

RADIO TEST REPORT FCC ID: 2AOWK-5006AF1

Certificate #4298 0

Product: Mobile Phone

Trade Mark: ulefone

Model No.: GQ5006

Armor 26 Ultra, Armor 26T Ultra, Armor 26, Family Model: Armor 26T, Armor 26 Lite, Armor 26 Pro, Armor 26T Pro, Armor 26s, Armor 26s Pro Report No.: S24032502707002

Issue Date: May 09, 2024

Prepared for

Shenzhen Gotron Electronic CO.,LTD.

7B01, Building A, Block 1, Anhongji Tianyao Plaza, Longhua District, Shenzhen City, Guangdong Province China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

TABLE OF CONTENTS

1 TEST RESULT CERTIFICATION	4
2 SUMMARY OF TEST RESULTS	5
3 FACILITIES AND ACCREDITATIONS	6
 3.1 FACILITIES 3.2 LABORATORY ACCREDITATIONS AND LISTINGS 	
3.3 MEASUREMENT UNCERTAINTY	
4 GENERAL DESCRIPTION OF EUT	
6 SETUP OF EQUIPMENT UNDER TEST	
6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	
6.2 SUPPORT EQUIPMENT.	
6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS	
7 TEST REQUIREMENTS	14
7.1 CONDUCTED EMISSIONS TEST	14
7.1.1 Applicable Standard	
7.1.2 Conformance Limit	
7.1.3 Measuring Instruments	
7.1.4 Test Configuration 7.1.5 Test Procedure	
7.1.5 Test Procedure	
7.1.0 Test Results 7.2 RADIATED SPURIOUS EMISSION	
7.2.1 Applicable Standard	
7.2.2 Conformance Limit	
7.2.3 Measuring Instruments	
7.2.4 Test Configuration	
7.2.5 Test Procedure	19
7.2.6 Test Results	
7.3 6DB BANDWIDTH	
7.3.1 Applicable Standard	
7.3.2 Conformance Limit	
7.3.3 Measuring Instruments	
7.3.4 Test Setup 7.3.5 Test Procedure	
7.3.6 Test Results	
7.4 DUTY CYCLE	
7.4.1 Applicable Standard	
7.4.2 Conformance Limit	
7.4.3 Measuring Instruments	
7.4.4 Test Setup	27
7.4.5 Test Procedure	
7.4.6 Test Results	
7.5 PEAK OUTPUT POWER	
7.5.1 Applicable Standard	
7.5.2 Conformance Limit 7.5.3 Measuring Instruments	
7.5.3 Measuring Instruments 7.5.4 Test Setup	
7.5.4 Test Setup 7.5.5 Test Procedure	
7.5.6 Test Results	

NTEK 北测[®]

7	.6 P	OWER SPECTRAL DENSITY	20
/	.0 г 7.6.1	Applicable Standard	
	7.6.2	Conformance Limit	
	7.6.3	Measuring Instruments	
	7.6.4	Test Setup	
	7.6.5	Test Procedure	
	7.6.6	Test Results	
7		CONDUCTED BAND EDGE MEASUREMENT	
,	7.7.1	Applicable Standard	
	7.7.2	Conformance Limit	
	7.7.3	Measuring Instruments	
	7.7.4	Test Setup	
	7.7.5	Test Procedure	
	7.7.6	Test Results	
7	.8 S	PURIOUS RF CONDUCTED EMISSIONS	
	7.8.1	Conformance Limit	
	7.8.2	Measuring Instruments	
	7.8.3	Test Setup	
	7.8.4	Test Procedure	33
	7.8.5	Test Results	33
7	.9 A	NTENNA APPLICATION	34
	7.9.1	Antenna Requirement	
	7.9.2	Result	34
8	TEST	RESULTS	35
1			
	8.1.1	Duty Cycle	
	8.1.2	Maximum Conducted Output Power	
	8.1.3 8.1.4	-6dB Bandwidth Occupied Channel Bandwidth	
	8.1.4 8.1.5	Maximum Power Spectral Density Level	
	8.1.5 8.1.6	Band Edge	
	8.1.0 8.1.7	Conducted RF Spurious Emission	
2		Conducted KF Spurious Emission	
2	8.1.8	Duty Cycle	
	8.1.9	Maximum Conducted Output Power	
	8.1.10	-6dB Bandwidth	
	8.1.11	Occupied Channel Bandwidth	
	8.1.12	Maximum Power Spectral Density Level	
	8.1.13	Band Edge	
	8.1.14	Conducted RF Spurious Emission	
	5.1.17		, 5

NTEK 北测

1 TEST RESULT CERTIFICATION

	-	
Applicant's name:	Shenzhen Gotron Electronic CO.,LTD.	
Address:	7B01, Building A, Block 1, Anhongji Tianyao Plaza, Longhua District, Shenzhen City, Guangdong Province China	
Manufacturer's Name:	Shenzhen Gotron Electronic CO.,LTD.	
Address:	7B01, Building A, Block 1, Anhongji Tianyao Plaza, Longhua District, Shenzhen City, Guangdong Province China	
Product description		
Product name:	Mobile Phone	
Model and/or type reference:	GQ5006	
Family Model:	Armor 26 Ultra, Armor 26T Ultra, Armor 26, Armor 26T, Armor 26 Lite, Armor 26 Pro, Armor 26T Pro, Armor 26s, Armor 26s Pro	
Sample number	S240325027006	
Date of Test	Mar 25, 2024 ~ May 09, 2024	

Measurement Procedure Used:

APPLICABLE STANDARDS	
APPLICABLE STANDARD/ TEST PROCEDURE	TEST RESULT
FCC 47 CFR Part 2, Subpart J	
FCC 47 CFR Part 15, Subpart C	Complied
ANSI C63.10-2013	Complied
KDB 558074 D01 15.247 Meas Guidance v05r02	

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Prepared _. By	Allen Liu (Project Engineer)	Reviewed By : <u>Aaron Cheng</u> (Supervisor)	Approved <u>-</u> Alex Li By - Alex Li (Manager)

NTEK 北测

2 SUMMARY OF TEST RESULTS

R

ilac.M

FCC Part15 (15.247), Subpart C			
Standard Section	Test Item	Verdict	Remark
15.207	Conducted Emission	PASS	
15.247 (a)(2)	6dB Bandwidth	PASS	
15.247 (b)	Peak Output Power	PASS	
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS	
15.247 (e)	Power Spectral Density	PASS	
15.247 (d)	Band Edge Emission	PASS	
15.247 (d)	Spurious RF Conducted Emission	PASS	
15.203	Antenna Requirement	PASS	

ACCREDITED

Certificate #4298.01

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

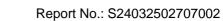
Site Description	
CNAS-Lab. :	The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
-	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm :	Shenzhen NTEK Testing Technology Co., Ltd.
Site Location :	1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB

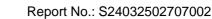
NTEK 北测


4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification		
Equipment	Mobile Phone	
Trade Mark	ulefone	
FCC ID	2AOWK-5006AF1	
Model No.	GQ5006	
Family Model	Armor 26 Ultra, Armor 26T Ultra, Armor 26, Armor 26T, Armor 26 Lite, Armor 26 Pro, Armor 26T Pro, Armor 26s, Armor 26s Pro	
Model Difference	All models are the same circuit and RF module, except the Model Name.	
Operating Frequency	2402MHz~2480MHz	
Modulation	GFSK	
Number of Channels	40 Channels	
Antenna Type	LDS Antenna	
Antenna Gain	3.18dBi	
Adapter	Model: HJ-PD120W-US Input: 100-240V~50/60Hz 1.8A Output: 5.0V3.0A 15.0W OR 9.0V3.0A 27.0W OR 12.0V3.0A 36.0W OR 15.0V3.0A 45.0W OR 20.0V5.0A 100.0W MAX PPS: 3.6V-20.0V6.0A 120.0W MAX	
Battery	DC 7.74V, 7800mAh	
Power supply	DC 7.74V from battery or DC 5V from adapter	
HW Version	N/A	
SW Version	N/A	

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.


Revision History

ACCREDITED

Certificate #4298.01

Report No.	Version	Description	Issued Date
S24032502707002	Rev.01	Initial issue of report	May 09, 2024

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Certificate #4298.01

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps&2Mbps for GFSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Frequency(MHz)
2402
2404
2440
2442
2478
2480
-

Note: fc=2402MHz+kx2MHz k=0 to 39

The following summary table is showing all test modes to demonstrate in compliance with the standard.

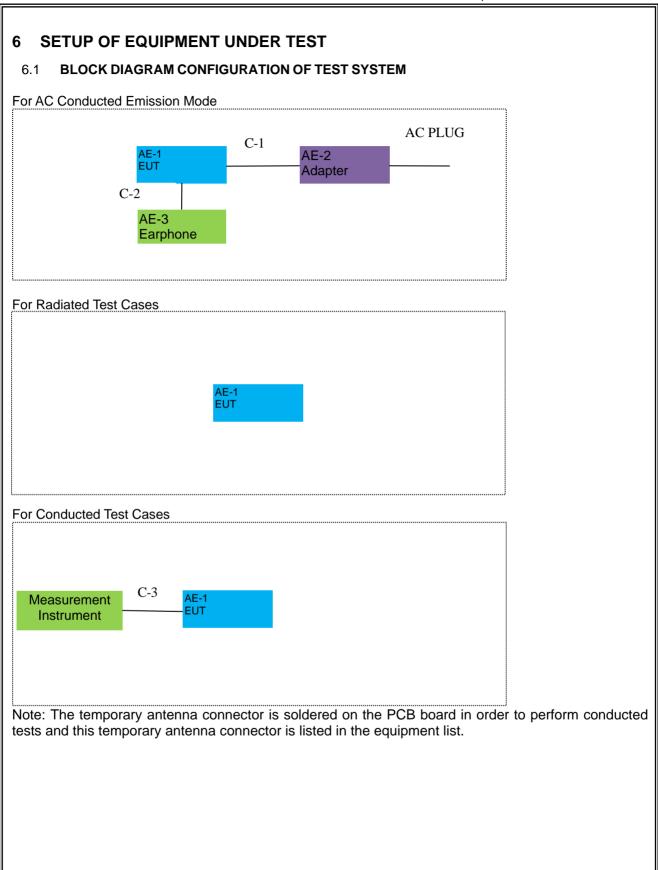
	Test Cases
Test Item	Data Rate/ Modulation
AC Conducted Emission	Mode 1: normal link mode
	Mode 1: normal link mode
Radiated Test	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps&2Mbps
Cases	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps&2Mbps
	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps&2Mbps
Conducted Test	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps&2Mbps
Conducted Test	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps&2Mbps
Cases	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps&2Mbps

Note:

1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

2. AC power line Conducted Emission was tested under maximum output power.

3. For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.


4. EUT built-in battery-powered, the battery is fully-charged.

NTEK 北测

ac.

ACCREDITED

Certificate #4298.01

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Mobile Phone	GQ5006	N/A	EUT
AE-2	Adapter	HJ-PD120W-US	N/A	Peripherals
AE-3	Earphone	N/A	N/A	Peripherals

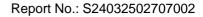
Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	YES	NO	1.0m
C-2	Earphone Cable	NO	NO	1.2m
C-3	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

NTEK 北测

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS


Radiation& Conducted Test equipment

	Und Conducted	loot oquipinont					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2024.03.12	2025.03.11	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2023.05.29	2024.05.28	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2024.03.12	2025.03.11	1 year
4	Test Receiver	R&S	ESPI7	101318	2024.03.12	2025.03.11	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2024.03.11	2025.03.10	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2023.05.06	2026.05.05	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2024.03.12	2025.03.11	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2023.05.29	2024.05.28	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2023.05.29	2024.05.28	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2023.05.29	2024.05.28	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2023.05.29	2024.05.28	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2023.05.06	2026.05.05	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2023.05.06	2026.05.05	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2023.05.29	2024.05.28	1 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	AC Conduction Test equipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2024.03.12	2025.03.11	1 year
2	LISN	R&S	ENV216	101313	2024.03.12	2025.03.11	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2024.03.12	2025.03.11	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2023.05.06	2026.05.05	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2023.05.06	2026.05.05	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2023.05.06	2026.05.05	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2023.05.06	2026.05.05	3 year

ACCRED

Certificate #4298.01

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

NTEK 北测[®]

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

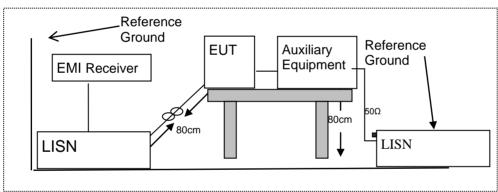
7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 Conformance Limit

Frequency(MHz)	Conducted Emission Limit		
Frequency(IVILIZ)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency


2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

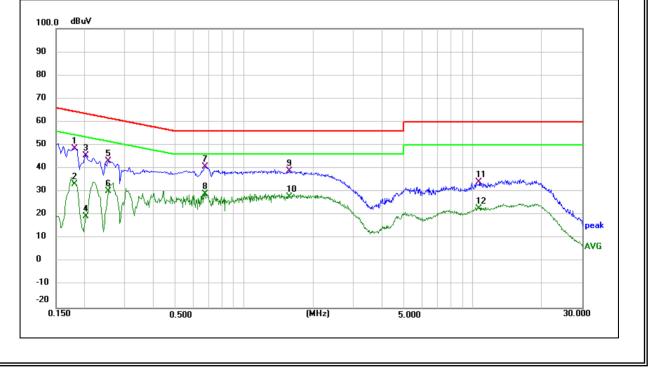
7.1.4 Test Configuration

7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

7.1.6 Test Results

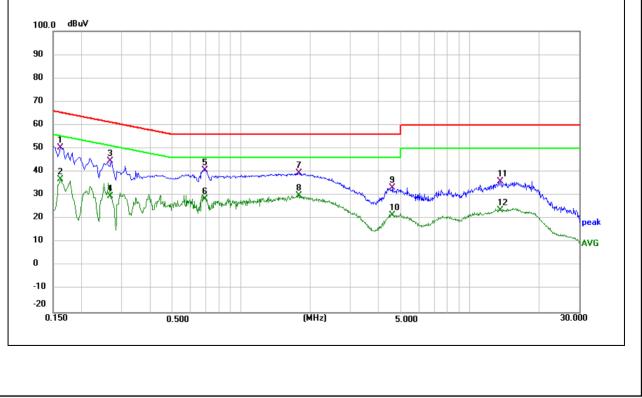

EUT:	Mobile Phone	Model Name :	GQ5006
Temperature:	22 °C	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domort
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1819	38.54	9.99	48.53	64.40	-15.87	QP
0.1819	23.12	9.99	33.11	54.40	-21.29	AVG
0.2029	35.59	10.04	45.63	63.49	-17.86	QP
0.2029	9.55	10.04	19.59	53.49	-33.90	AVG
0.2540	32.87	10.14	43.01	61.63	-18.62	QP
0.2540	20.09	10.14	30.23	51.63	-21.40	AVG
0.6740	29.72	10.99	40.71	56.00	-15.29	QP
0.6740	18.10	10.99	29.09	46.00	-16.91	AVG
1.5740	26.08	12.80	38.88	56.00	-17.12	QP
1.5740	15.17	12.80	27.97	46.00	-18.03	AVG
10.5900	24.57	9.69	34.26	60.00	-25.74	QP
10.5900	12.97	9.69	22.66	50.00	-27.34	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.


EUT:	Mobile Phone	Model Name :	GQ5006
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domorila
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1620	40.40	9.95	50.35	65.36	-15.01	QP
0.1620	26.78	9.95	36.73	55.36	-18.63	AVG
0.2672	34.37	10.18	44.55	61.20	-16.65	QP
0.2672	19.61	10.18	29.79	51.20	-21.41	AVG
0.6940	29.67	11.03	40.70	56.00	-15.30	QP
0.6940	17.34	11.03	28.37	46.00	-17.63	AVG
1.7900	26.37	13.24	39.61	56.00	-16.39	QP
1.7900	16.82	13.24	30.06	46.00	-15.94	AVG
4.5900	23.66	9.67	33.33	56.00	-22.67	QP
4.5900	11.86	9.67	21.53	46.00	-24.47	AVG
13.5620	26.28	9.70	35.98	60.00	-24.02	QP
13.5620	14.01	9.70	23.71	50.00	-26.29	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

MHz	MHz	GHz			
16.42-16.423	399.9-410	4.5-5.15			
16.69475-16.69525	608-614	5.35-5.46			
16.80425-16.80475	960-1240	7.25-7.75			
25.5-25.67	1300-1427	8.025-8.5			
37.5-38.25	1435-1626.5	9.0-9.2			
73-74.6	1645.5-1646.5	9.3-9.5			
74.8-75.2	1660-1710	10.6-12.7			
123-138	2200-2300	14.47-14.5			
149.9-150.05	2310-2390	15.35-16.2			
156.52475-156.52525	2483.5-2500	17.7-21.4			
156.7-156.9	2690-2900	22.01-23.12			
162.0125-167.17	3260-3267	23.6-24.0			
167.72-173.2	3332-3339	31.2-31.8			
240-285	3345.8-3358	36.43-36.5			
322-335.4	3600-4400	(2)			
	MHz 16.42-16.423 16.69475-16.69525 16.80425-16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2 123-138 149.9-150.05 156.52475-156.52525 156.7-156.9 162.0125-167.17 167.72-173.2 240-285	MHzMHz16.42-16.423399.9-41016.69475-16.69525608-61416.80425-16.80475960-124025.5-25.671300-142737.5-38.251435-1626.573-74.61645.5-1646.574.8-75.21660-1710123-1382200-2300149.9-150.052310-2390156.52475-156.525252483.5-2500156.7-156.92690-2900162.0125-167.173260-3267167.72-173.23332-3339240-2853345.8-3358			

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Eroguopov(MHz)	Class B (dBuV/m) (at 3M)		
Frequency(MHz)	PEAK	AVERAGE	
Above 1000	74	54	

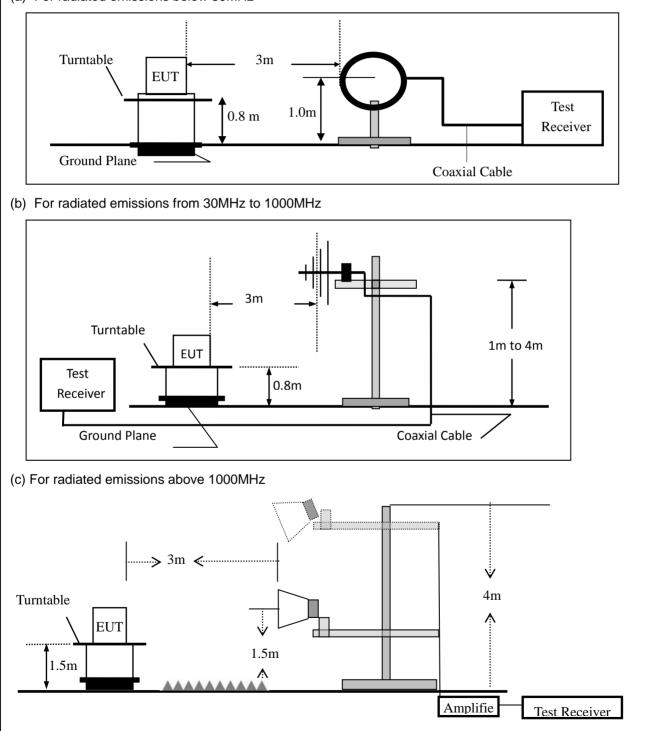
Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz: Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz: Distance extrapolation factor =20log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

NTEK 北测



7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1MHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.

- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Certificate #4298.01

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Above 4000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	1 MHz

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

	Spurious	Emission	below	30MHz	(9KHz to 30MHz)
--	----------	----------	-------	-------	-----------------

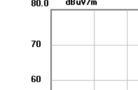
EUT:	Mobile Phone	Model No.:	GQ5006
Temperature:	20 ℃	Relative Humidity:	48%
Lest Mode:	Mode1/Mode2/Mode3/ Mode4	Test By:	Allen Liu

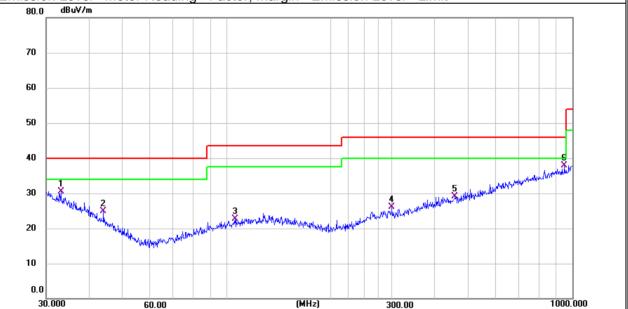
Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below:

EUT:	Mobile Phone	Model Name :	GQ5006
Temperature:	25 ℃	Relative Humidity:	55%
Pressure:	1010hPa	Test Mode:	Mode 4
Test Voltage :	DC 7.74V		


ACCREDITED


Certificate #4298.01

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	33.0950	5.84	24.63	30.47	40.00	-9.53	QP
V	43.9658	6.28	18.61	24.89	40.00	-15.11	QP
V	105.6415	4.71	18.00	22.71	43.50	-20.79	QP
V	300.3672	5.89	20.15	26.04	46.00	-19.96	QP
V	457.5073	4.77	24.26	29.03	46.00	-16.97	QP
V	948.7610	6.72	31.28	38.00	46.00	-8.00	QP

Remark:

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark	
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Roman	
Н	34.0363	6.27	24.10	30.37	40.00	-9.63	QP	
Н	119.8556	4.90	18.61	23.51	43.50	-19.99	QP	
Н	206.3976	6.22	16.35	22.57	43.50	-20.93	QP	
Н	490.7445	6.88	24.78	31.66	46.00	-14.34	QP	
Н	651.9417	7.22	27.23	34.45	46.00	-11.55	QP	
H Remark	900.1474	5.89	30.73	36.62	46.00	-9.38	QP	
Emission 80.0	<u>dBuV/m</u>	Reading+ Fac	ctor, Margin	= Emission Le	vel - Limit			
70 -								
60 -								
50 -								
40	1				નુ	5 million	, Sund	
30 🍾	The state of the s			human 3 and any provide	hadde adams and have been and the the	Adder		
20 –	and the second second	have the state of	YND OLYMPIC COLUMN	······································				
10								
0.0								

UT:		Mobile Ph	one		Model No.:		GQ5006			
Femperati	ure:	20 °C			Relative Hu	midity:	dity: 48%			
Fest Mode):	Mode2/Mo	ode3/Mod	e4	Test By:		Allen Liu	Allen Liu		
Frequency	Read Level	Cable loss	Antenna Factor	Pream Factor		Limits	Margin	Remark	Comment	
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)			
		T	L	ow Chann	el (2402 MHz)(GF	SK)Above 1	G			
4804.338	62.91	5.21	35.59	44.30	59.41	74.00	-14.59	Pk	Vertical	
4804.338	42.01	5.21	35.59	44.30	38.51	54.00	-15.49	AV	Vertical	
7206.107	61.78	6.48	36.27	44.60	59.93	74.00	-14.07	Pk	Vertical	
7206.107	42.24	6.48	36.27	44.60	40.39	54.00	-13.61	AV	Vertical	
4804.169	64.55	5.21	35.55	44.30	61.01	74.00	-12.99	Pk	Horizontal	
4804.169	41.68	5.21	35.55	44.30	38.14	54.00	-15.86	AV	Horizontal	
7206.214	62.74	6.48	36.27	44.52	60.97	74.00	-13.03	Pk	Horizontal	
7206.214	06.214 42.31 6.48 36.27 44				40.54	54.00	-13.46	AV	Horizontal	
			N	lid Channe	el (2440 MHz)(GF	SK)Above 1	G			
4880.473	63.64	5.21	35.66	44.20	60.31	74.00	-13.69	Pk	Vertical	
4880.473	44.33	5.21	35.66	44.20	41.00	54.00	-13.00	AV	Vertical	
7320.265	65.81	7.10	36.50	44.43	64.98	74.00	-9.02	Pk	Vertical	
7320.265	42.38	7.10	36.50	44.43	41.55	54.00	-12.45	AV	Vertical	
4880.366	62.84	5.21	35.66	44.20	59.51	74.00	-14.49	Pk	Horizontal	
4880.366	40.18	5.21	35.66	44.20	36.85	54.00	-17.15	AV	Horizontal	
7320.234	60.96	7.10	36.50	44.43	60.13	74.00	-13.87	Pk	Horizontal	
7320.234	43.41	7.10	36.50	44.43		54.00	-11.42	AV	Horizontal	
			Hi	gh Chann	el (2480 MHz)(GF	SK) Above	1G		I	
4960.482	62.77	5.21	35.52	44.21	59.29	74.00	-14.71	Pk	Vertical	
4960.482	42.35	5.21	35.52	44.21	38.87	54.00	-15.13	AV	Vertical	
7440.131	64.18	7.10	36.53	44.60	63.21	74.00	-10.79	Pk	Vertical	
7440.131	48.99	7.10	36.53	44.60	48.02	54.00	-5.98	AV	Vertical	
4960.326	62.81	5.21	35.52	44.21	59.33	74.00	-14.67	Pk	Horizontal	
4960.326	44.22	5.21	35.52	44.21	40.74	54.00	-13.26	AV	Horizontal	
7440.199	64.91	7.10	36.53	44.60	63.94	74.00	-10.06	Pk	Horizontal	
7440.199	46.01	7.10	36.53	44.60	45.04	54.00	-8.96	AV	Horizontal	

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor

(2)All other emissions more than 20dB below the limit.

(3)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

64.20

43.32

61.35

42.76

63.80

43.48

64.31

42.00

61.66

43.41

65.28

43.11

2.97

2.97

2.97

2.97

3.14

3.14

3.14

3.14

3.58

3.58

3.58

3.58

2310.00

2310.00

2310.00

2310.00

2390.00

2390.00

2390.00

2390.00

2483.50

2483.50

2483.50

2483.50

Pk

AV

Pk

AV

Pk

AV

Pk

AV

Pk

AV

Pk

AV

-22.83

-23.71

-25.68

-24.27

-23.65

-23.97

-23.14

-25.45

-25.06

-23.31

-21.44

-23.61

74

54

74

54

74

54

74

54

74

54

74

54

Horizontal

Horizontal

Vertical

Vertical

Vertical

Vertical

Horizontal

Horizontal

Vertical

Vertical

Horizontal

Horizontal

	Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz											
ΕU	JT:	Mobile	Mobile Phone		Model	Model No.:			GQ5006			
Те	mperature	: 20 ℃	20 ℃			Relative Humidity: 48%						
Те	st Mode:	Mode2	Test B	Test By: Allen Liu								
	Frequency	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Lin	nits	Margin	Detector	Comment	
	(MHz)	(dBµV)	(dB)	(dB) (dBµV/m) (dBµV/m) (dB)		Туре						
					1Mbps	(GFSK)						

51.17

30.29

48.32

29.73

50.35

30.03

50.86

28.55

48.94

30.69

52.56

30.39

43.80

43.80

43.80

43.80

43.80

43.80

43.80

43.80

44.00

44.00

44.00

44.00

27.80

27.80

27.80

27.80

27.21

27.21

27.21

27.21

27.70

27.70

27.70

27.70

Note: (1) All other emissions more than 20dB below the limit.

(2)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

T:	Mobile	Phone		Model N	lo.:	GC	GQ5006		
mperature:	20 ℃			Relative	e Humidity:	: 489	48%		
est Mode: Mode2/ Mode4			Test By		Alle	en Liu			
		-							
Frequency	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m) (dB)	Туре	
3260	64.39	4.04	29.57	44.70	53.30	74	-20.70	Pk	Vertical
3260	57.80	4.04	29.57	44.70	46.71	54	-7.29	AV	Vertical
3260	66.07	4.04	29.57	44.70	54.98	74	-19.02	Pk	Horizontal
3260	57.83	4.04	29.57	44.70	46.74	54	-7.26	AV	Horizontal
3332	64.99	4.26	29.87	44.40	54.72	74	-19.28	Pk	Vertical
3332	57.02	4.26	29.87	44.40	46.75	54	-7.25	AV	Vertical
3332	66.71	4.26	29.87	44.40	56.44	74	-17.56	Pk	Horizontal
3332	53.35	4.26	29.87	44.40	43.08	54	-10.92	AV	Horizontal
17797	45.96	10.99	43.95	43.50	57.40	74	-16.60	Pk	Vertical
17797	35.23	10.99	43.95	43.50	46.67	54	-7.33	AV	Vertical
17788	44.59	11.81	43.69	44.60	55.49	74	-18.51	Pk	Horizontal
17788	36.83	11.81	43.69	44.60	47.73	54	-6.27	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

(2)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.2.

Certificate #4298.01

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows Subclause 11.8 of ANSI C63.10

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \geq 3*RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3.6 Test Results

EUT:	Mobile Phone	Model No.:	GQ5006
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.4 DUTY CYCLE

7.4.1 Applicable Standard

According to KDB 558074 D01 15.247 Meas Guidance v05r02s Section 6.

7.4.2 Conformance Limit

No limit requirement.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

The transmitter output is connected to the Spectrum Analyzer. We tested accroding to the zero-span measurement method, 6.0)b) in KDB 558074

The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if $T \le 6.25$ microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Zero Span RBW = 8MHz(the largest available value) VBW = 8MHz (\geq RBW) Number of points in Sweep >100 Detector function = peak Trace = Clear write Measure T_{total} and T_{on} Calculate Duty Cycle = T_{on} / T_{total}

7.4.6 Test Results

EUT:	Mobile Phone	Model No.:	GQ5006
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	N/A	Test By:	N/A

Note: Not Applicable

7.5 **PEAK OUTPUT POWER**

7.5.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.3.1.

Certificate #4298.01

7.5.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows Subclause 11.9.1.1 of ANSI C63.10 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Set the RBW \geq DTS bandwidth. Set VBW =3*RBW. Set the span \geq 3*RBW Set Sweep time = auto couple. Set Detector = peak. Set Trace mode = max hold. Allow trace to fully stabilize. Use peak marker function to determine the peak amplitude level.

7.5.6 Test Results

EUT:	Mobile Phone	Model No.:	GQ5006
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.6 POWER SPECTRAL DENSITY

7.6.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.4.

7.6.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows Measurement Procedure Subclause 11.10.2 of ANSI C63.10 This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5*DTS bandwidth.
- c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d) Set the VBW \geq 3 RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.6.6 Test Results

EUT:	Mobile Phone	Model No.:	GQ5006
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

ACCREDITED

Certificate #4298.01

7.7 CONDUCTED BAND EDGE MEASUREMENT

7.7.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

7.7.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.7.6 Test Results

EUT:	Mobile Phone	Model No.:	GQ5006
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode4	Test By:	Allen Liu

7.8 SPURIOUS RF CONDUCTED EMISSIONS

7.8.1 Conformance Limit

1. Below -20dB of the highest emission level in operating band.

2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

Certificate #4298.01

7.8.2 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.3 Test Setup

Please refer to Section 6.1 of this test report.

7.8.4 Test Procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength , and measure frequency range from 30MHz to 26.5GHz.

7.8.5 Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.9 ANTENNA APPLICATION

7.9.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

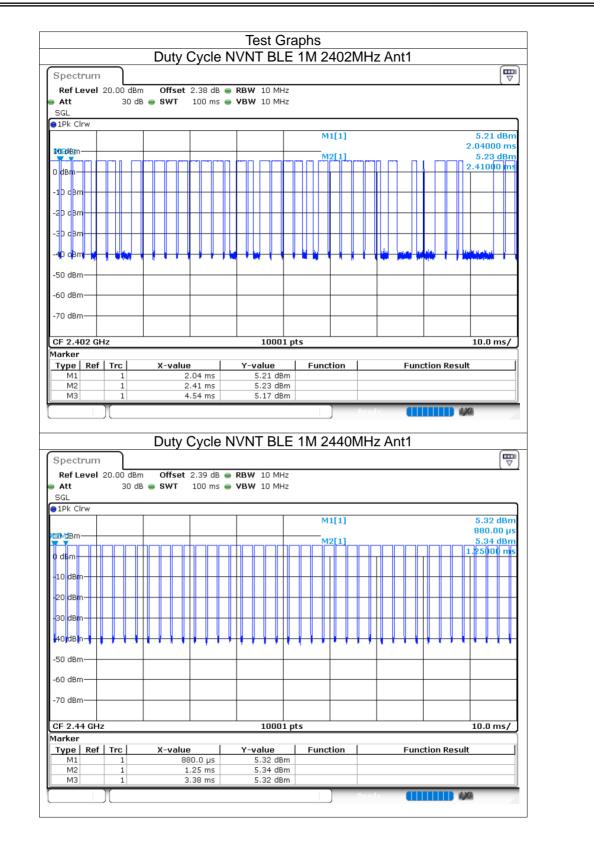
7.9.2 Result

The EUT antenna is permanent attached LDS antenna (Gain:3.18 dBi). It comply with the standard requirement.

8 TEST RESULTS

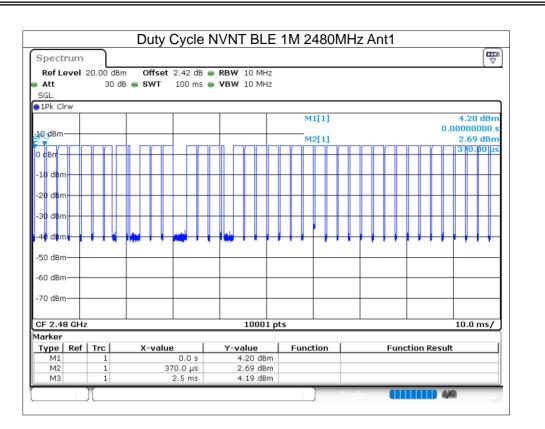
1M:

8.1.1 **Duty Cycle**


Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	BLE 1M	2402	Ant1	67.41	1.71	0.47
NVNT	BLE 1M	2440	Ant1	85.6	0.68	0.47
NVNT	BLE 1M	2480	Ant1	79.63	0.99	0.47

ACCREDITED

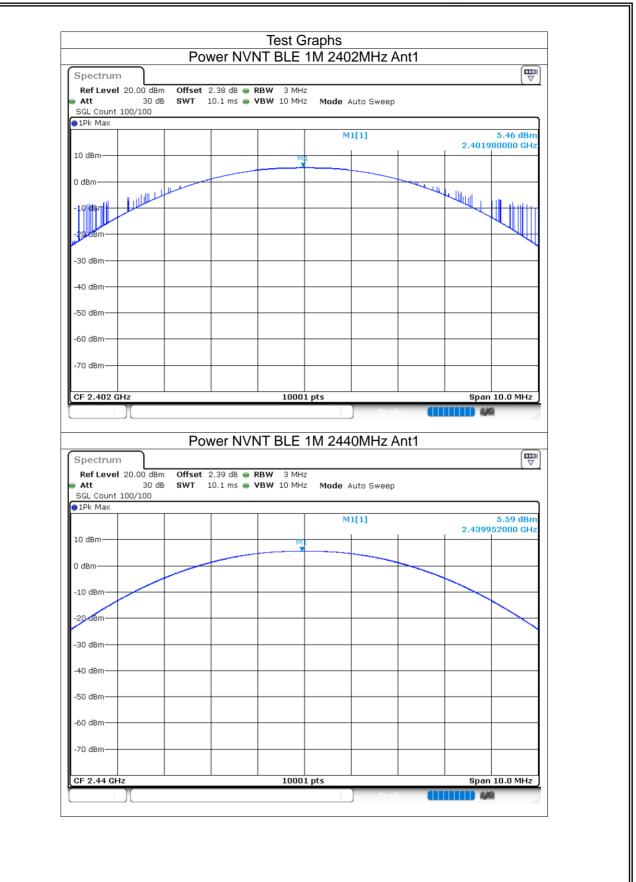
Certificate #4298.01


Report No.: S24032502707002

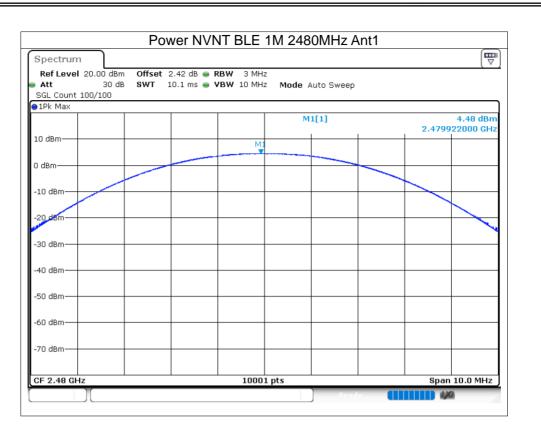
ACCREDITED

Certificate #4298.01

ACCREDITED



8.1.2 Maximum Conducted Output Power


Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	5.46	30	Pass
NVNT	BLE 1M	2440	Ant1	5.59	30	Pass
NVNT	BLE 1M	2480	Ant1	4.48	30	Pass

ACCREDITED

ACCREDITED

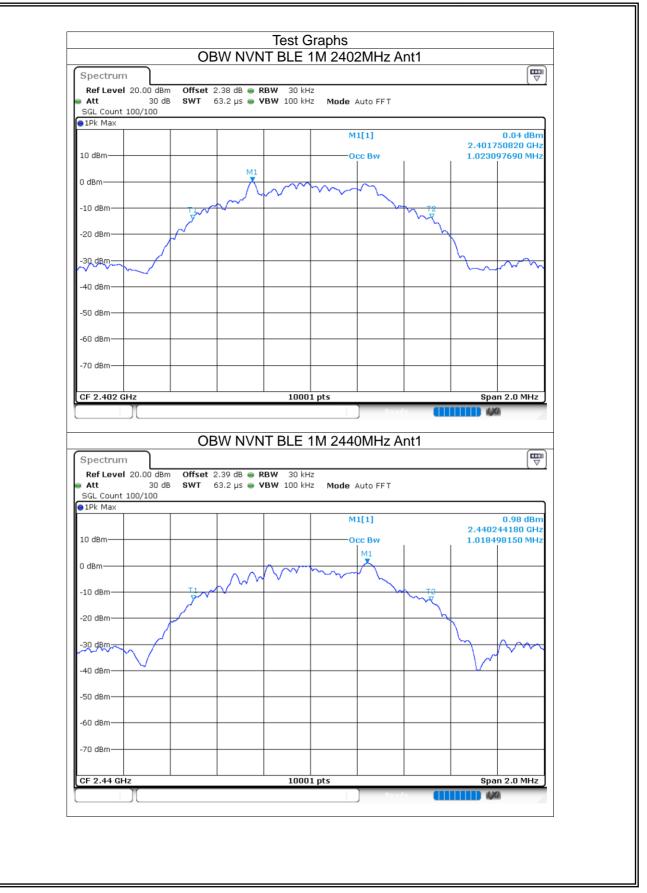
8.1.3 -6dB Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE 1M	2402	Ant1	0.733	0.5	Pass
NVNT	BLE 1M	2440	Ant1	0.661	0.5	Pass
NVNT	BLE 1M	2480	Ant1	0.663	0.5	Pass

ACCREDITED

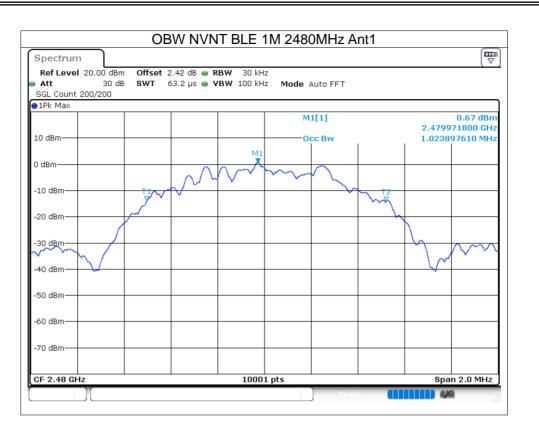
pectrum								
Ref Level	20.00 (dBm Offset 2	2.42 dB 👄	RBW 100 kHz				(*
Att	30	dB SWT :	18.9 µs 🔵	VBW 300 kHz	Mode Auto FFT			
GL Count 3	00/300)						
1Pk Max								
					M1[1]			4.03 dBm
0 dBm								249980 GHz
					M2[1]			-1.98 dBm
dBm			M2		M	3	2.4790	5 <mark>68000 GH</mark> z
.0 dBm								
							L	
20 dBm —		4						
RO dBm							<u> </u>	
+0 dBm								
50 dBm								
'0 dBm								
F 2.48 GHz	,							n 2.0 MHz
arker	-			10001 pt	3		эрс	11 2.0 0112
Type Ref		X-value		Y-value	Function	Fund	tion Resul	-
M1	1	2,480249		4.03 dBm	ranction		Scion Kesul	
M2	1	2.4796		-1.98 dBm				
M3	1	2.4803		-1.93 dBm				

ACCREDITED



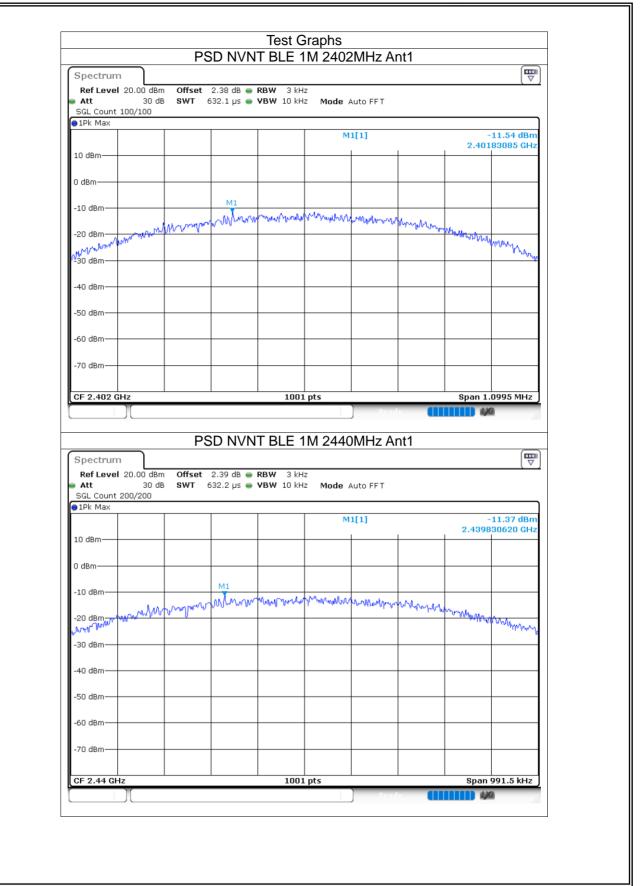
8.1.4 Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE 1M	2402	Ant1	1.023
NVNT	BLE 1M	2440	Ant1	1.018
NVNT	BLE 1M	2480	Ant1	1.024


ACCREDITED

ACCREDITED

ACCREDITED



8.1.5 Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	-11.54	8	Pass
NVNT	BLE 1M	2440	Ant1	-11.37	8	Pass
NVNT	BLE 1M	2480	Ant1	-12.61	8	Pass

ACCREE

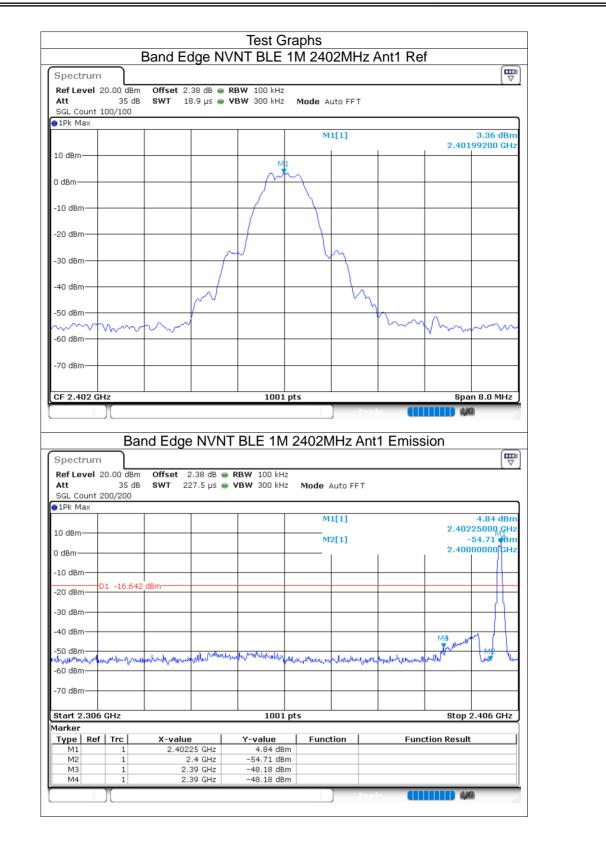
ACCREDITED

Spectrum		
Ref Level 20.00 dBm Offset 2.42 dB Ref	BW 3 kHz	(~
Att 30 dB SWT 632.2 µs 🖷 V		
SGL Count 300/300		
)1Pk Max	M1[1]	-12.61 dBm
	milij	2.479831100 GHz
10 dBm		
0 dBm		
10 dBm		
-10 dBm		
	an or white the sheet in a	
a har mount when me	when were have a supported and the supported and the supported and the supported and the support of the support	mout
-20 dBm	walang was and a support	many many many and a second
-20 dBm	warman washing and a share a share a	month and
-20 dBm	Wall well from and the shade with th	man warmer
-20 dBm		
20 dBm		

ACCREDITED

8.1.6 Band Edge

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-51.54	-20	Pass
NVNT	BLE 1M	2480	Ant1	-44.08	-20	Pass

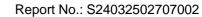


ilac-MR

ACCREDITED

Certificate #4298.01

Report No.: S24032502707002



	rum]									
	evel 3	10.00 dB			BW 100 kHz						
Att SGL O	t taun	45 d .00/100	B SWT 18	1.9 µs 👄 V	BW 300 kHz	Mode A	uto FFT				
●1Pk M		.00/100									
						М	1[1]			1.84 dBm	
20 dBm							I	1	2.479	984020 GHz	
20 0011											
10 dBm											
					M1						
0 dBm-						~~~					
-10 dBr	n										
-20 dBr											
20 001	"				/						
-30 dBr	n			<u>ſ</u>	ψ	(η				
-40 dBr	n		_	, m-		1	6		- ^		
~~~	$\sim$	~~~~	-m~m					how	$\mu \sim r$	mm	
-50 dBr											
-60 dBr	n										
CF 2.4	0.01-				1001	nte				in 8.0 MHz	
01 2.1	0 0112				1001	pts			500	110.014112	
		ЛBa	and Edge	NVNT	BLE 1M	1 2480N	) Real	t1 Emiss	sion		-
Spect Ref Le		Ba			BLE 1N		) non 1Hz Ant	t1 Emiss	sion		-
Ref Le Att	evel 3	10.00 dB 45 d	m Offset 2	.42 dB 😑 I		z		t1 Emiss	sion		-
Ref Le Att	e <b>vel</b> 3 ount 1	10.00 dB	m Offset 2	.42 dB 😑 I	<b>RBW</b> 100 kH:	z		t1 Emiss	sion		-
Ref Le Att SGL C	e <b>vel</b> 3 ount 1	10.00 dB 45 d	m Offset 2	.42 dB 😑 I	<b>RBW</b> 100 kH:	z z <b>Mode</b> /		t1 Emiss		(∇) 3.48 dBm	-
Ref Le Att SGL C	evel 3 ount 1 lax	10.00 dB 45 d	m Offset 2	.42 dB 😑 I	<b>RBW</b> 100 kH:	z z Mode / M	Auto FFT 1[1]	t1 Emiss	2.479	(∇) 3.48 dBm 995000 GHz	-
Ref Le Att SGL Co 1Pk M	ount 1 lax	10.00 dB 45 d	m Offset 2	.42 dB 😑 I	<b>RBW</b> 100 kH:	z z Mode / M	Auto FFT	t1 Emiss	2.479	(∇) 3.48 dBm	-
Ref Le Att SGL Ci 1Pk M 20 dBm 10 ₁ dBm	ount 1 lax	10.00 dB 45 d	m Offset 2	.42 dB 😑 I	<b>RBW</b> 100 kH:	z z Mode / M	Auto FFT 1[1]	t1 Emiss	2.479	(∇) 3.48 dBm 995000 GHz -44.49 dBm	-
Ref Le Att SGL Co 1Pk M 20 dBm	ount 1 lax	10.00 dB 45 d	m Offset 2	.42 dB 😑 I	<b>RBW</b> 100 kH:	z z Mode / M	Auto FFT 1[1]	t1 Emiss	2.479	(∇) 3.48 dBm 995000 GHz -44.49 dBm	-
Ref Le Att SGL Ci 1Pk M 20 dBm 10 ₁ dBm	evel 3	10.00 dB 45 d	m Offset 2	.42 dB 😑 I	<b>RBW</b> 100 kH:	z z Mode / M	Auto FFT 1[1]	t1 Emiss	2.479	(∇) 3.48 dBm 995000 GHz -44.49 dBm	-
Ref Le Att SGL Co 1Pk M 20 dBm 10 ₁ dBm 0 dBm-	evel 3	10.00 dB 45 d	m Offset 2 B SWT 22	.42 dB 😑 I	<b>RBW</b> 100 kH:	z z Mode / M	Auto FFT 1[1]	t1 Emiss	2.479	(∇) 3.48 dBm 995000 GHz -44.49 dBm	-
Ref Le Att SGL Co 1Pk M 20 dBm 10 _N dBm 0 dBm- -10 dBm -20 dBm	n	0.00 dBi 45 d	m Offset 2 B SWT 22	.42 dB 😑 I	<b>RBW</b> 100 kH:	z z Mode / M	Auto FFT 1[1]	t1 Emiss	2.479	(∇) 3.48 dBm 995000 GHz -44.49 dBm	-
Ref Le Att SGL C: 1Pk M 20 dBm 10 ₁ dBm 0 dBm- -10 dBm -20 dBm -20 dBm	n	0.00 dBi 45 d	m Offset 2 B SWT 22	.42 dB 😑 I	<b>RBW</b> 100 kH:	z z Mode / M	Auto FFT 1[1]	t1 Emiss	2.479	(∇) 3.48 dBm 995000 GHz -44.49 dBm	
Ref Le Att SGL Ci 1Pk M 20 dBm 10rdBm -10 dBm -20 dBm -30 dBr -30 dBr -40 dBr	n	0.00 dBi 45 d	m Offset 2 B SWT 22	.42 dB ● 1 7.5 µs ● 1	<b>RBW</b> 100 kH:	z Mode / M M	Auto FFT  1[1]  2[1]		2.479		
Ref Le Att SGL Ci 1Pk M 20 dBm 10rdBm -10 dBm -20 dBm -30 dBr -30 dBr -40 dBr	n	10.00 dB 45 d 00/100	m Offset 2 B SWT 22	.42 dB ● 1 7.5 µs ● 1	RBW 100 kH:	z Mode / M M	Auto FFT  1[1]  2[1]		2.479		
Ref Le Att SGL Cd 1Pk M 20 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm	n n n	10.00 dB 45 d 00/100	m Offset 2 B SWT 22	.42 dB ● 1 7.5 µs ● 1	RBW 100 kH:	z Mode / M M	Auto FFT  1[1]  2[1]		2.479		
Ref Le Att SGL Cd 1Pk M 20 dBm 10 ₁ dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm	n n n	10.00 dB 45 d 00/100	m Offset 2 B SWT 22	.42 dB ● 1 7.5 µs ● 1	RBW 100 kH:	z Mode / M M	Auto FFT  1[1]  2[1]		2.479		
Ref Le Att SGL C: 1Pk M 20 dBm 10 dBm -10 dBm -20 dBm -20 dBr -20 dBr -30 dBr -30 dBr -40 dBr -50 dBr -60 dBr	sunt 1           sunt 1           lax           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n	10.00 dB 45 d .00/100	m Offset 2 B SWT 22	.42 dB ● 1 7.5 µs ● 1	RBW 100 kH:	2 Mode / M M M	Auto FFT  1[1]  2[1]		2.479 2.483		
Ref Le Att SGL C: 1Pk M 20 dBm -10 dBm -20 dBm -20 dBm -20 dBm -30 dBr -30 dBr -50 dBr -60 dBr Start 2 Marker	well 3           ount 1           lax           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n	0.00 dBi 45 d 00/100	m Offset 2 B SWT 22	.42 dB ● 1 7.5 μs ● 1	RBW 100 kH:	2 Mode / M M M	Auto FFT  1[1]  2[1]		2.475 2.483	3.48 dBm 995000 GHz 44.49 dBm 250000 GHz	
Ref Le Att SGL C: 1Pk M 20 dBm -10 dBm -10 dBm -20 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBr -50 dBr -50 dBr -50 dBr -50 dBr -50 dBr -50 dBr -10 dBm -10 dBm	well 3           ount 1           lax           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n	0.00 dB 45 d 00/100 1 -18.1 GHz I Trc 1	m Offset 2 B SWT 22 58 dBm M4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4h43 W4H	.42 dB ● 1 7.5 μs ● 1	RBW 100 kH: VBW 300 kH:	z Mode / m m pts Func m	Auto FFT  1[1]  2[1]		2.479 2.483	3.48 dBm 995000 GHz 44.49 dBm 250000 GHz	
Ref Le           Att           SGL C:           SGL C:           1Pk M           20 dBm           10 dBm-           -10 dBm           -20 dBm           -20 dBm           -30 dBm           -30 dBm           -40 dBm           -50 dBm           -50 dBm           -60 dBm           Start 2           Marker           Type           M1	well 3           ount 1           lax           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n	0.00 dBi 45 d .00/100 11 -18.1 GHz GHz 1 1	m Offset 2 B SWT 22 58 dBm M4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h13 W4h	.42 dB ● 1 7.5 μs ● 1	RBW 100 kH: VBW 300 kH:	2 2 Mode / M M M M Pts Func m m	Auto FFT  1[1]  2[1]		2.475 2.483	3.48 dBm 995000 GHz 44.49 dBm 250000 GHz	
Ref Le Att SGL C: 1Pk M 20 dBm -10 dBm -10 dBm -20 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBr -50 dBr -50 dBr -50 dBr -50 dBr -50 dBr -50 dBr -10 dBm -10 dBm	well 3           ount 1           lax           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n           n	0.00 dB 45 d 00/100 1 -18.1 GHz I Trc 1	m Offset 2 B SWT 22 B SWT 22 B SWT 22 B SWT 22 C 22 C 22 C 22 C 22 C 2 C 2 C 2 C 2	.42 dB ● 1 7.5 μs ● 1	RBW 100 kH: VBW 300 kH:	z Mode / M M M M M M M M Func m m m	Auto FFT  1[1]  2[1]		2.475 2.483	3.48 dBm 995000 GHz 44.49 dBm 250000 GHz	

ACCREDITED

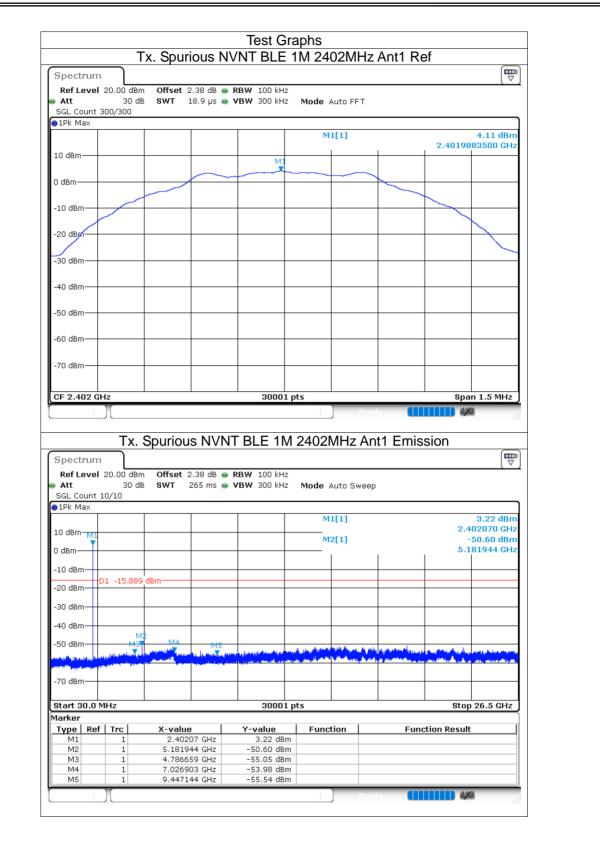




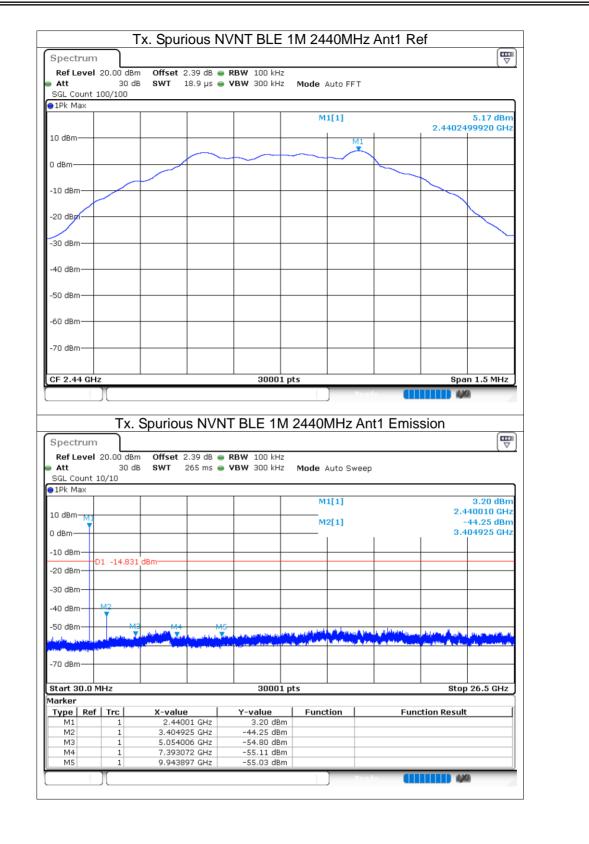
# 8.1.7 Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-54.71	-20	Pass
NVNT	BLE 1M	2440	Ant1	-49.41	-20	Pass
NVNT	BLE 1M	2480	Ant1	-55.5	-20	Pass

ACCRED




ilac-MR


ACCREDITED

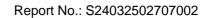
Certificate #4298.01

#### Report No.: S24032502707002








ACCREDITED

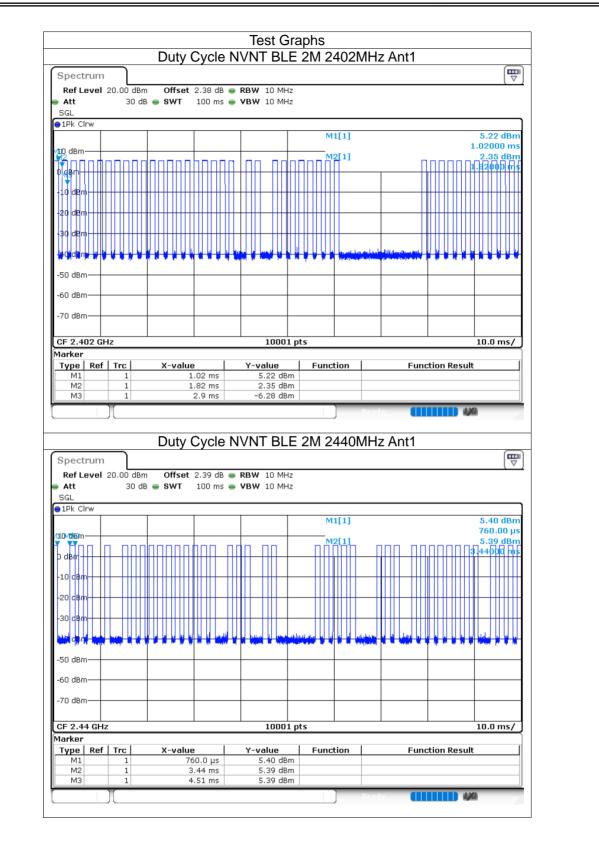


Spectrum									
Ref Level Att	20.00 dBn 30 dB			<b>RBW</b> 100 kH: <b>VBW</b> 300 kH:					
SGL Count			.o.a ha 🖷	7077 JUU KH.	- moue/	AULO PET			
∎1Pk Max									
					м	1[1]			4.06 dBm
10 dBm							-	2.48024	186920 GHz
10 000						M1			
0 dBm						$\sim$			
							<b></b>		
-10 dBm		<b></b>							
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm									
-50 UBIII									
-60 dBm									
-70 dBm									<b>↓</b>
CF 2.48 GH	1-							0	in 1.5 MHz
				3000	1 nts				
Spectrum	)[			3000: T BLE 1N	M 2480I	) Prod MHz An	t1 Emis	<b>W</b>	
Ref Level Att	Tx. 20.00 dBn 30 dE	n Offset 2	2.42 dB 👄		VI 24801	) Road MHz An Auto Sweep		<b>W</b>	
Ref Level Att SGL Count	Tx. 20.00 dBn 30 dE	n Offset 2	2.42 dB 👄	T BLE 11 RBW 100 KH:	VI 24801			<b>W</b>	
Ref Level Att	Tx. 20.00 dBn 30 dE	n Offset 2	2.42 dB 👄	T BLE 11 RBW 100 KH:	VI 24801 ^z Mode /			<b>W</b>	
Ref Level Att SGL Count 1Pk Max	Tx. 20.00 dBn 30 dE	n Offset 2	2.42 dB 👄	T BLE 11 RBW 100 KH:	VI 24801	Auto Sweep 1[1]		ssion 2.4	
Ref Level Att SGL Count 1Pk Max 10 dBm	Tx. 20.00 dBn 30 dE	n Offset 2	2.42 dB 👄	T BLE 11 RBW 100 KH:	VI 24801	Auto Sweep		assion	1.21 dBm 180600 GHz -51.45 dBm
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm	Tx. 20.00 dBn 30 dE	n Offset 2	2.42 dB 👄	T BLE 11 RBW 100 KH:	VI 24801	Auto Sweep 1[1]		assion	
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm	Tx. 1 20.00 dBn 30 df 5/5	n Offset 2 3 SWT 2	2.42 dB 👄	T BLE 11 RBW 100 KH:	VI 24801	Auto Sweep 1[1]		assion	1.21 dBm 180600 GHz -51.45 dBm
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm	Tx. 20.00 dBn 30 dE	n Offset 2 3 SWT 2	2.42 dB 👄	T BLE 11 RBW 100 KH:	VI 24801	Auto Sweep 1[1]		assion	1.21 dBm 180600 GHz -51.45 dBm
Ref Level Att SGL Count IPk Max 10 dBm 10 dBm -10 dBm -20 dBm	Tx. 1 20.00 dBn 30 df 5/5	n Offset 2 3 SWT 2	2.42 dB 👄	T BLE 11 RBW 100 KH:	VI 24801	Auto Sweep 1[1]		assion	1.21 dBm 180600 GHz -51.45 dBm
Ref Level           Att           SGL Count           IPk Max           10 dBm           M3           0 dBm           -10 dBm           -20 dBm           -30 dBm	Tx. 1 20.00 dBn 30 df 5/5	n Offset 2 3 SWT 2	2.42 dB 👄	T BLE 11 RBW 100 KH:	VI 24801	Auto Sweep 1[1]		assion	1.21 dBm 180600 GHz -51.45 dBm
Ref Level Att SGL Count IPk Max 10 dBm 10 dBm -10 dBm -20 dBm	Tx. 1 20.00 dBn 30 df 5/5	n Offset 2 3 SWT 2	2.42 dB 👄	T BLE 11 RBW 100 KH:	VI 24801	Auto Sweep 1[1] 2[1]		assion	1.21 dBm 180600 GHz -51.45 dBm
Ref Level           Att           SGL Count           IPk Max           10 dBm           M3           0 dBm           -10 dBm           -20 dBm           -30 dBm	Tx. 1 20.00 dBn 30 df 5/5	n Offset 2 3 SWT 2	2.42 dB 👄	T BLE 11 RBW 100 KH:	VI 24801	Auto Sweep 1[1]		assion	1.21 dBm 180600 GHz -51.45 dBm
Ref Level           Att           SGL Count           IPk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm	Tx. 1 20.00 dBn 30 df 5/5	n Offset 2 3 SWT 2	2.42 dB 👄	T BLE 11 RBW 100 KH:	VI 24801	Auto Sweep 1[1] 2[1]		assion	1.21 dBm 180600 GHz -51.45 dBm
Ref Level           Att           SGL Count           IPk Max           10 dBm           .0 dBm           .10 dBm           .20 dBm           .30 dBm           .40 dBm           .50 dBm	Tx. 1 20.00 dBn 30 df 5/5	n Offset 2 3 SWT 2	2.42 dB 👄	T BLE 11 RBW 100 KH:	VI 24801	Auto Sweep 1[1] 2[1]		assion	1.21 dBm 180600 GHz -51.45 dBm
Ref Level           Att           SGL Count           IPk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm	Tx. 1 20.00 dBn 30 df 5/5	n Offset 2 3 SWT 2	2.42 dB 👄	T BLE 11 RBW 100 KH:	VI 24801	Auto Sweep 1[1] 2[1]		assion	1.21 dBm 180600 GHz -51.45 dBm
Ref Level           Att           SGL Count           IPk Max           10 dBm           .0 dBm           .10 dBm           .20 dBm           .30 dBm           .40 dBm           .50 dBm	Tx. 1 20.00 dBm 30 df 5/5 01 -15.945	n Offset 2 3 SWT 2	2.42 dB 👄		M 2480	Auto Sweep 1[1] 2[1]		2.« 17.6	
Ref Level           Att           SGL Count           1Pk Max           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -70 dBm	Tx. 1 20.00 dBm 30 df 5/5 01 -15.945	n Offset 2 3 SWT 2	2.42 dB 👄	T BLE 11 RBW 100 KH:	M 2480	Auto Sweep 1[1] 2[1]		2.« 17.6	1.21 dBm 180600 GHz -51.45 dBm
Ref Level           Att           SGL Count           IPk Max           10 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -70 dBm           Start 30.0           Marker           Type	Tx. 1 20.00 dBn 30 df 5/5 D1 -15.945 M3 MHz f   Trc	dBm	2.42 dB  265 ms 265 ms	T BLE 1N	M 24801	Auto Sweep 1[1] 2[1] M2 4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.		2.« 17.6	1.21 dBm 180600 GHz 51.45 dBm 97843 GHz
Ref Level           Att           SGL Count           SGL Count           IPk Max           10 dBm           .0 dBm           .10 dBm           .20 dBm           .20 dBm           .30 dBm           .40 dBm           .50 dBm           .70 dBm	Tx. 1 20.00 dBn 30 df 5/5 D1 -15.945 MHz MHz f Trc 1 1	dBm	2.42 dB ● 265 ms ●	T BLE 1N RBW 100 kH vBW 300 kH 	M 24801	Auto Sweep 1[1] 2[1] M2 4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.		2.4 17.6	1.21 dBm 180600 GHz 51.45 dBm 97843 GHz
Ref Level           Att           SGL Count           IPk Max           10 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -70 dBm           Start 30.0           Marker           Type	Tx. 1 20.00 dBn 30 dE 5/5 D1 -15.945 M3 MHz MHz f Trc 1 1 1	A Offset 2 3 SWT 2 48m 48m 48m 48m 48m 48m 48m 48m 48m 48m	242 dB  265 ms 265 ms	T BLE 1N RBW 100 kH: yBW 300 kH:	M 2480	Auto Sweep 1[1] 2[1] M2 4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.		2.4 17.6	1.21 dBm 180600 GHz 51.45 dBm 97843 GHz
Ref Level           Att           SGL Count           1Pk Max           10 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -70 dBm           Start 30.0           Marker           Type           M1           M2           M3           M4	Tx. 20.00 dBn 30 df 5/5 D1 -15.945 MHz MHz f Trc 1 1 1	dBm dBm x-value 2.48( 17.6978- 7.3277	2.42 dB  265 ms 265 ms	T BLE 1N RBW 100 kH vBW 300 kH 	VI 24801	Auto Sweep 1[1] 2[1] M2 4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.		2.4 17.6	1.21 dBm 180600 GHz 51.45 dBm 97843 GHz
Ref Level           Att           SGL Count           1Pk Max           10 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -40 dBm           -50 dBm           -70 dBm           Start 30.0           Marker           Type           M1           M2           M3	Tx. 1 20.00 dBn 30 dE 5/5 D1 -15.945 M3 MHz MHz f Trc 1 1 1	A Offset 2 3 SWT 2 48m 48m 48m 48m 48m 48m 48m 48m 48m 48m	2.42 dB  265 ms 265 ms	T BLE 1N RBW 100 kH: yBW 300 kH:	VI 24801	Auto Sweep 1[1] 2[1] M2 4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.		2.4 17.6	1.21 dBm 180600 GHz 51.45 dBm 97843 GHz

ACCREDITED

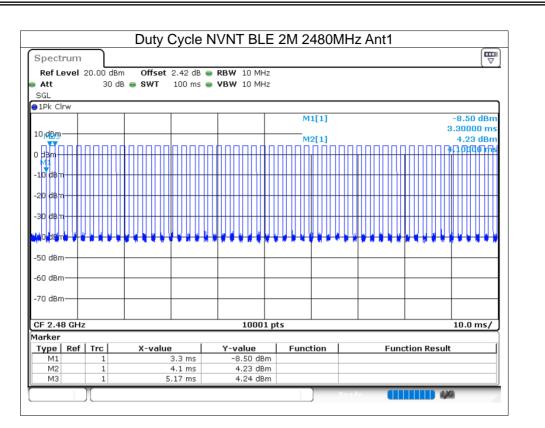





2M:

# 8.1.8 **Duty Cycle**

Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	BLE 2M	2402	Ant1	46.2	3.35	0.93
NVNT	BLE 2M	2440	Ant1	43.83	3.58	0.93
NVNT	BLE 2M	2480	Ant1	56.7	2.46	0.93


ACCREDITED



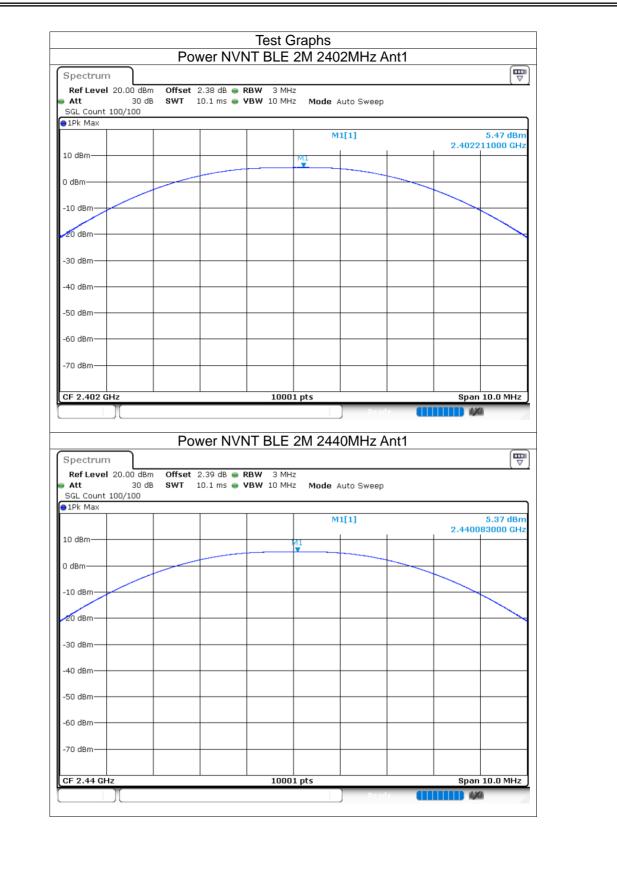


ACCREDITED





ACCREDITED






# 8.1.9 Maximum Conducted Output Power

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 2M	2402	Ant1	5.47	30	Pass
NVNT	BLE 2M	2440	Ant1	5.37	30	Pass
NVNT	BLE 2M	2480	Ant1	4.24	30	Pass





ACCREDITED



			2480MHz Ant1		
Spectrum					[₩
Ref Level 20.00 dBm	Offset 2.42 dB 🖷 R				
Att 30 dB	SWT 10.1 ms 👄 V	BW 10 MHz MG	ode Auto Sweep		
SGL Count 100/100 1Pk Max					
			M1[1]		4.24 dBm
			and the	2.4796	93000 GHz
10 dBm		M1			
D dBm					
-10 dBm					
-20 dBm					
-30 dBm					
-40 dBm					
-50 dBm					
-60 dBm					
70 dBm					
CF 2.48 GHz		10001 pts		Snan	10.0 MHz

ACCREDITED

# NTEK 北测

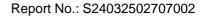


## 8.1.10 -6dB Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE 2M	2402	Ant1	1.173	0.5	Pass
NVNT	BLE 2M	2440	Ant1	1.25	0.5	Pass
NVNT	BLE 2M	2480	Ant1	1.368	0.5	Pass






ACCREDITED



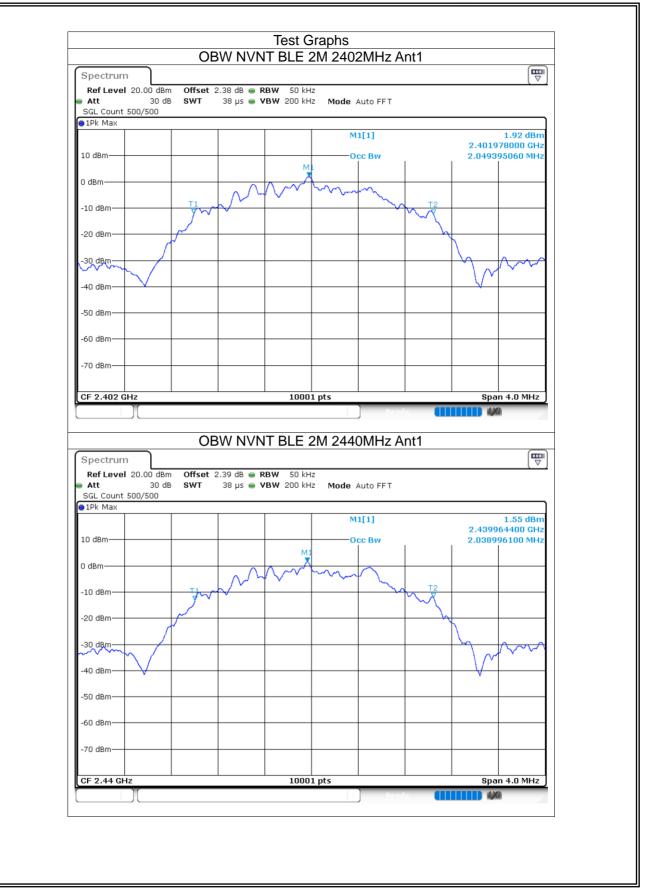
Spectrum							
Ref Level	20.00 dB	m Offset 2.42 dB	RBW 100 kHz				(*
Att	30 0		VBW 300 kHz	Mode Auto FFT			
SGL Count 1	00/100						
1Pk Max							
				M1[1]			0.99 dBm
0 dBm							71980 GHz
o ubiii				M2[1]			-5.02 dBm
dBm						2.4793	09000 GHz
			/ ~~~/-		ζĹ		
LO dBm					$\gamma$		
20 dBm —					_		
	1	/					
30 dBa							$\sim \sim$
	$\checkmark$						
10 dBm							
50 dBm							
50 dBm							
70 dBm —							
F 2.48 GHz	:	1	10001 pt	is		Spa	n 4.0 MHz
arker							
Fype   Ref	Trc	X-value	Y-value	Function	Fund	tion Result	
M1	1	2.48017198 GHz	0.99 dBm				
M2	1	2.479309 GHz	-5.02 dBm				
M3	1	2.480677 GHz	-5.02 dBm				

ACCREDITED



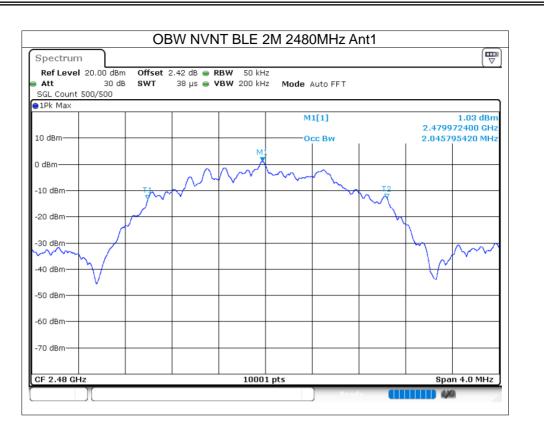


# 8.1.11 Occupied Channel Bandwidth


Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE 2M	2402	Ant1	2.049
NVNT	BLE 2M	2440	Ant1	2.039
NVNT	BLE 2M	2480	Ant1	2.046

ACCRED

Certificate #4298.01


ITED



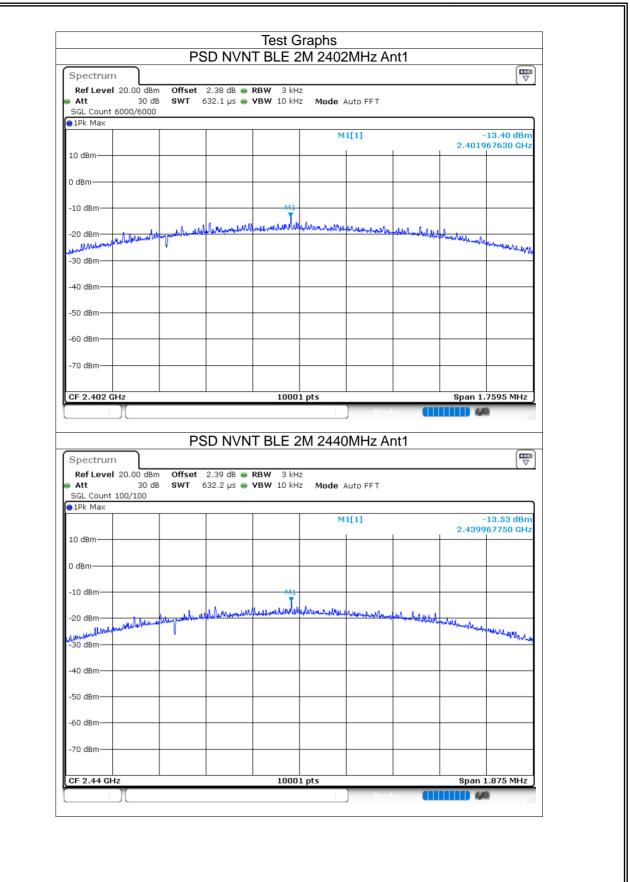


ACCREDITED



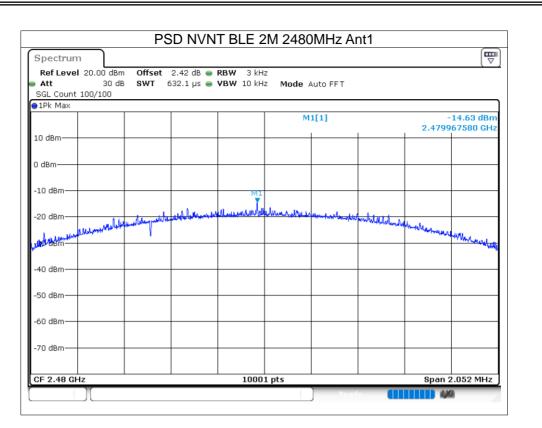


ACCREDITED






# 8.1.12 Maximum Power Spectral Density Level


Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 2M	2402	Ant1	-13.4	8	Pass
NVNT	BLE 2M	2440	Ant1	-13.53	8	Pass
NVNT	BLE 2M	2480	Ant1	-14.63	8	Pass





ACCREDITED





ACCREDITED

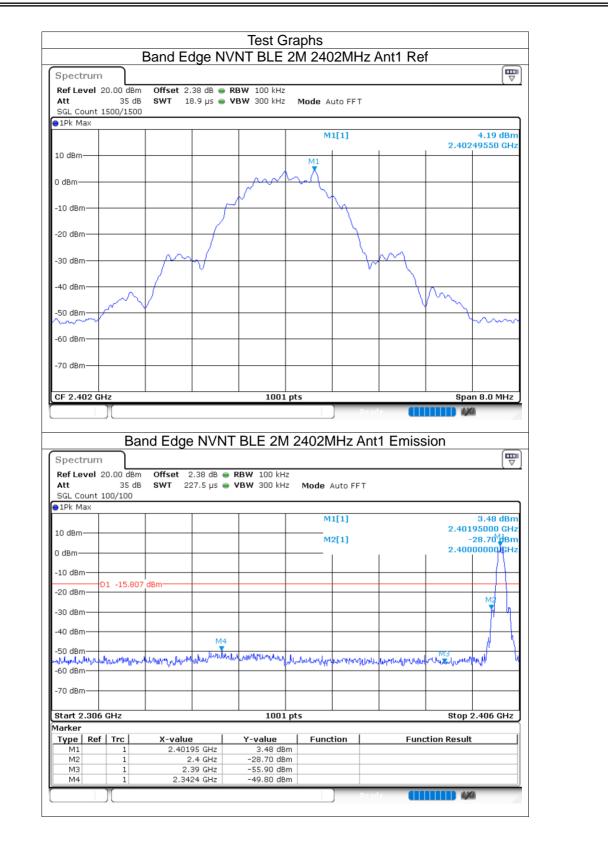




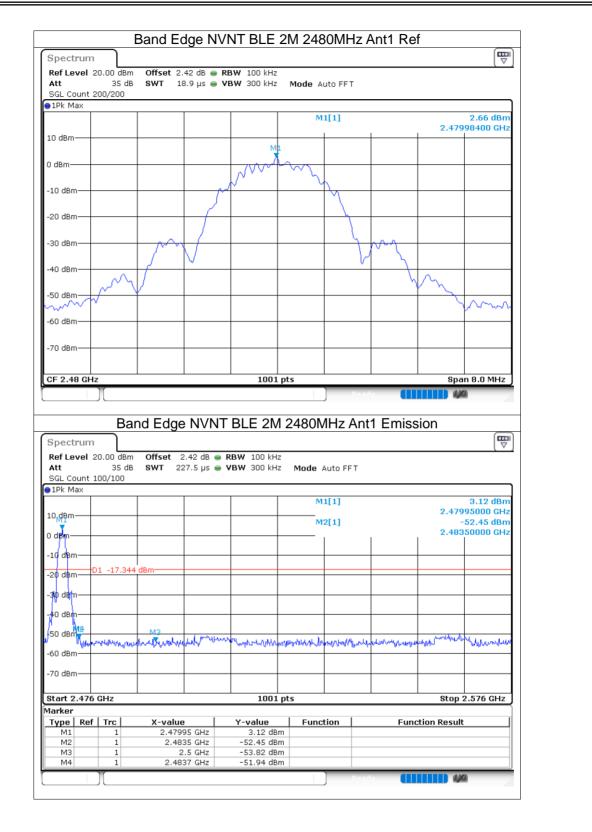
# 8.1.13 Band Edge

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 2M	2402	Ant1	-53.98	-20	Pass
NVNT	BLE 2M	2480	Ant1	-54.6	-20	Pass

ACCREDITED




ilac-MR


ACCREDITED

Certificate #4298.01

#### Report No.: S24032502707002

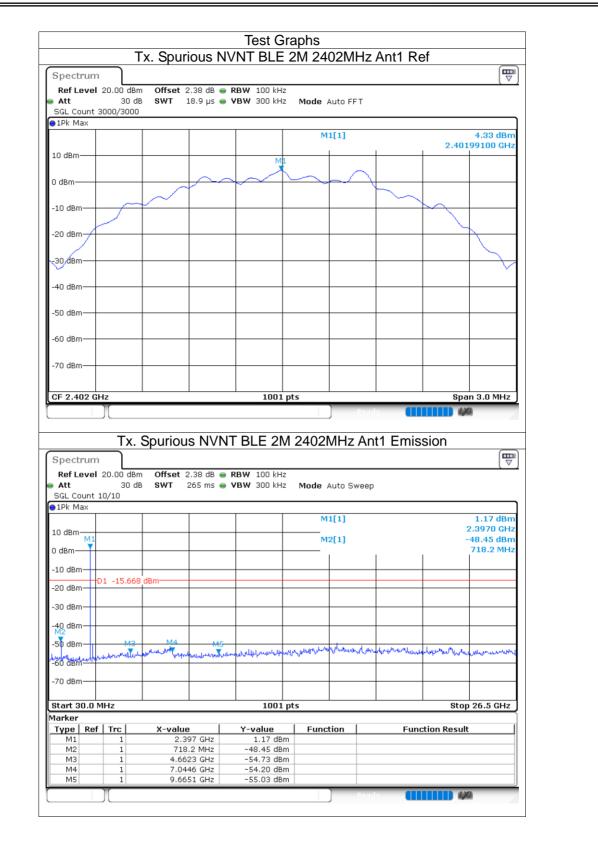






ACCREDITED





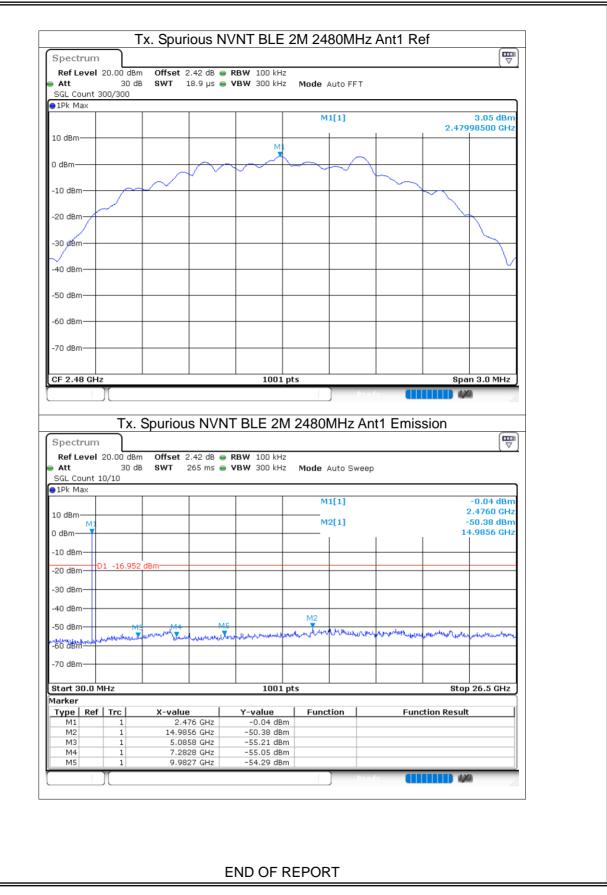

# 8.1.14 Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 2M	2402	Ant1	-52.78	-20	Pass
NVNT	BLE 2M	2440	Ant1	-54.07	-20	Pass
NVNT	BLE 2M	2480	Ant1	-53.42	-20	Pass

ACCREE






ACCREDITED



Specti	rum									
-		20.00 dB	m Offset 2	2.39 dB 👄	RBW 100 kHz					( • )
Att		30 (			<b>VBW</b> 300 kHz		Auto FFT			
		300/300								
⊖1Pk Ma	эх									
						M	1[1]		0.400	4.33 dBm 99100 GHz
10 dBm-									2.405	99100 GH2
					ML ML					
0 dBm—	_					$\searrow$				
				$\sim$	Ŭ.			m_		
-10 dBm	-	$- \sim$	$\checkmark$		_					
		~								
-20 dBm	A									
/										
-30 dBm	+									
$\checkmark$										$\sim$
-40 dBm	+									
-50 dBm	+									
co in										
-60 dBm	1									
-70 dBm										
-70 aBM										
CF 2.44	1 GH	7			1001	pts			Spa	n 3.0 MHz
Specti		)[ 			IT BLE 2M	1 24401	) – Pow MHz An	t1 Emis	sion	
Ref Le Att	evel	Tx. 20.00 dB 30 d	m Offset 2	2.39 dB 👄		1 24401			sion	
Ref Le Att SGL Co	evel unt :	Tx. 20.00 dB 30 d	m Offset 2	2.39 dB 👄	IT BLE 2N	1 24401			sion	
Ref Le Att	evel unt :	Tx. 20.00 dB 30 d	m Offset 2	2.39 dB 👄	IT BLE 2N	1 24401 Mode	Auto Sweep		sion	
Ref Le Att SGL Co 1Pk Ma	unt : ax	Tx. 20.00 dB 30 d	m Offset 2	2.39 dB 👄	IT BLE 2N	1 24401 Mode				(₩) 1.58 dBm
Ref Le Att SGL Co	unt : ax	Tx. 20.00 dB 30 d	m Offset 2	2.39 dB 👄	IT BLE 2N	1 24401 Mode ,	Auto Sweep			
Ref Le Att SGL Co 1Pk Ma	unt : ax	Tx. 20.00 dB 30 d	m Offset 2	2.39 dB 👄	IT BLE 2N	1 24401 Mode ,	Auto Sweep 1[1]			
Ref Le Att SGL Co 1Pk Ma 10 dBm-	unt : ax M1	Tx. 20.00 dB 30 d	m Offset 2	2.39 dB 👄	IT BLE 2N	1 24401 Mode ,	Auto Sweep 1[1]			
Ref Le Att SGL Co 1Pk Ma 10 dBm- 0 dBm- -10 dBm	unt :	Tx. 20.00 dB 30 d	dB SWT	2.39 dB 👄	IT BLE 2N	1 24401 Mode ,	Auto Sweep 1[1]			
Ref Le Att SGL Co 1Pk Ma 10 dBm-	unt :	Tx. 20.00 dP 30 ( 10/10	dB SWT	2.39 dB 👄	IT BLE 2N	1 24401 Mode ,	Auto Sweep 1[1]			
Ref Le Att SGL Co 1Pk Ma 10 dBm- 0 dBm- -10 dBm	M1	Tx. 20.00 dP 30 ( 10/10	dB SWT	2.39 dB 👄	IT BLE 2N	1 24401 Mode ,	Auto Sweep 1[1]			
Ref Le Att SGL Co 1Pk Ma 10 dBm- -10 dBm- -20 dBm	M1	Tx. 20.00 dP 30 ( 10/10	dB SWT	2.39 dB 👄	IT BLE 2N	1 2440I Mode / M	Auto Sweep 1[1]			
Ref Le Att SGL Co 1Pk Ma 10 dBm- 0 dBm- -10 dBm -20 dBm -30 dBm	M1	Tx. 20.00 dP 30 ( 10/10	dB SWT	2.39 dB 👄	IT BLE 2N	1 24401 Mode ,	Auto Sweep 1[1]			
Ref Le Att SGL Co 1Pk Ma 10 dBm- -10 dBm -20 dBm -30 dBm -40 dBm	M1	Tx. 20.00 dE 30 ( 10/10	m Offset 2 dB SWT : 3 dBm 3 dBm M1	2.39 dB 👄	IT BLE 2N	Mode /	Auto Sweep 1[1]			
Ref Le Att SGL Co 1Pk Ma 10 dBm- 0 dBm- -10 dBm -20 dBm -30 dBm	M1	Tx. 20.00 dP 30 ( 10/10	m Offset 2 dB SWT : 3 dBm 3 dBm M1	2.39 dB 👄	IT BLE 2N	Mode /	Auto Sweep 1[1] 2[1]			
Ref Le Att SGL Co 1Pk Ma 10 dBm- -10 dBm -20 dBm -30 dBm -40 dBm	M1 T	Tx. 20.00 dE 30 ( 10/10	m Offset 2 dB SWT : 3 dBm 3 dBm M1	2.39 dB 👄	IT BLE 2N	Mode /	Auto Sweep 1[1] 2[1]			
Ref Le Att SGL Co 1Pk Ma 10 dBm- 0 dBm- -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	M1 T	Tx. 20.00 dE 30 ( 10/10	m Offset 2 dB SWT : 3 dBm 3 dBm M1	2.39 dB 👄	IT BLE 2N	Mode /	Auto Sweep 1[1] 2[1]			
Ref Le Att SGL Co 1Pk Ma 10 dBm- 0 dBm- -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	MI MI MI	Tx. 20.00 dP 30 ( 10/10	m Offset 2 dB SWT : 3 dBm 3 dBm M1	2.39 dB 👄	IT BLE 2N	Mode /	Auto Sweep 1[1] 2[1]		1.	
Ref Le Att SGL Co 1Pk Ma 10 dBm- 10 dBm- -10 dBm -20 dBm -40 dBm -50 dBm -60 dBm -70 dBm Start 30 Varker		Tx. 20.00 dE 30 (10/10 01 -15.67	im Offset 2 JB SWT : '3 dBm- '3 dBm- '3 dBm- '3 dBm- '3 dBm- '3 dBm-	2.39 dB 265 ms	IT BLE 2M	Mode / Mode / M M m m	Auto Sweep		1. 	(
Ref Le Att SGL Co 1Pk Ma 10 dBm- 10 dBm- -10 dBm -20 dBm -40 dBm -40 dBm -50 dBm -70 dBm Start 30 Marker Type		Tx. 20.00 dE 30 ( 10/10 01 -15.67 Mi sport J.	im Offset 2 JB SWT :: '3 dBm- '3 dBm- X-value	2.39 dB	IT BLE 2N	Mode , Mode , M M M M M M M M M M M M M M M M M M M	Auto Sweep		1.	(
Ref Le Att SGL Co 1Pk Ma 10 dBm- 10 dBm- -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm Start 30 Marker Type M1		Tx. 20.00 dE 30 (10/10 01 -15.67	im Offset 2 JB SWT :: '3 dBm '3 dBm X-value 2.	2.39 dB	IT BLE 2N	Mode / Mode / M M m m m m m m m m m m m m m m m m m	Auto Sweep		1. 	(
Ref Le Att SGL Co 1Pk Ma 10 dBm- 10 dBm- -10 dBm -20 dBm -20 dBm -40 dBm -50 dBm -60 dBm -70 dBm Start 30 Marker Type M1 M2 M3		Tx. 20.00 dE 30 (10/10 01 -15.67 01 -15.67	m Offset 2 3B SWT :: 3 dBm 3 dBm 3 dBm 3 dBm 4 3 dBm 4 5 5 5 5 5 5 5 5 5 5 5 5 5	2.39 dB 265 ms 265 ms 45 GHz 81 GHz	IT BLE 2N RBW 100 kHz VBW 300 kHz	Mode / Mode / M M m m m pts f n n n	Auto Sweep		1. 	(
Ref Le Att SGL Co 1Pk Ma 10 dBm- -10 dBm -20 dBm -20 dBm -40 dBm -50 dBm -50 dBm -70 dBm Start 3 Marker Type M1 M2 M3 M4		Tx. 20.00 dE 30 ( 10/10 01 -15.67 Mitigan MHz MHz 1 1 1 1	im Offset 2 JB SWT :: 3 dBm 3 dBm X-value 2. 15.67: 4.76i 7.30i	2.39 dB 265 ms 265 ms 41 41 41 42 42 43 45 45 42 43 42 43 44 45 47 47 47 48 49 49 49 49 49 49 49 49	IT BLE 2N	Mode / Mode / M M M M M M M M M M M M M M M M M M M	Auto Sweep		1. 	(
Ref Le Att SGL Co 1Pk Ma 10 dBm- 10 dBm- -10 dBm -20 dBm -20 dBm -40 dBm -50 dBm -60 dBm -70 dBm Start 30 Marker Type M1 M2 M3		Tx. 20.00 dE 30 (10/10 01 -15.67 01 -15.67	im Offset 2 JB SWT :: 3 dBm 3 dBm X-value 2. 15.67: 4.76i 7.30i	2.39 dB 265 ms 265 ms 45 GHz 81 GHz	IT BLE 2N RBW 100 kHz VBW 300 kHz	Mode / Mode / M M M M M M M M M M M M M M M M M M M	Auto Sweep		1. 	(

ACCREDITED





ACCREDITED