

6 NUMBER OF HOPPING FREQUENCY

6.1 LIMIT

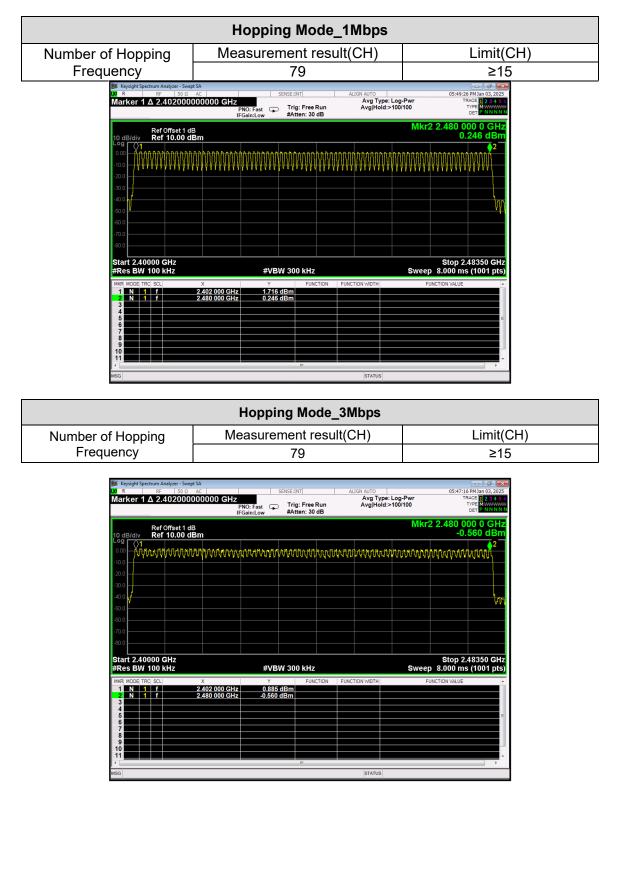
FCC Part15, Subpart C (15.247)		
Section Test Item		
15.247(a)(1)(iii) Number of Hopping Frequency		

6.2 TEST PROCEDURE AND SETTING

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW=100 kHz, VBW=300 kHz, Sweep time = Auto.

Spectrum Parameters	Setting	
Attenuation	Auto	
Span Frequency	> Operating Frequency Range	
RBW	100kHz	
VBW	300kHz	
Detector	Peak	
Trace	Max Hold	
Sweep Time	Auto	

6.3 MEASUREMENT INSTRUMENTS LIST


Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum analyzer	KEYSIGHT	N9010A	MY55150427	2025/05/22
2	Attenuator	Mini-Circuits	BW-S10W2	101109	N/A
3	RF Cable	Mi-cable	C10-01-01-1	100309	N/A

6.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

6.5 EUT OPERATION CONDITIONS

7 AVERAGE TIME OF OCCUPANCY

7.1 LIMIT

FCC Part15, Subpart C (15.247)			
Section Test Item Limit			
15.247(a)(1)(iii)	Average Time of Occupancy	0.4sec	

7.2 TEST PROCEDURE AND SETTING

a. The transmitter output (antenna port) was connected to the spectrum analyzer

- b. Set RBW of spectrum analyzer to 1MHz and VBW to 1MHz
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses
- d. Sweep Time is more than once pulse time
- e. Set the center frequency on any frequency would be measure and set the frequency span to zero span
- f. Measure the maximum time duration of one single pulse
- g. Set the EUT for DH1, DH3 and DH5 packet transmitting
- h. Measure the maximum time duration of one single pulse
- i. DH1 Packet permit maximum 1600 / 79 /2 = 10.12 hops per second in each channel (1 time slot TX, 1 time slot RX).So, the dwell time is the time duration of the pulse times 10.12 x 31.6 = 320 within 31.6 seconds
- j. DH3 Packet permit maximum 1600 / 79 / 4 = 5.06 hops per second in each channel (3 time slots TX, 1 time slot RX).So, the dwell time is the time duration of the pulse times 5.06 x 31.6 = 160 within 31.6 seconds
- k. DH5 Packet permit maximum 1600/ 79 / 6 = 3.37 hops per second in each channel (5 time slots TX, 1 time slot RX).So, the dwell time is the time duration of the pulse times 3.37 x 31.6 = 106.6 within 31.6 seconds

7.3 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum analyzer	KEYSIGHT	N9010A	MY55150427	2025/05/22
2	Attenuator	Mini-Circuits	BW-S10W2	101109	N/A
3	RF Cable	Mi-cable	C10-01-01-1	100309	N/A

7.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

7.5 EUT OPERATION CONDITIONS

	TX Mode_1Mbps			
Mode	Channel Frequency (MHz)	Pulse Time (ms)	Dwell Time (ms)	Limit (ms)
DH1	2441	0.411	131.5	400
DH3	2441	1.710	273.6	400
DH5	2441	3.040	324.1	400

DH1

DH3

DH5

TX Mode_3Mbps				
Mode	Channel Frequency	Pulse Time	Dwell Time	Limit
Mode	(MHz)	(ms)	(ms)	(ms)
DH1	2441	0.432	138.2	400
DH3	2441	1.700	272.0	400
DH5	2441	2.960	315.5	400

2441MHzDH1

2441MHzDH3

2441MHzDH5 er 1 A S 1 A 3 Trig: Fix Trig: Free F Trig: Free Ru Ref Offset 1 dB Ref 10.00 dBm Ref Offset 1 dB Ref 10.00 dBr nthrout at a state in the second 棕榈碱 nter 2.441 r 2.441

8 HOPPING CHANNEL SEPARATION MEASUREMENT

8.1 LIMIT

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

8.2 TEST PROCEDURE AND SETTING

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Span = wide enough to capture the peaks of two adjacent channels Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span Video (or Average) Bandwidth (VBW) ≥ RBW Sweep = Auto Detector function = Peak Trace = Max Hold

Spectrum Parameter	Setting	
Attenuation	Auto	
Span Frequency	> Measurement Bandwidth or Channel Separation	
RBW	10 kHz	
VBW	30 kHz	
Detector	Peak	
Trace	Max Hold	
Sweep Time	Auto	

8.3 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum analyzer	KEYSIGHT	N9010A	MY55150427	2025/05/22
2	Attenuator	Mini-Circuits	BW-S10W2	101109	N/A
3	RF Cable	Mi-cable	C10-01-01-1	100309	N/A

8.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

8.5 EUT OPERATION CONDITIONS

	TX Mode_1Mbps						
Channel	Frequency (MHz)	Channel Separation(MHz)	Limit (MHz)	Result			
CH00	2402	0.861	>(25KHz or 2/3*20dB Bandwidth)	PASS			
CH39	2441	0.993	>(25KHz or 2/3*20dB Bandwidth)	PASS			
CH78	2480	0.966	>(25KHz or 2/3*20dB Bandwidth)	PASS			

	TX Mode_3Mbps						
Channel	Frequency (MHz)	Channel Separation(MHz)	Limit (MHz)	Result			
CH00	2402	1.008	>(25KHz or 2/3*20dB Bandwidth)	PASS			
CH39	2441	0.999	>(25KHz or 2/3 [*] 20dB Bandwidth)	PASS			
CH78	2480	0.831	>(25KHz or 2/3*20dB Bandwidth)	PASS			

9 BANDWIDTH TEST

9.1 LIMIT

FCC Part15, Subpart C (15.247)				
Section Test Item				
15.247(a)(1) Bandwidth				

9.2 TEST PROCEDURE AND SETTING

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW= 30 kHz, VBW=100 kHz, Sweep Time = Auto.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	> Measurement Bandwidth
RBW	30kHz
VBW	100kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

9.3 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum analyzer	KEYSIGHT	N9010A	MY55150427	2025/05/22
2	Attenuator	Mini-Circuits	BW-S10W2	101109	N/A
3	RF Cable	Mi-cable	C10-01-01-1	100309	N/A

9.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

9.5 EUT OPERATION CONDITIONS

TX Mode_1Mbps							
Channel	Frequency 20dB Bandwidth		99 % Emission Bandwidth	Result			
	(MHz)	(MHz)	(MHz)				
CH00	2402	0.882	0.8676	PASS			
CH39	2441	0.937	0.8706	PASS			
CH78	2480	0.924	0.8673	PASS			

Performance results and result

Report No.: 24EFSS11090 02611

TX Mode_3Mbps						
Channel	Frequency	20dB Bandwidth	99 % Emission Bandwidth	Result		
	(MHz)	(MHz)	(MHz)			
CH00	2402	1.227	1.1398	PASS		
CH39	2441	1.231	1.1421	PASS		
CH78	2480	1.228	1.1421	PASS		

2402MHz

2441MHz

2480MHz

KoyiphtSpeaker Andpare Occupien®#	iHz	SPISE 211 A.3 Center Freq: 2.441000000 Trig: Free Run	GHz AvuHold>1010	11 59:33 FP 3m 12, 212 Radio Std: None
	Af GainsLow	#Atten: 30 dB	Angride Praire	Radio Device: BTS
10 dB/dle Ref 10.00 dBm				
0.00				
		- n n - n	~ ~ ~	
22.2		ľ ľ	~ ~ ~	
			\	
a)	~		_	A A
				m m
(D)				· • • • •
Center 2.441 GHz				
enter 2/441 GHz Res BW 30 kHz		#VBW 100 kHz		Span 3 MH Sweep 3.2 m
Occupied Bandwidth		Total Power	8.52 dBm	
1.1	421 MHz			
Transmit Freq Error	48,123 kHz	% of OBW Power	99.00 %	
x dB Bandwidth	1.231 MHz	x dB	-20.00 dB	

Conter Freq 2.48000000	GHz #FGains.ow	Center Freg: 2.480000000	N 8/10 GHz Avg[Hold:>10/10	Radio Device: BTS
10 eBidly Ref 10.00 dBm				
600 000 000 000 000 000		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~	
				~~~~~
Center 2.48 GHz eRes BW 30 kHz		øVBW 100 kHz		Span 3 MHz Sweep 3.2 ms
Occupied Bandwidtl 1.1	h 1421 MHz	Total Power	8.16 dBm	
Transmit Freq Error x dB Bandwidth	47.447 kHz 1.228 MHz	% of OBW Power x dB	99.00 % -20.00 dB	



# **10 MAXIMUM OUTPUT POWER**

### 10.1 LIMIT

FCC Part15 , Subpart C (15.247)					
Section	Section Test Item Limit				
15.247(a)(1)	15.247(a)(1) Maximum Output Power 0.125Watt or 21dBm				

### Note:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB band width of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

# **10.2 TEST PROCEDURE AND SETTING**

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW= 1MHz/3MHz, VBW= 1MHz/3MHz, Sweep time = Auto.

# **10.3 MEASUREMENT INSTRUMENTS LIST**

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum analyzer	KEYSIGHT	N9010A	MY55150427	2025/05/22
2	Attenuator	Mini-Circuits	BW-S10W2	101109	N/A
3	RF Cable	Mi-cable	C10-01-01-1	100309	N/A

# 10.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

### **10.5 EUT OPERATION CONDITIONS**



TX Mode_1Mbps						
Channel	Frequency	Output Power	Output Power	Deput		
	(MHz)	(dBm)	(W)	Result		
CH00	2402	2.278	0.001690	PASS		
CH39	2441	1.821	0.001521	PASS		
CH78	2480	0.001416	PASS			
Limit	21dBm /0.125W					

### CH00

CH39

# CH78

	H 3,700     H 30,000     H 30,000	Koviet Structure Angles: Sensi 5. Koviet Struct 200 Morker: 12.440591000000 GHz Fitch Lease Fitch Lease Fitch Lease Fitch Lease Fitch Lease Fitch Lease	A.504 A/70 1105 07 17 104 17 102 10 A.107 A/70 17 104 17 102 10 10 10 10 10 10 10 10 10 10 10 10 10	Kovijit Sectore Anger: Sect SA Marker 1 2.450024000000 GH2 Prici Lear Trig: Free Run Kane: 20 dB	A.358 A.70 H157 20 H260 2, 212 Arg Type: Log-Per ArgHeld: 100/00 87 112 Brock Arg Type: Log-Per
Ref Officet 1 dB 10_c8NdW Ref 10.00 dBm	Mkr1 2.402 GHz 2.278 dBm	Ref Offset 1 dB 10 all-ldie Ref 10.00 dBm	Mkr1 2.440 991 GHz 1.821 dBm	Ref Offset 1 dB 10 clibdir Ref 10.00 dBm	Mkr1 2.480 024 GHz 1.512 dBm
000				000	
a) a)		400 700		200 200	
40) 		00 00		40 	
80		0.5 V ()		50 711	
400				43.5	
Center 2.402000 GHz #Res BW 3.0 MHz #VBW 8.0 MHz 120	Span 3.000 MHz Sweep 1.000 ms (1001 pts)	Center 2.441000 GHz #Res BW 3.0 MHz #VBW 8.0 MHz %	Span 3.000 MHz Sweep 1.000 ms (1001 pts) stros	Center 2.480600 CHz #Res BW 3.0 MHz #VBW 8.0 MHz 120	Span 3.000 MHz Sweep 1.000 ms (1001 pts)



TX Mode_2Mbps					
Channel	Frequency	Output Power	Output Power	Result	
	(MHz)	(dBm)	(W)	Result	
CH00	2402	2.778	0.001896	PASS	
CH39	2441	2.303	0.001699	PASS	
CH78	2480	1.955	0.001569	PASS	
Limit	21dBm /0.125W				

CH00

CH39

CH78

Kovijst Spectrum Andyson Swagt SA Son Ad Montker 1 2,4102057000000 GH2 Pact Law Trig: Free Ram Konst. 20 48 Konst. 20 48	Algh Alf0 11.5558 High State Alight State Al	Bit Copylet Section: Anyon: Section 4     Stretchrd       Bit Intel 2:00     AC     Stretchrd       Matker 1 2.440847000000 GHz     Fretchart     Trig: Free Rus Mane: 20 48	A.504 A.50   11 5627 PUblic (2, 202 Aug Type: Log-Der 19402 Aug Hold (2, 202 Aug Hold: 100100 Trim: Aug Hold (2, 202 Aug Hold: 100100 BC (2, 202)	Copylet Section: Analysis: Section 14 Section 24 Marker 12:480090000000 GHz Price Law Trig: Free Rue Kame: 30 e8	A_506 A/70   11.574 R/506 (2,212 Arg Type: Log-Per ArgType: Log-Per ArgHedd: 100/100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ref Offset 1 dB	Mkr1 2.402 057 GHz 2.778 dBm	Ref Offset 1 dB 10 clibdir Ref 10.00 dBm	Mkr1 2.440 847 GHz 2.303 dBm	Ref Offset 1 dB 10 aff/dte Ref 10.00 dBm	Mkr1 2.480 090 GHz 1.955 dBm
0.00	<u>,                                     </u>	000 ··································		000 ··································	
201				423	
		41)			
633				133	
403		453		433	
Center 2.402000 GHz #Res BW 3.0 MHz #VBW 8.0 MHz	Span 3.000 MHz Sweep 1.000 ms (1001 pts)	Center 2.441000 GHz #Res BW 3.0 MHz #VBW 8.0 MHz	Span 3.000 MHz Sweep 1.000 ms (1001 pts)	Center 2.480000 GHz #Res BW 3.0 MHz #VBW 8.0 MHz	Span 3.000 MHz Sweep 1.000 ms (1001 pts)
856	STATUS	V56	STA*95	956	57A*36



TX Mode_3Mbps					
Channal	Frequency	Output Power	Output Power	Result	
Channel	(MHz)	(dBm)	(W)	Result	
CH00	2402	3.376	0.002176	PASS	
CH39	2441	2.829	0.001918	PASS	
CH78	2480	0.001778	PASS		
Limit	21dBm /0.125W				

# CH00

# CH39

### CH78 3 10 Avg Type: Log-Pwr Avg Hold: 100100 Avg Type: Log-Pwr Avg Hold: 100100 Avg Type: Log-Pwr AvgHold: 100/100 Trig: Free Run - Trig: Free Run Båmen: 30 dB Trig: Free Run Ref Offset 1 dB Ref 10.00 dB Span 3.000 MH; p 1.000 ms (1001 pts Center 2,441000 GH: #Res BW 3.0 MHz Span 3.000 MH: p 1.000 ms (1001 pts Span 3.000 1.000 ms (1001 r 2,402000 BW 3.0 MH Center 2,480000 GH #Res BW 3.0 MHz N 8.0 MIH W 8.0 MH



# 11 CONDUCTED SPURIOUS EMISSION

# 11.1 LIMIT

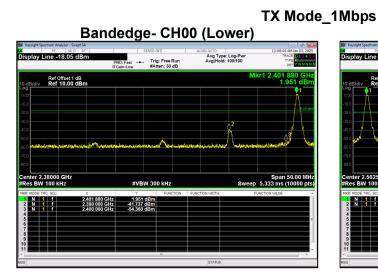
# For FCC

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak Output Power limits. If the transmitter complies with the Output Power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required.

# **11.2 TEST PROCEDURE AND SETTING**

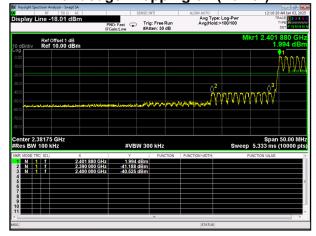
- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW= 100 kHz, VBW=300 kHz, Sweep time = Auto.

# **11.3 MEASUREMENT INSTRUMENTS LIST**

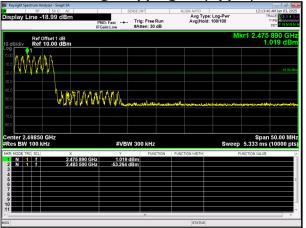

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum analyzer	KEYSIGHT	N9010A	MY55150427	2025/05/22
2	Attenuator	Mini-Circuits	BW-S10W2	101109	N/A
3	RF Cable	Mi-cable	C10-01-01-1	100309	N/A

# 11.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER


# **11.5 EUT OPERATION CONDITIONS**






Bandedge CH78 (Upper)

Bandedge- Hopping on (Lower)



BandedgeHopping on (Upper)



# 10th Harmonic of the fundamental frequency







END OF TEST REPORT

Page 61 of 61