

Garrett Metal Detectors

SM 100 FCC 15.207:2015 FCC 15.247:2015

Report # GARR0004.2

NVLAP Lab Code: 201049-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America. This Report may only be duplicated in its entirety

CERTIFICATE OF TEST

Last Date of Test: July 31, 2015 Garrett Metal Detectors Model: SM 100

Radio Equipment Testing

Standards Method FCC 15.207:2015 ANSI C63.10:2009 FCC 15.247:2015 ANSI C63.10:2009

Results

Method Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions	Yes	Pass	
6.5, 6.6	Spurious Radiated Emissions	Yes	Pass	
6.7	Band Edge Compliance	Yes	Pass	
6.7	Spurious Conducted Emissions	Yes	Pass	
6.9.1	Occupied Bandwidth	Yes	Pass	
6.10.2	Output Power	Yes	Pass	
6.11.2	Power Spectral Density	Yes	Pass	
7.5	Duty Cycle	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Jeremiah Darden, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

REVISION HISTORY

Revision Number	Description	Date	Page Number
00	None		

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Northwest EMC to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

IC - Recognized by Industry Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with IC.

European Union

European Commission – Validated by the European Commission as a Conformity Assessment Body (CAB) under the EMC directive and as a Notified Body under the R&TTE Directive.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIP / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit: <u>http://www.nwemc.com/accreditations/</u> http://gsi.nist.gov/global/docs/cabs/designations.html

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) for each test is on each data sheet. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy (Hz)	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	0.3 dB	-0.3 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	4.7 dB	-4.7 dB
AC Powerline Conducted Emissions (dB)	2.9 dB	-2.9 dB

FACILITIES

California Labs OC01-13 41 Tesla Irvine, CA 92618 (949) 861-8918	Minnesota Labs MN01-08, MN10 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136	New York Labs NY01-04 4939 Jordan Rd. Elbridge, NY 13060 (315) 554-8214	Oregon Labs EV01-12 22975 NW Evergreen Pkwy Hillsboro, OR 97124 (503) 844-4066	Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 9801 (425)984-6600	
		NV	LAP			
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0	
		Industry	Canada			
2834B-1, 2834B-3	2834E-1	N/A	2834D-1, 2834D-2	2834G-1	2834F-1	
		BS	МІ			
SL2-IN-E-1154R	SL2-IN-E-1152R	N/A	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R	
VCCI						
A-0029	A-0109	N/A	A-0108	A-0201	A-0110	
Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA						
US0158	US0175	N/A	US0017	US0191	US0157	

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Garrett Metal Detectors
Address:	1881 W. State Street
City, State, Zip:	Garland, TX 75042
Test Requested By:	Weldon Sanders
Model:	SM 100
First Date of Test:	June 02, 2015
Last Date of Test:	July 31, 2015
Receipt Date of Samples:	June 01, 2015
Equipment Design Stage:	Prototype
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

Wireless radio operating in the 2402-2483.5MHz ranged that is used for timing in a multi-unit installation of Garrett detectors.

Testing Objective:

To demonstrate compliance of the 2.4 GHz ISM radio to FCC 15.247 requirements for a limited modular approval.

CONFIGURATIONS

Configuration GARR0004-2

EUT							
Description	Manufacturer	Model/Part Number	Serial Number				
Wireless Radio (Direct Connect) - EUT2	Garrett Metal Detectors	SM 100	None				

Peripherals in test setup boundary						
Description	Manufacturer	Model/Part Number	Serial Number			
Walkthrough Header	Garrett Metal Detectors	PD 6500i	55202749			

Cables							
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2		
AC Power	Unknown	5.0 m	No	AC Mains	Walkthrough Header		
DC Power	Unknown	0.2 m	No	Walkthrough Header	Wireless Radio (Direct Connect) - EUT2		
Ethernet Cable	Unknown	0.2 m	No	Walkthrough Header	Wireless Radio (Direct Connect) - EUT2		

Configuration GARR0008-1

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Wireless Radio - EUT3	Garrett Metal Detectors	SM 100	None

Peripherals in test setup boundary						
Description	Manufacturer	Model/Part Number	Serial Number			
Walkthrough Header	Garrett Metal Detectors	PD 6500i	55202749			

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
AC Power	Unknown	5.0 m	No	Walkthrough Header	AC Mains
DC Power	Unknown	0.2 m	No	Wireless Radio	Walkthrough Header
Ethernet Cable	Unknown	0.2 m	No	Wireless Radio	Walkthrough Header

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	6/2/2015	Band Edge Compliance	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
2	6/2/2015	Spurious Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
3	6/2/2015	Occupied Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
4	6/2/2015	Output Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
5	6/2/2015	Power Spectral Density	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
6	6/2/2015	Duty Cycle	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.
7	7/30/2015	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
8	7/31/2015	Powerline Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

TEST DESCRIPTION

The EUT will be powered either directly or indirectly from the AC power line. Therefore, conducted emissions measurements were made on the AC input of the EUT, or on the AC input of the device used to power the EUT. The AC power line conducted emissions were measured with the EUT operating at the lowest, the highest, and a middle channel in the operational band. The EUT was transmitting at its maximum data rate. For each mode, the spectrum was scanned from 150 kHz to 30 MHz. The test setup and procedures were in accordance with ANSI C63.10.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Conducted Emissions					
Cable Assembly	Northwest EMC	TXA, HHZ, TQR	TXAA	5/27/2015	05/27/2016
LISN	Solar Electronics	9252-50-R-24-BNC	LJK	9/14/2014	09/14/2015
Receiver	Rohde & Schwarz	ESCI	ARF	6/9/2015	06/09/2016

MEASUREMENT UNCERTAINTY

Description		
Expanded k=2	2.4 dB	-2.4 dB

CONFIGURATIONS INVESTIGATED

GARR0008-1

MODES INVESTIGATED

Transmitting OQPSK at High Channel @ 2405 MHz Transmitting OQPSK at Low Channel @ 2440 MHz Transmitting OQPSK at Mid Channel @ 2480 MHz

EUT:	SM 100	Work Order:	GARR0008
Serial Number:	None	Date:	07/31/2015
Customer:	Garrett Metal Detectors	Temperature:	24.5°C
Attendees:	None	Relative Humidity:	47.8%
Customer Project:	None	Bar. Pressure:	1020 mb
Tested By:	Frank Sun	Job Site:	TX01
Power:	110VAC/60Hz	Configuration:	GARR0008-1

TEST SPECIFICATIONS

Specification				Method:		
FCC 15.207:2015					3.10:2009	
	AMETERS					
Run #:	5	Line:	High Line		Add. Ext. Attenuation (dB):	0
COMMEN	rs					
None						
EUT OPERATING MODES						
Transmitting OQPSK at Low Channel						
DEVIATIONS FROM TEST STANDARD						

None

Average Data - vs - Average Limit

RESULTS - Run #5

Quasi Peak Data - vs - Quasi Peak Limit						
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)	
4.917	27.1	19.9	47.0	56.0	-9.0	
4.641	26.5	19.9	46.4	56.0	-9.6	
4.712	26.0	19.9	45.9	56.0	-10.1	
4.987	25.1	20.0	45.1	56.0	-10.9	
4.365	25.0	19.9	44.9	56.0	-11.1	
4.572	22.6	19.9	42.5	56.0	-13.5	
3.810	21.9	19.9	41.8	56.0	-14.2	
4.296	20.8	19.9	40.7	56.0	-15.3	

Average Data - vs - Average Limit						
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)	
4.641	20.3	19.9	40.2	46.0	-5.8	
4.917	20.0	19.9	39.9	46.0	-6.1	
4.712	19.9	19.9	39.8	46.0	-6.2	
4.365	19.2	19.9	39.1	46.0	-6.9	
4.987	18.4	20.0	38.4	46.0	-7.6	
3.810	17.5	19.9	37.4	46.0	-8.6	
4.572	16.0	19.9	35.9	46.0	-10.1	
4.296	14.1	19.9	34.0	46.0	-12.0	

CONCLUSION

Pass

orgh

Tested By

EUT:	SM 100	Work Order:	GARR0008
Serial Number:	None	Date:	07/31/2015
Customer:	Garrett Metal Detectors	Temperature:	24.5°C
Attendees:	None	Relative Humidity:	47.8%
Customer Project:	None	Bar. Pressure:	1020 mb
Tested By:	Frank Sun	Job Site:	TX01
Power:	110VAC/60Hz	Configuration:	GARR0008-1

TEST SPECIFICATIONS

Specification:				Method:			
FCC 15.207:2015 ANSI					3.10:2009		
TEST PAR	AMETERS						
Run #:	6	Line:	Neutral		Add. Ext. Attenuation (dB):	0	
	COMMENTS						
EUT OPERATING MODES							
Transmitting OQPSK at Low Channel							
DEVIATIONS FROM TEST STANDARD							

None

Average Data - vs - Average Limit

RESULTS - Run #6

Q	Quasi Peak Data - vs - Quasi Peak Limit						
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)		
4.715	26.0	19.9	45.9	56.0	-10.1		
4.924	25.6	19.9	45.5	56.0	-10.5		
4.992	25.5	20.0	45.5	56.0	-10.5		
4.647	25.4	19.9	45.3	56.0	-10.7		
4.369	24.3	19.9	44.2	56.0	-11.8		
4.091	23.0	19.9	42.9	56.0	-13.1		
4.162	22.5	19.9	42.4	56.0	-13.6		
3.816	21.3	19.9	41.2	56.0	-14.8		

Average Data - vs - Average Limit							
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)		
4.715	19.9	19.9	39.8	46.0	-6.2		
4.647	19.1	19.9	39.0	46.0	-7.0		
4.992	18.7	20.0	38.7	46.0	-7.3		
4.924	18.7	19.9	38.6	46.0	-7.4		
4.369	18.7	19.9	38.6	46.0	-7.4		
4.091	18.1	19.9	38.0	46.0	-8.0		
4.162	18.1	19.9	38.0	46.0	-8.0		
3.816	17.2	19.9	37.1	46.0	-8.9		

CONCLUSION

Pass

orgh

Tested By

EUT:	SM 100	Work Order:	GARR0008			
Serial Number:	None	Date:	07/31/2015			
Customer:	Garrett Metal Detectors	Temperature:	24.5°C			
Attendees:	None	Relative Humidity:	47.8%			
Customer Project:	None	Bar. Pressure:	1020 mb			
Tested By:	Frank Sun	Job Site:	TX01			
Power:	110VAC/60Hz	Configuration:	GARR0008-1			

TEST SPECIFICATIONS

Specification				Method:			
FCC 15.207:2015			ANSI C63	3.10:2009			
TEST PAR	AMETERS						
Run #:	7	Line:	High Line		Add. Ext. Attenuation (dB):	0	
COMMEN	rs						
None							
EUT OPER	EUT OPERATING MODES						
Transmitting OQPSK at Mid Channel							
DEVIATIONS FROM TEST STANDARD							

None

Average Data - vs - Average Limit

RESULTS - Run #7

Quasi Peak Data - vs - Quasi Peak Limit						
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)	
4.720	27.1	19.9	47.0	56.0	-9.0	
4.998	26.2	20.0	46.2	56.0	-9.8	
4.442	25.8	19.9	45.7	56.0	-10.3	
4.512	24.2	19.9	44.1	56.0	-11.9	
4.164	24.1	19.9	44.0	56.0	-12.0	
4.372	24.0	19.9	43.9	56.0	-12.1	
4.929	23.7	19.9	43.6	56.0	-12.4	
4.095	22.9	19.9	42.8	56.0	-13.2	

Average Data - vs - Average Limit						
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)	
4.720	20.9	19.9	40.8	46.0	-5.2	
4.442	20.3	19.9	40.2	46.0	-5.8	
4.164	19.4	19.9	39.3	46.0	-6.7	
4.998	19.3	20.0	39.3	46.0	-6.7	
4.512	19.1	19.9	39.0	46.0	-7.0	
4.372	17.5	19.9	37.4	46.0	-8.6	
4.095	17.0	19.9	36.9	46.0	-9.1	
4.929	16.9	19.9	36.8	46.0	-9.2	

CONCLUSION

Pass

Wh

Tested By

EUT:	SM 100	Work Order:	GARR0008			
Serial Number:	None	Date:	07/31/2015			
Customer:	Garrett Metal Detectors	Temperature:	24.5°C			
Attendees:	None	Relative Humidity:	47.8%			
Customer Project:	None	Bar. Pressure:	1020 mb			
Tested By:	Frank Sun	Job Site:	TX01			
Power:	110VAC/60Hz	Configuration:	GARR0008-1			

TEST SPECIFICATIONS

Specification:				Method:			
FCC 15.207:2	5.207:2015 ANSI C63.10:2009						
TEST PAR	AMETERS						
Run #:	8	Line:	Neutral		Add. Ext. Attenuation (dB):	0	
COMMENT	rs						
None							
EUT OPER	EUT OPERATING MODES						
Transmitting	OQPSK at Mid Chan	inel					
DEVIATIONS FROM TEST STANDARD							

None

Average Data - vs - Average Limit

RESULTS - Run #8

Quasi Peak Data - vs - Quasi Peak Limit					
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
4.721	26.6	19.9	46.5	56.0	-9.5
4.791	25.8	19.9	45.7	56.0	-10.3
5.000	25.6	20.0	45.6	56.0	-10.4
4.444	25.4	19.9	45.3	56.0	-10.7
4.513	23.7	19.9	43.6	56.0	-12.4
4.375	23.2	19.9	43.1	56.0	-12.9
4.096	22.4	19.9	42.3	56.0	-13.7
4.930	22.2	19.9	42.1	56.0	-13.9

Average Data - vs - Average Limit						
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)	
4.721	20.6	19.9	40.5	46.0	-5.5	
4.444	20.3	19.9	40.2	46.0	-5.8	
4.791	19.5	19.9	39.4	46.0	-6.6	
5.000	19.0	20.0	39.0	46.0	-7.0	
4.513	18.3	19.9	38.2	46.0	-7.8	
4.096	17.1	19.9	37.0	46.0	-9.0	
4.375	17.0	19.9	36.9	46.0	-9.1	
4.930	15.2	19.9	35.1	46.0	-10.9	

CONCLUSION

Pass

orgh

Tested By

EUT:	SM 100	Work Order:	GARR0008
Serial Number:	None	Date:	07/31/2015
Customer:	Garrett Metal Detectors	Temperature:	24.5°C
Attendees:	None	Relative Humidity:	47.8%
Customer Project:	None	Bar. Pressure:	1020 mb
Tested By:	Frank Sun	Job Site:	TX01
Power:	110VAC/60Hz	Configuration:	GARR0008-1

TEST SPECIFICATIONS

Specification:			Method:			
FCC 15.207:2015			ANSI C63.10:2009			
TEST PARAMETERS						
Run #: 9	Line:	High Line		Add. Ext. Attenuation (dB):	0	
COMMENTS						
None						
EUT OPERATING MODES	6					
Transmitting OQPSK at High Ch	annel					
DEVIATIONS FROM TEST STANDARD						

None

Quasi Peak Data - vs - Quasi Peak Limit

Average Data - vs - Average Limit

RESULTS - Run #9

Quasi Peak Data - vs - Quasi Peak Limit						
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)	
4.723	26.9	19.9	46.8	56.0	-9.2	
4.445	26.1	19.9	46.0	56.0	-10.0	
4.514	25.0	19.9	44.9	56.0	-11.1	
4.167	24.3	19.9	44.2	56.0	-11.8	
4.237	23.5	19.9	43.4	56.0	-12.6	
3.890	23.4	19.9	43.3	56.0	-12.7	
4.654	23.0	19.9	42.9	56.0	-13.1	
4.098	22.0	19.9	41.9	56.0	-14.1	

Average Data - vs - Average Limit						
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)	
4.723	20.6	19.9	40.5	46.0	-5.5	
4.445	20.4	19.9	40.3	46.0	-5.7	
4.514	19.9	19.9	39.8	46.0	-6.2	
4.167	19.4	19.9	39.3	46.0	-6.7	
3.890	19.3	19.9	39.2	46.0	-6.8	
4.237	19.3	19.9	39.2	46.0	-6.8	
4.654	16.6	19.9	36.5	46.0	-9.5	
4.098	15.8	19.9	35.7	46.0	-10.3	

CONCLUSION

Pass

with

Tested By

EUT:	SM 100	Work Order:	GARR0008		
Serial Number:	None	Date:	07/31/2015		
Customer:	Garrett Metal Detectors	Temperature:	24.5°C		
Attendees:	None	Relative Humidity:	47.8%		
Customer Project:	None	Bar. Pressure:	1020 mb		
Tested By:	Frank Sun	Job Site:	TX01		
Power:	110VAC/60Hz	Configuration:	GARR0008-1		

TEST SPECIFICATIONS

Specification:				Method:		
FCC 15.207:2	2015			ANSI C63.10:2009		
TEST PAR	AMETERS					
Run #:	10	Line:	Neutral		Add. Ext. Attenuation (dB):	0
COMMENT None	rs					
Transmitting						
DEVIATIONS FROM TEST STANDARD						

None

Average Data - vs - Average Limit

RESULTS - Run #10

Q	uasi Peak	Data - vs	- Quasi P	eak Limit	
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
4.724	26.3	19.9	46.2	56.0	-9.8
4.793	26.2	19.9	46.1	56.0	-9.9
4.446	25.6	19.9	45.5	56.0	-10.5
4.516	24.4	19.9	44.3	56.0	-11.7
4.168	23.6	19.9	43.5	56.0	-12.5
4.654	22.8	19.9	42.7	56.0	-13.3
3.890	22.7	19.9	42.6	56.0	-13.4
4.376	22.6	19.9	42.5	56.0	-13.5

	Average	Data - vs	 Average 	Limit	
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
4.724	20.3	19.9	40.2	46.0	-5.8
4.446	20.3	19.9	40.2	46.0	-5.8
4.793	19.9	19.9	39.8	46.0	-6.2
4.516	19.2	19.9	39.1	46.0	-6.9
4.168	19.2	19.9	39.1	46.0	-6.9
3.890	18.9	19.9	38.8	46.0	-7.2
4.376	16.0	19.9	35.9	46.0	-10.1
4.654	15.8	19.9	35.7	46.0	-10.3

CONCLUSION

Pass

orgh

Tested By

EMC

SPURIOUS RADIATED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

CHANNELS OF OPERATION

ow Channel, 2405 MHz	
fid Channel, 2440 MHz	
ligh Channel, 2480 MHz	

MODES OF OPERATION

Transmitting OQPSK at Low, Mid, High Channel @ 2405, 2440, 2480 MHz

POWER SETTINGS INVESTIGATED

110VAC/60Hz

CONFIGURATIONS INVESTIGATED

GARR0008 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency 30 MHz

Stop Frequency 26000 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

					Interval
Description	Manufacturer	Model	ID	Last Cal.	(mo)
Pre-Amplifier	Miteq	JSDQK42-18004000-60-5P	PAM	11/21/2014	12
Cable	Northwest EMC	18-40GHz	TXE	11/21/2014	12
Antenna, Double Ridge Guide Horn	A.H. Systems, Inc.	SAS-574	AXW	4/23/2014	24
Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	PAL	10/27/2014	12
Antenna, Horn	ETS Lindgren	3160-08	AJG	NCR	0
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	PAK	10/27/2014	12
TX02 Cable	Northwest EMC	8-18GHz	TXD	10/27/2014	12
Antenna, Horn	ETS Lindgren	3160-07	AJF	NCR	0
High Pass Filter, 2.8 - 18 GHz	Micro-Tronics	HPM50111	HHX	8/18/2014	12
Attenuator	Fairview Microwave	SA18H-20	TKQ	NCR	0
Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	PAJ	9/22/2014	12
TX02 Cable	Northwest EMC	1-8.2 GHz	TXC	9/22/2014	12
Antenna, Horn	ETS Lindgren	3115	AJL	9/15/2014	24
Low Pass Filter, 0 - 1000 MHz	Micro-Tronics	LPM50004	HHV	8/18/2014	12
Spectrum Analyzer	Agilent	N9010A	AFM	1/28/2015	12
TX02 Cable	Northwest EMC	RE 9kHz - 1GHz	TXB	9/22/2014	12
Pre-Amplifier	Miteq	AM-1551	PAH	9/13/2014	12
Antenna, Biconilog	ETS Lindgren	3143B	AYF	4/7/2014	24

TEST DESCRIPTION

The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance.

While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization. A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

SPURIOUS RADIATED EMISSIONS

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
2839.150	32.7	-2.8	1.0	108.0	3.0	20.0	Horz	AV	0.0	49.9	54.0	-4.1	High Ch, EUT On Side
2841.792	32.5	-2.8	1.0	349.0	3.0	20.0	Vert	AV	0.0	49.7	54.0	-4.3	High Ch, EUT On Side
2772.008	32.6	-3.1	1.2	242.0	3.0	20.0	Horz	AV	0.0	49.5	54.0	-4.5	Mid Ch, EUT On Side
2771.992	32.6	-3.1	1.0	72.0	3.0	20.0	Vert	AV	0.0	49.5	54.0	-4.5	Mid Ch, EUT On Side
4880.042	41.3	8.0	1.0	21.9	3.0	0.0	Vert	AV	0.0	49.3	54.0	-4.7	Mid Ch, EUT On Side
4879.992	41.1	8.0	1.2	214.9	3.0	0.0	Horz	AV	0.0	49.1	54.0	-4.9	Mid Ch, EUT Vert
4810.092	38.6	7.8	1.0	344.0	3.0	0.0	Vert	AV	0.0	46.4	54.0	-7.6	Low Ch, EUT On Side
4879.975	37.3	8.0	1.0	231.0	3.0	0.0	Vert	AV	0.0	45.3	54.0	-8.7	Mid Ch, EUT Vert
4810.067	37.0	7.8	2.9	1.0	3.0	0.0	Horz	AV	0.0	44.8	54.0	-9.2	Low Ch, EUT On Side
4879.950	36.2	8.0	1.0	27.9	3.0	0.0	Horz	AV	0.0	44.2	54.0	-9.8	Mid Ch, EUT Horz
7322.117	30.3	13.4	1.0	108.0	3.0	0.0	Vert	AV	0.0	43.7	54.0	-10.3	Mid Ch, EUT On Side
7319.742	30.3	13.4	1.0	223.0	3.0	0.0	Horz	AV	0.0	43.7	54.0	-10.3	Mid Ch, EUT Vert
7318.483	30.3	13.4	1.0	229.0	3.0	0.0	Horz	AV	0.0	43.7	54.0	-10.3	Mid Ch, EUT On Side
7442.442	30.2	13.4	1.0	54.0	3.0	0.0	Horz	AV	0.0	43.6	54.0	-10.4	High Ch, EUT Horz
7442.067	30.2	13.4	1.0	210.0	3.0	0.0	Vert	AV	0.0	43.6	54.0	-10.4	High Ch, EUT Vert
7441.483	30.2	13.4	1.0	9.0	3.0	0.0	Horz	AV	0.0	43.6	54.0	-10.4	High Ch, EUT Vert
7441.000	30.2	13.4	1.0	28.9	3.0	0.0	Vert	AV	0.0	43.6	54.0	-10.4	High Ch, EUT Horz
7320.150	30.2	13.4	1.0	259.0	3.0	0.0	Vert	AV	0.0	43.6	54.0	-10.4	Mid Ch, EUT Vert
4879.958	35.4	8.0	2.9	351.9	3.0	0.0	Horz	AV	0.0	43.4	54.0	-10.6	Mid Ch, EUT On Side
2770.117	45.3	-3.1	1.2	242.0	3.0	20.0	Horz	PK	0.0	62.2	74.0	-11.8	Mid Ch, EUT On Side

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
2839.700	44.9	-2.8	1.0	108.0	3.0	20.0	Horz	PK	0.0	62.1	74.0	-11.9	High Ch, EUT On Side
2838.183	44.3	-2.8	1.0	349.0	3.0	20.0	Vert	PK	0.0	61.5	74.0	-12.5	High Ch, EUT On Side
2772.067	44.5	-3.1	1.0	72.0	3.0	20.0	Vert	PK	0.0	61.4	74.0	-12.6	Mid Ch, EUT On Side
4879.967	31.2	8.0	1.0	208.9	3.0	0.0	Vert	AV	0.0	39.2	54.0	-14.8	Mid Ch, EUT Horz
4960.100	30.6	8.2	2.2	225.9	3.0	0.0	Vert	AV	0.0	38.8	54.0	-15.2	High Ch, EUT Vert
4960.292	30.4	8.2	1.0	243.9	3.0	0.0	Horz	AV	0.0	38.6	54.0	-15.4	High Ch, EUT Vert
4960.292	30.1	8.2	1.0	177.0	3.0	0.0	Horz	AV	0.0	38.3	54.0	-15.7	High Ch, EUT Horz
4879.092	50.2	8.0	1.0	21.9	3.0	0.0	Vert	PK	0.0	58.2	74.0	-15.8	Mid Ch, EUT On Side
4960.617	29.9	8.2	1.6	80.0	3.0	0.0	Horz	AV	0.0	38.1	54.0	-15.9	High Ch, EUT On Side
4960.017	29.9	8.2	1.6	278.0	3.0	0.0	Vert	AV	0.0	38.1	54.0	-15.9	High Ch, EUT On Side
4960.950	29.8	8.2	1.0	134.0	3.0	0.0	Vert	AV	0.0	38.0	54.0	-16.0	High Ch, EUT Horz
4879.242	49.8	8.0	1.2	214.9	3.0	0.0	Horz	PK	0.0	57.8	74.0	-16.2	Mid Ch, EUT Vert
7318.342	42.2	13.4	1.0	259.0	3.0	0.0	Vert	PK	0.0	55.6	74.0	-18.4	Mid Ch, EUT Vert
7441.133	42.0	13.4	1.0	28.9	3.0	0.0	Vert	PK	0.0	55.4	74.0	-18.6	High Ch, EUT Horz
7319.417	42.0	13.4	1.0	223.0	3.0	0.0	Horz	PK	0.0	55.4	74.0	-18.6	Mid Ch, EUT Vert
7440.675	41.8	13.4	1.0	210.0	3.0	0.0	Vert	PK	0.0	55.2	74.0	-18.8	High Ch, EUT Vert
7322.367	41.7	13.4	1.0	229.0	3.0	0.0	Horz	PK	0.0	55.1	74.0	-18.9	Mid Ch, EUT On Side
7441.150	41.6	13.4	1.0	54.0	3.0	0.0	Horz	PK	0.0	55.0	74.0	-19.0	High Ch, EUT Horz
7439.308	41.6	13.4	1.0	9.0	3.0	0.0	Horz	PK	0.0	55.0	74.0	-19.0	High Ch, EUT Vert
7321.708	41.4	13.4	1.0	108.0	3.0	0.0	Vert	PK	0.0	54.8	74.0	-19.2	Mid Ch, EUT On Side
4879.767	46.7	8.0	1.0	231.0	3.0	0.0	Vert	PK	0.0	54.7	74.0	-19.3	Mid Ch, EUT Vert
4810.192	46.7	7.8	1.0	344.0	3.0	0.0	Vert	PK	0.0	54.5	74.0	-19.5	Low Ch, EUT On Side
4879.000	46.2	8.0	1.0	27.9	3.0	0.0	Horz	PK	0.0	54.2	74.0	-19.8	Mid Ch, EUT Horz
4880.292	46.0	8.0	2.9	351.9	3.0	0.0	Horz	PK	0.0	54.0	74.0	-20.0	Mid Ch, EUT On Side
4810.158	45.8	7.8	2.9	1.0	3.0	0.0	Horz	PK	0.0	53.6	74.0	-20.4	Low Ch, EUT On Side
4960.325	42.8	8.2	2.2	225.9	3.0	0.0	Vert	PK	0.0	51.0	74.0	-23.0	High Ch, EUT Vert
4961.600	42.2	8.2	1.0	243.9	3.0	0.0	Horz	PK	0.0	50.4	74.0	-23.6	High Ch, EUT Vert
4962.425	42.1	8.2	1.0	177.0	3.0	0.0	Horz	PK	0.0	50.3	74.0	-23.7	High Ch, EUT Horz
4960.742	42.1	8.2	1.6	80.0	3.0	0.0	Horz	PK	0.0	50.3	74.0	-23.7	High Ch, EUT On Side
4880.358	42.1	8.0	1.0	208.9	3.0	0.0	Vert	PK	0.0	50.1	74.0	-23.9	Mid Ch, EUT Horz
4960.733	41.5	8.2	1.0	134.0	3.0	0.0	Vert	PK	0.0	49.7	74.0	-24.3	High Ch, EUT Horz
4961.917	41.3	8.2	1.6	278.0	3.0	0.0	Vert	PK	0.0	49.5	74.0	-24.5	High Ch, EUT On Side

SPURIOUS RADIATED EMISSIONS

W	ork Order:	GAR	R0008		Date:	07/2	9/15		1			
	Project:	No	one	Tei	mperature:	24.0	3°C	1	up	~		
	Job Site:	T)	X02		Humidity:	46.89	% RH	u	-1			
Seria	al Number:	N	one	Barom	etric Pres.:	1020	mbar		Tested by:	Frank Sun		
	EUT:	SM 100										
Con	figuration:	1										
	Customer:	Garrett Me	tal Detector	s								
	Attendees:	None		0								
<u> </u>	IIT Power:											
	OT FOWER.	Tronomitti		at Law Ch	annal @ 240							
Operat	ting Mode:	Transmitti	ng OQPSK a	at Low Cha	annei @ 240	ISIVIHZ						
		News										
E	Deviations:	None										
~		Band Edge	e									
U U	omments:											
t Spec	ifications						Test Meth	od				
15.24	17:2015						ANSI C63	.10:2009				
Run #	5	Test Di	stance (m)	3	Antenna	Height(s)		1 to 4(m)		Results	P	ass
80 -												
00												
70												
10												
~~												
00 -												
- C												
50 -					•							
40												
40 -												
~~												
30 -												
20 -												
4.6												
10 -												
0 +												
100	00											10000
						MHz					A 11/	
											▼ AV	- ur
							Polarity/					
iroa	Amplitude	Easter	Antenna	Azimuth	Tost Distance	External	Transducer	Detector	Distance	Adjusted	Snoo Limit	Compared
req (Hz)	(dBuV)	(dB)	(meters)	(degrees)	(meters)	(dB)	Type	Detector	(dB)	(dBuV/m)	(dBuV/m)	(dB)
w(TZ)	(ubuv)	(00)	(incleis)	(ucgiecs)	(motors)	(00)			(00)	(abawiii)	(abaviii)	(00)
8.853	34.3	-4.8	1.0	316.9	3.0	20.0	Vert	AV	0.0	49.5	54.0	-4.5
9.453	34.2	-4.8	1.0	357.0	3.0	20.0	Vert	AV	0.0	49.4	54.0	-4.6
88.837	34.2	-4.8	1.5	169.0	3.0	20.0	Horz	AV	0.0	49.4	54.0	-4.6
8.070	34.2	-4.8	1.0	201.0	3.0	20.0	Horz	AV	0.0	49.4	54.0	-4.6
8.027	46.9	-4.8	1.0	357.0	3.0	20.0	Vert	PK	0.0	62.1	74.0	-11.9
9.767	46.3	-4.8	1.5	169.0	3.0	20.0	Horz	PK	0.0	61.5	74.0	-12.5
9.700	46.3	-4.8	1.0	201.0	3.0	20.0	Horz	PK	0.0	61.5	74.0	-12.5
389 143	45.9	-4.8	10	316.9	3.0	20.0	Vert	PK	0.0	61.1	74 0	-12.9

W	ork Order:	GARR0008	Date:	07/29/15	1.11		
	Project:	None	Temperature:	24.6 °C	age	\sim	
	Job Site:	TX02	Humidity:	46.8% RH			
Seria	al Number:	None	Barometric Pres.:	1020 mbar	Tested I	by: Frank Sun	
	EUT:	SM 100					
Con	figuration:	1					
	Customer:	Garrett Metal Detector	rs				
ŀ	Attendees:	None					
E	UT Power:	110VAC/60Hz					
Operat	ting Mode:	Transmitting OQPSK	at High Channel @ 2480	MHz			
D	Deviations:	None					
с	Comments:	Band Edge. Multiple p	oints require measureme	nt using Marker I	Delta method, which a	are presented in tab	oular data only
st Spec	cifications			Test Me	thod		
C 15 24	47.2015			ANSI CE	53 10·2009		
Run #	t 7	Test Distance (m)	3 Antenna He	eight(s)	1 to 4(m)	Results	Pass
Run #	• 7	Test Distance (m)	3 Antenna He	eight(s)	1 to 4(m)	Results	Pass
Run #	ŧ 7	Test Distance (m)	3 Antenna He	eight(s)	1 to 4(m)	Results	Pass
Run # 80 70 -	E 7	Test Distance (m)	3 Antenna He	eight(s)	1 to 4(m)	Results	Pass
Run # 80 70 - 60 -	7	Test Distance (m)	3 Antenna He	sight(s)	1 to 4(m)	Results	Pass
Run # 80 70 - 60 -	7	Test Distance (m)	3 Antenna Ho	eight(s)	1 to 4(m)	Results	Pass
Run # 80 70 60	7	Test Distance (m)	3 Antenna He	eight(s)	1 to 4(m)	Results	Pass
Run # 80 - 70 - 60 - 50 -	7	Test Distance (m)	3 Antenna He	eight(s)	1 to 4(m)	Results	Pass
Run # 80 - 70 - 60 - 50 -	E 7	Test Distance (m)	3 Antenna He	sight(s)	1 to 4(m)	Results	Pass
Run # 80 - 70 - 60 - 50 -	7	Test Distance (m)	3 Antenna He	sight(s)	1 to 4(m)	Results	Pass
Run # 80 - 70 - 60 - 50 - 10 -	7	Test Distance (m)	3 Antenna Ho	sight(s)	1 to 4(m)	Results Image: Strategy of the st	Pass
Run # 80 - 70 - 60 - 50 - WANG	5	Test Distance (m)	3 Antenna He	2ight(s)	1 to 4(m)	Results Image: Second secon	Pass
Run # 80 70 - 60 - 50 - 10 50 -	5	Test Distance (m)	3 Antenna He	sight(s)	1 to 4(m)	Results Image: Second secon	Pass
Run # 80 - 70 - 60 - 50 - 50 - 30 -	5	Test Distance (m)	3 Antenna He	sight(s)	1 to 4(m)	Results Image: Second secon	Pass
Run # 80 - 70 - 60 - 50 - 30 -	7	Test Distance (m)	3 Antenna Ho	sight(s)	1 to 4(m)	Results Image: Second secon	Pass
Run # 80 - 70 - 60 - 50 - 30 -	5	Test Distance (m)	3 Antenna Ho	sight(s)	1 to 4(m)	Results	Pass
Run # 80 - 70 - 60 - 50 - 30 - 30 - 20 -	5	Test Distance (m)	3 Antenna Ho	2ight(s)	1 to 4(m)	Results	Pass
Run # 80 - 70 - 60 - 50 - 30 - 20 -	5	Test Distance (m)	3 Antenna He	sight(s)	1 to 4(m)	Results Image: Second secon	Pass
Run # 80 T 70 - 60 - 50 - 30 - 20 -		Test Distance (m)	3 Antenna Ho	sight(s)	1 to 4(m)	Results Image: Second secon	Pass
Run # 80 T 70 - 60 - 50 - 30 - 20 - 10 -	7	Test Distance (m)	3 Antenna Ho	sight(s)	1 to 4(m)	Results	Pass
$ \begin{array}{c} Run # \\ 80 \\ 70 \\ 60 \\ 50 \\ 50 \\ 30 \\ 30 \\ 20 \\ 10 \\ 10 \\ - \end{array} $	5	Test Distance (m)	3 Antenna He	sight(s)	1 to 4(m)	Results	Pass
Run # 80 70 60 50 50 20 10	5	Test Distance (m)	3 Antenna Ho	sight(s)	1 to 4(m)	Results	Pass

MHz

						MHz				PK	◆ AV	QP	
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
2480.070	74.4	-4.7	1.0	238.9	3.0	20.0	Horz	AV	0.0	89.7			Fundamental, High Ch EUT Vert
2483.500			1.2	201.0	3.0	20.0	Horz	AV	0.0	49.6	54.0	-4.4	High Ch EUT Vert, Marker Delta Method: Peak 89.7 + -40.13 dBc = 49.6
2480.060	77.0	-4.7	1.0	223.0	3.0	20.0	Vert	AV	0.0	92.3			Fundamental, High Ch EUT On Side
2483.500 2480.645	79.1	-4.7	<u>1.4</u> 1.0	223.0 238.9	<u>3.0</u> 3.0	20.0	Vert Horz	AV PK	0.0	53.5 94.4	54.0	-0.5	High Ch EUT On Side, Marker Delta Method: Peak 92.3 + -38.8 dBc = 53.5 Fundamental, High Ch EUT Vert
2483.500			1.2	201.0	3.0	20.0	Horz	PK	0.0	54.3	74.0	-19.7	High Ch EUT Vert, Marker Delta Method: Peak 94.4 + -40.13 dBc = 54.3
2480.070	70.2	-4.7	1.0	220.9	3.0	20.0	Horz	AV	0.0	85.5 51.0	54.0	-3.0	High Ch EUT Horz, Marker Delta Method: Peak 85.5 + -34.55 dBc = 51.0
2479.745	81.7	-4.7	1.0	223.0	3.0	20.0	Vert	PK	0.0	97.0			Fundamental, High Ch EUT On Side
2483.500			1.4	223.0	3.0	20.0	Vert	PK	0.0	58.2	74.0	-15.8	High Ch EUT On Side, Marker Delta Method: Peak 97.0 + -38.8 dBc = 58.2
2483.500	38.0	-4.7	1.0	253.0	3.0	20.0	Horz	AV	0.0	53.3	54.0	-0.7	High Ch EUT On Side
2483.507	37.3	-4.7	3.2	25.0	3.0	20.0	Vert	AV	0.0	52.6	54.0	-1.4	High Ch EUT Vert
2483.580	56.9	-4.7	1.0	205.0	3.0	20.0	Horz	PK	0.0	72.2	74.0	-1.8	High Ch EUT Horz
2483.663	55.8	-4.7	1.0	253.0	3.0	20.0	Horz	PK	0.0	71.1	74.0	-2.9	High Ch EUT On Side
2483.500	34.9	-4.7	1.0	289.0	3.0	20.0	Vert	AV	0.0	50.2	54.0	-3.8	High Ch EUT Horz
2483.530	54.8	-4.7	3.2	25.0	3.0	20.0	Vert	PK	0.0	70.1	74.0	-3.9	High Ch EUT Vert
2483.843	50.6	-4.7	1.0	289.0	3.0	20.0	Vert	PK	0.0	65.9	74.0	-8.1	High Ch EUT Horz

SPURIOUS RADIATED EMISSIONS

High Ch, EUT Horz, DET Horz, Marker Delta Method

High Ch, EUT Vert, DET Horz , Marker Delta Method

SPURIOUS RADIATED EMISSIONS

High Ch EUT On Side DET Vert, Marker Delta Method

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

					Interval
Description	Manufacturer	Model	ID	Last Cal.	(mo)
DC Block, 40 GHz	Fairview Microwave	SD4018-20	AMM	2/27/2015	12
Attenuator, 20dB, 40 GHz	Fairview Microwave	SA4018-20	TQY	2/27/2015	12
Signal Generator, 40 GHz	Agilent	N5173B	TIW	7/15/2014	36
Spectrum Analyzer	Agilent	E4440A	AFD	7/14/2014	12

TEST DESCRIPTION

The spurious RF conducted emissions were measured with the EUT set to low, medium and high transmit frequencies. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at the data rate(s) listed in the datasheet. For each transmit frequency, the spectrum was scanned throughout the specified frequency range.

EUT:	SM 100				Work Order:	GARR0004	
Serial Number:	None				Date:	06/02/15	
Customer:	Garrett Metal Detectors				Temperature:	24.6°C	
Attendees:	None				Humidity:	46%	
Project:	None				Barometric Pres.:	1017 mbar	
Tested by:	Jonathan Kiefer		Power: 110VAC/60Hz		Job Site:	TX09	
TEST SPECIFICAT	IONS		Test Method				
FCC 15.247:2015			ANSI C63.10:2009				
COMMENTS							
Transmitting OQPS	SK at Low, Mid, High Channe	el @ 2405, 2440, 2480 MHz.					
		0					
DEVIATIONS FROM	M TEST STANDARD						
None							
None							
None			AT	3			
Configuration #	2	Je	ng Da	-			
Configuration #	2	Signature	y Do				
Configuration #	2	Signature	Frequency		Value	Limit	
Configuration #	2	Signature	Frequency Range		Value (dBc)	Limit ≤ (dBc)	Result
Configuration #	2	Signature	Frequency Range		Value (dBc)	Limit ≤ (dBc)	Result
Configuration #	2 Low Channel, 2405 MHz	Signature	Frequency Range		Value (dBc) N/A	Limit ≤ (dBc) N/A	Result N/A
Configuration #	2 Low Channel, 2405 MHz Low Channel, 2405 MHz	Signature	Frequency Range Fundamental 30 MHz - 12.5 GH	z	Value (dBc) N/A -49.67	Limit ≤ (dBc) N/A -20	Result N/A Pass
Configuration #	2 Low Channel, 2405 MHz Low Channel, 2405 MHz Low Channel, 2405 MHz	Signature	Frequency Range Fundamental 30 MHz - 12.5 GH 12.5 GHz - 25 GH	z	Value (dBc) N/A -49.67 -47.42	Limit ≤ (dBc) N/A -20 -20	Result N/A Pass Pass
Configuration #	2 Low Channel, 2405 MHz Low Channel, 2405 MHz Low Channel, 2405 MHz Mid Channel, 2440 MHz	Signature	Frequency Range Fundamental 30 MHz - 12.5 GH 12.5 GHz - 25 GH Fundamental	z z	Value (dBc) N/A -49.67 -47.42 N/A	Limit ≤ (dBc) N/A -20 -20 N/A	Result N/A Pass Pass N/A
Configuration #	2 Low Channel, 2405 MHz Low Channel, 2405 MHz Low Channel, 2405 MHz Mid Channel, 2440 MHz Mid Channel, 2440 MHz	Signature	Frequency Range Fundamental 30 MHz - 12.5 GH 12.5 GHz - 25 GH Fundamental 30 MHz - 12.5 GH	2 2 2	Value (dBc) -49.67 -47.42 N/A -50.63	Limit ≤ (dBc) N/A -20 -20 N/A -20	Result N/A Pass Pass N/A Pass
Configuration #	2 Low Channel, 2405 MHz Low Channel, 2405 MHz Low Channel, 2405 MHz Mid Channel, 2440 MHz Mid Channel, 2440 MHz Mid Channel, 2440 MHz	Signature	Frequency Range Fundamental 30 MHz - 12.5 GH 12.5 GHz - 25 GH Fundamental 30 MHz - 12.5 GH 12.5 GHz - 25 GH	z z z	Value (dBc) -49.67 -47.42 N/A -50.63 -48.65	Limit ≤ (dBc) N/A -20 -20 N/A -20 -20	Result N/A Pass Pass N/A Pass Pass
Configuration #	2 Low Channel, 2405 MHz Low Channel, 2405 MHz Low Channel, 2405 MHz Mid Channel, 2440 MHz Mid Channel, 2440 MHz Mid Channel, 2440 MHz High Channel, 2440 MHz	Signature	Frequency Range Fundamental 30 MHz - 12.5 GH 12.5 GHz - 25 GH Fundamental 30 MHz - 12.5 GH 12.5 GHz - 25 GH Fundamental Fundamental	2 2 2 2	Value (dBc) N/A -49.67 -47.42 N/A -50.63 -48.65 N/A	Limit ≤ (dBc) -20 -20 N/A -20 -20 N/A	Result N/A Pass N/A Pass Pass N/A
Configuration #	2 Low Channel, 2405 MHz Low Channel, 2405 MHz Low Channel, 2405 MHz Mid Channel, 2440 MHz Mid Channel, 2440 MHz High Channel, 2440 MHz High Channel, 2480 MHz	Signature	Frequency Range Fundamental 30 MHz - 12.5 GH 12.5 GHz - 25 GH Fundamental 30 MHz - 12.5 GH 12.5 GHz - 25 GH Fundamental 30 MHz - 12.5 GH	2 2 2 2 2 2	Value (dBc) -49.67 -47.42 N/A -50.63 -48.65 N/A -44.2	Limit ≤ (dBc) -20 -20 -20 -20 -20 -20 -20 -20	Result N/A Pass Pass N/A Pass Pass N/A Pass

#VBW 300 kHz

Start 12.500 0 GHz

#Res BW 100 kHz

Stop 25.000 0 GHz

Sweep 1.195 s (8192 pts)

BAND EDGE COMPLIANCE

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

					Interval
Description	Manufacturer	Model	ID	Last Cal.	(mo)
DC Block, 40 GHz	Fairview Microwave	SD4018-20	AMM	2/27/2015	12
Attenuator, 20dB, 40 GHz	Fairview Microwave	SA4018-20	TQY	2/27/2015	12
Signal Generator, 40 GHz	Agilent	N5173B	TIW	7/15/2014	36
Spectrum Analyzer	Agilent	E4440A	AFD	7/14/2014	12

TEST DESCRIPTION

The spurious RF conducted emissions at the edges of the authorized bands were measured with the EUT set to low and high transmit frequencies in each available band. The channels closest to the band edges were selected. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at the data rate(s) listed in the datasheet.

The spectrum was scanned below the lower band edge and above the higher band edge.

BAND EDGE COMPLIANCE

NOR	THW	EST
С		Г
L		L
	XMit	2015.01.14

EUT	SM 100				Wo	rk Order:	GARR0004	
Serial Number	None					Date:	06/02/15	
Customer	Garrett Metal Detectors				Tem	perature	24.6°C	
Attendees	None				ł	-lumidity:	46%	
Project	None				Baromet	ric Pres.:	1017 mbar	
Tested by	Jonathan Kiefer		Power:	110VAC/60Hz		Job Site:	TX09	
TEST SPECIFICAT	IONS			Test Method				
FCC 15.247:2015				ANSI C63.10:2009				
COMMENTS								
Transmitting OQP	SK at Low, High Channel @ 2405,	, 2480 MHz.						
DEVIATIONS FRO	M TEST STANDARD							
None								
Configuration #	2	Signature	ing Da					
							L loss 14	
					va (d	ilue Bc)	≤ (dBc)	Result
OQPSK			_		va (d	llue Bc)	≤ (dBc)	Result
OQPSK	Low Channel, 2405 MHz				va (d	llue Bc)).35	∠imit ≤ (dBc) -20	Result Pass

BAND EDGE COMPLIANCE

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

					Interval
Description	Manufacturer	Model	ID	Last Cal.	(mo)
DC Block, 40 GHz	Fairview Microwave	SD4018-20	AMM	2/27/2015	12
Attenuator, 20dB, 40 GHz	Fairview Microwave	SA4018-20	TQY	2/27/2015	12
Signal Generator, 40 GHz	Agilent	N5173B	TIW	7/15/2014	36
Spectrum Analyzer	Agilent	E4440A	AFD	7/14/2014	12

TEST DESCRIPTION

The 6dB occupied bandwidth was measured using 100 kHz resolution bandwidth and 300 kHz video bandwidth. The 99.9% (approximate 26 dB) emission bandwidth (EBW) was also measured at the same time.

The EUT was set to the channels and modes listed in the datasheet. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer.

EUT	SM 100			Work Order:	GARR0004	
Serial Number:	None			Date:	06/02/15	
Customer	Garrett Metal Detectors			Temperature:	24.6°C	
Attendees	None			Humidity:	46%	
Project	None			Barometric Pres.:	1017	
Tested by:	Jonathan Kiefer		Power: 110VAC/60Hz	Job Site:	TX09	
TEST SPECIFICAT	IONS		Test Method			
FCC 15.247:2015			ANSI C63.10:2009			
COMMENTS						
Transmitting OQP	SK at Low, Mid, High Char	nnel @ 2405, 2440, 2480 MHz.				
DEVIATIONS FROM	M TEST STANDARD					
None						
Configuration #	2	Signature	up Da			
					Limit	
				Value	(>)	Result
OQPSK						
	Low Channel, 2405 MHz			1.64 MHz	500 kHz	Pass
	Mid Channel, 2440 MHz			1.598 MHz	500 kHz	Pass
	High Channel, 2480 MHz			1.604 MHz	500 kHz	Pass

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

					Interval
Description	Manufacturer	Model	ID	Last Cal.	(mo)
DC Block, 40 GHz	Fairview Microwave	SD4018-20	AMM	2/27/2015	12
Attenuator, 20dB, 40 GHz	Fairview Microwave	SA4018-20	TQY	2/27/2015	12
Signal Generator, 40 GHz	Agilent	N5173B	TIW	7/15/2014	36
Spectrum Analyzer	Agilent	E4440A	AFD	7/14/2014	12

TEST DESCRIPTION

The transmit frequency was set to the required channels in each band. The transmit power was set to its default maximum. A direct connection was made between the RF output of the EUT and a spectrum analyzer. Attenuation and a DC block were used. The reference level offset on the spectrum analyzer was adjusted to compensate for cable loss and the external attenuation used between the RF output and the spectrum analyzer input.

Prior to measuring peak transmit power the DTS bandwidth (B) and the transmission pulse duration (T) were measured. Both are required to determine the method of measuring Maximum Conducted Output Power. The transmission pulse duration (T) was measured using a zero span on the spectrum analyzer to see the pulses in the time domain.

The method found in KDB 558074 DTS D01 Measurement Section 9.1.1 was used because the RBW on the analyzer was greater than the DTS Bandwidth of the radio.

EUT	SM 100		Work Order:	GARR0004	
Serial Number:	None		Date:	06/02/15	
Customer	Garrett Metal Detectors		Temperature:	24.6°C	
Attendees	None		Humidity:	46%	
Project	None		Barometric Pres.:	1017 mbar	
Tested by:	Jonathan Kiefer	Power: 110VAC/60Hz	Job Site:	TX09	
TEST SPECIFICAT	IONS	Test Method			
FCC 15.247:2015		ANSI C63.10:2009			
COMMENTS					
Transmitting OQP	SK at Low, Mid, High Channel @ 2405, 2440, 2480 MHz.				
DEVIATIONS FROM	M TEST STANDARD				
None					
		ST			
Configuration #	2	ng Da			
	Signature				
				Limit	
			Value	(<)	Result
OQPSK					
	Low Channel, 2405 MHz		1.396 mW	1 W	Pass
	Mid Channel, 2440 MHz		1.4 mW	1 W	Pass
	High Channel, 2480 MHz		1.289 mW	1 W	Pass

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

					Interval
Description	Manufacturer	Model	ID	Last Cal.	(mo)
DC Block, 40 GHz	Fairview Microwave	SD4018-20	AMM	2/27/2015	12
Attenuator, 20dB, 40 GHz	Fairview Microwave	SA4018-20	TQY	2/27/2015	12
Signal Generator, 40 GHz	Agilent	N5173B	TIW	7/15/2014	36
Spectrum Analyzer	Agilent	E4440A	AFD	7/14/2014	12

TEST DESCRIPTION

The maximum power spectral density measurements were measured with the EUT set to the required transmit frequencies in each band. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at the lowest, middle, and maximum data rate for each modulation type available.

Per the procedure outlined in FCC KDB 558074 D01 DTS Measurement Section 5.3.1, the spectrum analyzer was used as follows:

≻RBW = 100 kHz

≻VBW = 300 kHz

>Detector = Peak (to match method used for power measurement)

➤Trace = Max hold

The observed power level is then scaled to an equivalent value in 3 kHz by adding a Bandwidth Correction Factor (BWCF) where:

BWCF = 10*LOG (3 kHz / 100 kHz) = -15.2 dB

EUT	SM 100					Work Order:	GARR0004	
Serial Number	None					Date:	06/02/15	
Customer	Garrett Metal Detectors					Temperature:	24.6°C	
Attendees	None					Humidity:	46%	
Project	:: None					Barometric Pres.:	1017 mbar	
Tested by	: Jonathan Kiefer		Power: 110VAC/60Hz			Job Site:	TX09	
TEST SPECIFICAT	FIONS		Test Method					
FCC 15.247:2015			ANSI C63.10:2009					
COMMENTS								
Transmitting OQF	'SK at Low, Mid, High Char M TEST STANDARD	inel @ 2405, 2440, 2480 MHz.						
None								
Configuration #	2	Signature	ng Da					
				Value dBm/100kHz	dBm/100kHz To dBm/3kHz	Value dBm/3kHz	Limit dBm/3kHz	Results
OQPSK								
	Low Channel, 2405 MHz			-5.58	-15.2	-20.78	8	Pass
	Mid Channel, 2440 MHz			-5.582	-15.2	-20.782	8	Pass
	High Channel, 2480 MHz			-6.025	-15.2	-21.225	8	Pass

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

					Interval
Description	Manufacturer	Model	ID	Last Cal.	(mo)
Attenuator, 20dB, 40 GHz	Fairview Microwave	SA4018-20	TQY	2/27/2015	12
DC Block, 40 GHz	Fairview Microwave	SD4018-20	AMM	2/27/2015	12
Signal Generator, 40 GHz	Agilent	N5173B	TIW	7/15/2014	36
Spectrum Analyzer	Agilent	E4440A	AFD	7/14/2014	12

TEST DESCRIPTION

The Duty Cycle (x) of the single channel operation of the radio as controlled by the provided test software was measured for each of the EUT operating modes.

The measurements were made using a zero span on the spectrum analyzer to see the pulses in the time domain. The transmit power was set to its default maximum. A direct connection was made between the RF output of the EUT and a spectrum analyzer. Attenuation and a DC block were used.

The duty cycle was calculated by dividing the transmission pulse duration (T) by the total period of a single on and total off time.

If the transmit duty cycle < 98 percent, burst gating was used during some of the other tests in this report to only measure during the burst duration.

EUT	SM 100						Work Order:	GARR0004	
Serial Number	r: None						Date:	06/02/15	
Customer	: Garrett Metal Detectors						Temperature:	24.6°C	
Attendees	None						Humidity:	46%	
Project	: None						Barometric Pres.:	1017 mbar	
Tested by	: Jonathan Kiefer		Power: 110VAC/	/60Hz			Job Site:	TX09	
TEST SPECIFICAT	TIONS		Test Met	thod					
FCC 15.247:2015			ANSI C6	3.10:2009					
COMMENTS									
Transmitting OOP	SK at Low, Mid, High Chan	nel @ 2405, 2440, 2480 MHz.							
	ert at zon, ma, mgn onan								
DEVIATIONS FRO	M TEST STANDARD								
None									
			K.						
Configuration #	2	2	my Da						
-		Signature							
						Number of	Value	Limit	
			Pulse	Width	Period	Pulses	(%)	(%)	Results
OQPSK							· · ·		
	Low Channel, 2405 MHz		534.7	767 us 4	4.195 ms	1	12.7	N/A	N/A
	Low Channel, 2405 MHz		N	I/A	N/A	5	N/A	N/A	N/A
	Mid Channel, 2440 MHz		547.0	033 us 🗧	3.846 ms	1	14.2	N/A	N/A
	Mid Channel, 2440 MHz		N	I/A	N/A	5	N/A	N/A	N/A
	High Channel, 2480 MHz		549.9	931 us 🗧	3.449 ms	1	15.9	N/A	N/A
	High Channel, 2480 MHz		N	I/A	N/A	5	N/A	N/A	N/A

		OODSK	Low Channel 24	05 MHz		
			Number of	Value	Limit	
	Pulse Width	Period	Pulses	(%)	(%)	Results
	534.767 us	4.195 ms	1	12.7	N/A	N/A
🔆 🔆 🔆 Agilent 10:55	i:32 Jun 2, 2	2015			RT	
Northwest EMC, In	C					Mkr3 5.218
Ref 2 dBm		#Atten 10 c	IB			-3.83 dB
#Peak	1 2				3	
Log	- <u>-</u>					۰
5	_}					
dB/						
Offst						
20.9						
ав						
#LgHv						
U1 00	- 					
MI 02 Contor 2.405 000						Spon 0 1
Center 2.405 000 Dee DU 1 Mile	012				Sucon 7-00	əpan ७ ғ مىسە (2102 مىل
Kes DW I MHZ	Tup		THE AVIA	0	oweep 7.03	oo ms (o 192 pts
1 (1)	Time	1.	.024 ms	-3.9	9 dBm	
2 (1)	Time	1	.558 ms	-3.5	9 dBm	
3 (1)	Time	5.	.218 ms	-3.8	3 dBm	

OQPSK, Low Channel, 2405 MHz								
Number of Value Limit								
		Pulse Width	Period	Pulses	(%)	(%)	Results	
	N/A N/A 5 N/A N/A N/A							

	OQPSK. Mid Channel. 2440 MHz						
			Number of	Value	Limit		
	Pulse Width	Period	Pulses	(%)	(%)	Results	
	547.033 us	3.846 ms	1	14.2	N/A	N/A	
🔆 Agilent 10	:31:02 Jun 2,	2015			RT		
Northwest EMC,	, Inc					Mkr1 1.024	4 ms
Ref 2 dBm		#Atten 10 c	₿			-3.66 c	lBm
#Peak	1	2				3	
Log 📃 ———		<u> </u>				^	
5							
dB/						1	
Offst							
20.9							
dB							
#L a0u							
*LYHV							
W1 S2							
Center 2.440 0	100 GHz					Span Ø	Hz
Res BW 1 MHz			⊭VBW 30 kHz		Sweep 6.0	07 ms (8192 p	ts)
Marker Tra	асе Туре	X	Axis	Ampl	itude		
	1) Time	1	.024 ms	-3.60	5 dBm - dBm		
	1) Time	1	.571 MS 4.87 me	-3.4	z abm 7 dBm		
	r/ nille			-3.01	andrill		

OQPSK, Mid Channel, 2440 MHz								
				Number of	Value	Limit		
		Pulse Width	Period	Pulses	(%)	(%)	Results	
		N/A	N/A	5	N/A	N/A	N/A	

	OQPSK, High Channel, 2480 MHz						
			Number of	Value	Limit		
·	Pulse Width	Period	Pulses	(%)	(%)	Results	_
	549.931 us	3.449 ms	1	15.9	N/A	N/A	
🕂 Agilent 10:18	8:59 Jun 2, 2	:015			RT		
Northwest EMC, In	nc					Mkr3 4.47	3 ms
Ref 2 dBm		#Atten 10 d	IB			-3.90	dBm
#Peak	1	2				3	
Log	<u> </u>					^	******
ک _{ار} ⊢							
20.3 dB							
#LaAv							
W1 S2							
Center 2.480 000) GHz					Span (0 Hz
Res BW 1 MHz			#VBW 30 kHz		Sweep) 5 ms (8192 p	ots)
Marker Trace	e Type	Х	Axis	Ĥmp	litude		
1 (1)	Time Time	1.	.024 ms 574 ma	-4.3	0 dBm 0 dBm		
3 (1)	Time	4.	.374 MS .473 ms	-3.9	0 dBm 0 dBm		

OQPSK, High Channel, 2480 MHz									
				Number of	Value	Limit			
		Pulse Width	Period	Pulses	(%)	(%)	Results		
		N/A	N/A	5	N/A	N/A	N/A		

