Date of measurement: 2/12/2024 # A. Experimental conditions. | 7.1. = 2. P C : 111 C : | | |---|-------------------------------| | Probe | SN 26/23 EPGO420 | | ConvF | 1.15 | | Area Scan | surf_sam_plan.txt | | Zoom Scan | 7x7x12,dx=4mm dy=4mm dz=2.0mm | | Phantom | Validation plane | | Device Position | Body | | Band | 5800 | | Signal | | ### **B.** Permitivity | Frequency (MHz) | 5745.000 | |---------------------------------------|----------| | Relative permitivity (real part) | 34.278 | | Relative permitivity (imaginary part) | 16.355 | | Conductivity (S/m) | 5.063 | C. SAR Surface and Volume Maximum location: X=-3.00, Y=-11.00; SAR Peak: 1.43 W/kg # D. SAR 1a & 10a | D. OAK 19 a 109 | | |---|-----------------| | SAR 10g (W/Kg) | 0.254 | | SAR 1g (W/Kg) | 0.539 | | Variation (%) | 2.860 \ \ \ \ \ | | Horizontal validation criteria: minimum distance (mm) | 0.000000 | | Vertical validation criteria: SAR ratio M2/M1 (%) | 0.000000 | # E. Z Axis Scan | Z (mm) | 0.00 | 2.00 | 4.00 | 6.00 | 8.00 | 10.00 | 12.00 | 14.00 16.00 | |------------|-------|-------|-------|-------|-------|-------|-------|-------------| | SAR (W/Kg) | 0.808 | 0.739 | 0.580 | 0.529 | 0.407 | 0.287 | 0.278 | 0.181 0.263 | F. 3D Image No.: BCTC/RF-EMC-005 Date of measurement: 9/12/2024 # A. Experimental conditions. | 7ti Experimental conditioner | | |------------------------------|------------------------------| | Probe | SN 26/23 EPGO420 | | ConvF | 0.81 | | Area Scan | surf_sam_plan.txt | | Zoom Scan | 5x5x7,dx=8mm dy=8mm dz=5.0mm | | Phantom | Validation plane | | Device Position | Body | | Band | GSM850 | | Signal | TDMA (GPRS) | | Modulation | GMSK | ### **B.** Permitivity | Frequency (MHz) | 848.800 | |---------------------------------------|---------| | Relative permitivity (real part) | 43.089 | | Relative permitivity (imaginary part) | 19.400 | | Conductivity (S/m) | 0.888 | # C. SAR Surface and Volume Maximum location: X=7.00, Y=-34.00; SAR Peak: 0.89 W/kg # D. SAR 1g & 10g | SAR 10g (W/Kg) | 0.248 | |---|---| | SAR 1g (W/Kg) | 0.496 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | Variation (%) | 2.450 | | Horizontal validation criteria: minimum distance (mm) | 0.000000 \ \ \ \ \ \ / | | Vertical validation criteria: SAR ratio M2/M1 (%) | 0.000000 | ## E. Z Axis Scan | Z (mm) | 0.00 | 4.00 | 9.00 | 14.00 19.00 | |------------|-------|-------|-------|-------------| | SAR (W/Kg) | 0.860 | 0.524 | 0.267 | 0.131 0.063 | F. 3D Image No.: BCTC/RF-EMC-005 Date of measurement: 25/11/2024 # A. Experimental conditions. | 7 ti =2tpo://incortai contantionor | | | | |------------------------------------|------------------------------|--|--| | Probe | SN 26/23 EPGO420 | | | | ConvF | 1.04 | | | | Area Scan | surf_sam_plan.txt | | | | Zoom Scan | 5x5x7,dx=8mm dy=8mm dz=5.0mm | | | | Phantom | Validation plane | | | | Device Position | Body | | | | Band | GPRS1900 | | | | Signal | TDMA (GPRS) | | | | Modulation | GMSK | | | ### **B. Permitivity** | Frequency (MHz) | 1880.000 | |---------------------------------------|----------| | Relative permitivity (real part) | 40.390 | | Relative permitivity (imaginary part) | 13.408 | | Conductivity (S/m) | 1.348 | # C. SAR Surface and Volume Maximum location: X=6.00, Y=-34.00; SAR Peak: 0.79 W/kg # D. SAR 1g & 10g | SAR 10g (W/Kg) | 0.241 | |---|---| | SAR 1g (W/Kg) | 0.443 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | Variation (%) | -0.840 | | Horizontal validation criteria: minimum distance (mm) | 0.000000 | | Vertical validation criteria: SAR ratio M2/M1 (%) | 0.000000 | # E. Z Axis Scan | Z (mm) | 0.00 | 4.00 | 9.00 | 14.00 19.00 | |------------|-------|-------|-------|-------------| | SAR (W/Kg) | 0.780 | 0.467 | 0.239 | 0.136 0.100 | F. 3D Image No.: BCTC/RF-EMC-005 Date of measurement: 9/12/2024 Report No: BCTC2411029391E # A. Experimental conditions. | Probe | SN 26/23 EPGO420 | |-----------------|------------------------------| | ConvF | 0.81 | | Area Scan | surf_sam_plan.txt | | Zoom Scan | 5x5x7,dx=8mm dy=8mm dz=5.0mm | | Phantom | Validation plane | | Device Position | Body | | Band | LTE band 5 | | Signal | LTE FDD | | Cell Bandwidth | 10 Mhz | | Modulation | SC-OFDM - QPSK | | RB offset | 5 | | RB size | 20 | ### **B.** Permitivity | <u>=::::::::::::::::::::::::::::::::::::</u> | | |--|---------| | Frequency (MHz) | 844.000 | | Relative permitivity (real part) | 43.089 | | Relative permitivity (imaginary part) | 19.407 | | Conductivity (S/m) | 0.888 | ## C. SAR Surface and Volume Maximum location: X=-3.00, Y=23.00; SAR Peak: 0.35 W/kg ### D. SAR 1q & 10q | SAR 10g (W/Kg) | 0.082 | |---|---| | SAR 1g (W/Kg) | 0.159 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | Variation (%) | 2.020 | | Horizontal validation criteria: minimum distance (mm) | 0.000000 | | Vertical validation criteria: SAR ratio M2/M1 (%) | 0.000000 | | | | | E. Z Axis Scan | | ### E. Z Axis Scan | Z (mm) | 0.00 | 4.00 | 9.00 | 14.00 19.00 | |------------|-------|-------|-------|-------------| | SAR (W/Kg) | 0.168 | 0.170 | 0.070 | 0.024 0.054 | No.: BCTC/RF-EMC-005 Date of measurement: 9/12/2024 Report No: BCTC2411029391E ### A. Experimental conditions. | Probe | SN 26/23 EPGO420 | |-----------------|------------------------------| | ConvF | 1.03 | | Area Scan | surf_sam_plan.txt | | Zoom Scan | 5x5x7,dx=8mm dy=8mm dz=5.0mm | | Phantom | Validation plane | | Device Position | Body | | Band | LTE band 41 | | Signal | LTE TDD | | Cell Bandwidth | 20 Mhz | | Modulation | SC-OFDM - QPSK | | RB offset | 5 | | RB size | 20 | ### **B.** Permitivity | <u> </u> | | |---------------------------------------|----------| | Frequency (MHz) | 2645.000 | | Relative permitivity (real part) | 40.478 | | Relative permitivity (imaginary part) | 13.539 | | Conductivity (S/m) | 2.035 | ## C. SAR Surface and Volume Maximum location: X=-15.00, Y=0.00; SAR Peak: 1.30 W/kg # D. SAR 1g & 10g | SAR 10g (W/Kg) | 0.336 | |---|---| | SAR 1g (W/Kg) | 0.679 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | Variation (%) | -3.540 | | Horizontal validation criteria: minimum distance (mm) | 0.000000 | | Vertical validation criteria: SAR ratio M2/M1 (%) | 0.000000 | ### E. Z Axis Scan | E. Z Axis | <u>Scan</u> | , , | | | | |------------|-------------|-------|-------|-------|-------| | Z (mm) | 0.00 | 4.00 | 9.00 | 14.00 | 19.00 | | SAR (W/Kg) | 1.182 | 0.710 | 0.363 | 0.189 | 0.109 | F. 3D Image No.: BCTC/RF-EMC-005 # 16 CALIBRATION CERTIFICATES Probe-EPGO420 Calibration Certificate SID835Dipole Calibration Ceriticate SID1900Dipole Calibration Ceriticate SID2450Dipole Calibration Ceriticate SID2600Dipole Calibration Ceriticate SID5000Dipole Calibration Ceriticate No.: BCTC/RF-EMC-005 Page 73 o # COMOSAR E-Field Probe Calibration Report Ref: ACR.199.1.23.BES.A # SHENZHEN BCTC TECHNOLOGY CO., LTD. 1~2/ F, NO. B FACTORY BUILDING, PENGZHOU INDUSTRIAL PARK, FUYUAN 1ST ROAD, TANGWEI COMMUNITY, FUHAI STREET, BAO'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA MVG COMOSAR DOSIMETRIC E-FIELD PROBE SERIAL NO.: 2623-EPGO-420 Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE Calibration date: 7/18/2024 Accreditations #2-6789 Scope available on www.cofrac.fr The use of the Cofrac brand and the accreditation references is prohibited from any reproduction ### Summary: This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed at MVG, using the CALIPROBE test bench, for use with a MVG COMOSAR system only. The test results covered by accreditation are traceable to the International System of Units (SI). Page: 1/11 ### COMOSAR E-FIELD PROBE CALIBRATION REPORT Ref: ACR.199.1.23.BES.A | | Name | Function | Date | Signature | |------------------------|---------------|-------------------------|-----------|--------------| | Prepared by : | Cyrille ONNEE | Measurement Responsible | 7/18/2024 | 3 | | Checked & approved by: | Jérôme Luc | Technical Manager | 7/18/2024 | JE | | Authorized by: | Yann Toutain | Laboratory Director | 7/18/2024 | Yann TOUTAAN | Signature numérique Yann Yann | de Yann Toutain ID | Date: 2024.07.18 | Toutain ID | 10:38:49 +02:00 | | Customer Name | |---------------|--| | Distribution: | Shenzhen BCTC
Technology Co.,
Ltd. | | Issue | Name | Date | Modifications | |-------|---------------|-----------|-----------------| | A | Cyrille ONNEE | 7/18/2024 | Initial release | | | | | | | | | | | | | | | | Page: 2/11 Template_ACR_DDD.N.YY.MVGB_ISSUE_COMOSAR Probe vL This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Page 75 of 155 No.: BCTC/RF-EMC-005 Edition: B.2 ### COMOSAR E-FIELD PROBE CALIBRATION REPORT Ref: ACR 199.1.23.BES.A ### TABLE OF CONTENTS | 1 | De | vice Under Test | | |---|-----|------------------------|---| | 2 | Pro | duct Description4 | | | | 2.1 | General Information | 4 | | 3 | Me | asurement Method | | | | 3.1 | Sensitivity | 4 | | | 3.2 | Linearity | 5 | | | 3.3 | Isotropy | | | | 3.4 | Boundary Effect | | | 4 | Me | asurement Uncertainty6 | | | 5 | Cal | ibration Results | | | | 5.1 | Calibration in air | 6 | | | 5.2 | Calibration in liquid | 7 | | 6 | Ve | rification Results9 | | | 7 | Lis | t of Equipment10 | | Page: 3/11 Template ACR.DDD.N. YYMVGB.ISSUE_COMOSAR Probe vL This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Edition: B.2 Page 76 of 155 COMOSAR E-FIELD PROBE CALIBRATION REPORT Ref: ACR 199.1.23.BES.A ### 1 DEVICE UNDER TEST | Device Under Test | | | | |--|----------------------------------|--|--| | Device Type | COMOSAR DOSIMETRIC E FIELD PROBE | | | | Manufacturer | MVG | | | | Model | SSE2 | | | | Serial Number | 2623-EPGO-420 | | | | Product Condition (new / used) | New | | | | Frequency Range of Probe | 0.15 GHz-7.5GHz | | | | Resistance of Three Dipoles at Connector | Dipole 1: R1=0.228 MΩ | | | | | Dipole 2: R2=0.238 MΩ | | | | | Dipole 3: R3=0.230 MΩ | | | ### 2 PRODUCT DESCRIPTION ### 2.1 GENERAL INFORMATION MVG's COMOSAR E field Probes are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. Figure 1 – MVG COMOSAR Dosimetric E field Probe | Probe Length | 330 mm | |--|---------| | Length of Individual Dipoles | 24.5 mm | | Maximum external diameter | 8 mm | | Probe Tip External Diameter | 2.55 mm | | Distance between dipoles / probe extremity | 12.7 mm | ## 3 MEASUREMENT METHOD The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their effect. All calibrations / measurements performed meet the fore-mentioned standards. ### 3.1 SENSITIVITY The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards for frequency range 600-7500MHz and using the calorimeter cell method (transfer method) as outlined in the standards for frequency 150-450 MHz. Page: 4/11 Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vL This document shall not be reproduced, except in fill or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. No.: BCTC/RF-EMC-005 Page 77 of 155 Edition: B.2 COMOSAR E-FIELD PROBE CALIBRATION REPORT Ref: ACR 199.1.23.BES.A ### 3.2 LINEARITY The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01 W/kg to 100 W/kg. ### 3.3 ISOTROPY The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 to 360 degrees in 15-degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis $(0^{\circ}-180^{\circ})$ in 15° increments. At each step the probe is rotated about its axis $(0^{\circ}-360^{\circ})$. ### 3.4 BOUNDARY EFFECT The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface. The boundary effect uncertainty can be estimated according to the following uncertainty approximation formula based on linear and exponential extrapolations between the surface and $d_{\rm be}$ + $d_{\rm steo}$ along lines that are approximately normal to the surface: $$\mathrm{SAR}_{\mathrm{uncertainty}} \big[\% \, \big] = \delta \mathrm{SAR}_{\mathrm{be}} \, \frac{ \left(d_{\mathrm{be}} + d_{\mathrm{step}} \right)^2}{2 d_{\mathrm{step}}} \, \frac{ \left(e^{-d_{\mathrm{be}} / (\delta \mu)} \right)}{\delta / 2} \quad \mathrm{for} \, \left(d_{\mathrm{be}} + d_{\mathrm{step}} \right) < 10 \; \mathrm{mm}$$ where SAR_{uncertainty} is the uncertainty in percent of the probe boundary effect dbe is the distance between the surface and the closest zoom-scan measurement point, in millimetre Δ_{step} is the separation distance between the first and second measurement points that are closest to the phantom surface, in millimetre, assuming the boundary effect at the second location is negligible δ is the minimum penetration depth in millimetres of the head tissue-equivalent liquids defined in this standard, i.e., $\delta \approx 14$ mm at 3 GHz; △SAR_{be} in percent of SAR is the deviation between the measured SAR value, at the distance d_{be} from the boundary, and the analytical SAR value. The measured worst case boundary effect SARuncertainty[%] for scanning distances larger than 4mm is 1.0% Limit,2%). Page: 5/11 Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vL This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. No.: BCTC/RF-EMC-005 Page 78 of 155 Edition: B.2 COMOSAR E-FIELD PROBE CALIBRATION REPORT Ref: ACR 199.1.23.BES.A ### 4 MEASUREMENT UNCERTAINTY The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty associated with a SAR probe calibration using the waveguide or calorimetric cell technique depending on the frequency. The estimated expanded uncertainty (k=2) in calibration for SAR (W/kg) is +/-11% for the frequency range 150-450MHz. The estimated expanded uncertainty (k=2) in calibration for SAR (W/kg) is \pm 14% for the frequency range 600-7500MHz. ### 5 CALIBRATION RESULTS | Ambient condition | | | |--------------------------------|-------------|--| | Liquid Temperature 20 +/- 1 °C | | | | Lab Temperature | 20 +/- 1 °C | | | Lab Humidity | 30-70 % | | ### 5.1 CALIBRATION IN AIR The following curve represents the measurement in waveguide of the voltage picked up by the probe toward the E-field generated inside the waveguide. From this curve, the sensitivity in air is calculated using the below formula. $$E^{2} = \sum_{i=1}^{3} \frac{V_{i} \left(1 + \frac{V_{i}}{DCP_{i}}\right)}{Norm_{i}}$$ where Vi=voltage readings on the 3 channels of the probe DCPi=diode compression point given below for the 3 channels of the probe Normi=dipole sensitivity given below for the 3 channels of the probe Page: 6/11 Temptate_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vL This document shall not be reproduced, except in fill or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. No.: BCTC/RF-EMC-005 Page 79 of 155 Edition: B.2 ### COMOSAR E-FIELD PROBE CALIBRATION REPORT Ref: ACR 199.1.23.BES.A | | Normy dipole $2 (\mu V/(V/m)^2)$ | | |------|----------------------------------|------| | 1.21 | 1.09 | 1.56 | | DCP dipole 1 | DCP dipole 2 | DCP dipole 3 | |--------------|--------------|--------------| | (mV) | (mV) | (mV) | | 106 | 109 | 103 | ### 5.2 CALIBRATION IN LIQUID The calorimeter cell or the waveguide is used to determine the calibration in liquid using the formula below. $$ConvF = \frac{E_{liquid}^2}{E_{air}^2}$$ The E-field in the liquid is determined from the SAR measurement according to the below formula. $$E_{liquid}^2 = \frac{\rho SAR}{\sigma}$$ where σ =the conductivity of the liquid ρ=the volumetric density of the liquid SAR=the SAR measured from the formula that depends on the setup used. The SAR formulas are given below For the calorimeter cell (150-450 MHz), the formula is: $$SAR = c \frac{dT}{dt}$$ where c=the specific heat for the liquid dT/dt=the temperature rises over the time For the waveguide setup (600-75000 MHz), the formula is: $$SAR = \frac{4P_W}{ab\delta}e^{\frac{-2Z}{\delta}}$$ where a=the larger cross-sectional of the waveguide b=the smaller cross-sectional of the waveguide δ =the skin depth for the liquid in the waveguide Pw=the power delivered to the liquid Page: 7/11 Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vL This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. No.: BCTC/RF-EMC-005 Page 80 of 155 Edition: B.2 ### COMOSAR E-FIELD PROBE CALIBRATION REPORT Ref: ACR 199.1.23.BES.A The below table summarize the ConvF for the calibrated liquid. The curves give examples for the measured SAR depending on the voltage in some liquid. | <u>Liquid</u> | Frequency
(MHz*) | ConvF | |---------------|---------------------|-------| | HL450 | 450 | 0.86 | | BL450 | 450 | 0.78 | | HL750 | 750 | 0.80 | | BL750 | 750 | 0.87 | | HL850 | 835 | 0.81 | | BL850 | 835 | 0.80 | | HL900 | 900 | 0.76 | | BL900 | 900 | 0.87 | | HL1800 | 1800 | 0.96 | | BL1800 | 1800 | 1.01 | | HL1900 | 1900 | 1.04 | | BL1900 | 1900 | 1.11 | | HL2100 | 2100 | 1.00 | | BL2100 | 2100 | 1.16 | | HL2300 | 2300 | 1.11 | | BL2300 | 2300 | 1.23 | | HL2450 | 2450 | 1.11 | | BL2450 | 2450 | 1.32 | | HL2600 | 2600 | 1.03 | | BL2600 | 2600 | 1.19 | | HL5200 | 5200 | 1.18 | | BL5200 | 5200 | 0.97 | | HL5400 | 5400 | 1.17 | | BL5400 | 5400 | 1.00 | | HL5600 | 5600 | 1.20 | | BL5600 | 5600 | 0.95 | | HL5800 | 5800 | 1.15 | | BL5800 | 5800 | 1.05 | (*) Frequency validity is #50MHz below 600MHz, +/100MHz from 600MHz to 6GHz and +/-700MHz above 6GHz Page: 8/11 Template ACR.DDD.N. YYMVGB.ISSUE_COMOSAR Probe vL This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. No.: BCTC/RF-EMC-005 Page 81 of 155 Edition: B.2 COMOSAR E-FIELD PROBE CALIBRATION REPORT Ref: ACR 199.1.23.BES.A ### VERIFICATION RESULTS The figures below represent the measured linearity and axial isotropy for this probe. The probe specification is +/-0.2 dB for linearity and +/-0.15 dB for axial isotropy. Isotropy: 1/-0.25% (1/-0.01dB) Linearity:+/-1.48% (+/-0.06dB) Page: 9/11 Template ACR.DDD.N. YY.MVGB.ISSUE_COMOSAR Probe vL This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Page 82 of 155 Edition: B.2 No.: BCTC/RF-EMC-005 ### COMOSAR E-FIELD PROBE CALIBRATION REPORT Ref: ACR.199.1.23.BES.A # 7 LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | | |---------------------------------------|----------------------------|--------------------------|---|---|--| | Equipment
Descriptio | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | | CALIPROBE Test
Bench | Version 2 | NA | Validated. No cal
required. | Validated. No cal
required. | | | Network Analyzer | Rohde & Schwarz
ZVM | 100203 | 08/2024 | 08/2027 | | | Network Analyzer | Agilent 8753ES | MY40003210 | 10/2023 | 10/2027 | | | Network Analyzer –
Calibration kit | HP 85033D | 3423A08186 | 06/2021 | 06/2027 | | | Network Analyzer –
Calibration kit | Rohde & Schwarz
ZV-Z235 | 101223 | 07/2022 | 07/2025 | | | Multimeter | Keithley 2000 | 4013982 | 02/2023 | 02/2026 | | | Signal Generator | Rohde & Schwarz
SMB | 106589 | 03/2022 | 03/2025 | | | Amplifier | MVG | MODU-023-C-0002 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | Power Meter | NI-USB 5680 | 170100013 | 06/2024 | 06/2027 | | | Power Meter | Keysight U2000A | SN: MY62340002 | 10/2022 | 10/2025 | | | Directional Coupler | Krytar 158020 | 131467 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | Fluoroptic Thermometer | LumaSense Luxtron
812 | 94264 | 09/2022 | 09/2025 | | | Coaxial cell | MVG | SN 32/16
COAXCELL_ | Validated. No cal
required. | Validated. No cal
required. | | | Waveguide | MVG | SN 32/16 WG2_1 | Validated. No cal
required. | Validated. No cal
required. | | | Liquid transition | MVG | SN 32/16
WGLIQ_0G600_ | Validated. No cal
required. | Validated. No cal
required. | | | Waveguide | MVG | SN 32/16 WG4_1 | Validated. No cal
required. | Validated. No cal
required. | | | Liquid transition | MVG | SN 32/16
WGLIQ_0G900_ | Validated. No cal
required. | Validated. No cal
required. | | | Waveguide | MVG | SN 32/16 WG6_1 | Validated. No cal required. | Validated. No cal
required. | | | Liquid transition | MVG | SN 32/16
WGLIQ_1G500_ | Validated. No cal
required. | Validated. No cal required. | | | Waveguide | MVG | SN 32/16 WG8_1 | Validated. No cal
required. | Validated. No cal
required. | | Page: 10/11 Template_ACR_DDD.N.YY.MVGB_ISSUE_COMOSAR Probe vL This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Page 83 of 155 No.: BCTC/RF-EMC-005 Edition: B.2 ### COMOSAR E-FIELD PROBE CALIBRATION REPORT Ref: ACR.199.1.23.BES.A | MVG | | | Validated. No cal
required. | |--------------|-----------------------------|---|--| | MVG | SN 32/16
WGLIQ_1G800H_ | Validated. No cal
required. | Validated. No cal
required. | | M∨G | SN 32/16 WG10_1 | Validated. No cal
required. | Validated. No cal
required. | | M∨G | SN 32/16
WGLIQ_3G500_ | Validated. No cal
required. | Validated. No cal
required. | | MVG | SN 32/16 WG12_1 | Validated. No cal
required. | Validated. No cal
required. | | MVG | SN 32/16
WGLIQ_5G000_ | Validated. No cal
required. | Validated. No cal
required. | | MVG | SN 32/16 WG14_1 | Validated. No cal
required. | Validated. No cal
required. | | MVG | SN 32/16
WGLIQ_7G000_1 | Validated. No cal
required. | Validated. No cal
required. | | Testo 184 H1 | 44225320 | 06/2021 | 06/2024 | | | MVG MVG MVG MVG MVG MVG MVG | MVG WGLIQ_1G800B_1 MVG SN 32/16 WGLIQ_1G800H_ MVG SN 32/16 WG10_1 MVG SN 32/16 WGLIQ_3G500_ MVG SN 32/16 WG12_1 MVG SN 32/16 WGLIQ_5G000_ MVG SN 32/16 WG14_1 MVG SN 32/16 WGLIQ_7G000_1 | MVG WGLIQ_1G800B_1 required. MVG SN 32/16 WGLIQ_1G800H_ required. MVG SN 32/16 WG10_1 required. MVG SN 32/16 WG10_1 required. MVG SN 32/16 WG10_1 required. MVG SN 32/16 WG12_1 required. MVG SN 32/16 WG12_1 required. MVG SN 32/16 WG10_ required. MVG SN 32/16 WG14_1 required. | Page: 11/11 Template_ACR_DDD.N.YY.MVGB_ISSUE_COMOSAR Probe vL. This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Page 84 of 155 No.: BCTC/RF-EMC-005 Edition: B.2 # **SAR Reference Dipole Calibration Report** Ref: ACR.329.9.21.BES.A # SHENZHEN BCTC TECHNOLOGY CO., LTD. 1 ~2/ F, NO. B FACTORY BUILDING, PENGZHOU INDUSTRIAL PARK, FUYUAN 1ST ROAD, TANGWEI COMMUNITY, FUHAI STREET, BAO'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE FREQUENCY: 835 MHZ SERIAL NO.: SN 47/21 DIP 0G835-621 Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE Calibration date: 11/25/2021 Accreditations #2-6789 and #2-6814 Scope available on <u>www.cofrac.fr</u> The use of the Cofrac brand and the accreditation references is prohibited from any reproduction. ### Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions. Page: 1/13 No.: BCTC/RF-EMC-005 Page 85 of 155 Edition: B.2 ### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.329.9.21.BES.A | | Name | Function | Date | Signature | |---------------|--------------|---------------------|------------|--------------| | Prepared by: | Jérôme Luc | Technical Manager | 11/25/2021 | JES | | Checked by : | Jérôme Luc | Technical Manager | 11/25/2021 | J35 | | Approved by : | Yann Toutain | Laboratory Director | 11/25/2021 | Gann TOUTANN | 2021.11.25 11:52:29 +01'00' | | Customer Name | |---------------|-----------------| | | Shenzhen BCTC | | Distribution: | Technology Co., | | | Ltd. | | Issue | Name | Date | Modifications | |-------|------------|------------|-----------------| | A | Jérôme Luc | 11/25/2021 | Initial release | | 2 | | | | | | | | | | | | | | | | , | | | Page: 2/13 Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vI This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. No.: BCTC/RF-EMC-005 Page 86 of 155 Edition: B.2 ### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.329.9.21.BES.A ### TABLE OF CONTENTS | 1 | Intr | oduction4 | | |---|------|--|----| | 2 | Dev | ice Under Test4 | | | 3 | Pro | duct Description4 | | | | 3.1 | General Information | 4 | | 4 | Mea | surement Method5 | | | | 4.1 | Return Loss Requirements | 5 | | | 4.2 | Mechanical Requirements | | | 5 | Mea | surement Uncertainty5 | | | | 5.1 | Return Loss | 5 | | | 5.2 | Dimension Measurement | 5 | | | 5.3 | Validation Measurement | | | 6 | Cali | bration Measurement Results6 | | | | 6.1 | Return Loss and Impedance In Head Liquid | 6 | | | 6.2 | Return Loss and Impedance In Body Liquid | 6 | | | 6.3 | Mechanical Dimensions | 7 | | 7 | Vali | idation measurement | | | | 7.1 | Head Liquid Measurement | 8 | | | 7.2 | SAR Measurement Result With Head Liquid | | | | 7.3 | Body Liquid Measurement | | | | 7.4 | SAR Measurement Result With Body Liquid | | | 8 | List | of Equipment 13 | 69 | Page: 3/13 Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vI This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. ### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.329.9.21.BES.A ### 1 INTRODUCTION This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. ### 2 DEVICE UNDER TEST | Device Under Test | | | | |--------------------------------|----------------------------------|--|--| | Device Type | COMOSAR 835 MHz REFERENCE DIPOLE | | | | Manufacturer | MVG | | | | Model | SID835 | | | | Serial Number | SN 47/21 DIP 0G835-621 | | | | Product Condition (new / used) | New | | | ### 3 PRODUCT DESCRIPTION ### **GENERAL INFORMATION** 3.1 MVG's COMOSAR Validation Dipoles are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. The product is designed for use with the COMOSAR test bench only. Figure 1 – MVG COMOSAR Validation Dipole Page: 4/13 Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vI This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. No.: BCTC/RF-EMC-005 Page 88 of 155 " Edition: B.2 ### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.329.9.21.BES.A ### MEASUREMENT METHOD The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards. ### 4.1 RETURN LOSS REQUIREMENTS The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration. ### 4.2 MECHANICAL REQUIREMENTS The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper. ### 5 MEASUREMENT UNCERTAINTY All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. ### 5.1 RETURN LOSS The following uncertainties apply to the return loss measurement: | Frequency band | Expanded Uncertainty on Return Loss | |----------------|--| | 400-6000MHz | 0.08 LIN | ## 5.2 <u>DIMENSION MEASUREMENT</u> The following uncertainties apply to the dimension measurements: | Length (mm) | Expanded Uncertainty on Length | | | |-------------|--------------------------------|--|--| | 0 - 300 | 0.20 mm | | | | 300 - 450 | 0.44 mm | | | ## 5.3 VALIDATION MEASUREMENT The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements. Page: 5/13 Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vI This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Page 89 of 155 No.: BCTC/RF-EMC-005 Edition: B.2 ### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.329.9.21.BES.A | Scan Volume | Expanded Uncertainty | |-------------|-----------------------------| | 1 g | 19 % (SAR) | | 10 g | 19 % (SAR) | ### 6 CALIBRATION MEASUREMENT RESULTS ### 6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|-----------------| | 835 | -24.07 | -20 | 55.3 Ω - 3.3 jΩ | ## 6.2 <u>RETURN LOSS AND IMPEDANCE IN BODY LIQUID</u> | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|-----------------------------| | 835 | -33.13 | -20 | $52.2 \Omega - 0.4 j\Omega$ | Page: 6/13 Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vI This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. No.: BCTC/RF-EMC-005 Page 90 of 155 Edition: B.2 ### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.329.9.21.BES.A ### MECHANICAL DIMENSIONS | Frequency MHz | L mm | | hmm | | d mm | | |---------------|---------------------|-----------|--------------------|----------|--------------------|-----------| | | required | m easured | required | measured | required | m easured | | 300 | 420.0 ±1 %. | | 250.0 ±1 %. | | 6.35 ±1 %. | | | 450 | 290.0 ±1 % . | | 166.7 ±1 %. | | 6.35 ±1 % . | | | 750 | 176.0 ±1 %. | | 100.0 ±1 %. | | 6.35 ±1 % . | | | 835 | 161.0 ±1 % . | 161.47 | 89.8 ±1 %. | 89.78 | 3.6 ±1 %. | 3.61 | | 900 | 149.0 ±1 % . | | 83.3 ±1 %. | | 3.6 ±1 %. | | | 1450 | 89.1 ±1 %. | 2 | 51.7 ±1 %. | | 3.6 ±1 %. | | | 1500 | 86.2 ±1 %. | | 50.0 ±1 %. | | 3.6 ±1 %. | | | 1640 | 79.0 ±1 %. | | 45.7 ±1 %. | | 3.6 ±1 %. | | | 1750 | 75.2 ±1 %. | | 42.9 ±1 %. | | 3.6 ±1 % . | | | 1800 | 72.0 ±1 %. | 2 | 41.7 ±1 %. | | 3.6 ±1 %. | | | 1900 | 68.0 ±1 %. | | 39.5 ±1 %. | | 3.6 ±1 %. | | | 1950 | 66.3 ±1 %. | | 38.5 ±1 %. | | 3.6 ±1 % . | | | 2000 | 64.5 ±1 %. | | 37.5 ±1 %. | | 3.6 ±1 % . | | | 2100 | 61.0 ±1 % . | | 35.7 ±1 % . | | 3.6 ±1 %. | | | 2300 | 55.5 ±1 %. | | 32.6 ±1 %. | | 3.6 ±1 %. | | | 2450 | 51.5 ±1 %. | | 30.4 ±1 %. | | 3.6 ±1 % . | | | 2600 | 48.5 ±1 %. | V | 28.8 ±1 %. | | 3.6 ±1 % . | | | 3000 | 41.5 ±1 %. | | 25.0 ±1 %. | | 3.6 ±1 %. | | | 3300 | | | | | 127 | | | 3500 | 37.0 ±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | | 3700 | 34.7 ±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | | 3900 | 2 | | 8 | | 72 | | | 4200 | | | ā | | . . | | | 4600 | * | | * | | je | | | 4900 | | | · · | | 2 | | ### 7 VALIDATION MEASUREMENT The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom. Page: 7/13 Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vI This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Page 91 of 155 " No.: BCTC/RF-EMC-005 Edition: B.2 ### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.329.9.21.BES.A ### 7.1 HEAD LIQUID MEASUREMENT | Frequency
MHz | Relative per | mittivity ($\mathbf{\varepsilon}_{r}'$) | Conductivity (σ) S/m | | |------------------|--------------------|---|----------------------|----------| | | required | measured | required | measured | | 300 | 45.3 ±10 % | | 0.87 ± 10 % | | | 450 | 43.5 ± 10 % | | 0.87 ± 10 % | | | 750 | 41.9 ± 10 % | | 0.89 ± 10 % | | | 835 | 41.5 ± 10 % | 39.9 | 0.90 ± 10 % | 0.91 | | 900 | 41.5 ± 10 % | | 0.97 ± 10 % | | | 1450 | 40.5 ± 10 % | | 1.20 ± 10 % | | | 1500 | 40.4 ±1 0 % | | 1.23 ± 10 % | | | 1640 | 40.2 ± 10 % | | 1.31 ± 10 % | | | 1750 | 40.1 ± 10 % | | 1.37 ± 10 % | | | 1800 | 40.0 ± 10 % | | 1.40 ±10 % | | | 1900 | 40.0 ±1 0 % | | 1.40 ± 10 % | | | 1950 | 40.0 ± 10 % | | 1.40 ± 10 % | | | 2000 | 40.0 ±10 % | | 1.40 ±10 % | | | 2100 | 39.8 ±1 0 % | | 1.49 ± 10 % | | | 2300 | 39.5 ±10 % | | 1.67 ± 10 % | | | 2450 | 39.2 ± 10 % | | 1.80 ± 10 % | | | 2600 | 39.0 ±1 0 % | | 1.96 ± 10 % | | | 3000 | 38.5 ±1 0 % | | 2.40 ± 10 % | | | 3300 | 38.2 ±1 0 % | | 2.71 ± 10 % | | | 3500 | 37.9 ± 10 % | | 2.91 ± 10 % | | | 3700 | 37.7 ±1 0 % | | 3.12 ± 10 % | | | 3900 | 37.5 ±1 0 % | | 3.32 ±10 % | | | 4200 | 37.1 ± 10 % | | 3.63 ±10 % | | | 4600 | 36.7 ± 10 % | | 4.04 ± 10 % | | | 4900 | 36.3 ±1 0 % | | 4.35 ±10 % | | ### 7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power. Page: 8/13 Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vI This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. No.: BCTC/RF-EMC-005 Page 92 of 155 Edition: B.2 ### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.329.9.21.BES.A | Software | OPENSAR V5 | | | |---|--|--|--| | Phantom | SN 13/09 SAM68 | | | | Probe | SN 41/18 EPGO333 | | | | Liquid | Head Liquid Values: eps': 39.9 sigma: 0.91 | | | | Distance between dipole center and liquid | 15.0 mm | | | | Area scan resolution | dx=8mm/dy=8mm | | | | Zoon Scan Resolution | dx=8mm/dy=8mm/dz=5mm | | | | Frequency | 835 MHz | | | | Input power | 20 dBm | | | | Liquid Temperature | 20 +/- 1 °C | | | | Lab Temperature | 20 +/- 1 °C | | | | Lab Humidity | 30-70 % | | | | Frequency
MHz | 1 g SAR (W/kg/W) | | 10 g SAR (W/kg/W) | | |------------------|------------------|--------------|-------------------|------------| | | required | measured | required | measured | | 300 | 2.85 | | 1.94 | | | 450 | 4.58 | | 3.06 | | | 750 | 8.49 | | 5.55 | | | 835 | 9.56 | 10.01 (1.00) | 6.22 | 6.32 (0.63 | | 900 | 10.9 | | 6.99 | | | 1450 | 29 | | 16 | | | 1500 | 30.5 | | 16.8 | | | 1640 | 34.2 | | 18.4 | | | 1750 | 36.4 | | 19.3 | | | 1800 | 38.4 | | 20.1 | | | 1900 | 39.7 | | 20.5 | | | 1950 | 40.5 | 25 | 20.9 | | | 2000 | 41.1 | | 21.1 | | | 2100 | 43.6 | | 21.9 | | | 2300 | 48.7 | | 23.3 | | | 2450 | 52.4 | | 24 | | | 2600 | 55.3 | 040 | 24.6 | | | 3000 | 63.8 | | 25.7 | | | 3300 | ¥ | | 8 | | | 3500 | 67.1 | | 25 | | | 3700 | 67.4 | | 24.2 | | | 3900 | - | | 2 | | | 4200 | ā | | 8 | | | 4600 | - | | Ж | | | 4900 | | | 2 | | Page: 9/13 Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vI This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Page 93 of 155 No.: BCTC/RF-EMC-005 Edition: B.2 ### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.329.9.21.BES.A Page: 10/13 Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vI This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Page 94 of 155 No.: BCTC/RF-EMC-005 Edition: B.2