EMC TEST REPORT **Applicant** Honor Device Co., Ltd. **FCC ID** 2AYGCHJC-LX9 **Product Smart Phone** Model HJC-LX9 Report No. R2009H0243-E1V2 **Issue Date** January 28, 2021 TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in FCC Code CFR47 Part15B (2019)/ ANSI C63.4 (2014). The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report. Prepared by: Wei Liu Guangchang Fan Approved by: Guangchang Fan TA Technology (Shanghai) Co., Ltd. No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000 # **Table of Contents** | 1 | Tes | t Laboratoryt | 5 | |---|------|---|----| | | 1.1 | Notes of the Test Report | 5 | | | 1.2 | Test facility | 5 | | | 1.3 | Testing Location | 5 | | 2 | Ger | neral Description of Equipment under Test | | | | 2.1 | Applicant and Manufacturer Information | 6 | | | 2.2 | General information | | | | 2.3 | Applied Standards | 8 | | | 2.4 | Test Mode | 9 | | 3 | Tes | t Case Results | 10 | | | 3.1 | Radiated Emission | 10 | | | 3.2 | Conducted Emission | 16 | | 4 | Mai | in Test Instruments | 19 | | Α | NNEX | A: The EUT Appearance | 20 | | Α | NNEX | B: Test Setup Photos | 21 | EMC Test Report No.: R2009H0243-E1V2 | Version | Revision description | Issue Date | | | |---------|--|-------------------|--|--| | Rev.0 | Initial issue of report. | December 18, 2020 | | | | Rev.1 | Update Radiated Emission test results for 1-18GHz. | January 7, 2021 | | | | Rev.2 | Update FCC ID. | January 28, 2021 | | | Note: This revised report (Report No. R2009H0243-E1V2) supersedes and replaces the previously issued report (Report No. R2009H0243-E1V1). Please discard or destroy the previously issued report and dispose of it accordingly. MC Test Report Report No.: R2009H0243-E1V2 # **Summary of measurement results** | Number | Test Case | Conclusion | | |--------|--------------------|---------------------------------|------| | 1 | Radiated Emission | FCC Part15.109, ANSI C63.4-2014 | PASS | | 2 | Conducted Emission | FCC Part15.107, ANSI C63.4-2014 | PASS | Date of Testing: September 5, 2020 ~ December 9, 2020 and January 7, 2021 Date of Sample Received: September 9, 2020 Note: All indications of Pass/Fail in this report are opinions expressed by TA Technology (Shanghai) Co., Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. # **Test Laboratory** ### **Notes of the Test Report** This report shall not be reproduced in full or partial, without the written approval of TA technology (shanghai) co., Ltd. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above. # **Test facility** ### FCC (Designation number: CN1179, Test Firm Registration Number: 446626) TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform measurements. ### A2LA (Certificate Number: 3857.01) TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform measurement. ### **Testing Location** TA Technology (Shanghai) Co., Ltd. Company: Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China City: Shanghai Post code: 201201 P. R. China Country: Contact: Fan Guangchang Telephone: +86-021-50791141/2/3 Fax: +86-021-50791141/2/3-8000 Website: http://www.ta-shanghai.com E-mail: fanguangchang@ta-shanghai.com # 2 General Description of Equipment under Test # 2.1 Applicant and Manufacturer Information | Applicant | Honor Device Co., Ltd. | | | |----------------------|--|--|--| | Applicant address | Suite 3401, Unit A, Building 6, Shum Yip Sky Park, No. 8089,
Hongli West Road, Xiangmihu Street, Futian District, Shenzhen, | | | | Applicant address | Guangdong 518040, People's Republic of China | | | | Manufacturer | Honor Device Co., Ltd. | | | | | Suite 3401, Unit A, Building 6, Shum Yip Sky Park, No. 8089, | | | | Manufacturer address | Hongli West Road, Xiangmihu Street, Futian District, Shenzhen, | | | | | Guangdong 518040, People's Republic of China | | | # 2.2 General information | | EUT Description | | | | | | | |--------------|---------------------|---------------|---------------|--|--|--|--| | Device Type | Portable Device | | | | | | | | Model | HJC-LX9 | | | | | | | | SN | NBC0120818000028 | | | | | | | | HW Version | HL3JSCM | | | | | | | | SW Version | 10.1.1.111(C900E01R | 1P1) | | | | | | | Antenna Type | Internal Antenna | | | | | | | | | Band | Tx (MHz) | Rx (MHz) | | | | | | | GSM 850 | 824 ~ 849 | 869 ~ 894 | | | | | | | GSM 1900 | 1850 ~ 1910 | 1930 ~ 1990 | | | | | | | WCDMA Band II | 1850 ~ 1910 | 1930 ~ 1990 | | | | | | | WCDMA Band IV | 1710 ~ 1755 | 2110 ~ 2155 | | | | | | | WCDMA Band V | 824 ~ 849 | 869 ~ 894 | | | | | | | LTE Band 2 | 1850 ~ 1910 | 1930 ~ 1990 | | | | | | Eroguanov | LTE Band 4 | 1710 ~ 1755 | 2110 ~ 2155 | | | | | | Frequency | LTE Band 5 | 824 ~ 849 | 869 ~ 894 | | | | | | | LTE Band 7 | 2500 ~ 2570 | 2620 ~ 2690 | | | | | | | LTE Band 38 | 2570 ~ 2620 | 2570 ~ 2620 | | | | | | | LTE Band 41 | 2496 ~ 2690 | 2496 ~ 2690 | | | | | | | Bluetooth | 2400 ~ 2483.5 | 2400 ~ 2483.5 | | | | | | | WIFI 2.4G | 2400 ~ 2483.5 | 2400 ~ 2483.5 | | | | | | | WIFI 5G(U-NII-1) | 5150 ~ 5250 | 5150 ~ 5250 | | | | | | | WIFI 5G(U-NII-2A) | 5250 ~ 5350 | 5250 ~ 5350 | | | | | TA Technology (Shanghai) Co., Ltd. TA-MB-06-001E Page 6 of 21 Report No - R2009H0243-F1V2 | | ENIC Test Repor | ι | Ket. | OIT NO R2003H0243-E1V2 | | |---------------|-----------------|-------------------|-------------|------------------------|--| | | | WIFI 5G(U-NII-2C) | 5470 ~ 5725 | 5470 ~ 5725 | | | | | WIFI 5G(U-NII-3) | 5725 ~ 5850 | 5725 ~ 5850 | | | | | NFC | 13.56 | 13.56 | | | FUT Accessory | | | | | | | Accessory | Model | Manufacture | No. | | |---------------------------------------|-----------------|---|-----|--| | | HW-110600E00 | Honor Device Co., Ltd. | 1 | | | | HW-110600B00 | Honor Device Co., Ltd. | 2 | | | | HW-110600U00 | Honor Device Co., Ltd. | 3 | | | | HW-110600A00 | Honor Device Co., Ltd. | 4 | | | Adapter | HW-110600E02 | Honor Device Co., Ltd. | 5 | | | | HW-110600B02 | Honor Device Co., Ltd. | 6 | | | | HW-110600U02 | Honor Device Co., Ltd. | 7 | | | | HW-110600A02 | Honor Device Co., Ltd. | 8 | | | | HW-110600C02 | Honor Device Co., Ltd. | 9 | | | | HB426589EEW | Honor Device Co., Ltd. | 1 | | | Battery | 110420303EEVV | (Manufacturer: SCUD (FUJIAN) Electronics Co., Ltd.) | | | | Battery | HB426589EEW | Honor Device Co., Ltd. | | | | | 110-20000221 | (Manufacturer: Sunwoda Electronic Co., Ltd.) | 2 | | | USB Cable | 213-01011-0 | MING JI ELECTRONICS CO., LTD. | | | | USB Cable | L99UC139-CS-H | LUXSHARE Precision Industry Co., Ltd | 2 | | | | MEND1532B528A | Jiangxi Lianchuang Hongsheng Electronic Co. ,LTD | 1 | | | | 11 | Startigkt EtailCridarig Horigsherig Electronic Co. ,ETD | ' | | | Earphone | EPAB542-2WH05- | FOXCONN INTERCONNECT TECHNOLOGY LIMITED | 2 | | | Laipilolle | DH | 1 0/000MM INTERCOMMENT TEOLINGEOGT ENVITED | | | | | 1293-3283-3.5mm | Boluo County Quancheng Electronic Co. ,LTD | 3 | | | | -339 | Boluo County Quancheng Electronic Co. ,LTD | | | | A codition of the table of the second | | | | | # Auxiliary test equipment PC Manufacturer: Microsoft Corporation PC Model: L20170076 Note: 1.The EUT is sent from the applicant to TA and the information of the EUT is declared by the applicant. 2. There is more than one Adapter/USB cable/ Battery/Earphone, each one should be applied throughout the compliance test respectively, and however, only the worst case (Adapter 3/USB cable 2/ Battery 1/Earphone 1) will be recorded in this report. MC Test Report No.: R2009H0243-E1V2 # 2.3 Applied Standards According to the specifications of the manufacturer, it must comply with the requirements of the following standards: Test standards FCC Code CFR47 Part15B (2019) ANSI C63.4 (2014) ### 2.4 Test Mode | Test Mode | Test Mode | | | | |-----------|--|--|--|--| | Mode 1: | Adapter +USB cable + Front camera On | | | | | Mode 2: | Adapter +USB cable + Rear camera On | | | | | Mode 3: | Adapter + USB cable + Mp4 | | | | | Mode4: | Adapter + USB cable + Bluetooth/ WLAN/ NFC Traffic | | | | | Mode 5: | USB Copy(EUT with PC) + camera On + USB cable | | | | | Mode 6: | Earphone + Front Camera On | | | | | Mode 7: | Rear camera On +earphone | | | | | Mode 8: | Earphone + MP4 | | | | | Mode 9: | Earphone + Bluetooth /WLAN /NFC Traffic | | | | Report No.: R2009H0243-E1V2 During the test, the preliminary test was performed in all modes with all Adapters, Earphone, USB and Batteries, mode 5 with Adapter 3, Earphone 1, Battery 1 and USB cable 2 is selected as the worst condition. The test data of the worst-case condition was recorded in this report. ### 3 Test Case Results #### 3.1 Radiated Emission #### **Ambient condition** | Temperature | Relative humidity | Pressure | | |-------------|-------------------|----------|--| | 23°C~26°C | 45%~50% | 101.5kPa | | Report No.: R2009H0243-E1V2 #### **Methods of Measurement** The EUT is placed on a non-metallic table 0.8m above the horizontal metal reference ground plane. The distance between EUT and receive antenna should be 3 meters. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.4-2014. Sweep the whole frequency band through the range from 30MHz to the 5th harmonic of the carrier. During the test, the height of receive antenna shall be moved from 1 to 4 meters, and the antenna shall be performed under horizontal and vertical polarization. The turn table shall be rotated from 0 to 360 degrees for detecting the maximum of radiated signal level. The data of cable loss and antenna factor has been calibrated in full testing frequency range before the testing. During the test, the EUT is worked at maximum output power. Set the spectrum analyzer in the following: Below 1GHz: RBW=100 kHz / VBW=300 kHz / Sweep=AUTO Above 1GHz: - (a) PEAK Detector: RBW=1MHz / VBW=3MHz/ Sweep=AUTO - (b) AVERAGE Detector: RBW=1MHz / VBW=3MHz / Sweep=AUTO The radiated emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in lie-down position (X axis) and the worst case was recorded. EMC Test Report No.: R2009H0243-E1V2 #### **Test Setup** #### **Below 1GHz** ### **Above 1GHz** Note: Area side: 2.4mX3.6m Antenna Tower meets ANSI C63.4 requirements for measurements above 1 GHz by keeping the antenna aimed at the EUT during the antenna's ascent/ descent along the antenna mast. #### Class B | Frequency
(MHz) | Field Strength
(dBµV/m) | Detector | |--|----------------------------|------------| | 30 -88 | 40.0 | Quasi-peak | | 88-216 | 43.5 | Quasi-peak | | 216 – 960 | 46.0 | Quasi-peak | | 960-1000 | 54.0 | Quasi-peak | | 1000-5 th harmonic of the highest | 54 | Average | | frequency or 40GHz, which is lower | 74 | Peak | # **Measurement Uncertainty** The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96. | Frequency | Uncertainty | |----------------|-------------| | 30MHz~200MHz | 4.17 dB | | 200MHz~1000MHz | 4.84 dB | | 1GHz~18GHz | 4.35 dB | | 18GHz~26.5GHz | 5.90 dB | | 26.5GHz~40GHz | 5.92 dB | #### **Test Results** Sweep the whole frequency band through the range from 30MHz to the 5th harmonic of the carrier, the Emissions in the frequency band 18GHz -40GHz is more than 20dB below the limit are not reported. The following graphs display the maximum values of horizontal and vertical by software. For above 1GHz, Blue trace uses the peak detection, Green trace uses the average detection. Radiated Emission from 30MHz to 1GHz | Frequency
(MHz) | Quasi-Peak
(dBuV/m) | Height (cm) | Polarization | Azimuth (deg) | Correct
Factor (dB) | Margin
(dB) | Limit
(dBuV/m) | |--------------------|------------------------|-------------|--------------|---------------|------------------------|----------------|-------------------| | 47.263750 | 23.0 | 114.0 | V | 178.0 | -13.2 | 17.0 | 40.0 | | 92.600000 | 16.8 | 125.0 | V | 34.0 | -17.7 | 26.7 | 43.5 | | 149.073750 | 20.4 | 100.0 | V | 51.0 | -21.3 | 23.1 | 43.5 | | 175.130000 | 20.3 | 100.0 | V | 22.0 | -20.4 | 23.2 | 43.5 | | 224.370000 | 18.6 | 100.0 | V | 152.0 | -18.0 | 27.4 | 46.0 | | 354.580000 | 18.1 | 200.0 | Н | 0.0 | -15.1 | 27.9 | 46.0 | Remark: 1. Correction Factor = Antenna factor + Insertion loss(cable loss+amplifier gain) 2. Margin = Limit – Quasi-Peak Radiated Emission from 1GHz to 18GHz | Frequency
(MHz) | Peak
(dBuV/m) | Average
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Meas.
Time
(ms) | Height
(cm) | Pola
rizat
ion | Azimuth (deg) | |--------------------|------------------|---------------------|-------------------|----------------|-----------------------|----------------|----------------------|---------------| | 1123.250000 | | 24.99 | 54.00 | 29.01 | 500.0 | 100.0 | V | 42.0 | | 1159.375000 | 32.09 | | 74.00 | 41.91 | 500.0 | 200.0 | Н | 345.0 | | 1529.125000 | 34.47 | | 74.00 | 39.53 | 500.0 | 100.0 | Н | 257.0 | | 1852.125000 | | 24.47 | 54.00 | 29.53 | 500.0 | 200.0 | V | 38.0 | | 2287.750000 | 37.12 | | 74.00 | 36.88 | 500.0 | 100.0 | V | 211.0 | | 2606.500000 | | 26.01 | 54.00 | 27.99 | 500.0 | 100.0 | V | 241.0 | | 3938.875000 | 41.03 | | 74.00 | 32.97 | 500.0 | 100.0 | Н | 239.0 | | 4142.875000 | | 29.14 | 54.00 | 24.86 | 500.0 | 100.0 | V | 271.0 | | 6463.375000 | 43.29 | | 74.00 | 30.71 | 500.0 | 100.0 | V | 265.0 | | 6590.875000 | | 31.50 | 54.00 | 22.50 | 500.0 | 200.0 | Н | 136.0 | | 10615.625000 | | 33.98 | 54.00 | 20.02 | 500.0 | 200.0 | V | 14.0 | | 10656.000000 | 45.43 | | 74.00 | 28.57 | 500.0 | 200.0 | V | 302.0 | Radiated Emission from 18GHz to 26.5GHz Radiated Emission from 26.5GHz to 40GHz ### 3.2 Conducted Emission #### **Ambient condition** | Temperature | Relative humidity | Pressure | | | |-------------|-------------------|----------|--|--| | 23°C~26°C | 45%~50% | 101.5kPa | | | #### **Methods of Measurement** The EUT is placed on a non-metallic table of 80cm height above the horizontal metal reference ground plane. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.4-2014. Connect the AC power line of the EUT to the L.I.S.N. Use EMI receiver to detect the average and Quasi-peak value. RBW is set to 9 kHz, VBW is set to 30kHz. The measurement result should include both L line and N line. During the test, EUT is connected to a laptop via a USB cable in the case of Transfer Data mode. The EUT is used as the peripheral equipment of the PC. The data is transferred from EUT to PC; PC is connected to server via a long LAN cable. ### **Test Setup** Note: Power Supply is AC Power source and it is used to change the voltage 120V/60Hz. #### Limits | Frequency | Conducted Limits(dBµV) | | | | | | |--|------------------------|-----------------------|--|--|--|--| | (MHz) | Quasi-peak | Average | | | | | | 0.15 - 0.5 | 66 to 56 * | 56 to 46 [*] | | | | | | 0.5 - 5 | 56 | 46 | | | | | | 5 - 30 | 60 | 50 | | | | | | Decreases with the logarithm of the frequency. | | | | | | | #### **Measurement Uncertainty** The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96. U= 2.57 dB. EMC Test Report No.: R2009H0243-E1V2 #### **Test Results** Following plots, Blue trace uses the peak detection; Green trace uses the average detection. | Frequency
(MHz) | QuasiPeak
(dBµV) | Average
(dBµV) | Limit
(dBµV) | Margin
(dB) | Meas.
Time
(ms) | Bandwidth
(kHz) | Line | Filter | Corr.
(dB) | |--------------------|---------------------|-------------------|-----------------|----------------|-----------------------|--------------------|------|--------|---------------| | 0.24 | | 34.69 | 52.02 | 17.33 | 70.0 | 9.000 | L1 | ON | 21 | | 0.36 | 45.60 | | 58.75 | 13.15 | 70.0 | 9.000 | L1 | ON | 21 | | 0.36 | | 29.05 | 48.64 | 19.59 | 70.0 | 9.000 | L1 | ON | 21 | | 0.87 | 48.31 | | 56.00 | 7.69 | 70.0 | 9.000 | L1 | ON | 20 | | 0.93 | 49.44 | | 56.00 | 6.56 | 70.0 | 9.000 | L1 | ON | 20 | | 0.96 | | 26.87 | 46.00 | 19.13 | 70.0 | 9.000 | L1 | ON | 20 | | 3.90 | 36.78 | | 56.00 | 19.22 | 70.0 | 9.000 | L1 | ON | 19 | | 4.74 | | 23.66 | 46.00 | 22.34 | 70.0 | 9.000 | L1 | ON | 19 | | 10.27 | 37.13 | | 60.00 | 22.87 | 70.0 | 9.000 | L1 | ON | 20 | | 12.17 | | 28.95 | 50.00 | 21.05 | 70.0 | 9.000 | L1 | ON | 20 | | 12.54 | | 28.95 | 50.00 | 21.05 | 70.0 | 9.000 | L1 | ON | 20 | | 12.86 | 36.59 | | 60.00 | 23.41 | 70.0 | 9.000 | L1 | ON | 20 | Remark: Correct factor=cable loss + LISN factor L line Conducted Emission from 150 KHz to 30 MHz TA Technology (Shanghai) Co., Ltd. TA-MB-06-001E | Frequency
(MHz) | QuasiPeak
(dBµV) | Average
(dBµV) | Limit
(dBµV) | Margin
(dB) | Meas.
Time
(ms) | Bandwidth
(kHz) | Line | Filter | Corr.
(dB) | |--------------------|---------------------|-------------------|-----------------|----------------|-----------------------|--------------------|------|--------|---------------| | 0.23 | | 37.03 | 52.50 | 15.47 | 70.0 | 9.000 | N | ON | 21 | | 0.35 | 44.12 | | 58.90 | 14.78 | 70.0 | 9.000 | N | ON | 21 | | 0.68 | | 27.58 | 46.00 | 18.42 | 70.0 | 9.000 | N | ON | 20 | | 0.88 | 46.90 | | 56.00 | 9.10 | 70.0 | 9.000 | N | ON | 20 | | 0.90 | | 25.68 | 46.00 | 20.32 | 70.0 | 9.000 | N | ON | 20 | | 0.93 | 48.35 | | 56.00 | 7.65 | 70.0 | 9.000 | N | ON | 20 | | 4.54 | 35.53 | | 56.00 | 20.47 | 70.0 | 9.000 | N | ON | 19 | | 4.96 | | 22.48 | 46.00 | 23.52 | 70.0 | 9.000 | N | ON | 19 | | 7.97 | 35.11 | | 60.00 | 24.89 | 70.0 | 9.000 | N | ON | 20 | | 12.37 | | 24.37 | 50.00 | 25.63 | 70.0 | 9.000 | N | ON | 20 | | 12.48 | | 24.76 | 50.00 | 25.24 | 70.0 | 9.000 | N | ON | 20 | | 16.92 | 32.20 | | 60.00 | 27.80 | 70.0 | 9.000 | N | ON | 20 | Remark: Correct factor=cable loss + LISN factor N line Conducted Emission from 150 KHz to 30 MHz # 4 Main Test Instruments | Name | Manufacturer | Туре | Serial
Number | Calibration
Date | Expiration
Time | | |----------------------------|--------------|-----------------------|------------------|---------------------|--------------------|--| | Spectrum
Analyzer | R&S | FSV40 | 15195-01-00 | 2020-05-17 | 2021-05-16 | | | EMI Test
Receiver | R&S | ESCI | 100948 | 2020-05-17 | 2021-05-16 | | | Trilog Antenna | SCHWARZBECK | VULB 9163 | 391 | 2019-12-16 | 2021-12-15 | | | Horn Antenna | R&S | HF907 | 102723 | 2018-08-11 | 2021-08-10 | | | Horn Antenna | ETS-Lindgren | 3160-09 | 00102643 | 2018-06-20 | 2021-06-19 | | | Standard Gain
Horn | STEATITE | QSH-SL-26-
40-K-15 | 16779 | 2019-12-24 | 2021-12-23 | | | EMI Test
Receiver | R&S | ESR | 101667 | 2020-05-17 | 2021-05-16 | | | LISN | R&S | ENV216 | 101171 | 2018-12-15 | 2021-12-14 | | | Bore Sight
Antenna mast | ETS | 2171B | 00058752 | / | / | | | Test software | EMC32 | R&S | 9.26.0 | / | / | | ******END OF REPORT ****** # **ANNEX A: The EUT Appearance** The EUT Appearance are submitted separately. # **ANNEX B: Test Setup Photos** The Test Setup Photos are submitted separately.