

Page: 1 of 21

DFS Test Report FCC ID: 2AKL3-GD2

Report No. : TBR-C-202408-0094-14

Applicant: Shenzhen Junuo Electronics Co., Ltd.

Equipment Under Test (EUT)

EUT Name : TV BOX

Model No. : GD2

Series Model No. : N/A

Brand Name : Dcolor

Sample ID : HC-C-202408-0094-01-01&HC-C-202408-0094-02-01

Receipt Date : 2024-08-16

Test Date : 2024-08-16 to 2024-09-13

Issue Date : 2024-09-13

Standards : FCC Part 15 Subpart E 15.407

KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02

KDB 905462 D03 UNII Clients Without Radar Detection New Rules v01r02

Test Method : ANSI C63.10: 2013

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above

Henry Hua

Test By: Mike Yan

Reviewed By : Henry huang

Approved By : WAN SV

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

Contents

COI	NTENTS	3	2				
1.	GEN	ERAL INFORMATION ABOUT EUT	4				
	1.1 C	1.1 Client Information					
	1.2 G	General Description of EUT (Equipment Under Test)	4				
	1.3 T	est Facility	6				
2.	TEST	T SOFTWARE	7				
3.	TEST	Γ EQUIPMENT	7				
4.	U-NII	I DFS RULE REQUIREMENTS	8				
	4.1.	Applicability of DFS requirements	8				
	4.2.	Test Limits and Radar Signal Parameters	9				
5.	CALIBRATION OF RADAR WAVEFORM						
	5.1.	Test Procedure					
	5.2.	Conducted Calibration Test Setup	15				
	5.3.	Deviation from Test Standard	15				
	5.4.	Radar Waveform Calibration Result					
6.	U-NII	DFS TESTING	16				
	6.1.	Test Procedure	16				
	6.2.	Test Setup	16				
7.	TEST	TING RESULTS	17				
	7.1.	Summary of Test Results	17				
	7.2.	DFS Detection Threshold	17				
	7.3.	Channel Closing Transmission Time	18				
	7.4.	Non-occupancy Period	21				

Report No.: TBR-C-202408-0094-14 Page: 3 of 21

Revision History

Report No.	Version	Description	Issued Date
TBR-C-202408-0094-14	Rev.01	Initial issue of report	2024-09-13
WORLD .	1000		(403)
B) TODA			33
WUR77	Man		mous s
min in	000	The same of the sa	mnB1
MODE		TELEPINA TO THE PERSON OF THE	
WINDA.		The state of the s	WB7
MORE	A COURS		401
UBA WOR			33
mOS13	CHILD.		MURI
TO THE REAL PROPERTY.			3

Page: 4 of 21

1. General Information about EUT

1.1 Client Information

Applicant	Shenzhen Junuo Electronics Co., Ltd.		
Address		Factory Building 401, No. 36, Hezhou Road, Hezhou Community, Hangcheng Street, Baoan District, Shenzhen City China.	
Manufacturer		Shenzhen Junuo Electronics Co., Ltd.	
Address		Factory Building 401, No. 36, Hezhou Road, Hezhou Community, Hangcheng Street, Baoan District, Shenzhen City China.	

1.2 General Description of EUT (Equipment Under Test)

EUT Name	0	TV BOX		
Models No./HVIN		GD2		
Model Different	3	N/A		
Operating	A	∑ 5250-5350MHz		
Frequency Band		⊠ 5470-5725MHz		
TPC	:	No □ Yes		
		Adapter:(SA12BV-120100U)		
Power Rating	:	Input: 100-240V~, 50/60Hz 0.4A		
		Output: 12.0V=1.0A		
Software Version	:	N/A		
Hardware Version	:	N/A		
Note	:	This device was functioned as a		
)	<u></u> Master		
		☐Slave device with radar detection		
	1	⊠Slave device without radar detection		

Note:

(1)For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Page: 5 of 21

(2) Antenna information provided by the manufacturer.

A W		Anteni	na	
1000	Miller			U-NII-1: -1.02dBi
	Model:		May Cain	U-NII-2A:-1.02dBi
			Max. Gain:	U-NII-2C: 1.17dBi
Sheet Steel				U-NII-3: 1.18dBi
Antenna				U-NII-1: 0.35dBi
				Max. Gain:
			Max. Gain.	U-NII-2C: -1.34dBi
	J B		400	U-NII-3: -0.75dBi

(3) Channel List:

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	52	5260 MHz	60	5300 MHz
5260~5320 MHz	54	5270 MHz	62	5310MHz
(U-NII-2A)	56	5280MHz	64	5320 MHz
	58	5290MHz		

For 20 MHz Bandwidth, use channel 52, 56, 60, 64. For 40 MHz Bandwidth, use channel 54, 62. For 80 MHz Bandwidth, use channel 58.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
-	100	5500 MHz	124	5620 MHz
	102	5510 MHz	126	5630 MHz
	104	5520 MHz	128	5640 MHz
	106	5530 MHz	132	5660 MHz
5500~5720 MHz	108	5540 MHz	134	5670 MHz
(U-NII-2C)	110	5550 MHz	136	5680 MHz
	112	5560 MHz	138	5690 MHz
	116	5580 MHz	140	5700 MHz
	118	5590 MHz	142	5710 MHz
	120	5600 MHz	144	5720 MHz
	122	5610 MHz		

For 20 MHz Bandwidth, use channel 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144
For 40 MHz Bandwidth, use channel 102, 110, 118, 126, 134, 142
For 80 MHz Bandwidth, use channel 106, 122, 138

Page: 6 of 21

1.3 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F.,Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.

Report No.: TBR-C-202408-0094-14 Page: 7 of 21

2. Test Software

Test Item	Test Software	Manufacturer	Version No.
RF Conducted	MTS-8310	MWRFtest	V2.0.0.0
Measurement	WIT 3-03 TO	WWW Lest	V2.0.0.0
RF Test System	JS1120	Tonscend	V3.2.22

3. Test Equipment

Antenna Conducted Emission						
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date	
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 17, 2024	Jun. 16, 2025	
Vector Signal Generator	Agilent	N5182A	MY50141294	Aug. 30, 2023	Aug. 29, 2024	
Analog Signal Generator	Agilent	N5181A	MY48180463	Aug. 30, 2023	Aug. 29, 2024	
Vector Signal Generator	KEYSIGT	N5182B	MY59101429	Aug. 30, 2023	Aug. 29, 2024	
Analog Signal Generator	KEYSIGHT	N5173B	MY61252685	Aug. 30, 2023	Aug. 29, 2024	
Frequency Extender	KEYSIGHT	N5182BX07	MY59360126	Aug. 30, 2023	Aug. 29, 2024	
RF Control Unit	Tonsced	JS0806-2	21F8060439	Aug. 30, 2023	Aug. 29, 2024	
Power Control Box	Tonsced	JS0806-4ADC	21C8060387	N/A	N/A	
Antenna Conducted I	Emission					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date	
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 17, 2024	Jun. 16, 2025	
Vector Signal Generator	Agilent	N5182A	MY50141294	Aug. 29, 2024	Aug. 28, 2025	
Analog Signal Generator	Agilent	N5181A	MY48180463	Aug. 29, 2024	Aug. 28, 2025	
Vector Signal Generator	KEYSIGT	N5182B	MY59101429	Aug. 29, 2024	Aug. 28, 2025	
Analog Signal Generator	KEYSIGHT	N5173B	MY61252685	Aug. 29, 2024	Aug. 28, 2025	
Frequency Extender	KEYSIGHT	N5182BX07	MY59360126	Aug. 29, 2024	Aug. 28, 2025	
RF Control Unit	Tonsced	JS0806-2	21F8060439	Aug. 29, 2024	Aug. 28, 2025	
Power Control Box	Tonsced	JS0806-4ADC	21C8060387	N/A	N/A	

Page: 8 of 21

4. U-NII DFS Rule Requirements

4.1. Applicability of DFS requirements

The manufacturer shall state whether the UUT is capable of operating as a Master and/or a Client. If the UUT is capable of operating in more than one operating mode then each operating mode shall be tested separately. See tables 1 and 2 for the applicability of DFS requirements for each of the operational modes.

Table 1: Applicability of DFS requirements prior to use a channel

	Operational Mode			
Requirement	□Master	⊠Client without radar detection	Client with	
Non-Occupancy Period	1	Not required	88 /	
DFS Detection Threshold	1	Not required	1	
Channel Availability Check Time	33 /	Not required	Not required	
Uniform Spreading	1	Not required	Not required	
U-NII Detection Bandwidth	✓	Not required	1	

Table 2: Applicability of DFS requirements during normal operation

	Operational Mode			
Requirement	☐ Master	⊠Client without radar detection	☐Client with radar detection	
DFS Detection Threshold	1	Not required	V .	
Channel Closing Transmission Time	3	OBY	W. C.	
Channel Move Time	1	V 100	✓	
U-NII Detection Bandwidth	1	Not required		

Page: 9 of 21

Additional requirements for devices with multiple bandwidth modes	☐Master Device or Client with Radar Detection	⊠Client without Detection
Detection Bandwidth and	All BW modes must be	Not required
Statistical Performance Check	tested	
Channel Move Time and	Test using widest BW	Test using widest BW
Channel Closing Transmission	mode available	mode available
Time	(10)	
All other tests	Any single BW mode	Not required

Note: Frequencies selected for statistical performance check (section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20MHz channels and the channel center frequency.

4.2. Test Limits and Radar Signal Parameters

DETECTION THRESHOLD VALUES

Table 5: DFS Detection Thresholds for Master Devices and Client Devices with Radar Detection.

Maria Taran M.B.	Value (See Notes 1 and 2)		
Maximum Transmit Power			
EIRP≥ 200 milliwatt	-64 dBm		
EIRP < 200 milliwatt and	-62 dBm		
Power pectral density < 10 dBm/MHz			
EIRP < 200 milliwatt that do not meet the	-64 dBm		
power spectral density requirement	-04 dbill		

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

Page: 10 of 21

Table 6: DFS Response Requirement Values

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds See Note 1.
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. See Notes 1 and 2.
U-NII Detection Bandwidth	Minimum 100% of the UNII 99% transmission power bandwidth. See Note 3.

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Page: 11 of 21

PARAMETERS OF DFS TEST SIGNALS

Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

Table 7: Short Pulse Radar Test Waveforms.

Radar	Pulse	PRI	Number of Pulses	Minimum	Minimum
Type	Width	(µsec)		Percentage of	Number
	(µsec)			Successful	of
				Detection	Trials
0	1	1428	18	See Note 1	See Note
					1
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A	Roundup $ \begin{cases} $	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate	(Radar Types	1-4)		80%	120
			and for the detection be		

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. If more than 30 waveforms are used for Short Pulse Radar Type 1, then each additional waveform is generated with Test B and must also be unique and not repeated from the previous waveforms in Tests A or B.

Report No.: TBR-C-202408-0094-14 Page: 12 of 21

Table 7a: Pulse Repetition Intervals Values for Test A.

Pulse Repetition Frequency Number	Pulse Repetition Frequency (Pulses Per Second)	Pulse Repetition Interval (Microseconds)		
1	1930.5	518		
2	1858.7	538		
3	1792.1	558		
4	1730.1	578		
5	1672.2	598		
6	1618.1	618		
7	1567.4	638		
8	1519.8	658		
9	1474.9	678		
10	1432.7	698		
11	1392.8	718		
12	1355	738		
13	1319.3	758		
14	1285.3	778		
15	1253.1	798		
16	1222.5	818		
17	1193.3	838		
18	1165.6	858		
19	1139	878		
20	1113.6	898		
21	1089.3	918		
22	1066.1	938		
23	326.2	3066		

Table 8: Long Pulse Radar Test Waveform

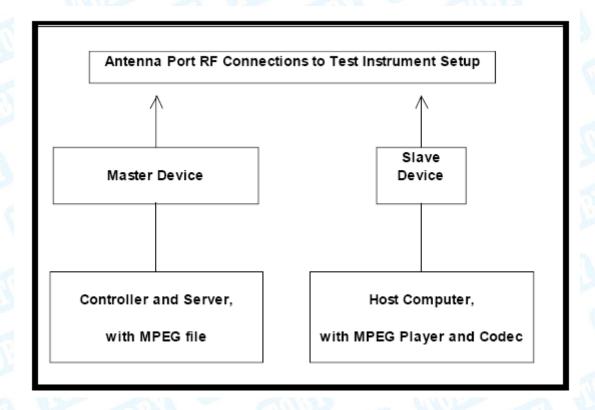
Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Number of Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

Page: 13 of 21

The parameters for this waveform are randomly chosen (The center frequency for each of the 30 trials of the Bin 5 radar shall be randomly selected within 80% of the Occupied Bandwidth.) Thirty unique waveforms are required for the Long Pulse Radar Type waveforms. If more than 30 waveforms are used for the Long Pulse Radar Type waveforms, then each additional waveform must also be unique and not repeated from the previous waveforms.

Table 9: Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70%	30

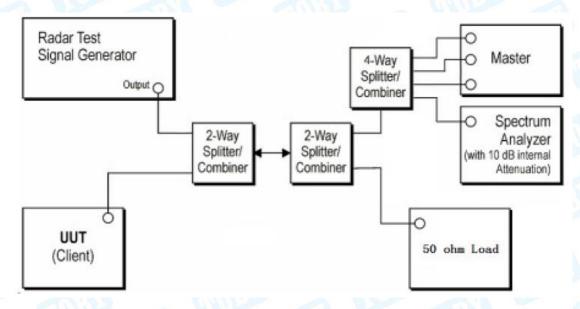


Page: 14 of 21

5. Calibration of Radar Waveform

5.1. Test Procedure

- A 50 ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer
 is connected in place of the master device and the signal generator is set to CW mode.
 The amplitude of the signal generator is adjusted to yield a level of –62 dBm as measured
 on the spectrum analyzer.
- 2. Without changing any of the instrument settings, the spectrum analyer is reconnected to the Common port of the Spectrum Analyzer Combiner/Divider. Measure the amplitude and calculate the difference from –62 dBm. Adjust the Reference Level Offset of the spectrum analyzer to this difference.
- 3. The spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device. The interference detection threshold may be varied from the calibrated value of –62 dBm and the spectrum analyzer will still indicate the level as received by the Master Device.
- 4. Set the signal generator to produce a radar waveform, trigger a burst manually and measure the level on the spectrum analyzer. Readjust the amplitude of the signal generator as required so that the peak level of the waveform is at a displayed level equal to the required or desired interference detection threshold. Separate signal generator amplitude settings are determined as required for each radar type.



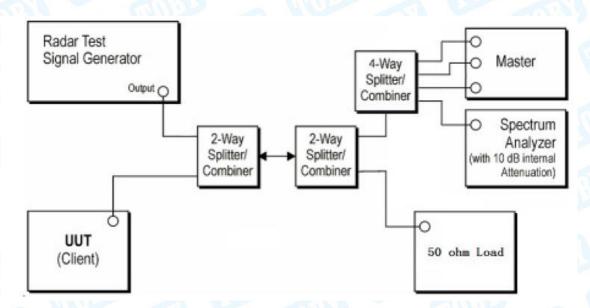
Page: 15 of 21

5.2. Conducted Calibration Test Setup

5.3. Deviation from Test Standard

No Deviation

5.4. Radar Waveform Calibration Result


Page: 16 of 21

6. U-NII DFS Testing

6.1. Test Procedure

- 1. Master device and client device are set up by conduction method as the following configuration.
- 2. The client device is connected to notebook and to access a IP address on wireless connection with the master device.
- 3. Then the master device is connected to another notebook to access a IP address.
- 4. Finally, let the two IP addresses run traffic with each other through the Run flow software "Lan test" to reach 17% channel loading as below:

6.2. Test Setup

Page: 17 of 21

7. Testing Results

7.1. Summary of Test Results

Clause	Test Parameter Remarks		Pass/Fail	
15.407	DFS Detection Threshold	No Applicable	N/A	
15.407	Channel Availability Check Time	Not Applicable	N/A	
15.407	Channel Move Time	Applicable	Pass	
15.407	Channel Closing Transmission Time	ransmission Applicable		
15.407	Non- Occupancy Period	Applicable	Pass	
15.407	Uniform Spreading Not Applicable		N/A	
15.407 U-NII Detection Bandwidth N		Not Applicable	N/A	

The EUT is slave equipment, it need a master device when testing.

Master with injection at the Master. (Radar Test Waveforms are injected into the Master)

7.2. DFS Detection Threshold

Calibration:

The EUT is slave equipment and it with a max gain is **1.18**dBi.

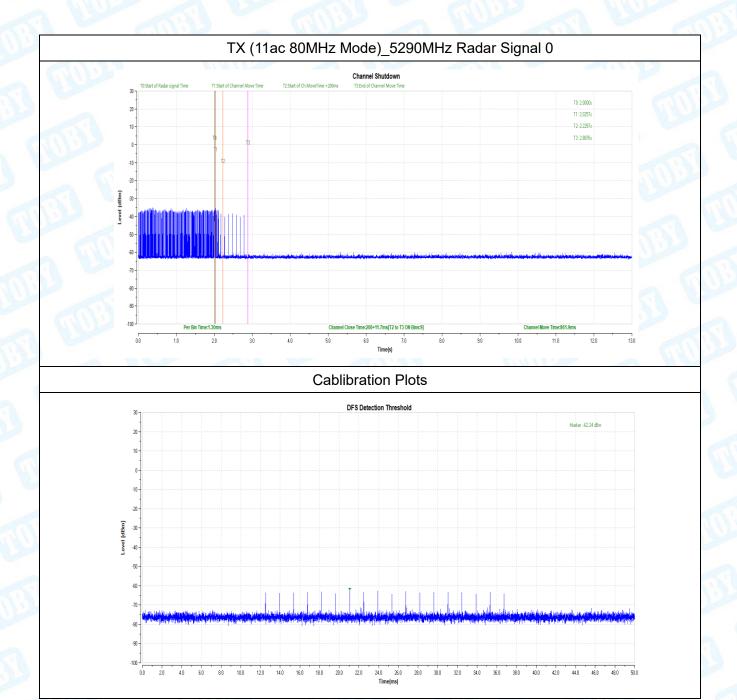
For a detection threshold level of -62dBm and the master (Brand: ZTE, Model: ZXHN H389A,

FCC ID: Q78-ZXHNH389A) antenna gain is 3 dBi, required detection threshold is

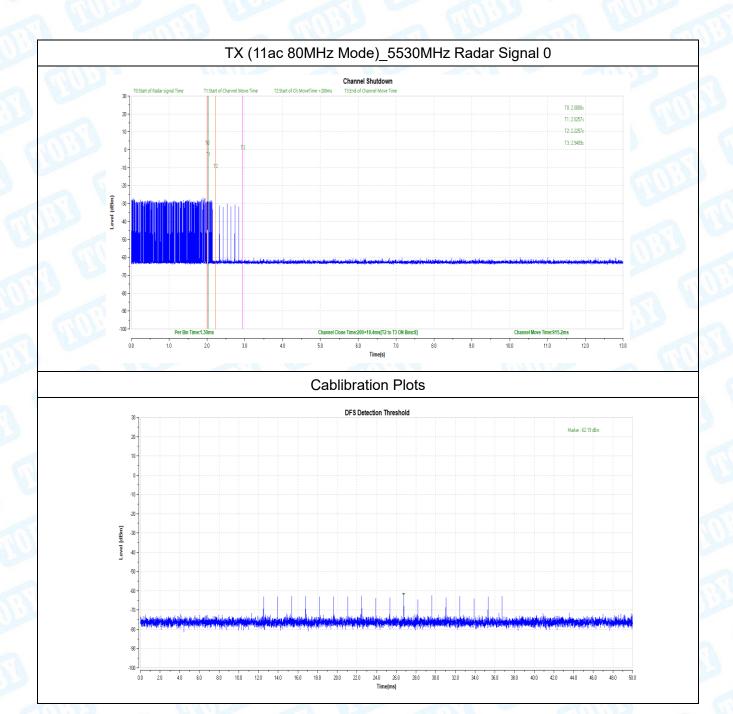
-59.00dBm= (-62+3.0)dBm.

Note: Maximum Transmit Power is less than 200 milliwatt in this report, so detection threshold level is -62dBm.

Report No.: TBR-C-202408-0094-14 Page: 18 of 21

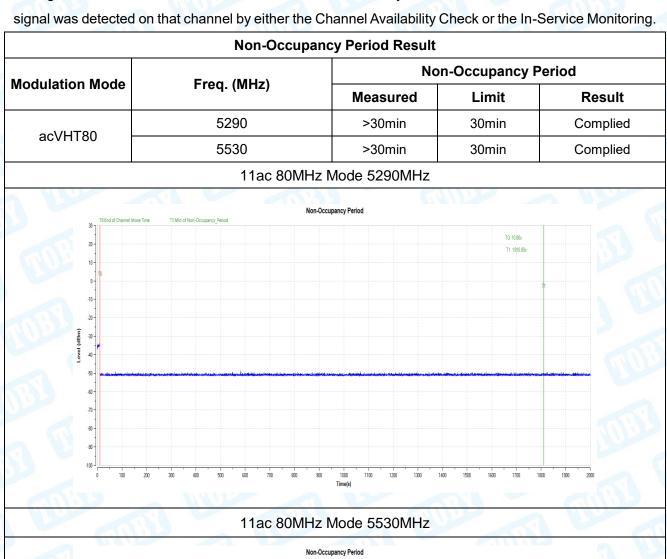

7.3. Channel Closing Transmission Time

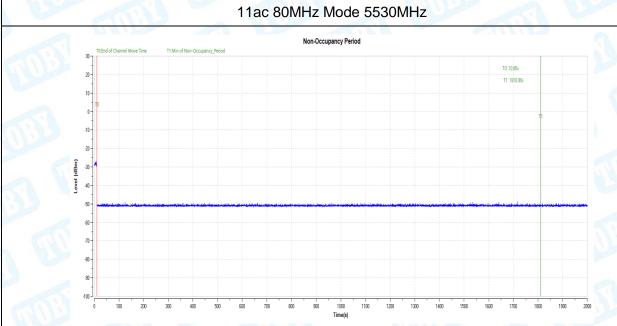
Channel Closing Transmission Time and Channel Move Time Result								
Test Mode	Frequency[MHz]	CCTT[ms]	Limit[ms]	CMT[ms]	Limit[ms]	Verdict		
11AC80	5290	200+11.7	200+60	861.9	10000	PASS		
	5530	200+10.4	200+60	915.2	10000	PASS		



Page: 19 of 21

Page:





Page: 21 of 21

7.4. Non-occupancy Period

During the 30 minutes observation time, UUT did not make any transmissions on a channel after a radar

----END OF REPORT-----

