>d</u> B	<u>ab</u>	<u>dB</u>	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	
1 2	2483.500 2483.500									

Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

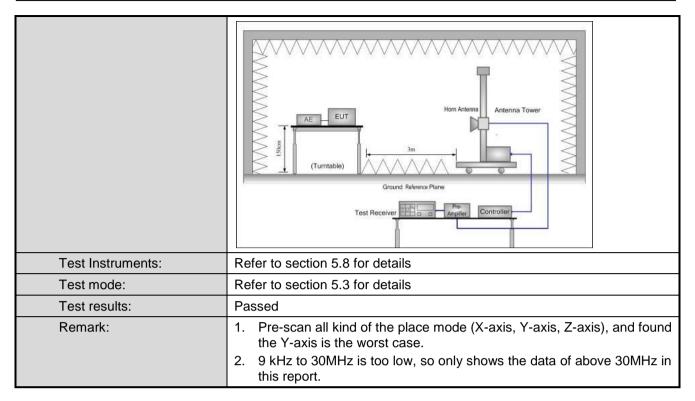
Product Name:	Mobile Phone	Product Model:	AX1076+
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor				Limit Line		Remark
	MHz	dBu∜		 <u>ab</u>	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2483,500 2483,500								

Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

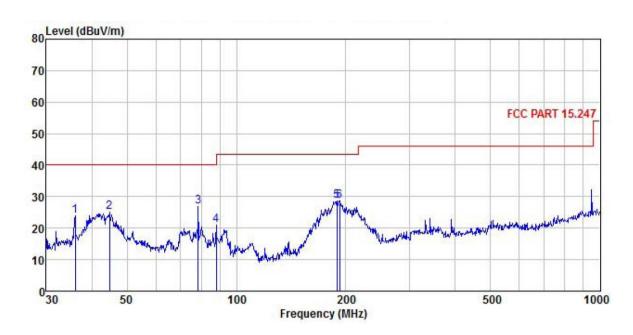
6.7 Spurious Emission

6.7.1 Conducted Emission Method


Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Refer to the FCC ID: ZSW-30-092, Report No.: CCISE190712904.

6.7.2 Radiated Emission Method

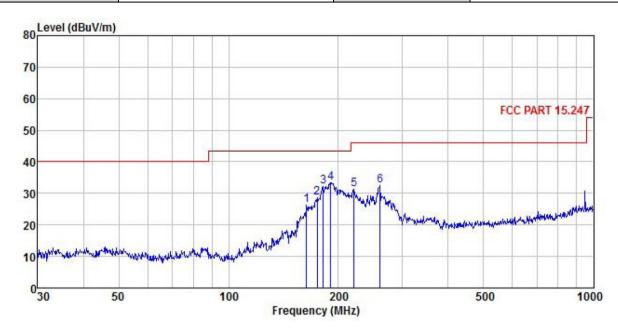
Test Requirement:	FCC Part 15 C	Section 15.20)5 and 15.209)				
Test Frequency Range:	9kHz to 25GHz							
Test Distance:	3m							
Receiver setup:	Frequency	Detector	RBW	VB	3W	Remark		
·	30MHz-1GHz	Quasi-peak	120KHz	3001	KHz	Quasi-peak Value		
	Above 1GHz	Peak	1MHz	3M		Peak Value		
	710070 10112	RMS			Hz	Average Value		
Limit:	Frequency		Limit (dBuV/m @3m)			Remark		
		30MHz-88MHz 40.0				Quasi-peak Value		
	88MHz-216N		43.5			Quasi-peak Value		
	216MHz-960I		46.0			Quasi-peak Value		
	960MHz-1G	HZ	54.0		(Quasi-peak Value		
	Above 1GF	łz —	54.0 74.0			Average Value Peak Value		
Test Procedure:	1GHz)/1.5r The table of highest rad 2. The EUT antenna, we tower. 3. The antenna Both horizon make the normake the normake the normake the interest and to find the interest and the interest and the interest and	m(above 1GHwas rotated 3 liation. was set 3 minimum reasurement suspected en the ante dithe rota table maximum reasurement siscon level of the cified, then would be reasurement would be reasurement would be reasurement suspected en the ante dithe rota table maximum reasurement with the rota table maximum reasurement suspected en the rota table maximum reasurement would be reasurement of the rotation of the rotation of the reasurement of the rotation	dz) above the 360 degrees to see the maximutical polarization, the Enna was tuned le was turned ading. The EUT in petesting could be ported. Other led 1600 degrees terms to see the maximum Helported.	e groun to deter from the top of a ne met um val tions of EUT wa ed to he from 0 to Pea lold Mo ak mod oe stop wise the d one b	d at a rmine ne intervariation of the a arrange degree deg	table 0.8m(below a 3 meter camber. the position of the efference-receiving ble-height antenna four meters above the field strength. antenna are set to anged to its worst from 1 meter to 4 ees to 360 degrees tect Function and a 10 dB lower than and the peak values ssions that did not using peak, quasi-reported in a data		
Test setup:	Below 1GHz Turn Table Ground Plane Above 1GHz	4m 4m 0.8m 1m			Antenna Search Antenn Test zeiver	1		



Measurement Data (worst case):

Below 1GHz:

Product Name:	Mobile Phone	Product Model:	AX1076+
Test By:	Mike	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


	Freq		ntenna Factor			Preamp Factor	Level	Limit Line	Over Limit	Remark
-	MHz	dBu₹	—dB/m	<u>d</u> B	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1	36.001	40.87	12.64	0.34	0.00	29.94	23.91	40.00	-16.09	QP
2	44.743	41.60	12.89	0.38	0.00	29.86	25.01	40.00	-14.99	QP
2	78.413	43.64	12.39	0.47	0.00	29.65	26.85	40.00	-13.15	QP
4	88.033	39.74	10.29	0.49	0.00	29.58	20.94	43.50	-22.56	QP
5	189.074	39.58	17.37	0.70	0.00	28.91	28.74	43.50	-14.76	QP
6	192.419	39.30	17.60	0.71	0.00	28.88	28.73	43.50	-14.77	QP

Remark.

Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

Product Name:	Mobile Phone	Product Model:	AX1076+
Test By:	Mike	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor			Preamp Factor		Limit Line	Over Limit	Remark
-	MHz	dBu∜	<u>dB</u> /m	<u>d</u> B	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	
1 2 3 4 5 6	163.755 175.037 181.920 190.405 220.617 260.144	39. 22 40. 18 43. 45 44. 11 41. 00 41. 71	15.58 16.80 17.01 17.45 18.39 18.54	0.64 0.67 0.68 0.70 0.74 0.80	0.00 0.00 0.00 0.00 0.00	29.01 28.96 28.90 28.70	32.18 33.36 31.43	43.50 43.50 43.50 46.00	-17.16 -14.86 -11.32 -10.14 -14.57 -13.47	QP QP QP QP

Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

Above 1GHz

	Test channel: Lowest channel											
Detector: Peak Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4804.00	50.31	30.78	6.80	2.44	41.81	48.52	74.00	-25.48	Vertical			
4804.00 49.22 30.78 6.80 2.44 41.81 47.43 74.00 -26.57 Horizonta												
				Detector:	Average Va	alue						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4804.00	40.52	30.78	6.80	2.44	41.81	38.73	54.00	-15.27	Vertical			
4804.00 39.33 30.78 6.80 2.44 41.81 37.54 54.00 -16.46 Horizontal												

	Test channel: Middle channel											
Detector: Peak Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4884.00	50.41	30.96	6.86	2.47	41.84	48.86	74.00	-25.14	Vertical			
4884.00	49.32	30.96	6.86	2.47	41.84	47.77	74.00	-26.23	Horizontal			
				Detector:	Average Va	alue						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4884.00 40.63 30.96 6.86 2.47 41.84 39.08 54.00 -14.92 V									Vertical			
4884.00	39.44	30.96	6.86	2.47	41.84	37.89	54.00	-16.11	Horizontal			
I												

	Test channel: Highest channel													
Detector: Peak Value														
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4960.00	50.54	31.11	6.91	2.49	41.87	49.18	74.00	-24.82	Vertical					
4960.00	49.46	31.11	6.91	2.49	41.87	48.10	74.00	-25.90	Horizontal					
				Detector:	Average Va	alue								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4960.00	40.70	31.11	6.91	2.49	41.87	39.34	54.00	-14.66	Vertical					
4960.00	39.57	31.11	6.91	2.49	41.87	38.21	54.00	-15.79	Horizontal					

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss + Aux Factor - Preamplifier Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.