

FCC Radio Test Report

FCC ID: 2A6AAXMP2457

Report No. Equipment Model Name Brand Name	 BTL-FCCP-1-2312T038 Access Control Card Reader XMP-TMC2457-UP, XMP-TMC2457-UP-xxx (x=0~9 or x=A~Z) CONSTRUCT
Applicant Address	 Autec Gesellschaft fuer Automationstechnik mbH Bahnhofstrasse 57 + 61b, D-55234 Framersheim, Germany
Radio Function	: RFID (13.558 MHz)
FCC Rule Part(s) Measurement Procedure(s)	: FCC CFR Title 47, Part 15, Subpart C (15.225) : ANSI C63.10-2013
Date of Receipt Date of Test Issued Date	: 2023/12/12 : 2023/12/19 ~ 2024/7/18 : 2024/12/11

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by

: <u>Eddie Lee, Engineer</u>

Approved by

Jerry Chuarg, Supervisor

BTL Inc.

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com Service mail: btl_qa@newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** assumes no responsibility for the data provided by the Customer, any statements, inferences or generalizations drawn by the customer or others from the reports issued by **BTL**.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the ISO/IEC 17025 requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

CONTENTS

REVISI	ON HISTO	RY	4		
1	SUMMA	RY OF TEST RESULTS	5		
1.1	TEST	FACILITY	6		
1.2	MEA	SUREMENT UNCERTAINTY	6		
1.3	TEST	ENVIRONMENT CONDITIONS	6		
2	GENER	AL INFORMATION	7		
2.1	DES	CRIPTION OF EUT	7		
2.2	TEST	MODES	8		
2.3	BLOO	CK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	9		
2.4	SUPI	PORT UNITS	9		
3	RADIAT	ED EMISSIONS TEST	10		
3.1	LIMIT	T	10		
3.2	TEST	PROCEDURE	11		
3.3	DEVI	ATION FROM TEST STANDARD	11		
3.4	TEST	SETUP	11		
3.5	EUT	OPERATING CONDITIONS	12		
3.6	TEST	RESULT – 9 KHZ TO 30 MHZ– FCC PART 15.209	12		
3.7	TEST	RESULT – 30 MHZ TO 1 GHZ – FCC PART 15.209	12		
3.8	TEST	RESULT – FCC PART 15.225	12		
4	FREQU	ENCY STABILITY	13		
4.1	LIMI	T	13		
4.2	TEST	PROCEDURE	13		
4.3	DEVI	ATION FROM TEST STANDARD	13		
4.4	EUT	OPERATING CONDITIONS	13		
4.5		RESULT	13		
5	20 DB E	BANDWIDTH	14		
5.1	LIMI		14		
5.2		PROCEDURE	14		
5.3		ATION FROM TEST STANDARD	14		
5.4		SETUP	14		
5.5		OPERATING CONDITIONS	14		
5.6		RESULT	14		
6		MEASURING EQUIPMENTS	15		
7		ST PHOTO	16		
8	EUT PH	IOTOS	16		
APPEN	DIX A	RADIATED EMISSIONS - 9 KHZ TO 30 MHZ	17		
APPEN	DIX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ	22		
APPEN	DIX C	RADIATED EMISSIONS - FCC PART 15.225	25		
APPEN	DIX D	FREQUENCY STABILITY MEASUREMENT	28		
APPENDIX E 20 DB BANDWIDTH 30					

REVISION HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-1-2312T038	R00	Original Report.	2024/10/4	Invalid
BTL-FCCP-1-2312T038	R01	Revised report to address TCB's comments.	2024/10/23	Invalid
BTL-FCCP-1-2312T038	R02	Revised report to address TCB's comments.	2024/12/11	Valid

1 SUMMARY OF TEST RESULTS

Test procedures according to the technical standards.

Standard(s) Section	Description	Test Result	Judgement	Remark
15.207	AC Power Line Conducted Emissions		N/A	NOTE (3)
15.35 15.205 15.209 15.225	Radiated Emissions	APPENDIX A APPENDIX B APPENDIX C	Pass	
15.225(e)	Frequency Stability	APPENDIX D	Pass	
15.203	Antenna Requirement		Pass	
15.215(c)	20 dB Bandwidth	APPENDIX E	Pass	

Statement of Conformity

The statement of conformity is based on the binary decision rule according to IEC Guide 115 and ILAC G8 "simple acceptance" principle. Without considering measurement uncertainty, its specific risk is less than 50% PFA. (PFA: Probability of False Accept)

NOTE:

- (1) "N/A" denotes test is not applicable in this Test Report.
- (2) The report format version is TP.1.1.1.
- (3) This is a DC input device.

1.1 TEST FACILITY

The test locations stated below are under the TAF Accreditation Number 0659. The test location(s) used to collect the test data in this report are: No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan (FCC DN: TW0659) □ C05 □ CB08 □ CB11 □ SR10 ⊠ SR11 No. 72, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan (FCC DN: TW0659)

 \Box C06 $\overset{\prime}{\boxtimes}$ CB21 \Box CB22

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expanded uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k = 2, providing a level of confidence of approximately 95 %.

A. Radiated emissions test :

Test Site	Method	Measurement Frequency Range	U (dB)
CB21	CISPR	9 kHz ~ 150 kHz	2.82
		150 kHz ~ 30 MHz	2.58

Test Site	Measurement Frequency Range	U (dB)
	0.03 GHz ~ 0.2 GHz	4.17
	0.2 GHz ~ 1 GHz	4.72
CB21	1 GHz ~ 6 GHz	5.21
CB21	6 GHz ~ 18 GHz	5.51
	18 GHz ~ 26 GHz	3.69
	26 GHz ~ 40 GHz	4.23

NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
Radiated emissions (9KHz-30MHz)	Refer to data	DC 24V	Mark Wang
Radiated emissions (30MHz TO 1000MHz)	Refer to data	DC 24V	Mark Wang
Frequency Stability	25 °C, 53 %	DC 24V	Tim Lian
20 dB Bandwidth	25 °C, 53 %	DC 24V	Tim Lian

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Equipment	Access Control Card Reader			
Model Name	XMP-TMC2457-UP, XMP-TMC2457-UP-xxx (x=0~9 or x=A~Z)			
Brand Name				
Model Difference	Different models distribute to different area.			
Power Source	DC Voltage supplied from DC power supply or Battery supplied.			
Power Rating	DC 12/24V			
Products Covered	N/A			
Operation Frequency	13.558 MHz			
Max H-field strength	88.72 dBuV/m@1m(Peak)			
Test Model	XMP-TMC2457-UP			
Sample Status	Engineering Sample			
EUT Modification(s)	N/A			

NOTE:

(1) The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

(2) Channel List:

ChannelFrequency (MHz)0113.558

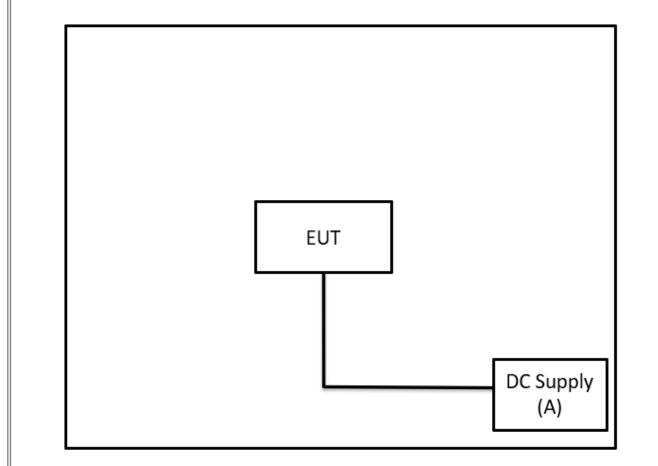
(3) Table for Filed Antenna:

- 5								
	Antenna	Brand Name	Model Name	Antenna Type	Connector	Gain (dBi)		
	1	N/A	N/A	loop antenna	N/A	0		

(4) The above Antenna information are derived from the antenna data sheet provided by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

2.2 TEST MODES

Test Items	Test mode	Channel	Note
Radiated emissions (9KHz-30MHz)	ТХ	01	-
Radiated emissions (30MHz TO 1000MHz)	TX	01	
Frequency Stability	ТХ	01	-
20 dB Bandwidth	ТХ	01	-


NOTE:

(1) There were no emissions found within 20dB of the limit.

2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

2.4 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.	Remarks
Α	Power Supply	TWINTEX	TPS-6015	N/A	Furnished by test lab.
Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
-	-	-	-	-	-

3 RADIATED EMISSIONS TEST

3.1 LIMIT

FCC Part 15.209						
Frequency	Field Strength Lir	nitation	Field Strength Limitation at 3m Measurement Dist			
(MHz)	(uV/m)	Dist	(uV/m)	(dBuV/m)		
0.009 - 0.490	2400 / F(KHz)	300m	10000 * 2400/F(KHz)	20log 2400/F(KHz) + 80		
0.490 - 1.705	24000 / F(KHz)	30m	100 * 24000/F(KHz)	20log 24000/F(KHz) + 40		
1.705 – 30.00	30	30m	100* 30	20log 30 + 40		
30.0 - 88.0	100	3m	100	20log 100		
88.0 - 216.0	150	3m	150	20log 150		
216.0 - 960.0	200	3m	200	20log 200		
Above 960.0	500	3m	500	20log 500		
		FCC P	art 15.225(a)/(b)/(c)			
Frequency	Field Strength Lir	nitation	Field Strength Limitation at 3m Measurement Dist			
(MHz)	(uV/m)	Dist	(uV/m)	(dBuV/m)		
13.553 – 13.567	15,848	30 m	15,848*100	124		
13.567 – 13.710	334	30 m	334*100	90.5		
13.110 – 13.410 13.710 – 14.010	106	30 m	106*100	80.5		

NOTE:

(1) The tighter limit shall apply at the boundary between two frequency range.

(2) Limitation expressed in dBuV/m is calculated by 20log Emission Level (uV/m).

(3) If measurement is made at 3m distance, then F.S Limitation at 3m distance is adjusted by using the formula of $L_{d1} = L_{d2} * (d_2/d_1)^2$. Example:

F.S Limit at 30m distance is 30uV/m, then F.S Limitation at 3m distance is adjusted as $L_{d1} = L_1 = 30uV/m * (10)^2 = 100 * 30 uV/m$ (4) The test result calculated as following:

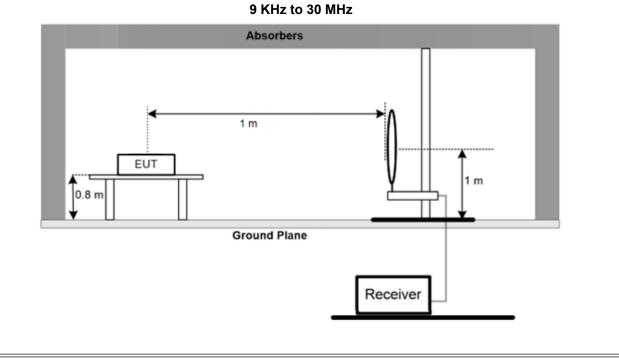
(4) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor(if use) Margin Level = Measurement Value – Limit Value

3.2 TEST PROCEDURE

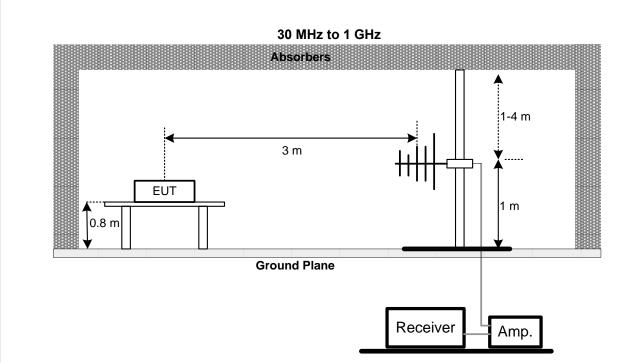
- a. The measuring distance of 1 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. (9 KHz to 30 MHz).
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. (30 MHz to 1GHz).
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.

NOTE: (FCC PART 15.209)

- a. Reading in which marked as QP or Peak means measurements by using are Quasi-Peak Mode with Detector BW=120 kHz.
- b. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.


NOTE: (FCC PART 15.225)

- a. Spectrum Setting:
 - 9 KHz 150 KHz, RBW= 200Hz, VBW=200Hz, Sweep time = 200 ms.
 - 150 K Hz 30 MHz, RBW= 10 KHz, VBW=10 KHz, Sweep time = 200 ms.
 - 30 MHz 1000 MHz, RBW= 100KHz, VBW=100KHz, Sweep time = 200 ms.
- b. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- c. The Log-Bicon Antenna will use to test frequency range from 30MHz to 1000MHz and the Loop Antenna will use to test frequency below 30MHz.


3.3 DEVIATION FROM TEST STANDARD

No deviation.

3.4 TEST SETUP

3.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

3.6 TEST RESULT - 9 kHZ TO 30 MHZ- FCC PART 15.209

Please refer to the APPENDIX A

3.7 TEST RESULT – 30 MHZ TO 1 GHZ – FCC PART 15.209

Please refer to the APPENDIX B.

3.8 TEST RESULT – FCC PART 15.225

Please refer to the APPENDIX C.

NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

4 FREQUENCY STABILITY

4.1 LIMIT

FCC Part 15.225(e)

The frequency tolerance of the carrier signal shall be maintained within +/-0.01% of the operating frequency over a temperature variation of - 20 degrees to + 50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.

For battery operated equipment, the equipment tests shall be performed using a new battery.

4.2 TEST PROCEDURE

- a. The equipment under test was connected to an external AC power supply and the RF output was connected to a frequency counter via feed through attenuators. The EUT was placed inside the temperature chamber.
- b. At room temperature (25±5°C), an external variable AC power supply was connected to the EUT. The frequency of the transmitter was measured for 115%, 100% and 85% of the nominal operating input voltage.

4.3 DEVIATION FROM TEST STANDARD

No deviation.

4.4 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.5 TEST RESULT

Please refer to the APPENDIX D.

5 20 DB BANDWIDTH

5.1 LIMIT

FCC Part 15.215(c)

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §15.217 through §15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting : RBW= 1 kHz, VBW=1 kHz, Sweep time = 20 ms.

5.3 DEVIATION FROM TEST STANDARD

No deviation.

5.4 TEST SETUP

5.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

5.6 TEST RESULT

Please refer to the APPENDIX E.

6 LIST OF MEASURING EQUIPMENTS

			Radiated Emissio	ons		
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Preamplifier	EMCI	EMC330N	980850	2023/9/6	2024/9/5
2	Preamplifier	EMCI	EMC001340	980579	2023/9/6	2024/9/5
3	Test Cable	EMCI	EMC104-SM-100 0	180809	2023/7/10	2024/7/9
4	Test Cable	EMCI	EMC104-SM-SM- 3000	220322	2023/3/14	2024/3/13
5	Test Cable	EMCI	EMC104-SM-SM- 7000	220324	2023/3/14	2024/3/13
6	EXA Signal Analyzer	keysight	N9020B	MY57120120	2023/2/24	2024/2/23
7	Loop Ant	Electro-Metrics	EMCI-LPA600	291	2023/9/12	2024/9/11
8	Log-bicon Antenna	Schwarzbeck	VULB9168	1369	2023/5/9	2024/5/8
9	6dB Attenuator	EMCI	EMCI-N-6-06	AT-06001	2023/5/9	2024/5/8
10	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A

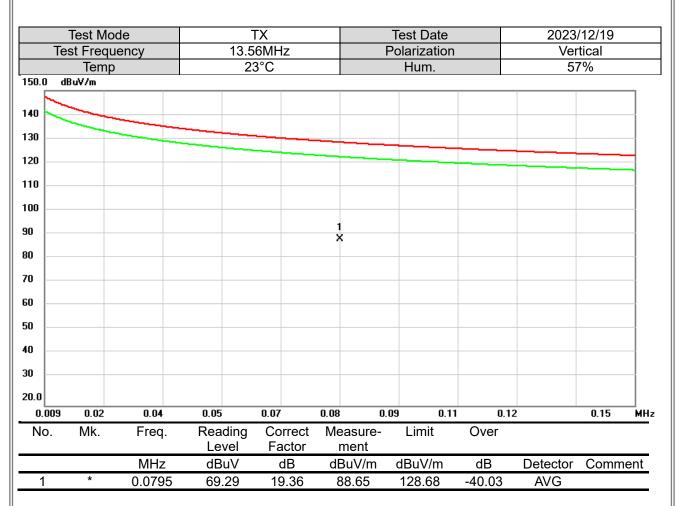
	Frequency Stability Measurement													
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until								
1	Spectrum Analyzer	R&S	FSP 40	101139	2024/3/8	2025/3/7								
2	Thermal Chamber	HOLINK	H-TH-2SP-B	EK04101902	2024/6/28	2025/6/27								

		20 d	B Bandwidth Meas	surement		
lte	m Kind of Equipmer	nt Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Spectrum Analyzer	R&S	FSP 40	101139	2024/3/8	2025/3/7

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

7 EUT TEST PHOTO

Please refer to document Appendix No.: TP-2312T038-FCCP-1 (APPENDIX-TEST PHOTOS).


8 EUT PHOTOS

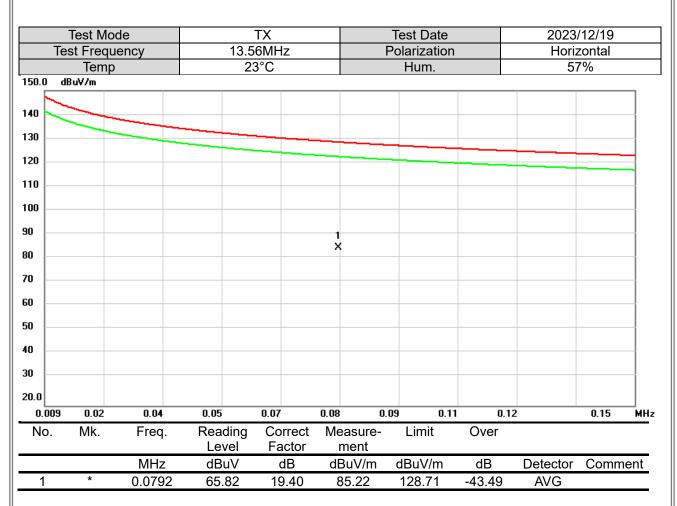
Please refer to document Appendix No.: EP-2312T038-1 (APPENDIX-EUT PHOTOS).

APPENDIX A RADIATED EMISSIONS - 9 KHZ TO 30 MHZ

REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.

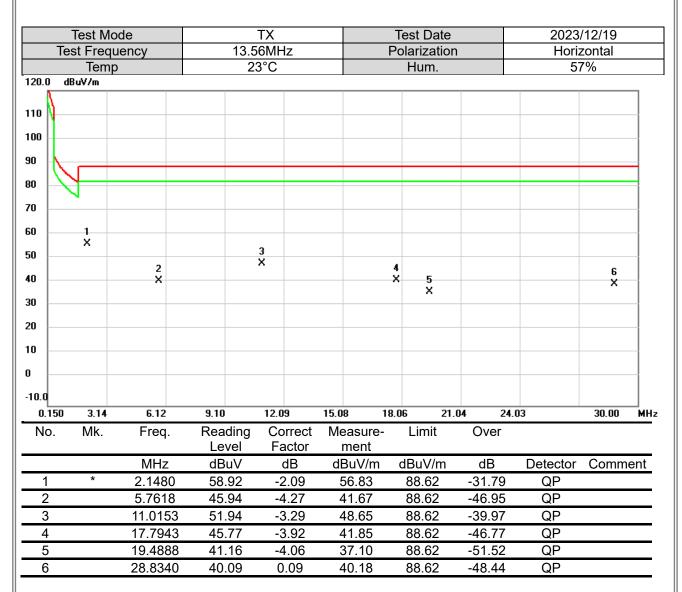
(2) Margin Level = Measurement Value - Limit Value.


BIL

	Test Mo	ode			ΤХ				Test Date	9	2023	/12/19	
٦	Test Frequ	uency		13.	56M⊢	z			Polarizatio	n	Ver	tical	
	Temp)		2	23°C				Hum.		57	7%	
120.0	dBuV/m												_
110 100 90 80													
70 60	1 X	2 X	2										
50 40 30			3 X		4 ×				5 X			6 X	
20 10													
0 -10.0													
0.150	0 3.14	6.12		9.10	12.0	9	15.0	B 1	8.06 2	1.04 24.0)3	30.00	MHz
No.	Mk.	Freq.		Reading Level		rrect ictor		easure- ment	Limit	Over			
		MHz		dBuV	(dΒ	dE	3uV/m	dBuV/m	dB	Detector	Comm	ent
1	*	2.4634	4	64.36	-2	2.72	6	61.64	88.62	-26.98	QP		
2		4.2514	4	58.40	-4	.20	5	54.20	88.62	-34.42	QP		
3		6.6752	2	51.01	-2	.03	4	6.98	88.62	-41.64	QP		
4		11.013	3	49.31		3.29	4	6.02	88.62	-42.60	QP		
5		18.079		43.98		8.95		0.03	88.62	-48.59	QP		
6		28.842	8	42.24	0	.09	/	2.33	88.62	-46.29	QP		

REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.



REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.

(2) Margin Level = Measurement Value - Limit Value.

BIL

REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.

(2) Margin Level = Measurement Value - Limit Value.

APPENDIX B RADIATED EMISSIONS - 30 MHZ TO 1 GHZ

BIL

-	Test Mo	de				тх				Test [Date		2023	/12/21	
Tes	st Frequ	lency			13.5		lz			Polariz	zatior	1 I		zontal	
	Temp			22°C					Hum.				57%		
80.0 dB	uV/m														_
70															
60															
50															
40			2 X		зX			¥ X			5 X		<u>6</u>		
30	-	X			×										
20															
10															
0.0															
30.000	127.00	224.	00	321.	00	418.	.00	515.	00 E	612.00	70	9.00 806	6.00	1000.00	 MHz
No.	Mk.	Freq		Rea Le			orrect actor		easure- ment	Lin	nit	Over			
		MHz	2	dB	uV		dB	d	BuV/m	dBu\	//m	dB	Detector	Comme	ent
1		163.50)43	46.	.92	-1	1.98		34.94	43.	50	-8.56	peak		
2		240.00)50	49.	.81	-1	3.38		36.43	46.0	00	-9.57	peak		
3		359.99	940	44.	.53	-6	9.87		34.66	46.0	00	-11.34	peak		
4	*	479.98	30	49.	.21	-6	6.65	4	42.56	46.0	00	-3.44	QP		
5	!	659.98	327	45.	.10	-3	3.09	4	42.01	46.0	00	-3.99	QP		
6		839.98	323	39.	.41	-(0.20		39.21	46.0	00	-6.79	peak		

REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

BIL

	Test Mo	de		ТХ		Test Date		2023	/12/21	
T	est Frequ	iency		56MHz		Polarization	۱		tical	
	Temp	•		22°C		Hum.		57%		
80.0	dBuV/m									
70										
60 —										
50 —										
					_	5				
40 1 ×					3 X	×		6 X		
<u> </u>	2 X				4 ×			×		
30										
20										
10										
0.0										
30.00	0 127.00	224.00	321.00	418.00	515.00	612.00 709	9.00 806	5.00	1000.00 MHz	
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	- Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	*	40.6700	48.46	-11.56	36.90	40.00	-3.10	QP		
2		67.7977	46.29	-13.54	32.75	40.00	-7.25	peak		
3		479.9830	45.59	-6.65	38.94	46.00	-7.06	peak		
4		555.8693	38.05	-5.22	32.83	46.00	-13.17	peak		
5		659.9827	42.95	-3.09	39.86	46.00	-6.14	QP		
6		839.9823	35.47	-0.20	35.27	46.00	-10.73	peak		

REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

APPENDIX C RADIATED EMISSIONS - FCC PART 15.225

	Test Moo st Frequ			TX 6MHz		Test Date Polarizatior			/12/19 tical	
163	Temp			3°C		Hum.	1		10ai 7%	
150.0 dB	uV/m		-	00		Tiditi.			70	
140]				
130										
120										
110										
100										
90					1 X					
30					^					
70										
60										
50										
40										
30.0										
13.510	13.52	13.53	13.54	13.55	13.56	13.57 13.	.58 13.5	59	13.61	MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure ment	- Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comm	ent
1	*	13.5578	89.69	-3.53	86.16	143.07	-56.91	peak		

REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

	Fest Mod			TX		Test Date			/12/19	
Tes	st Frequ			6MHz		Polarization			izontal	
	Temp		2	3°C		Hum.		57	7%	
150.0 dB	u¥∕m									_
140										
130										
120										
110										
0					1					
0										
/0										
60										
50										
40 <u> </u>										
30.0										
13.510	13.52	13.53	13.54	13.55		3.57 13.		59	13.61	MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comm	ent
1	*	13.5578	92.25	-3.53	88.72	143.07	-54.35	peak		

REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

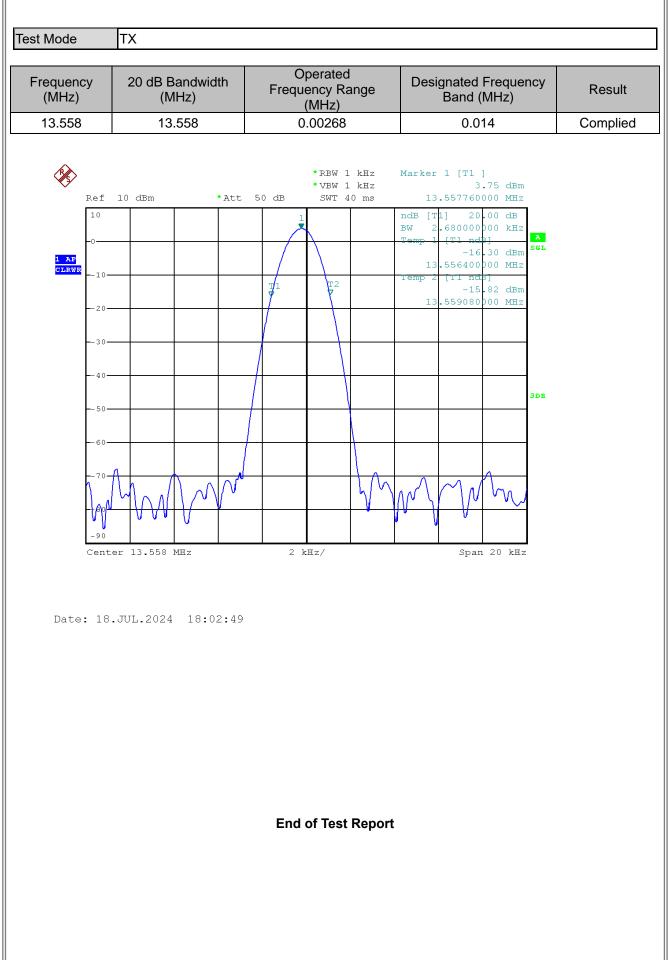
APPENDIX D FREQUENCY STABILITY MEASUREMENT

Test Mode

ΤХ

Tested Date

2024/7/18


	Condition		Frequency Error (ppm)									
Temperature	Modulation Mode	Test Freq.	0 min	2 min	5 min	10 min	0 min	2 min	5 min	10 min	Limit (ppm)	Result
							Nor	mal				
T _{20°C} Vmax	CW	13.558	13.557840	13.557840	13.557840	13.557840	-11.80	-11.80	-11.80	-11.80	100	Pass
T _{20°C} Vmin	CW	13.558	13.557840	13.557840	13.557840	13.557840	-11.80	-11.80	-11.80	-11.80	100	Pass
							Extr	eme				
T7 _{0°C} Vnom	CW	13.558	13.557840	13.557840	13.557840	13.557840	-11.80	-11.80	-11.80	-11.80		Pass
T60°cVnom	CW	13.558	13.557840	13.557840	13.557840	13.557840	-11.80	-11.80	-11.80	-11.80	_	Pass
$T_{50^\circ C} Vnom$	CW	13.558	13.557840	13.557840	13.557840	13.557840	-11.80	-11.80	-11.80	-11.80		Pass
$T_{40^\circ C} Vnom$	CW	13.558	13.557840	13.557840	13.557840	13.557840	-11.80	-11.80	-11.80	-11.80		Pass
$T_{30^\circ C} Vnom$	CW	13.558	13.557840	13.557840	13.557840	13.557840	-11.80	-11.80	-11.80	-11.80	100	Pass
$T_{20^\circ C} Vnom$	CW	13.558	13.557840	13.557840	13.557840	13.557840	-11.80	-11.80	-11.80	-11.80	100	Pass
$T_{10^\circ C} Vnom$	CW	13.558	13.557840	13.557840	13.557840	13.557840	-11.80	-11.80	-11.80	-11.80]	Pass
T _{0°C} Vnom	CW	13.558	13.557800	13.557800	13.557800	13.557800	-14.75	-14.75	-14.75	-14.75]	Pass
T-10°CVnom	CW	13.558	13.557840	13.557840	13.557840	13.557840	-11.80	-11.80	-11.80	-11.80]	Pass
T-20°CVnom	CW	13.558	13.557760	13.557760	13.557760	13.557760	-17.70	-17.70	-17.70	-17.70	1	Pass

NOTE: 0.01 % = 100 ppm.

APPENDIX E 20 DB BANDWIDTH

