

RADIO TEST REPORT FCC ID: 2AY2P-DA11ABL

Product: ² inputs by 2 outputs Analogue and Bluetooth to Dante Converter Trade Mark: Blustream Model No.: DA11ABL-WP-EU Family Model: DA11ABL-WP-US, DA11ABL-WP Report No.: S22081802908002 Issue Date: Dec 01. 2022

Prepared for

Blustream PTY LTD

26 Lionel Rd, Mount Waverley, Melbourne, Victoria 3149, Australia

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

TABLE OF CONTENTS

1 TEST RESULT CERTIFICATION	4
2 SUMMARY OF TEST RESULTS	5
3 FACILITIES AND ACCREDITATIONS	6
3.1 FACILITIES	
3.2 LABORATORY ACCREDITATIONS AND LISTINGS	
3.3 MEASUREMENT UNCERTAINTY	
4 GENERAL DESCRIPTION OF EUT	7
5 DESCRIPTION OF TEST MODES	
6 SETUP OF EQUIPMENT UNDER TEST	
6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM6.2 SUPPORT EQUIPMENT	
6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS	
7.1 CONDUCTED EMISSIONS TEST	
7.1.1 Applicable Standard	
7.1.2 Conformance Limit	
7.1.3 Measuring Instruments 7.1.4 Test Configuration	
7.1.4 Test Configuration 7.1.5 Test Procedure	
7.1.6 Test Results	
7.2 RADIATED SPURIOUS EMISSION	
7.2.1 Applicable Standard	
7.2.2 Conformance Limit	18
7.2.3 Measuring Instruments	
7.2.4 Test Configuration	
7.2.5 Test Procedure	
7.2.6 Test Results	
7.3 6DB BANDWIDTH	
7.3.1 Applicable Standard 7.3.2 Conformance Limit	
7.3.2 Conformance Limit 7.3.3 Measuring Instruments	
7.3.4 Test Setup	
7.3.4 Test Setup 7.3.5 Test Procedure	
7.3.6 Test Results	
7.4 DUTY CYCLE	
7.4.1 Applicable Standard	
7.4.2 Conformance Limit	
7.4.3 Measuring Instruments	
7.4.4 Test Setup	
7.4.5 Test Procedure	
7.4.6 Test Results	
7.5 PEAK OUTPUT POWER	
7.5.1 Applicable Standard	
7.5.2 Conjormance Limu 7.5.3 Measuring Instruments	
7.5.5 Medsaring Instruments 7.5.4 Test Setup	
7.5.5 Test Procedure	
7.5.6 Test Results	

_			
7		POWER SPECTRAL DENSITY	
	7.6.1	Applicable Standard	
	7.6.2	Conformance Limit	
	7.6.3	Measuring Instruments	
	7.6.4	Test Setup	
	7.6.5	Test Procedure	
	7.6.6	Test Results	
7	.7 (CONDUCTED BAND EDGE MEASUREMENT	
	7.7.1	Applicable Standard	
	7.7.2	Conformance Limit	
	7.7.3	Measuring Instruments	
	7.7.4	Test Setup	
	7.7.5	Test Procedure	
	7.7.6	Test Results	
7	.8 5	PURIOUS RF CONDUCTED EMISSIONS	.34
	7.8.1	Conformance Limit	
	7.8.2	Measuring Instruments	34
	7.8.3	Test Setup	
	7.8.4	Test Procedure	
	7.8.5	Test Results	
7	.9 A	ANTENNA APPLICATION	
	7.9.1	Antenna Requirement	
	7.9.2	Result	35
8	TEST	RESULTS	.36
1	M:		.36
	8.1.1	MAXIMUM CONDUCTED OUTPUT POWER	36
	8.1.2	OCCUPIED CHANNEL BANDWIDTH	
	8.1.3	MAXIMUM POWER SPECTRAL DENSITY LEVEL	42
	8.1.4	BAND EDGE	44
	8.1.5	CONDUCTED RF SPURIOUS EMISSION	47
2	M:		.51
	8.1.6	MAXIMUM CONDUCTED OUTPUT POWER	51
	8.1.7	OCCUPIED CHANNEL BANDWIDTH	
	8.1.8	MAXIMUM POWER SPECTRAL DENSITY LEVEL	57
	8.1.9	BAND EDGE	
	8.1.10	CONDUCTED RF SPURIOUS EMISSION	62

1 TEST RESULT CERTIFICATION

Applicant's name:	Blustream PTY LTD
Address	26 Lionel Rd, Mount Waverley, Melbourne, Victoria 3149, Australia
Manufacturer's Name	Blustream PTY LTD
Address:	26 Lionel Rd, Mount Waverley, Melbourne, Victoria 3149, Australia
Factory's Name	Tonlyware Technology Co.,Ltd
Address:	Floor 2, Block B,Building 5, Skyworth Innovation Valley Industrial Park, No.1 Tangtou Rd., Shiyan Subdistrict, Bao'an District, Shenzhen, China.
Product description	
Product name:	2 inputs by 2 outputs Analogue and Bluetooth to Dante Converter
Model and/or type reference:	DA11ABL-WP-EU
Family Model	DA11ABL-WP-US, DA11ABL-WP
Sample number	S220818029009
Measurement Procedure Used:	

APPLICABLE STANDARDS

APPLICABLE STANDARD/ TEST PROCEDURE

FCC 47 CFR Part 2, Subpart J

FCC 47 CFR Part 15, Subpart C

ANSI C63.10-2013

Complied

TEST RESULT

KDB 558074 D01 15.247 Meas Guidance v05r02

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	:	Sep 15, 2022 ~ Nov 30, 2022
Testing Engineer	:	Gavan Zhang
		(Gavan Zhang)
		Aless
Authorized Signatory	:	(Alex Li)

2 SUMMARY OF TEST RESULTS

R

ilac.M

FCC Part15 (15.247), Subpart C				
Standard Section	Test Item	Verdict	Remark	
15.207	Conducted Emission	PASS		
15.247 (a)(2)	6dB Bandwidth	PASS		
15.247 (b)	Peak Output Power	PASS		
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS		
15.247 (e)	Power Spectral Density	PASS		
15.247 (d)	Band Edge Emission	PASS		
15.247 (d)	Spurious RF Conducted Emission	PASS		
15.203	Antenna Requirement	PASS		

ACCREDITED

Certificate #4298.01

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab. :	The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
-	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm :	Shenzhen NTEK Testing Technology Co., Ltd.
Site Location :	1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification				
Equipment	2 inputs by 2 outputs Analogue and Bluetooth to Dante Converter			
Trade Mark	Blustream			
FCC ID	2AY2P-DA11ABL			
Model No.	DA11ABL-WP-EU			
Family Model	DA11ABL-WP-US, DA11ABL-WP			
Model Difference	All models are the same circuit and RF module, except the model name.			
Operating Frequency	2402MHz~2480MHz			
Modulation	GFSK			
Number of Channels	40 Channels			
Antenna Type	FPCB Antenna			
Antenna Gain	-1.24dBi			
Adapter	N/A			
Battery	N/A			
Power supply	DC 12V			
HW Version	N/A			
SW Version	N/A			

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

Revision History

Revision history				
Report No.	Version	Description	Issued Date	
S22081802908002	Rev.01	Initial issue of report	Dec 01. 2022	
			_	

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps/2Mbps for GFSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2404
19	2440
20	2442
38	2478
39	2480

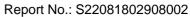
Note: fc=2402MHz+kx2MHz k=0 to 39

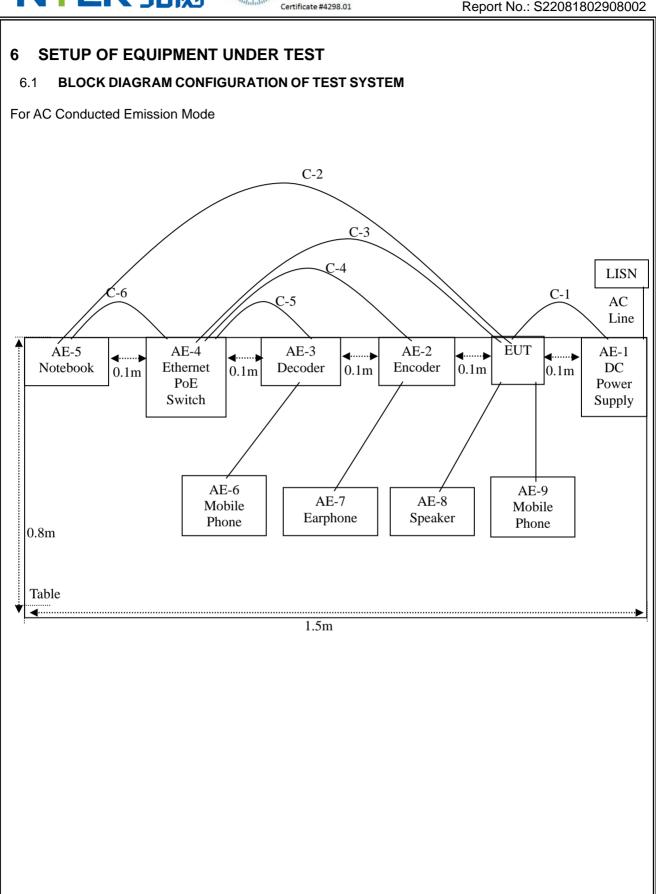
The following summary table is showing all test modes to demonstrate in compliance with the standard.

Test Cases		
Test Item	Data Rate/ Modulation	
AC Conducted Emission	Mode 1: normal link mode	
	Mode 1: normal link mode	
Radiated Test	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps/2Mbps	
Cases	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps/2Mbps	
	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps/2Mbps	
Open divisional Tarist	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps/2Mbps	
Conducted Test Cases	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps/2Mbps	
Cases	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps/2Mbps	

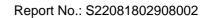
Note:

1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode(duty cycle =100% during the test)


2. AC power line Conducted Emission was tested under maximum output power.


3. For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

4. EUT built-in battery-powered, the battery is fully-charged.


Iac-MR

ACCREDITED

For Radiated Test Cases	
For Conducted Test Cases	
Measurement Instrument EUT	
Note: The temporary antenna connector is soldered on the PCB board in orde tests and this temporary antenna connector is listed in the equipment list.	r to perform conducted

ACCREDITED

Certificate #4298.01

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

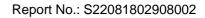
Item	Equipment	Model/Type No.	Series No.	Note
AE-1	DC Power Supply	PS-6005D	20170400781	
AE-2	Encoder	DA11AEN	N/A	
AE-3	Decoder	DA11ADE	N/A	
AE-4	Ethernet POE Switch	TL-SG1005PB	119AH6D000042	
AE-5	Notebook	Inspiron 5493	9M1NN63	
AE-6	Mobile phone	GALAXY S5	353222060510644/01	
AE-7	Earphone	N/A	N/A	
AE-8	Speaker	N/A	N/A	
AE-9	Mobile Phone	Redmi K30 5G	N/A	

Item	Cable Type	Shielded Type	Ferrite Core	Length	Note
C-1	Power Cable	NO	NO	80cm	
C-2	Power Cable	NO	YES	120cm	USB Line
C-3	Power Cable	NO	NO	100cm	LAN Line
C-4	Power Cable	NO	NO	100cm	
C-5	Power Cable	NO	NO	100cm	
C-6	Power Cable	NO	NO	100cm	
C-7	RF Cable	YES	NO	0.1m	

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS


Radiation& Conducted Test equipment

		cst equipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2022.04.06	2023.04.05	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2022.04.06	2023.04.05	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2022.04.06	2023.04.05	1 year
4	Test Receiver	R&S	ESPI7	101318	2022.04.06	2023.04.05	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2022.03.30	2023.03.29	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2022.03.31	2023.03.30	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2021.11.07 2022.11.01	2022.11.06 2023.10.31	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2022.06.17	2023.06.16	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2021.11.07 2022.11.01	2022.11.06 2023.10.31	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2022.06.16	2023.06.15	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2020.05.11	2023.05.10	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2020.05.11	2023.05.10	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2021.11.07 2022.11.01	2022.11.06 2023.10.31	1 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Conduction Test equipment							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2022.04.06	2023.04.05	1 year
2	LISN	R&S	ENV216	101313	2022.04.06	2023.04.05	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2022.04.06	2023.04.05	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11	2023.05.10	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11	2023.05.10	3 year

ACCRED

Certificate #4298.01

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

NTEK 北测[®]

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

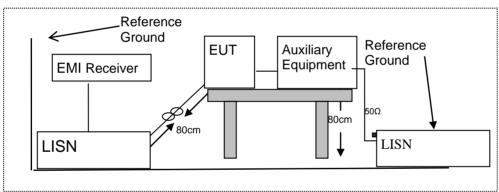
7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 Conformance Limit

Frequency(MHz)	Conducted Emission Limit		
Frequency(IVII IZ)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency


2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

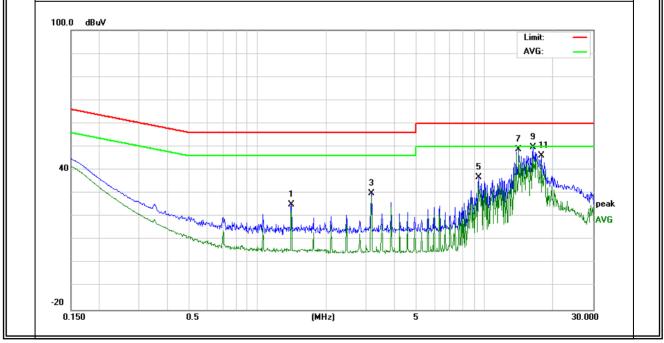
7.1.4 Test Configuration

7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

7.1.6 Test Results

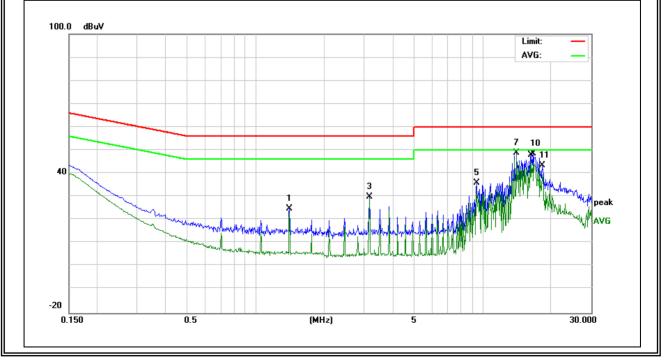

EUT:	2 inputs by 2 outputs Analogue and Bluetooth to Dante Converter	Model Name :	DA11ABL-WP-EU
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 12V from DC Power Supply AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domork
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
1.4058	15.47	9.67	25.14	56.00	-30.86	QP
1.4058	13.11	9.67	22.78	46.00	-23.22	AVG
3.1619	20.09	9.73	29.82	56.00	-26.18	QP
3.1619	18.83	9.73	28.56	46.00	-17.44	AVG
9.3899	27.07	9.91	36.98	60.00	-23.02	QP
9.3899	24.26	9.91	34.17	50.00	-15.83	AVG
14.1179	38.83	10.06	48.89	60.00	-11.11	QP
14.1179	37.78	10.06	47.84	50.00	-2.16	AVG
16.2299	39.69	10.11	49.80	60.00	-10.20	QP
16.2299	36.09	10.11	46.20	50.00	-3.80	AVG
17.6937	36.13	10.13	46.26	60.00	-13.74	QP
17.6937	32.90	10.13	43.03	50.00	-6.97	AVG

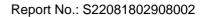
Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.


EUT:	2 inputs by 2 outputs Analogue and Bluetooth to Dante Converter	Model Name :	DA11ABL-WP-EU
Temperature:	22 °C	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	DC 12V from DC Power Supply AC 120V/60Hz	Test Mode:	Mode 1

						1 1
Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
1.4058	15.29	9.67	24.96	56.00	-31.04	QP
1.4058	13.38	9.67	23.05	46.00	-22.95	AVG
3.1619	20.30	9.69	29.99	56.00	-26.01	QP
3.1619	19.27	9.69	28.96	46.00	-17.04	AVG
9.3899	26.01	9.89	35.90	60.00	-24.10	QP
9.3899	23.33	9.89	33.22	50.00	-16.78	AVG
14.1219	38.83	10.02	48.85	60.00	-11.15	QP
14.1219	37.83	10.02	47.85	50.00	-2.15	AVG
16.2299	35.27	10.07	45.34	50.00	-4.66	QP
16.5939	38.52	10.08	48.60	60.00	-11.40	AVG
18.2457	33.24	10.11	43.35	60.00	-16.65	QP
18.2457	29.47	10.11	39.58	50.00	-10.42	AVG


Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

7.2 **RADIATED SPURIOUS EMISSION**

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

Certificate #4298.01

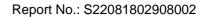
MHz	MHz	GHz				
16.42-16.423	399.9-410	4.5-5.15				
16.69475-16.69525	608-614	5.35-5.46				
16.80425-16.80475	960-1240	7.25-7.75				
25.5-25.67	1300-1427	8.025-8.5				
37.5-38.25	1435-1626.5	9.0-9.2				
73-74.6	1645.5-1646.5	9.3-9.5				
74.8-75.2	1660-1710	10.6-12.7				
123-138	2200-2300	14.47-14.5				
149.9-150.05	2310-2390	15.35-16.2				
156.52475-156.52525	2483.5-2500	17.7-21.4				
156.7-156.9	2690-2900	22.01-23.12				
162.0125-167.17	3260-3267	23.6-24.0				
167.72-173.2	3332-3339	31.2-31.8				
240-285	3345.8-3358	36.43-36.5				
322-335.4	3600-4400	(2)				
	MHz 16.42-16.423 16.69475-16.69525 16.80425-16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2 123-138 149.9-150.05 156.52475-156.52525 156.7-156.9 162.0125-167.17 167.72-173.2 240-285	MHzMHz16.42-16.423399.9-41016.69475-16.69525608-61416.80425-16.80475960-124025.5-25.671300-142737.5-38.251435-1626.573-74.61645.5-1646.574.8-75.21660-1710123-1382200-2300149.9-150.052310-2390156.52475-156.525252483.5-2500156.7-156.92690-2900162.0125-167.173260-3267167.72-173.23332-3339240-2853345.8-3358				

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Eroguopov(MHz)	Class B (dBuV/m) (at 3M)		
Frequency(MHz)	PEAK	AVERAGE	
Above 1000	74	54	

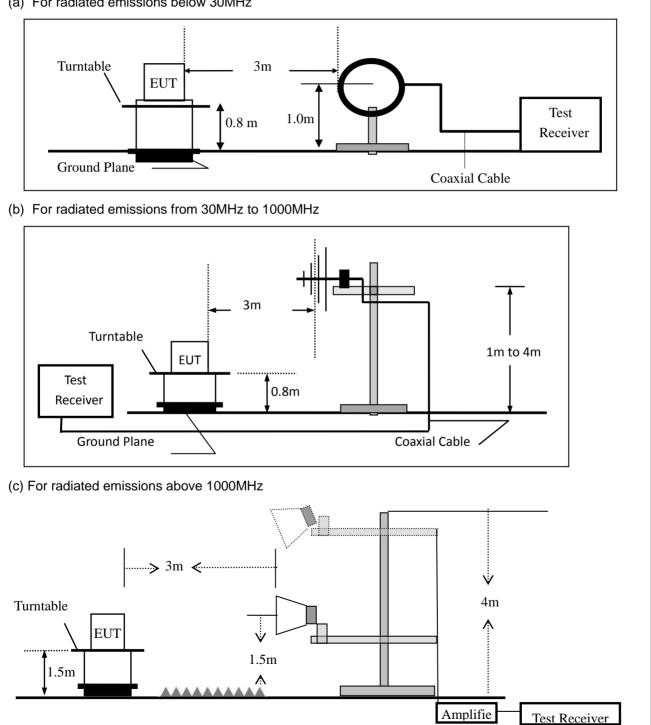

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz: Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz: Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.


Certificate #4298.01

7.2.3 **Measuring Instruments**

The Measuring equipment is listed in the section 6.3 of this test report.

Test Configuration 7.2.4

(a) For radiated emissions below 30MHz

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

Certificate #4298.0

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

eee ale lene milg epeed all allaryzer eetange	·			
Spectrum Parameter	Setting			
Attenuation	Auto			
Start Frequency	1000 MHz			
Stop Frequency	10th carrier harmonic			
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1MHz for Average			

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos.
 Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

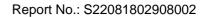
During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Certificate #4298.01

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth	
30 to 1000	QP	120 kHz	300 kHz	
Above 4000	Peak	1 MHz	1 MHz	
Above 1000	Average	1 MHz	1 MHz	

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results


■ Spurious Emission below 30MHz (9KHz to 30MHz)

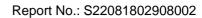
		, eenn 1 <u>–</u>)	
EUT:	2 inputs by 2 outputs Analogue and Bluetooth to Dante Converter		DA11ABL-WP-EU
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode1/Mode2/Mode3/ Mode4	Test By:	Gavan Zhang

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB)	
(MHz)	H/V	PK	AV	PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Spurious Emission below 1GHz (30MHz to 1GHz)

All the modulation modes have been tested, and the worst result was report as below:


EUT:	2 inputs by 2 outputs Analogue and Bluetooth to Dante Converter	Model Name :	DA11ABL-WP-EU
Temperature:	25 ℃	Relative Humidity:	55%
Pressure:	1010hPa	Test Mode:	Mode4-1 Mbps
Test Voltage :	DC 12V		

ACCREDITED

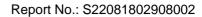
Certificate #4298.01

	(MHz) 30.7454 81.2116 104.5361 143.3261 250.3012 550.9480 Level= Meter F	(dBuV) 10.60 20.10 21.50 21.50 18.44 12.31	(dB) 25.87 15.71 18.25 18.47 18.98	(dBuV/m) 36.47 35.81 39.75 39.97	(dBuV/m) 40.00 40.00 43.50 43.50	(dB) -3.53 -4.19 -3.75 -3.53	Remark QP QP QP
V V V V Remark: Emission L	81.2116 104.5361 143.3261 250.3012 550.9480	20.10 21.50 21.50 18.44	15.71 18.25 18.47 18.98	35.81 39.75 39.97	40.00 43.50	-4.19 -3.75	QP QP
V V V Remark: Emission L	104.5361 143.3261 250.3012 550.9480	21.50 21.50 18.44	18.25 18.47 18.98	39.75 39.97	43.50	-3.75	QP
V V V Remark: Emission L	143.3261 250.3012 550.9480	21.50 18.44	18.47 18.98	39.97			
V V Remark: Emission L	250.3012 550.9480	18.44	18.98		43.50	-3 53	
V Remark: Emission L	550.9480			07 40		-3.33	QP
Remark: Emission L		12.31		37.42	46.00	-8.58	QP
Emission L	_evel= Meter F		25.66	37.97	46.00	-8.03	QP
	Bu¥/m	keading+ Fac	tor, Margin	= Emission Le		Limit: Margin:	
32 32	ton when	N Munter Average A			www.ulumon	here here here here here here here here	indefined
-8) 40 50 6	0 70 80	(MI	łz)	300 400 500	600 700 1	1000.000

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Remark
Н	30.6376	7.81	25.87	33.68	40.00	-6.32	QP
Н	81.2116	19.50	15.71	35.21	40.00	-4.79	QP
Н	104.5361	20.90	18.25	39.15	43.50	-4.35	QP
Н	141.3298	21.30	18.70	40.00	43.50	-3.50	QP
Н	250.3009	23.40	18.98	42.38	46.00	-3.62	QP
Н	451.1349	16.94	24.04	40.98	46.00	-5.02	QP
[Limit: Margin:	
-		2 IL		5	6 ×		
32	the second and the second s	White And		Mar Mark	hele and the second secon		
-8 30.	000 40 50 6	60 70 80	(MI	Hz)	300 400 500	600 700	1000.000

ACCREDITED

Certificate #4298.01


Dante Converter							DA11ABL-WP-EU			
emperature:	20	°C		Rel	ative Humic	lity:	48%			
est Mode:	Мо	de2/Mode	e3/Mode4	Tes	st By:		Gavan Zhan	g		
Frequency	Read	Cable	Antenna	Preamp	Emission	Limits	s Margin			
		loss (dP)	Factor	Factor			m) (dP)	Remark	Comment	
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/ı	, , ,			
4904	70.49	E 01	1)2 MHz)(GFSk	1		Dk	Vertical	
4804 4804	70.48 47.11	5.21 5.21	35.59 35.59	44.30 44.30	66.98 43.61	74.00 54.00		Pk AV	Vertical	
7206	68.46	6.48	36.27	44.50	66.61	74.00		 Pk	Vertical	
7206	45.05	6.48	36.27	44.60	43.20	54.00		AV	Vertical	
4804	68.13	5.21	35.55	44.30	64.59	74.00		Pk	Horizontal	
4804	45.72	5.21	35.55	44.30	42.18	54.00		AV	Horizontal	
7206	70.4	6.48	36.27	44.52	68.63	74.00	_	Pk	Horizonta	
7206	48.91	6.48	36.27	44.52	47.14	54.00		AV	Horizonta	
					0 MHz)(GFSK					
4880	69.64	5.21	35.66	44.20	66.31	74.00		Pk	Vertical	
4880	45.36	5.21	35.66	44.20	42.03	54.00) -11.97	AV	Vertical	
7320	68.23	7.10	36.50	44.43	67.40	74.00	-6.60	Pk	Vertical	
7320	47.41	7.10	36.50	44.43	46.58	54.00) -7.42	AV	Vertical	
4880	68.77	5.21	35.66	44.20	65.44	74.00	-8.56	Pk	Horizontal	
4880	49.36	5.21	35.66	44.20	46.03	54.00) -7.97	AV	Horizontal	
7320	68.41	7.10	36.50	44.43	67.58	74.00	-6.42	Pk	Horizontal	
7320	46.34	7.10	36.50	44.43	45.51	54.00	-8.49	AV	Horizontal	
			High Ch	annel (248	80 MHz)(GFSK	() Above	e 1G			
4960	70.86	5.21	35.52	44.21	67.38	74.00	-6.62	Pk	Vertical	
4960	46.28	5.21	35.52	44.21	42.80	54.00	-11.20	AV	Vertical	
7440	70.48	7.10	36.53	44.60	69.51	74.00	-4.49	Pk	Vertical	
7440	45.68	7.10	36.53	44.60	44.71	54.00	-9.29	AV	Vertical	
4960	70.71	5.21	35.52	44.21	67.23	74.00	-6.77	Pk	Horizontal	
4960	46.99	5.21	35.52	44.21	43.51	54.00	-10.49	AV	Horizontal	
7440	70.8	7.10	36.53	44.60	69.83	74.00	-4.17	Pk	Horizontal	
7440	45.06	7.10	36.53	44.60	44.09	54.00	-9.91	AV	Horizontal	

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

(3)Only the worst data is recorded in the report, the data rates (2Mbps for GFSK modulation) test result is the worst

Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz							
	2 inputs by 2 outputs Analogue and Bluetooth to Dante Converter		DA11ABL-WP-EU				
Temperature:	20 ℃	Relative Humidity:	48%				
Test Mode:	Mode2/ Mode4	Test By:	Gavan Zhang				

ACCREL

Certificate #4298.01

ilac-M

Frequency	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
				GF	SK				
2310.00	68.88	2.97	27.80	43.80	55.85	74	-18.15	Pk	Horizontal
2310.00	46.07	2.97	27.80	43.80	33.04	54	-20.96	AV	Horizontal
2310.00	70.44	2.97	27.80	43.80	57.41	74	-16.59	Pk	Vertical
2310.00	45.77	2.97	27.80	43.80	32.74	54	-21.26	AV	Vertical
2390.00	68.79	3.14	27.21	43.80	55.34	74	-18.66	Pk	Vertical
2390.00	49.47	3.14	27.21	43.80	36.02	54	-17.98	AV	Vertical
2390.00	70.45	3.14	27.21	43.80	57.00	74	-17.00	Pk	Horizontal
2390.00	45.97	3.14	27.21	43.80	32.52	54	-21.48	AV	Horizontal
2483.50	70.89	3.58	27.70	44.00	58.17	74	-15.83	Pk	Vertical
2483.50	46.97	3.58	27.70	44.00	34.25	54	-19.75	AV	Vertical
2483.50	68.47	3.58	27.70	44.00	55.75	74	-18.25	Pk	Horizontal
2483.50	48.78	3.58	27.70	44.00	36.06	54	-17.94	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

(2)Only the worst data is recorded in the report, the data rates (2Mbps for GFSK modulation) test result is the worst

Spurious Emission in Restricted Band 3260MHz-18000MHz							
EUT:	2 inputs by 2 outputs Analogue and Bluetooth to Dante Converter	Model No.:	DA11ABL-WP-EU				
Temperature:	20 ℃	Relative Humidity:	48%				
Test Mode:	Mode2/ Mode4	Test By:	Gavan Zhang				

Frequency	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment	
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре		
3260	69.04	4.04	29.57	44.70	57.95	74	-16.05	Pk	Vertical	
3260	49.52	4.04	29.57	44.70	38.43	54	-15.57	AV	Vertical	
3260	69.09	4.04	29.57	44.70	58.00	74	-16.00	Pk	Horizonta	
3260	48.79	4.04	29.57	44.70	37.70	54	-16.30	AV	Horizonta	
3332	68.94	4.26	29.87	44.40	58.67	74	-15.33	Pk	Vertical	
3332	47.56	4.26	29.87	44.40	37.29	54	-16.71	AV	Vertical	
3332	69.4	4.26	29.87	44.40	59.13	74	-14.87	Pk	Horizonta	
3332	45.23	4.26	29.87	44.40	34.96	54	-19.04	AV	Horizonta	
17797	58.31	10.99	43.95	43.50	69.75	74	-4.25	Pk	Vertical	
17797	36.54	10.99	43.95	43.50	47.98	54	-6.02	AV	Vertical	
17788	57.92	11.81	43.69	44.60	68.82	74	-5.18	Pk	Horizonta	
17788	36.64	11.81	43.69	44.60	47.54	54	-6.46	AV	Horizonta	

Note: (1) All other emissions more than 20dB below the limit. (2)Only the worst data is recorded in the report, the data rates (2Mbps for GFSK modulation) test result is the worst

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.2.

Certificate #4298.01

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows Subclause 11.8 of ANSI C63.10

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \geq 3*RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3.6 Test Results

	2 inputs by 2 outputs Analogue and Bluetooth to Dante Converter		DA11ABL-WP-EU
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Gavan Zhang

7.4 DUTY CYCLE

7.4.1 Applicable Standard

According to KDB 558074 D01 15.247 Meas Guidance v05r02s Section 6.

7.4.2 Conformance Limit

No limit requirement.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

The transmitter output is connected to the Spectrum Analyzer. We tested accroding to the zero-span measurement method, 6.0)b) in KDB 558074

The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if $T \le 6.25$ microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Zero Span RBW = 8MHz(the largest available value) VBW = 8MHz (\geq RBW) Number of points in Sweep >100 Detector function = peak Trace = Clear write Measure T_{total} and T_{on} Calculate Duty Cycle = T_{on} / T_{total}

7.4.6 Test Results

	2 inputs by 2 outputs Analogue and Bluetooth to Dante Converter		DA11ABL-WP-EU
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	N/A	Test By:	N/A

Note: Not Applicable

7.5 PEAK OUTPUT POWER

7.5.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.3.1.

Certificate #4298.01

7.5.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows Subclause 11.9.1.1 of ANSI C63.10 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Set the RBW \geq DTS bandwidth. Set VBW =3*RBW. Set the span \geq 3*RBW Set Sweep time = auto couple. Set Detector = peak. Set Trace mode = max hold. Allow trace to fully stabilize. Use peak marker function to determine the peak amplitude level.

7.5.6 Test Results

	2 inputs by 2 outputs Analogue and Bluetooth to Dante Converter		DA11ABL-WP-EU
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Gavan Zhang

7.6 POWER SPECTRAL DENSITY

7.6.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.4.

7.6.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows Measurement Procedure Subclause 11.10.2 of ANSI C63.10 This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5*DTS bandwidth.
- c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d) Set the VBW \geq 3 RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.6.6 Test Results

E		2 inputs by 2 outputs Analogue and Bluetooth to Dante Converter		DA11ABL-WP-EU
-	Temperature:	20 ℃	Relative Humidity:	48%
-	Fest Mode:	Mode2/Mode3/Mode4	Test By:	Gavan Zhang

7.7 CONDUCTED BAND EDGE MEASUREMENT

7.7.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

7.7.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

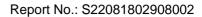
The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.


Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.7.6 Test Results

	2 inputs by 2 outputs Analogue and Bluetooth to Dante Converter		DA11ABL-WP-EU
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode4	Test By:	Gavan Zhang

7.8 SPURIOUS RF CONDUCTED EMISSIONS

7.8.1 Conformance Limit

1. Below -20dB of the highest emission level in operating band.

2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

Certificate #4298.01

7.8.2 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.3 Test Setup

Please refer to Section 6.1 of this test report.

7.8.4 Test Procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength , and measure frequency range from 30MHz to 26.5GHz.

7.8.5 Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

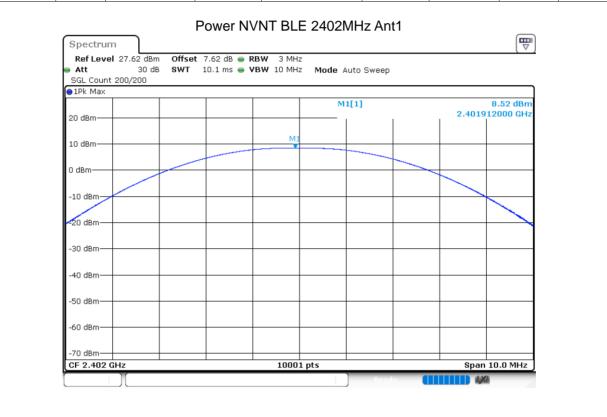
7.9 ANTENNA APPLICATION

7.9.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.9.2 Result

The EUT antenna is permanent attached FPCB Antenna (Gain: -1.24 dBi). It comply with the standard requirement.



8 TEST RESULTS

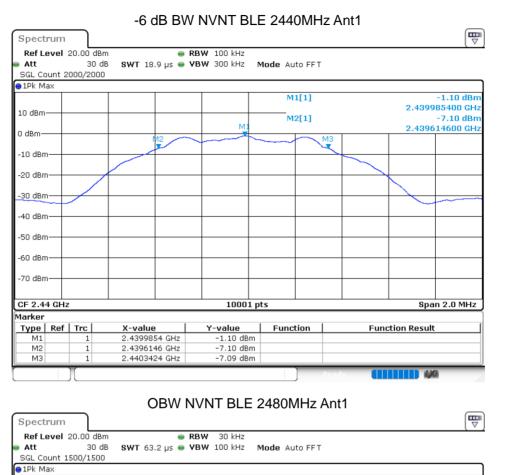
1M:

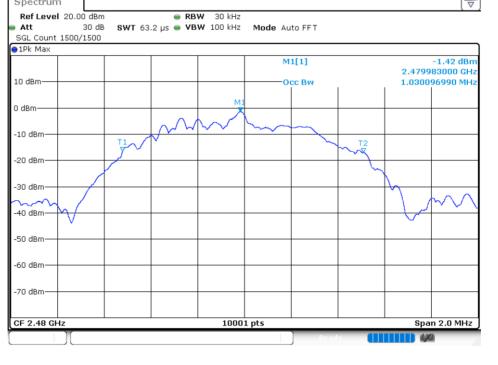
8.1.1 MAXIMUM CONDUCTED OUTPUT POWER

Condition	Mode	Frequency	Antenna	Conducted	Duty	Total	Limit	Verdict
		(MHz)		Power (dBm)	Factor	Power	(dBm)	
					(dB)	(dBm)	. ,	
NVNT	BLE	2402	Ant 1	8.519	0	8.519	30	Pass
NVNT	BLE	2440	Ant 1	7.099	0	7.099	30	Pass
NVNT	BLE	2480	Ant 1	8.913	0	8.913	30	Pass

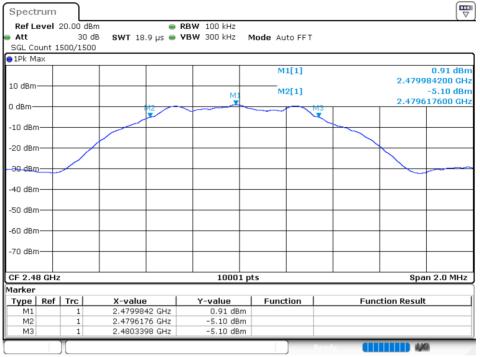
ACCREDITED

8.1.2 OCCUPIED CHANNEL BANDWIDTH

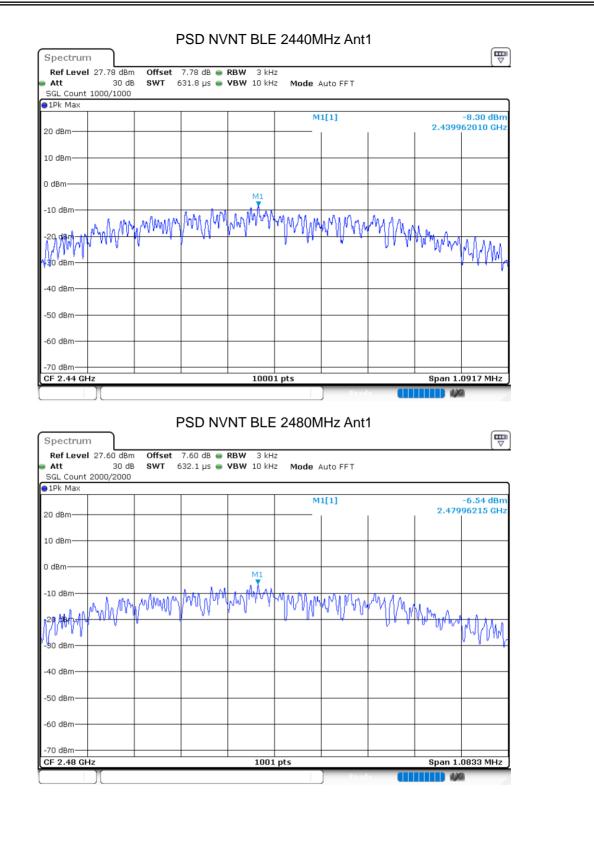

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE	2402	Ant 1	1.0337	0.7278	0.5	Pass
NVNT	BLE	2440	Ant 1	1.0323	0.7278	0.5	Pass
NVNT	BLE	2480	Ant 1	1.0301	0.7222	0.5	Pass
	🕳 Att	el 20.00 dBm	● RBW	30 kHz 100 kHz Mode A			
	UPK Max			7	41[1]	-1.90 dBm	
	10 dBm				Dec Bw	2.401984600 GHz 1.033696630 MHz	
	0 dBm						
	-10 dBm—			· ~~			
	-20 dBm—						
	-30 dBm— -40 dBm—					1 m	
	-40 dBm	V				V	
	-60 dBm—						
	-70 dBm—						
	CF 2.402	GHz		10001 pts		Span 2.0 MHz	
		Υ Γ			Doody	4.464	



ACCREDITED



ACCREDITED


NTEK 北测[®]

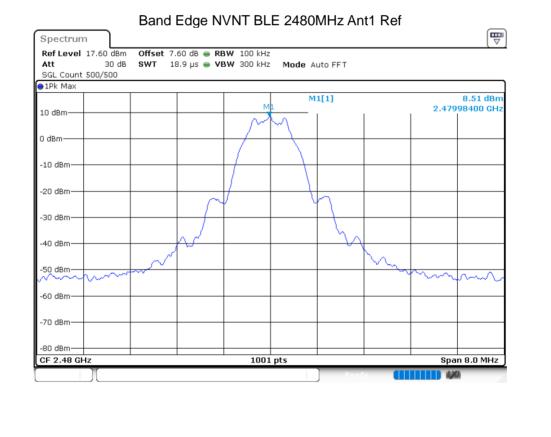
8.1.3 MAXIMUM POWER SPECTRAL DENSITY LEVEL

	NA 1.		A (
Condition	Mode	Frequency (MHz)		Max PSD (dE		Limit (dBm/3kHz)	Verd
NVNT	BLE	2402	Ant 1	-7.09		8	Pas
NVNT	BLE	2440	Ant 1	-8.29		8	Pas
NVNT	BLE	2480	Ant 1	-6.54	5	8	Pas
	👄 Att	rum evel 27.62 dBm Offset 7. 30 dB SWT 631 punt 1000/1000	62 dB 🖷 RBW 3	LE 2402MHz A			
				M1[1]		-7.10 dBm 2.401962340 GHz	
	20 dBm					2.401902040 GHZ	
	10 dBm						
	0 dBm—		Mi	L			
	-10 dBm		- ha have a way	A	0 0 0 0 0		
	-291946	And Man Man	an Mai Madire	. M. M. M. M. M.	WMAA	An Manana a A an	
	130 dBm					· · · · · · · · · · · · · · · · · · ·	
	-40 dBm	n					
	-50 dBm	n					
	-60 dBm	n					
	-70 dBm			1001 ptc		8000 1 0017 MH-	
	CF 2.4	02 GHz	10	001 pts		Span 1.0917 MHz	

ACCREDITED

8.1.4 BAND EDGE

Condition	Mode	Frequenc		Ante	nna	Max Val	ue (dBc)	Limit (dBc)	Verdict
NVNT	BLE	24(Ant			<u>ие (ивс)</u> 9.2	-20	Pass
NVNT	BLE	248		Ant			.68	-20	Pass
	DLL	2-10	50	7 (11)		00	.00	20	1 400
			Band Ec	dae NI	/NT R	I F 2402	MHz Ant1	Ref	
	Spect			Jge IN				IXEI	
		vel 17.62 dBm	Offset 7.62		W 100 ki				[\Box]
	Att	30 dB		_		HZ Mode A	uto FFT		
	SGL Co	ount 100/100							
						M	1[1]		8.06 dBm
	10 dBm·					<u>M1</u>		2.40	199200 GHz
					\wedge	m			
	0 dBm—				-/	+			
	-10 dBm								
	10 001				/				
	-20 dBm	ı			<u> </u>	+			
				\sim			γ		
	-30 dBm	۱ <u> </u>							
	-40 dBm)							
			$ \lambda $	~			۲ × ۲		
	-50 dBm		~~~					Manna and	
	\sim	man 1							\sim
	-60 dBm								
	-70 dBm	ı							
	-80 dBm								
	CF 2.40	D2 GHz			10	01 pts		Spa	an 8.0 MHz


ACCREDITED

Band Edge NVNT BLE 2402MHz Ant1 Emission	

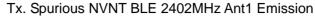
ACCREDITED

Spectrum									
Ref Level 1			_						
Att SGL Count 5	30 dB 500/500	SWT 227.5	us 👄 VBV	V 300 kHz	Mode /	Auto FF	Т		
●1Pk Max									
					M	1[1]			8.08 dBr
10 dBm									95000 GH
0 40					M	2[1]			48.03 dBr
0 dBm							1	2.400	00000 GH
-10 dBm)1 -11.94	1 dD m							
)1 -11.94	+ uBm							
-20 dBm		+						+	H H
-30 dBm									
-30 ubiii									
-40 dBm									1
				M4					M₽
-50 dBm		whole by mentioned	range up 1	who while a	COLUMN 1		and the firmer	M3	and the
-60 dBm	and the second	Cara - almerican		Y	CALIFORNY MUNICIPALITY	of the second	Aller and Alexand	and the second	v
00 00.00									
-70 dBm									
-80 dBm	011-			1001	nte			Oten	2.406 GHz
Start 2.306	GHZ			1001	pts			stop .	2.400 GHZ
Marker Type Ref	L Two L	X-value	1 4	-value	Func	tion	Fue	ction Result	
M1	1	2,40195 GF		8.08 dBr		uun	Fun	ction Result	
M2	1	2.4 Gł		-48.03 dBr					
M3	1	2.39 Gł		-54.48 dBr					
M4	1	2.3498 Gł	lz -	-51.14 dBr	n				
)(1	Ready		7

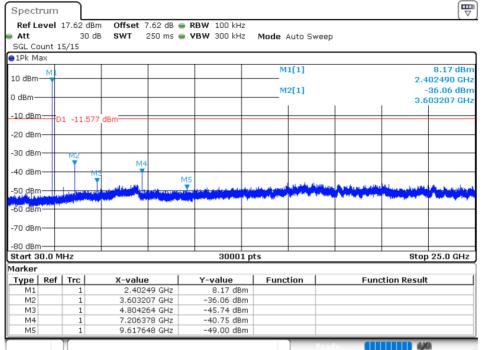
Band Edge NVNT BLE 2480MHz Ant1 Emission
--

ACCREDITED

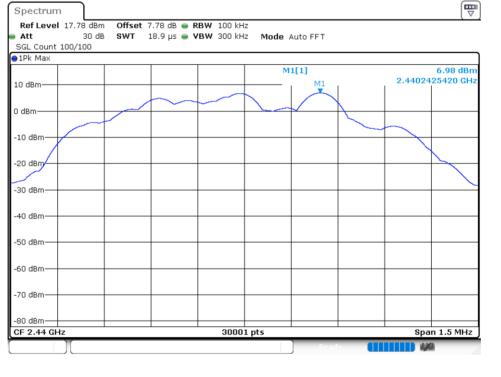
Spectr	um	1								
Ref Lev	el 1	7.60 d	IBm Offset	7.60 dB	🔵 RBW 100 kH	z				
Att				27.5 µs	😑 VBW 300 kH	z Mode	Auto FF	Τ		
SGL Cou		00/500	0							
⊖1Pk Ma	X									
M1 10 d8m-						M	1[1]			8.50 dBm
10 d 8m-										95000 GHz
						M	2[1]			50.88 dBm
u upin—								1	2.4833	50000 GHz
-10 cBm·	_		488 dBm							
		1 -11.	400 UBIII							
-20 dBm·										
-30 dBm·										
-40 dBm	- IN	A.4								
M		Y								
, 50 dBm			M3		hat a				Allerte	
J. 4	www.mba	nundry	manustrynalist	www.m	munipersonalling	16th workinger	a through	a manual some where	walnut conform	manupolente
-60 dBm·										
-70 dBm-										
-70 abm·										
-80 dBm-										
Start 2.	_	GHz	1		1001	pts		I	Stop 2	.576 GHz
Marker										
Туре	Ref	Trc	X-value		Y-value	Func	tion	Fun	ction Result	
M1		1		95 GHz	8.50 dB					
M2		1		35 GHz	-50.88 dB					
M3		1		.5 GHz	-54.56 dB					
M4	_	1	2.4	88 GHz	-45.18 dB	m				
		Л]	Ready		



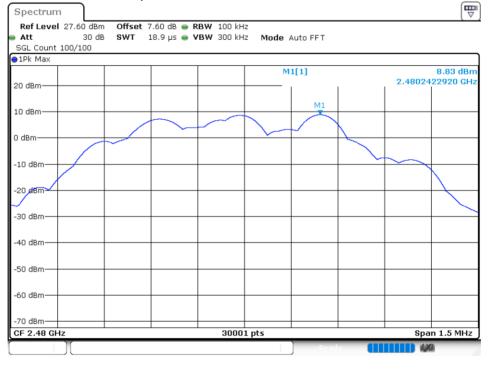
ACCREDITED Certificate #4298.01


8.1.5 CONDUCTED RF SPURIOUS EMISSION

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant 1	-44.48	-20	Pass
NVNT	BLE	2440	Ant 1	-46.32	-20	Pass
NVNT	BLE	2480	Ant 1	-44.87	-20	Pass
	👄 Att	rum evel 17.62 dBm Offset 7.62 30 dB SWT 18. punt 100/100	2 dB 👄 RBW 100	BLE 2402MHz Ant	1 Ref	
	UPK M			M1[1]		8.42 dBm
	10 dBm				2.40224	33420 GHz
	0 dBm-					
	-10 dBn					
	-20 dBn	n				
	-30 dBn	n				
	-40 dBn	n				
	-50 dBn	n				
	-60 dBn	n				
	-70 dBn	n				
	-80 dBn					
	CF 2.4	02 GHz	30	001 pts	Spa	n 1.5 MHz



ACCREDITED



Tx. Spurious NVNT BLE 2440MHz Ant1 Emission

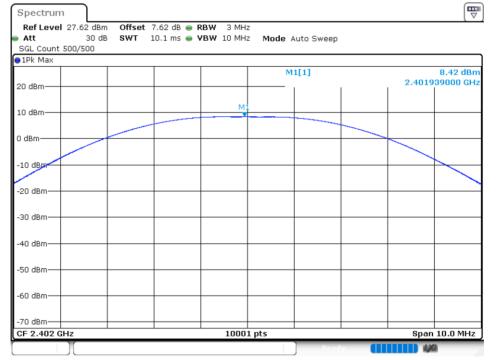
ACCREDITED

Spectrum									
Ref Level	17.78	dBm Offset 7	.78 dB (RBW 100 kHz					
Att	3	Odb SWT 2	250 ms (🛢 VBW 300 kHz	Mode A	uto Swee	ep		
SGL Count 1	5/15								
∋1Pk Max									
					M1	[1]			6.87 dBn
10 dBm 🕌								2.4	139940 GH:
					M2	[1]			-39.34 dBn
0 dBm								7.3	320408 GH
-10 dBm									
D	1 -13	.025 dBm							
-20 dBm									
-30 dBm		Ma Mé							
-40 dBm		M3 ME							
-40 ubiii				M5					
-50 dBm			-	The second second	أللجه وعدائك	والبالوابطواول	Hell Constant of the	فاللهمط ووارمحا	and the second second
and the share should be	and a state	and the product of the state of the state	ويتحاصر والمتحاصر	hand hand a second s	and the second of			a state of the second s	Contraction of the second
-60 dBm									
-70 dBm									
-/0 ubiii									
Start 30.0 M	1Hz			30001 pt	ts		•	Stop	25.0 GHz
Marker									
Type Ref	Trc	X-value	- 1	Y-value	Funct	ion	Fun	ction Resul	t
M1	1	2.4399	94 GHz	6.87 dBm					
M2	1	7.32040	08 GHz	-39.34 dBm					
MЗ	1	4.88000		-40.51 dBm					
M4	1	7.32040		-39.34 dBm					
M5	1	9.57603	31 GHz	-49.81 dBm					
	1						a dia		6

Tx. Spurious NVNT BLE 2480MHz Ant1 Emission

ACCREDITED

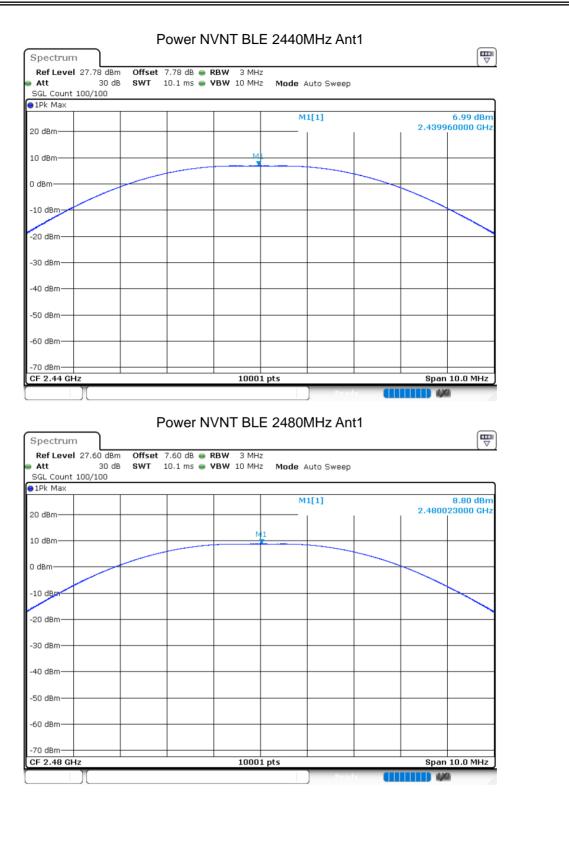
Spectru	n								
Ref Leve				RBW 100 kH					
Att	-	Odb SWT :	250 ms (VBW 300 kH	z Mode /	Auto Swee	p		
SGL Coun	t 10/10								
1Pk Max									
20 dBm—					M	1[1]			8.79 dBm
20 ubiii—						0[1]			79890 GHz 36.05 dBm
10 dBm-	њ. 				IMI.	2[1]			19734 GHz
0 dBm——									
-10 dBm—	D1 -11	.170_dBm							
-20 dBm—									
-30 dBm—	1712								
-40 dBm—	Ţ	MB	4						
-50 dBm—		and seen		M15	and the state of the	ويتصالم خنصيما	a Burker ware	A State of the State	A. A. Maria
and the sure later	1 III			and the second se	المطلق والمحمد وروساته	and the second second second	ne de la contraction	[Bississionality	and the strength
-60 dBm—	a deserved and the second								
-70 dBm— Start 30.0				3000	1				25.0 GHz
	MHZ			3000.	r prs			5101	23.0 GH2
1arker	() =				1 -		_		(
Type Ro M1	ef Trc	X-value	9 GHz	<u>Y-value</u> 8.79 dB	Funct	tion	Fund	ction Result	
M1 M2	1	3.7197		-36.05 dB					
M3	1		91 GHz	-44.81 dB					
M4	1	7.4402		-41.22 dB					
M5	1	10.1120		-50.01 dB					
	1					Re	adv 💼		2



2M:

8.1.6 MAXIMUM CONDUCTED OUTPUT POWER

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant 1	8.418	0	8.418	30	Pass
NVNT	BLE	2440	Ant 1	6.987	0	6.987	30	Pass
NVNT	BLE	2480	Ant 1	8.799	0	8.799	30	Pass

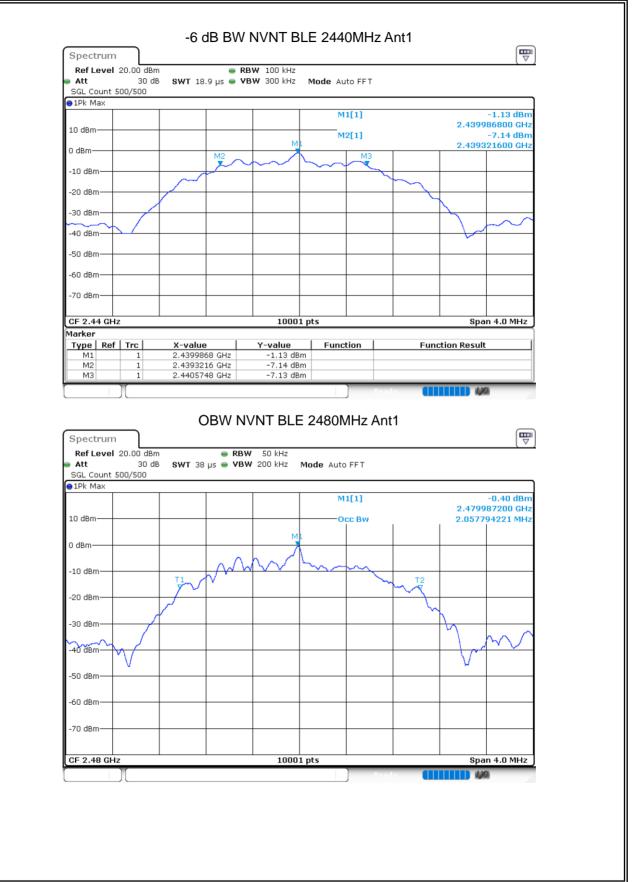

Power NVNT BLE 2402MHz Ant1

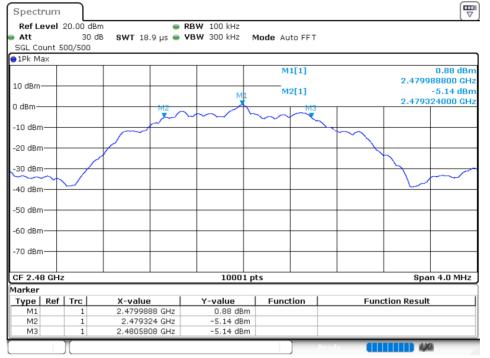
ilac-MR

ACCREDITED

NTEK 北测[®]

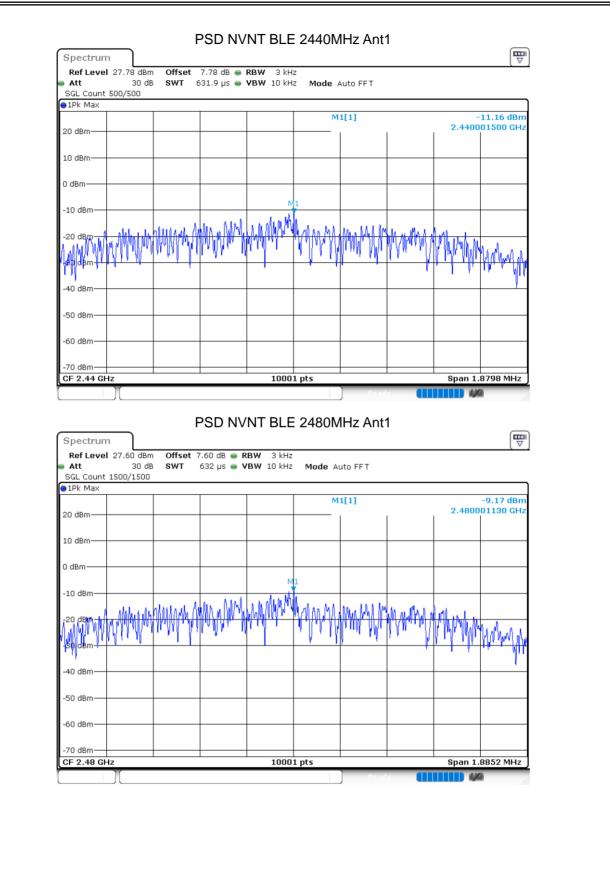
8.1.7 OCCUPIED CHANNEL BANDWIDTH


	Mada	F	A	000/			Manaliat
Condition	Mode	Frequency	Antenna	99%	-6 dB	Limit -6 dB	Verdict
		(MHz)		OBW	Bandwidth	Bandwidth	
				(MHz)	(MHz)	(MHz)	
NVNT	BLE	2402	Ant 1	2.0578	1.258	0.5	Pass
NVNT	BLE	2440	Ant 1	2.0578	1.2532	0.5	Pass
NVNT	BLE	2480	Ant 1	2.0578	1.2568	0.5	Pass
	🖷 Att	el 20.00 dBm	● RBW 5 38 µs ● VBW 20	io kHz IO kHz Mode Aut	O FFT		
	😑 1Pk Max						
	10 dBm—				M1[1]	-0.24 dBm 2.401990400 GHz	
	10 GBW-			(Dec Bw	2.057794221 MHz	
	0 dBm			м <u>р</u>			



-6 dB BW NVNT BLE 2480MHz Ant1

ACCREDITED


NTEK 北测[®]

8.1.8 MAXIMUM POWER SPECTRAL DENSITY LEVEL

Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBr	n/3kHz)	Limit (c	Bm/3kHz)	Verd
NVNT	BLE	2402	Ant 1	-9.667			Pas	
NVNT	BLE	2440	Ant 1	-11.158		8		Pas
NVNT	BLE	2480	Ant 1	-9.171			8	Pas
	👄 Att	trum .evel 27.62 dBm Offset 7. 30 dB SWT 63: ount 500/500	62 dB 🖷 RBW 3	LE 2402MHz An	it1			
				M1[1]			-9.67 dBm	
	20 dBm) <u> </u>		1	1	2.40200	01890 GHz	
	10 dBm	1						
	0 dBm-							
	-10 dBn	1	n . ANAL I ANN	MI COM AN MA MANA AND	Male and Male			
	-20 dBn -Bit dBn	White the state of	<u>n Minin Minint</u>			MAN MA	Happy	
	-40 dBn	n					1	
	-50 dBn	n						
	-60 dBn	n						
	-70 dBn	n						
	CF 2.4	02 GHz	10	0001 pts		Span 1	.887 MHz	

ACCREDITED

8.1.9 BAND EDGE

Condition	Mode	Frequence	y (MHz)	Ante	enna	Max Val	ue (dBc)	Limit (dBc)	Verdict
NVNT	BLE	240)2	An	nt 1	-58	.75	-20	Pass
NVNT	F BLE 248		30 Ant 1			-56	.54	-20	Pass
	Spectr						MHz Ant1	Ref	
	Att	vel 17.62 dBm 30 dB unt 200/200	Offset 7.62 SWT 18.9			Hz Hz Mode A	uto FFT		
	●1Pk Ma	ж							
	10 dBm-					M1 M	1[1]	2.40	8.05 dBm 199200 GHz
	0 dBm—				\sim	fm,			
	-10 dBm			-f			\square		
	-20 dBm	_	<u> </u>						
	-30 dBm		/ m]				$\overline{\mathbf{x}}$	
	-40 dBm							-	1
	-50 dBm								hm
	-60 dBm								
	-70 dBm								
	-80 dBm								
	CF 2.40	02 GHz			10	D1 pts		Spa	an 8.0 MHz 🕽

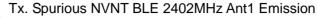
ACCREDITED

Spectrun	n 📘			NT BLE 2					
Ref Level		Bm Offset	7.62 dB 👄	RBW 100 kH	z				(*)
Att SGL Count	30		227.5µs 👄	VBW 300 kH	z Mode /	Auto FFT			
●1Pk Max	300/300								
					M	1[1]			8.10 dBm
10 dBm					M	2[1]			95000 GHz 23.45 dBm
0 dBm									00000 GHz
-10 dBm	D1 -11.9	155 dBm							
-20 dBm									Ma
									T II
-30 dBm									
-40 dBm									
-50 dBm			unan what a free who	M4		1		m3 M3	
-60 dBm	w april V	mulanmalypren	upper	and some stands	norman	an work where	und the your have	an show the sheet has	~~~
-70 dBm									
-80 dBm	6 GHz			1001	pts			Stop	2.406 GHz
Marker				1001				0100	
Type Re		X-valu		Y-value	Func	tion	Fund	ction Result	
M1 M2	1	2.40	195 GHz 2.4 GHz	8.10 dB -23.45 dB					
M3	1		2 20 CU2	-55.00 dB	lm				
M4			2.39 GHz						
M4		2.3	481 GHz	-50.71 dB	Im) MHz Ar	nt1 Ref		
Spectrun	1	2.3 Band	I Edge N	-50.71 dB	.E 2480) MHz Ar	nt1 Ref		
Spectrun Ref Level	n 17.60 dE	2.3 Band	I Edge N 7.60 db • F	-50.71 dB	E 2480		nt1 Ref		
Spectrun	1 1 17.60 df 30	2.3 Band 3m Offset dB swT	I Edge N 7.60 db • F	-50.71 dB	E 2480		nt1 Ref		
Spectrun Ref Level Att	1 1 17.60 df 30	2.3 Band 3m Offset dB swT	I Edge N 7.60 db • F	-50.71 dB	E 2480	uto FFT	nt1 Ref		
Spectrun Ref Level Att SGL Count 1Pk Max	1 1 17.60 df 30	2.3 Band 3m Offset dB swT	I Edge N 7.60 db • F	-50.71 dB	E 2480		nt1 Ref	2.479	
Spectrun Ref Level Att SGL Count	1 1 17.60 df 30	2.3 Band 3m Offset dB swT	I Edge N 7.60 db • F	-50.71 dB	E 2480	uto FFT	nt1 Ref	2.479	8.34 dBm
Spectrun Ref Level Att SGL Count 1Pk Max	1 1 17.60 df 30	2.3 Band 3m Offset dB swT	I Edge N 7.60 db • F	-50.71 dB	E 2480	uto FFT	ht1 Ref	2.479	8.34 dBm
Spectrun Ref Level Att SGL Count 1Pk Max 10 dBm	1 1 17.60 df 30	2.3 Band 3m Offset dB swT	I Edge N 7.60 db • F	-50.71 dB	E 2480	uto FFT	ht1 Ref	2.479	8.34 dBm
Spectrun Ref Level Att SGL Count 1Pk Max 10 dBm	1 1 17.60 df 30	2.3 Band 3m Offset dB swT	I Edge N 7.60 db • F	-50.71 dB	E 2480	uto FFT	nt1 Ref	2.479	8.34 dBm
Spectrun Ref Level Att SGL Count IPk Max 10 dBm	1 1 17.60 df 30	2.3 Band 3m Offset dB swT	I Edge N 7.60 db • F	-50.71 dB	E 2480	uto FFT	nt1 Ref	2.479	8.34 dBm
Spectrun Ref Level Att SGL Count 1Pk Max 10 dBm	1 1 17.60 df 30	2.3 Band 3m Offset dB swT	I Edge N 7.60 db • F	-50.71 dB	E 2480	uto FFT	ht1 Ref	2.479	8.34 dBm
Spectrun Ref Level Att SGL Count IPk Max 10 dBm	1 1 17.60 df 30	2.3 Band 3m Offset dB swT	I Edge N 7.60 db • F	-50.71 dB	E 2480	uto FFT		2.479	8.34 dBm
Spectrun Ref Level Att SGL Count 10 dBm	1 1 17.60 df 30	2.3 Band 3m Offset dB swT	I Edge N 7.60 db • F	-50.71 dB	E 2480	uto FFT		2.479	8.34 dBm
Spectrun Ref Level Att SGL Count 10 dBm	1 1 17.60 df 30	2.3 Band 3m Offset dB swT	I Edge N 7.60 db • F	-50.71 dB	E 2480	uto FFT		2.479	8.34 dBm
Spectrun Ref Level Att SGL Count 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	1 1 17.60 df 30	2.3 Band 3m Offset dB swT	I Edge N 7.60 db • F	-50.71 dB	E 2480	uto FFT		2.479	8.34 dBm
Spectrun Ref Level Att SGL Count 10 dBm	1 1 17.60 df 30	2.3 Band 3m Offset dB swT	I Edge N 7.60 db • F	-50.71 dB	E 2480	uto FFT		2.479	8.34 dBm
Spectrun Ref Level Att SGL Count 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	1 1 17.60 df 30	2.3 Band 3m Offset dB swT	I Edge N 7.60 db • F	-50.71 dB	E 2480	uto FFT		2.479	8.34 dBm
Spectrun Ref Level Att SGL Count • 1Pk Max 10 dBm - 10 dBm - 20 dBm - 30 dBm - 40 dBm - 50 dBm - 60 dBm	1 1 17.60 df 30	2.3 Band 3m Offset dB swT	I Edge N 7.60 db • F	-50.71 dB	E 2480	uto FFT		2.479	8.34 dBm
Spectrun Ref Level Att SGL Count 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	1 1 17.60 df 30	2.3 Band 3m Offset dB swT	I Edge N 7.60 db • F	-50.71 dB	E 2480	uto FFT		2.479	8.34 dBm
Spectrun Ref Level Att SGL Count • 1Pk Max 10 dBm - 10 dBm - 20 dBm - 30 dBm - 40 dBm - 50 dBm - 60 dBm	1 1 17.60 df 30	2.3 Band 3m Offset dB swT	I Edge N 7.60 db • F	-50.71 dB	E 2480	uto FFT		2.479	8.34 dBm

ACCREDITED

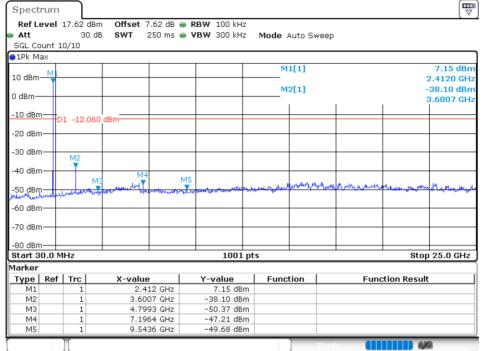
Spectr	um		Band Edg	ge N∖	/NT BLE	248	BOMH	lz Ant	1 Emis	sion		
Ref Lev Att SGL Cou	el 1 int 1	30 (RBW 100 VBW 300 		Mode 4	Auto FFT				
1Pk Ma	×						M	1[1]				8.42 dBm
10 d 8m-						_					2.479	95000 GHz
al.							M	2[1]			-	51.57 dBm
) d <mark>B</mark> m —	+										2.483	50000 GHz
11												
10 dBm-	=D:	1 -11.6	59 dBm			-						
20 dBm-												
0 dBm-	_					_						
+0 dBr	N	14										
50 dBm	2 1	7										
			webyphen to have	the public	Herberry Million		1. U. Marine and	a sur de l	ماريخ ويديونان	and and the	Mundan	A A.
50 dBm-	A none	In come	and the second second	0	. Personality	m yrinu	hav nov Cas	Allan (Anali Ja	n. A. Orochechandall	104-0 Mar.		. Adoto a Atress
70 dBm-	-					_						
30 dBm- tart 2.	476										01 0	.576 GHz
	+/0(JHZ			10	01 pts	,				stop z	.376 GHZ
arker	n-6	True I			N	1	F					
Гуре M1	Ket	Trc 1	X-value	95 GHz	<u>Y-value</u> 8.42		Funct	lion	F	unction R	cesult	
M2		1		35 GHZ	-51.57							
M3		1		.5 GHz	-55.54							
M4		1		38 GHz	-48.20							

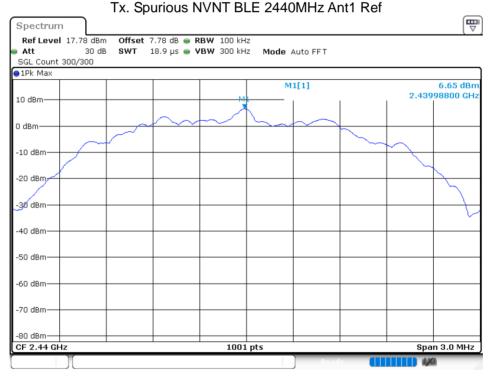
ACCREDITED



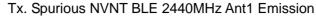
ACCREDITED Certificate #4298.01

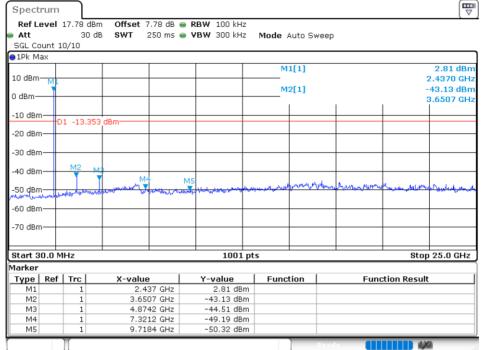
8.1.10 CONDUCTED RF SPURIOUS EMISSION

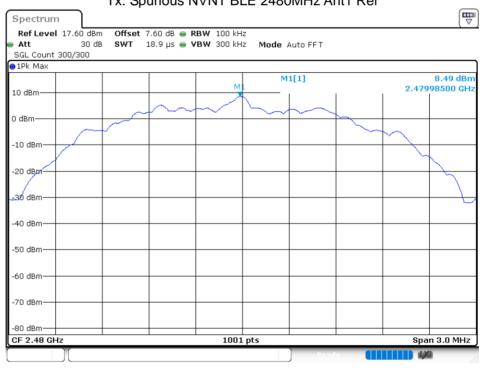

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant 1	-46.03	-20	Pass
NVNT	BLE	2440	Ant 1	-49.77	-20	Pass
NVNT	BLE	2480	Ant 1	-45.74	-20	Pass
	Att SGL Co	rum evel 17.62 dBm Offset 7.62 30 dB SWT 18.9 punt 300/300	2 dB 🖷 RBW 100	BLE 2402MHz Ant	1 Ref	
	⊖1Pk M	ax				7.04.40.00
	10 dBm			M1[1]	2.401	7.94 dBm 99700 GHz
			\sim			
	0 dBm—				~ _	
	-10 dBm				\rightarrow	
	-20 dBr				~	
	-30 dBm	n				
	-40 dBm	n				
	-50 dBr	n				
	-60 dBm	n				
	-70 dBm	n				
	-80 dBm					
	CF 2.4	UZ GHZ	10	001 pts	Spa	n 3.0 MHz



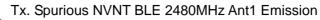
ACCREDITED


Certificate #4298.01


Tx. Spurious NVNT BLE 2440MHz Ant1 Ref



ACCREDITED


Certificate #4298.01

Tx. Spurious NVNT BLE 2480MHz Ant1 Ref

ITED

ACCRED

Certificate #4298.01

Spect	rum	1						
	evel			🖷 RBW 100 kHz				
Att		-	0 dB SWT 250 ms	🔵 VBW 300 kHz	Mode A	uto Sw	/eep	
SGL Co		5/15						
⊖1Pk M	ax							
10 dBm	M1				M1	[1]		7.71 dBm
TO UBIII						[1]		2.4870 GHz -37.25 dBm
0 dBm-					M2	11		-37.25 uBm 3.7006 GHz
					1		1	0.7000 012
-10 dBn	□ <mark>──</mark> □	1 -11	.509 dBm					
-20 dBn								
-20 000	"							
-30 dBn	n 🕂	M2						
		Ť						
-40 dBn			M3 M4	ME				
-50 dBn			The second se	نىپىغىيىلاما يىر بىيى ¹⁰ .	and my struck	يافر بالمتاريقير	Mury reput to second	march and the March and a second and a second s
-50 dBn	manar al	Phil water	and the states of					
-60 dBn	n							
-70 dBn	n							
-80 dBn	n							
Start 3	0.0 M	IHz		1001 pt	s		I	Stop 25.0 GHz
Marker								
Type	Ref	Trc	X-value	Y-value	Functi	ion	Fund	ction Result
M1		1	2.487 GHz	7.71 dBm				
M2		1	3.7006 GHz	-37.25 dBm				
M3		1	4.8992 GHz	-50.08 dBm				
M4		1	7.4461 GHz	-47.82 dBm				
M5		1	10.043 GHz	-50.21 dBm				
							Ready	

END OF REPORT