

RADIO TEST REPORT FCC ID: 2ANMU-WP21

Product:	Smart Phone
Trade Mark:	OUKITEL
Model No.:	WP21
Family Model:	WP21 Pro, WP21 S
Report No.:	S22092204105002
Issue Date:	08 Nov, 2022

Prepared for

SHENZHEN YUNJI INTELLIGENT TECHNOLOGY CO.,LTD A2 2F BUILDING ENET NEW INDUSTRIAL PARK, DAFU INDUSTRIAL ZONE, GUANLAN, LONGHUA SHENZHEN, 518XXX China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

TABLE OF CONTENTS

1 TEST	RESULT CERTIFICATION	4
2 SUM	MARY OF TEST RESULTS	5
	LITIES AND ACCREDITATIONS	
3.1 I	FACILITIES	6
	LABORATORY ACCREDITATIONS AND LISTINGS	
	MEASUREMENT UNCERTAINTY	
4 GEN	ERAL DESCRIPTION OF EUT	7
5 DESC	CRIPTION OF TEST MODES	9
6 SETU	JP OF EQUIPMENT UNDER TEST	10
6.1 I	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	10
	SUPPORT EQUIPMENT.	
6.3 H	EQUIPMENTS LIST FOR ALL TEST ITEMS	12
	REQUIREMENTS	
	-	
7.1 0	CONDUCTED EMISSIONS TEST	
7.1.1	Applicable Standard	
	Conformance Limit	
7.1.3		14
7.1.4	0	
7.1.5		
	Test Results RADIATED SPURIOUS EMISSION	
7.2 I 7.2.1		
	Conformance Limit	
7.2.2		
7.2.4	•	
7.2.5		
7.2.6		
7.3 6	5DB BANDWIDTH	
7.3.1	Applicable Standard	26
7.3.2	Conformance Limit	26
7.3.3	0	
7.3.4		
7.3.5		
11010	Test Results	
	DUTY CYCLE.	
	Applicable Standard	
	Conformance Limit Measuring Instruments	
	Test Setup	
	Test Procedure	
7.4.6		
	PEAK OUTPUT POWER	
7.5.1		
	Conformance Limit	
	Measuring Instruments	
7.5.4	•	
7.5.5		
7.5.6	Test Results	29

	7.6 P	OWER SPECTRAL DENSITY	
	7.6.1	Applicable Standard	
	7.6.2	Conformance Limit	
	7.6.3	Measuring Instruments	
	7.6.4	Test Setup	30
	7.6.5	Test Procedure	
	7.6.6	Test Results	
		ONDUCTED BAND EDGE MEASUREMENT	
	7.7.1	Applicable Standard	
	7.7.2	Conformance Limit	
	7.7.3	Measuring Instruments	
	7.7.4	Test Setup	
	7.7.5	Test Procedure	
	7.7.6	Test Results	
		PURIOUS RF CONDUCTED EMISSIONS	
	7.8.1	Conformance Limit	
	7.8.2	Measuring Instruments	
	7.8.3	Test Setup	
	7.8.4	Test Procedure	
	7.8.5	Test Results	
		NTENNA APPLICATION	
	7.9.1	Antenna Requirement	
	7.9.2	Result	34
8	TEST	RESULTS	35
	1M-		35
	8.1.1	MAXIMUM CONDUCTED OUTPUT POWER	
	8.1.2	OCCUPIED CHANNEL BANDWIDTH	
	8.1.3	MAXIMUM POWER SPECTRAL DENSITY LEVEL	
	8.1.4	BAND EDGE	43
	8.1.5	CONDUCTED RF SPURIOUS EMISSION	46
	2M:		
	8.1.6	MAXIMUM CONDUCTED OUTPUT POWER	
	8.1.7	OCCUPIED CHANNEL BANDWIDTH	
	8.1.8	MAXIMUM POWER SPECTRAL DENSITY LEVEL	56
	8.1.9	BAND EDGE	58
	•••••	CONDUCTED RF SPURIOUS EMISSION	
	00		5.

1 TEST RESULT CERTIFICATION

Applicant's name:	SHENZHEN YUNJI INTELLIGENT TECHNOLOGY CO.,LTD
Address:	A2 2F BUILDING ENET NEW INDUSTRIAL PARK, DAFU INDUSTRIAL ZONE, GUANLAN, LONGHUA SHENZHEN, 518XXX China
Manufacturer's Name:	SHENZHEN YUNJI INTELLIGENT TECHNOLOGY CO., LTD
Address	A2 2F BUILDING ENET NEW INDUSTRIAL PARK, DAFU INDUSTRIAL ZONE, GUANLAN, LONGHUA SHENZHEN, 518XXX China
Product description	
Product name:	Smart Phone
Model and/or type reference:	WP21
Family Model:	WP21 Pro, WP21 S
Test sample number	S220922041012

Measurement Procedure Used:

APPLICABLE STANDARDS		
APPLICABLE STANDARD/ TEST PROCEDURE TEST RESULT		
FCC 47 CFR Part 2, Subpart J		
FCC 47 CFR Part 15, Subpart C	Complied	
ANSI C63.10-2013		
KDB 558074 D01 15.247 Meas Guidance v05r02		

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	:	13 Oct. 2022 ~ 04 Nov, 2022	
Testing Engineer	:	Johan Lin	
		(Allen Liu)	
Authorized Signatory	:	Alese	
		(Alex Li)	

2 SUMMARY OF TE	2 SUMMARY OF TEST RESULTS			
FCC Part15 (15.247), Subpart C				
Standard Section	Test Item	Verdict	Remark	
15.207	Conducted Emission	PASS		
15.247 (a)(2)	6dB Bandwidth	PASS		
15.247 (b)	Peak Output Power	PASS		
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS		
15.247 (e)	Power Spectral Density	PASS		
15.247 (d)	Band Edge Emission	PASS		
15.247 (d)	Spurious RF Conducted Emission	PASS		
15.203	Antenna Requirement	PASS		

Remark:

1. "N/A" denotes test is not applicable in this Test Report.

 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	: The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
-	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
Name of Firm Site Location	 Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification		
Equipment Smart Phone		
Trade Mark	OUKITEL	
FCC ID	2ANMU-WP21	
Model No.	WP21	
Family Model	WP21 Pro, WP21 S	
Model Difference	All models are the same circuit and RF module, except the model name.	
Operating Frequency	2402MHz~2480MHz	
Modulation GFSK		
Number of Channels	40 Channels	
Antenna Type	FPC Antenna	
Antenna Gain	1.3dBi	
Power supply	DC 3.87V/9800mAh from battery or DC 5V from Adapter.	
Adapter	Model: HJ-PD66W-US Input: 100-240V~50/60Hz 1.5A Output: 5.0V3.0A 15.0W OR 9.0V3.0A 27.0W OR 12.0V3.0A 36.0W OR 15.0V3.0A 45.0W OR 20.0V3.25A 65.0W OR 11.0V6.0A 66.0W MAX	
HW Version	M129-MUB-V2	
SW Version	OUKITEL_WP21_EEA_V03	

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Revision History

Revision History			
Report No.	Version	Description	Issued Date
S22092204105002	Rev.01	Initial issue of report	08 Nov, 2022
_			-
_			-

NTEK 北测

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps / 2Mbps for GFSK modulation) were used for all test.

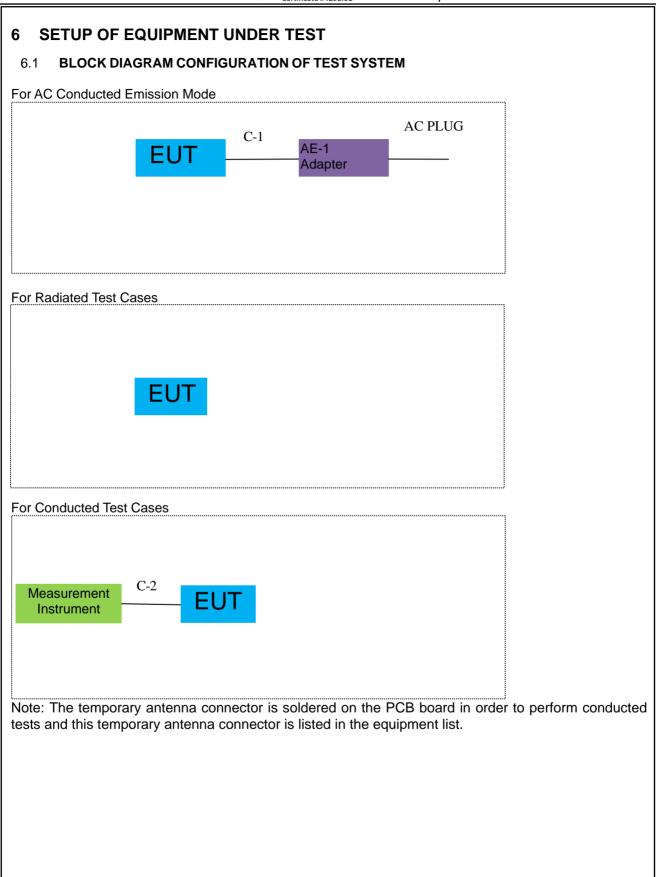
The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2404
19	2440
20	2442
38	2478
39	2480

Note: fc=2402MHz+kx2MHz k=0 to 39

The following summary table is showing all test modes to demonstrate in compliance with the standard.


Test Cases			
Test Item	Data Rate/ Modulation		
AC Conducted Emission	Mode 1: normal link mode		
	Mode 1: normal link mode		
Radiated Test	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps/2Mbps		
Cases	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps/2Mbps		
	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps/2Mbps		
Conducted Test	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps/2Mbps		
Conducted Test Cases	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps/2Mbps		
Cases	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps/2Mbps		

Note:

1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

- 2. AC power line Conducted Emission was tested under maximum output power.
- 3. For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.
- 4. EUT built-in battery-powered, the battery is fully-charged.

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Adapter	HJ-PD66W-US	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	YES	NO	1.0m
C-2	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

i luululi		carequipment	n				
Item	Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2022.04.06	2023.04.05	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2022.04.06	2023.04.05	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2022.04.06	2023.04.05	1 year
4	Test Receiver	R&S	ESPI7	101318	2022.04.06	2023.04.05	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2022.03.30	2023.03.29	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2022.03.31	2023.03.30	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2021.11.07	2022.11.06	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2022.06.17	2023.06.16	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2021.11.07	2022.11.06	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2021.11.07	2022.11.06	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2020.05.11	2023.05.10	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2020.05.11	2023.05.10	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2021.11.07	2022.11.06	1 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	AC Conduction Test equipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	· R&S	ESCI	101160	2022.04.06	2023.04.05	1 year
2	LISN	R&S	ENV216	101313	2022.04.06	2023.04.05	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2022.04.06	2023.04.05	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11	2023.05.10	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11	2023.05.10	3 year

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

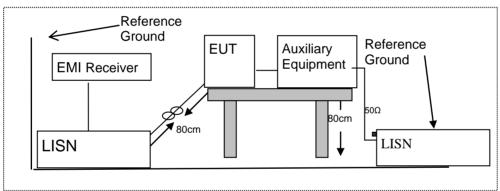
7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 Conformance Limit

	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	


Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
 - 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

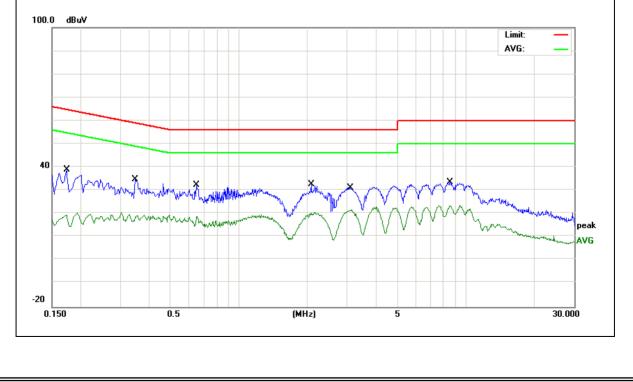
7.1.4 Test Configuration

7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

7.1.6 Test Results


EUT:	Smart Phone	Model Name :	WP21
Temperature:	24 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	L
LAST VAIDAA .	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

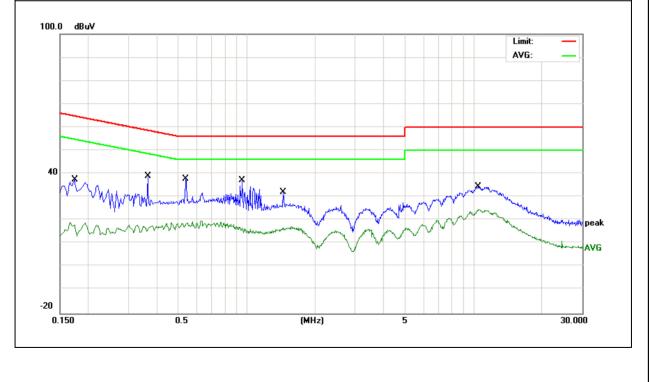
Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domork
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1739	29.35	9.61	38.96	64.77	-25.81	QP
0.1739	18.41	9.61	28.02	54.77	-26.75	AVG
0.3499	25.04	9.64	34.68	58.96	-24.28	QP
0.3499	14.91	9.64	24.55	48.96	-24.41	AVG
0.6500	22.55	9.67	32.22	56.00	-23.78	QP
0.6500	12.69	9.67	22.36	46.00	-23.64	AVG
2.0859	23.07	9.68	32.75	56.00	-23.25	QP
2.0859	12.47	9.68	22.15	46.00	-23.85	AVG
3.0979	21.36	9.73	31.09	56.00	-24.91	QP
3.0979	11.34	9.73	21.07	46.00	-24.93	AVG
8.5178	23.69	9.88	33.57	60.00	-26.43	QP
8.5178	13.81	9.88	23.69	50.00	-26.31	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

Version.1.3


EUT:	Smart Phone	Model Name :	WP21
Temperature:	24 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	N
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Demeril
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1739	27.69	9.65	37.34	64.77	-27.43	QP
0.1739	17.49	9.65	27.14	54.77	-27.63	AVG
0.3659	29.34	9.66	39.00	58.59	-19.59	QP
0.3659	19.67	9.66	29.33	48.59	-19.26	AVG
0.5380	28.17	9.66	37.83	56.00	-18.17	QP
0.5380	17.39	9.66	27.05	46.00	-18.95	AVG
0.9539	27.50	9.69	37.19	56.00	-18.81	QP
0.9539	17.82	9.69	27.51	46.00	-18.49	AVG
1.4459	22.51	9.67	32.18	56.00	-23.82	QP
1.4459	12.69	9.67	22.36	46.00	-23.64	AVG
10.5618	24.30	9.91	34.21	60.00	-25.79	QP
10.5618	14.26	9.91	24.17	50.00	-25.83	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

Version.1.3

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

MHz	MHz	GHz
16.42-16.423	399.9-410	4.5-5.15
16.69475-16.69525	608-614	5.35-5.46
16.80425-16.80475	960-1240	7.25-7.75
25.5-25.67	1300-1427	8.025-8.5
37.5-38.25	1435-1626.5	9.0-9.2
73-74.6	1645.5-1646.5	9.3-9.5
74.8-75.2	1660-1710	10.6-12.7
123-138	2200-2300	14.47-14.5
149.9-150.05	2310-2390	15.35-16.2
156.52475-156.52525	2483.5-2500	17.7-21.4
156.7-156.9	2690-2900	22.01-23.12
162.0125-167.17	3260-3267	23.6-24.0
167.72-173.2	3332-3339	31.2-31.8
240-285	3345.8-3358	36.43-36.5
322-335.4	3600-4400	(2)
	MHz 16.42-16.423 16.69475-16.69525 16.80425-16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2 123-138 149.9-150.05 156.52475-156.52525 156.7-156.9 162.0125-167.17 167.72-173.2 240-285	MHzMHz16.42-16.423399.9-41016.69475-16.69525608-61416.80425-16.80475960-124025.5-25.671300-142737.5-38.251435-1626.573-74.61645.5-1646.574.8-75.21660-1710123-1382200-2300149.9-150.052310-2390156.52475-156.525252483.5-2500156.7-156.92690-2900162.0125-167.173260-3267167.72-173.23332-3339240-2853345.8-3358

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

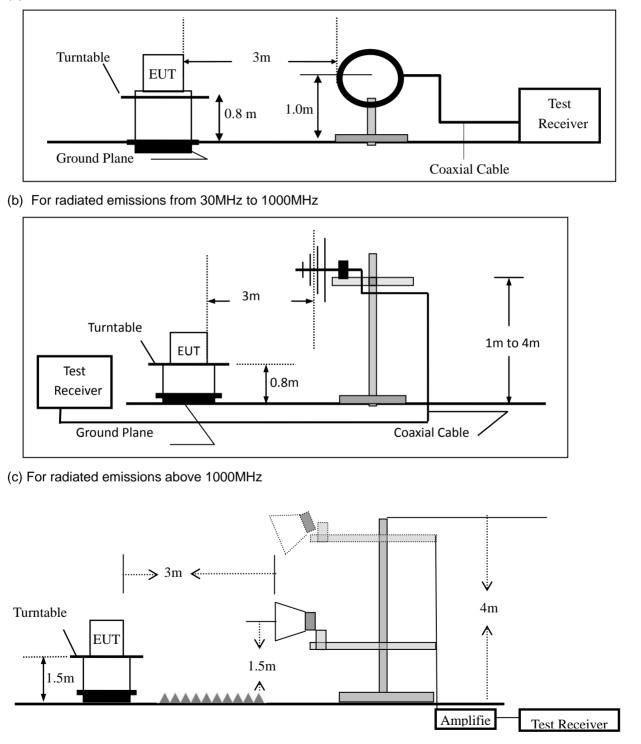
Frequency(MHz)	Class B (dBuV/	/m) (at 3M)
i requency(imitz)	PEAK	AVERAGE
Above 1000	74	54

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz: Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz: Distance extrapolation factor =20log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

Version.1.3

NTEK 北测

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1MHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos.
 - Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission t	est, the Spectrum An	alyzer was set with the follow	ving configurations:
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Above 4000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	1 MHz

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

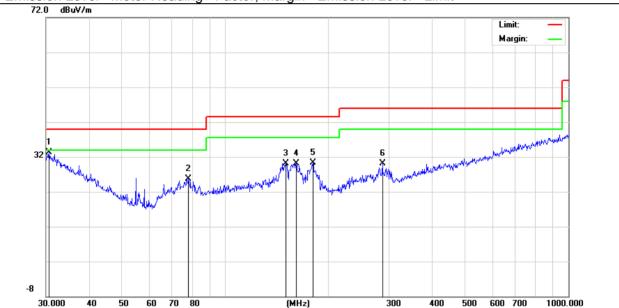
7.2.6 Test Results

■ Spurious Emission below 30MHz (9KHz to 30MHz)

EUT:	Smart Phone	Model No.:	WP21
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.


Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below:

		the worst result was report as	below.
EUT:	Smart Phone	Model Name :	WP21
Temperature:	24 ℃	Relative Humidity:	53%
Pressure:	1010hPa	Test Mode:	Mode 1
Test Voltage :	DC 3.87V		

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	30.6374	7.54	25.86	33.40	40.00	-6.60	QP
V	78.1389	10.33	15.30	25.63	40.00	-14.37	QP
V	150.0107	11.36	18.80	30.16	43.50	-13.34	QP
V	160.9088	11.80	18.23	30.03	43.50	-13.47	QP
V	180.0165	13.57	16.79	30.36	43.50	-13.14	QP
V	286.9823	9.99	20.13	30.12	46.00	-15.88	QP

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remarl
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Reman
Н	30.7454	5.87	25.86	31.73	40.00	-8.27	QP
Н	36.7661	6.30	22.44	28.74	40.00	-11.26	QP
Н	146.8874	14.08	18.32	32.40	43.50	-11.10	QP
Н	178.7581	9.68	17.00	26.68	43.50	-16.82	QP
Н	293.0842	10.25	20.01	30.26	46.00	-15.74	QP
H Remark	517.2480	7.13	25.21	32.34	46.00	-13.66	QP
Emissio 72.0	n Level= Meter dBu¥/m	Reading+ Fac	ctor, Margir	n= Emission L	evel - Limit	Limit: Margin:	
32	2 Vh da Shi ha Marana		3 My	4 X M M	6 Mander Martin Marcall Marcall	warrant warrant and	
-	and the second s	bus the state of the	Medoul during a	NA MUTANAMANA			
-8	000 40 50 6	0 70 80	(MI	2]	300 400 500) 600 700	1000.000

Spurious Emiss	ion Abov	ve 1GHz	(1GHz to	25GI	Hz)						
EUT: Smart Phone						lel No.:		WP21			
Temperature:	20 °	C			Relative Humidity:			48%			
Test Mode:	Mod	e2/Mode	e3/Mode4	ŀ	Test By:			Allen Liu			
Frequency	Read Level			Prea Fact		Emission Level	Limits	Margin	Remark	Comment	
(MHz)	(dBµV)	(dB)	dB/m	(dB	3)	(dBµV/m)	(dBµV/m	n) (dB)			
Low Channel (2402 MHz)(GFSK)Above 1G											
4804.338	62.79	5.21	35.59	44.3	30	59.29	74.00	-14.71	Pk	Vertical	
4804.338	42.09	5.21	35.59	44.3	30	38.59	54.00	-15.41	AV	Vertical	
7206.107	61.75	6.48	36.27	44.6	60	59.90	74.00	-14.10	Pk	Vertical	
7206.107	42.02	6.48	36.27	44.6	60	40.17	54.00	-13.83	AV	Vertical	
4804.169	63.00	5.21	35.55	44.3	30	59.46	74.00	-14.54	Pk	Horizontal	
4804.169	42.03	5.21	35.55	44.3	30	38.49	54.00	-15.51	AV	Horizontal	
7206.214	61.70	6.48	36.27	44.5	52	59.93	74.00	-14.07	Pk	Horizontal	
7206.214	41.88	6.48	36.27	44.5	52	40.11	54.00	-13.89	AV	Horizontal	
			Mid Ch	annel	(2440) MHz)(GFS	K)Above	1G			
4880.473	63.34	5.21	35.66	44.2	20	60.01	74.00	-13.99	Pk	Vertical	
4880.473	43.51	5.21	35.66	44.2	20	40.18	54.00	-13.82	AV	Vertical	
7320.265	65.98	7.10	36.50	44.4	43	65.15	74.00	-8.85	Pk	Vertical	
7320.265	41.93	7.10	36.50	44.4	43	41.10	54.00	-12.90	AV	Vertical	
4880.366	63.48	5.21	35.66	44.2	20	60.15	74.00	-13.85	Pk	Horizontal	
4880.366	40.61	5.21	35.66	44.2	20	37.28	54.00	-16.72	AV	Horizontal	
7320.234	61.19	7.10	36.50	44.4	43	60.36	74.00	-13.64	Pk	Horizontal	
7320.234	44.30	7.10	36.50	44.4	43	43.47	54.00	-10.53	AV	Horizontal	
	1	n.	High Ch	nannel	(2480	0 MHz)(GFS	K) Abov	e 1G			
4960.482	63.43	5.21	35.52	44.2	21	59.95	74.00	-14.05	Pk	Vertical	
4960.482	41.65	5.21	35.52	44.2	21	38.17	54.00	-15.83	AV	Vertical	
7440.131	63.90	7.10	36.53	44.6	60	62.93	74.00	-11.07	Pk	Vertical	
7440.131	48.28	7.10	36.53	44.6	60	47.31	54.00	-6.69	AV	Vertical	
4960.326	64.17	5.21	35.52	44.2	21	60.69	74.00	-13.31	Pk	Horizontal	
4960.326	44.34	5.21	35.52	44.2	21	40.86	54.00	-13.14	AV	Horizontal	
7440.199	63.71	7.10	36.53	44.6	60	62.74	74.00	-11.26	Pk	Horizontal	
7440.199	44.60	7.10	36.53	44.6	50	43.63	54.00	-10.37	AV	Horizontal	

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor

(2)All other emissions more than 20dB below the limit.

(3)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

JT	:	Smart Ph	one		Model	Model No.:			WP21			
em	perature:	erature: 20 °C Relative Humidity: 48%										
est Mode: Mode2			/lode4		Test B	sy:		Aller	n Liu			
	Frequency	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Lim	its	Margin	Detector	Comment	
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ\	//m)	(dB)	Туре		
1Mbps(GFSK)												
	2310.00	64.11	2.97	27.80	43.80	51.08	74	1	-22.92	Pk	Horizontal	
	2310.00	42.19	2.97	27.80	43.80	29.16	54	1	-24.84	AV	Horizontal	
	2310.00	61.42	2.97	27.80	43.80	48.39	74	1	-25.61	Pk	Vertical	
	2310.00	42.82	2.97	27.80	43.80	29.79	54	4	-24.21	AV	Vertical	
	2390.00	63.48	3.14	27.21	43.80	50.03	74	1	-23.97	Pk	Vertical	
	2390.00	42.55	3.14	27.21	43.80	29.10	54	1	-24.90	AV	Vertical	
	2390.00	64.43	3.14	27.21	43.80	50.98	74	1	-23.02	Pk	Horizontal	
	2390.00	42.35	3.14	27.21	43.80	28.90	54	1	-25.10	AV	Horizontal	
	2483.50	62.92	3.58	27.70	44.00	50.20	74	1	-23.80	Pk	Vertical	
	2483.50	42.47	3.58	27.70	44.00	29.75	54	1	-24.25	AV	Vertical	
	2483.50	65.95	3.58	27.70	44.00	53.23	74	1	-20.77	Pk	Horizontal	
	2483.50	43.24	3.58	27.70	44.00	30.52	54	1	-23.48	AV	Horizontal	

Note: (1) All other emissions more than 20dB below the limit.

(2)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

UT:	Smart F	hone		Model	Model No.:			WP21			
Temperature:	20 ℃			Relativ	e Humidity	/: 4	48%				
Test Mode:	Mode2/	Mode4		Test By	y:	/	Allen	Liu			
Frequency	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Lim	nits	Margin	Detector	Comment	
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ∖	V/m)	(dB)	Туре		
3260	63.06	4.04	29.57	44.70	51.97	74	4	-22.03	Pk	Vertical	
3260	57.69	4.04	29.57	44.70	46.60	54	4	-7.40	AV	Vertical	
3260	66.91	4.04	29.57	44.70	55.82	74	4	-18.18	Pk	Horizontal	
3260	58.55	4.04	29.57	44.70	47.46	54	4	-6.54	AV	Horizontal	
3332	65.97	4.26	29.87	44.40	55.70	74	4	-18.30	Pk	Vertical	
3332	56.59	4.26	29.87	44.40	46.32	54	4	-7.68	AV	Vertical	
3332	65.49	4.26	29.87	44.40	55.22	74	4	-18.78	Pk	Horizontal	
3332	51.76	4.26	29.87	44.40	41.49	54	4	-12.51	AV	Horizontal	
17797	45.76	10.99	43.95	43.50	57.20	74	4	-16.80	Pk	Vertical	
17797	35.91	10.99	43.95	43.50	47.35	54	4	-6.65	AV	Vertical	
17788	45.23	11.81	43.69	44.60	56.13	74	4	-17.87	Pk	Horizontal	
17788	37.02	11.81	43.69	44.60	47.92	54	4	-6.08	AV	Horizontal	

Note: (1) All other emissions more than 20dB below the limit.

(2)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.2.

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows Subclause 11.8 of ANSI C63.10

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

a) Set RBW = 100 kHz.

- b) Set the video bandwidth (VBW) \ge 3*RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3.6 Test Results

EUT:	Smart Phone	Model No.:	WP21
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.4 DUTY CYCLE

7.4.1 Applicable Standard

According to KDB 558074 D01 15.247 Meas Guidance v05r02s Section 6.

7.4.2 Conformance Limit

No limit requirement.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

The transmitter output is connected to the Spectrum Analyzer. We tested accroding to the zero-span measurement method, 6.0)b) in KDB 558074

The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if $T \le 6.25$ microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Zero Span RBW = 8MHz(the largest available value) VBW = 8MHz (\geq RBW) Number of points in Sweep >100 Detector function = peak Trace = Clear write Measure T_{total} and T_{on} Calculate Duty Cycle = T_{on} / T_{total}

7.4.6 Test Results

EUT:	Smart Phone	Model No.:	WP21
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	N/A	Test By:	N/A

Note: Not Applicable

7.5 **PEAK OUTPUT POWER**

7.5.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.3.1.

7.5.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows Subclause 11.9.1.1 of ANSI C63.10 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Set the RBW \geq DTS bandwidth. Set VBW =3*RBW. Set the span \geq 3*RBW Set Sweep time = auto couple. Set Detector = peak. Set Trace mode = max hold. Allow trace to fully stabilize. Use peak marker function to determine the peak amplitude level.

7.5.6 Test Results

EUT:	Smart Phone	Model No.:	WP21
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.6 **POWER SPECTRAL DENSITY**

7.6.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.4.

7.6.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows Measurement Procedure Subclause 11.10.2 of ANSI C63.10 This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

a) Set analyzer center frequency to DTS channel center frequency.

b) Set the span to 1.5*DTS bandwidth.

c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.

- d) Set the VBW \geq 3 RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.

i) Use the peak marker function to determine the maximum amplitude level within the RBW.

j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.6.6 Test Results

EUT:	Smart Phone	Model No.:	WP21
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.7 CONDUCTED BAND EDGE MEASUREMENT

7.7.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

7.7.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.7.6 Test Results

EUT:	Smart Phone	Model No.:	WP21
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode4	Test By:	Allen Liu

7.8 SPURIOUS RF CONDUCTED EMISSIONS

7.8.1 Conformance Limit

1. Below -20dB of the highest emission level in operating band.

2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

7.8.2 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.3 Test Setup

Please refer to Section 6.1 of this test report.

7.8.4 Test Procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength , and measure frequency range from 30MHz to 26.5GHz.

7.8.5 Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

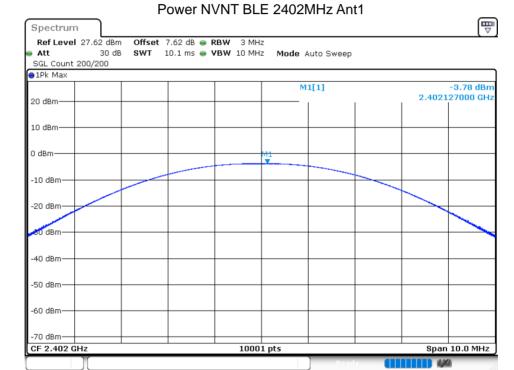
7.9 ANTENNA APPLICATION

7.9.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

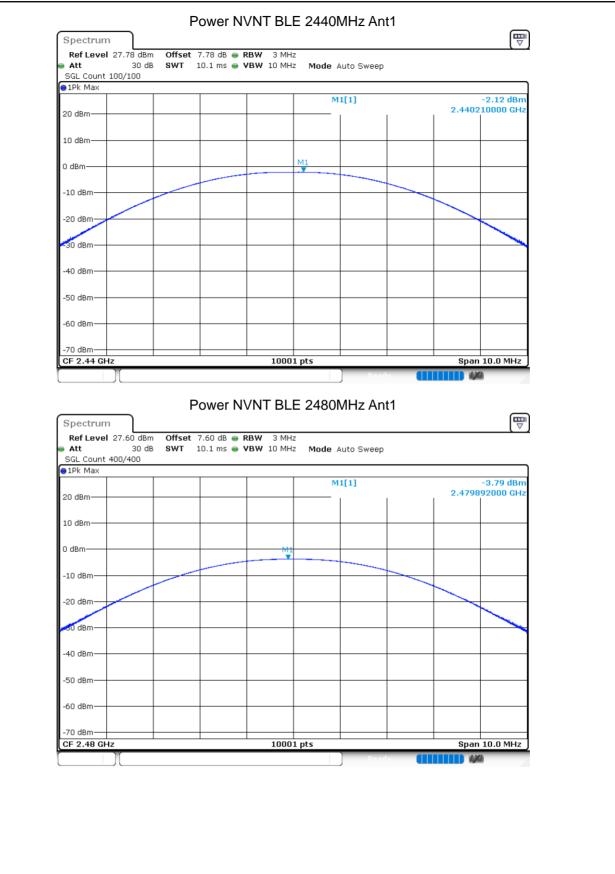
7.9.2 Result

The EUT antenna is permanent attached FPC antenna (Gain: 1.3dBi). It comply with the standard requirement.



8 **TEST RESULTS**

1M:

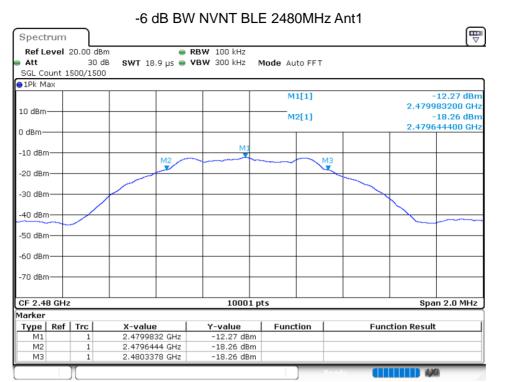

8.1.1 MAXIMUM CONDUCTED OUTPUT POWER

Condition NVNT NVNT NVNT	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant 1	-3.783	30	Pass
NVNT	BLE	2440	Ant 1	-2.116	30	Pass
NVNT	BLE	2480	Ant 1	-3.792	30	Pass

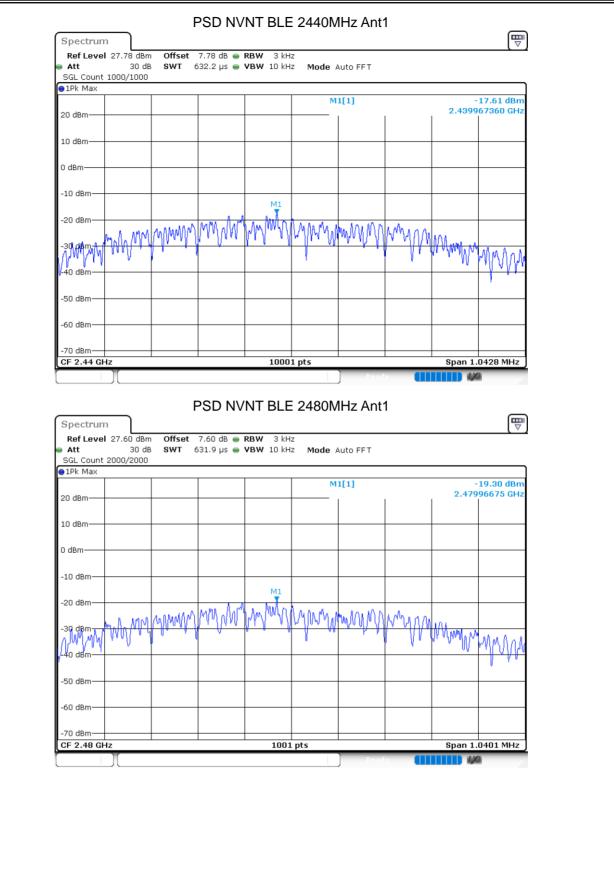
Version.1.3

8.1.2 OCCUPIED CHANNEL BANDWIDTH

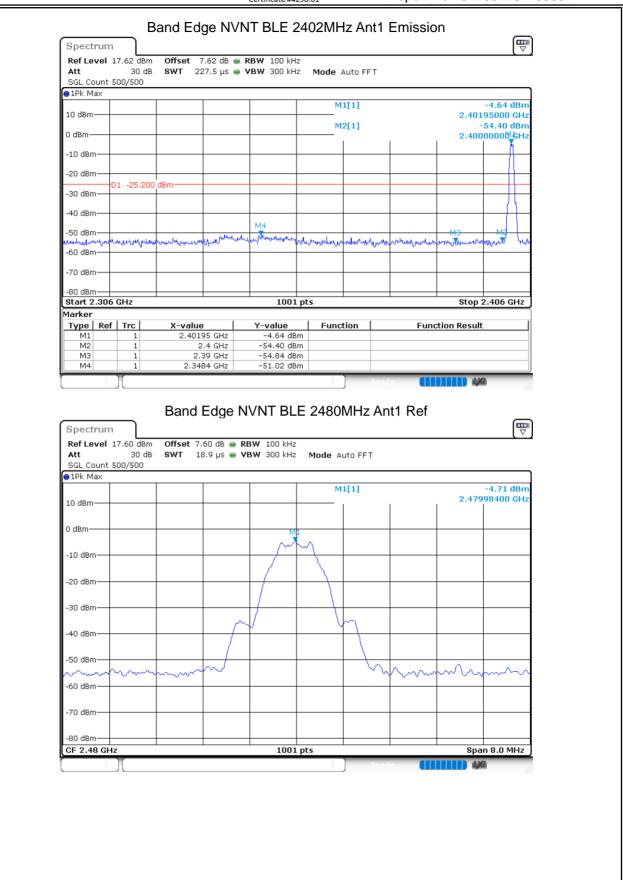
Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE	2402	Ant 1	1.0293	0.696	0.5	Pass
NVNT	BLE	2440	Ant 1	1.0293	0.6952	0.5	Pass
NVNT	BLE	2480	Ant 1	1.0297	0.6934	0.5	Pass
	🕳 Att	el 20.00 dBm	● RBW 63.2 µs ● VBW		Auto FFT		
					M1[1]	-15.39 dBm 2.401962600 GHz	
	10 dBm				Occ Bw	1.029297070 MHz	
	0 dBm						
	-10 dBm—			M1			
	-20 dBm—		-	$\sim \sim \sim$			
	-30 dBm—	T1	\checkmark				
	-40 dBm—						
	-St dBm					m m	
	-60 dBm—						
	-70 dBm—						



Version.1.3

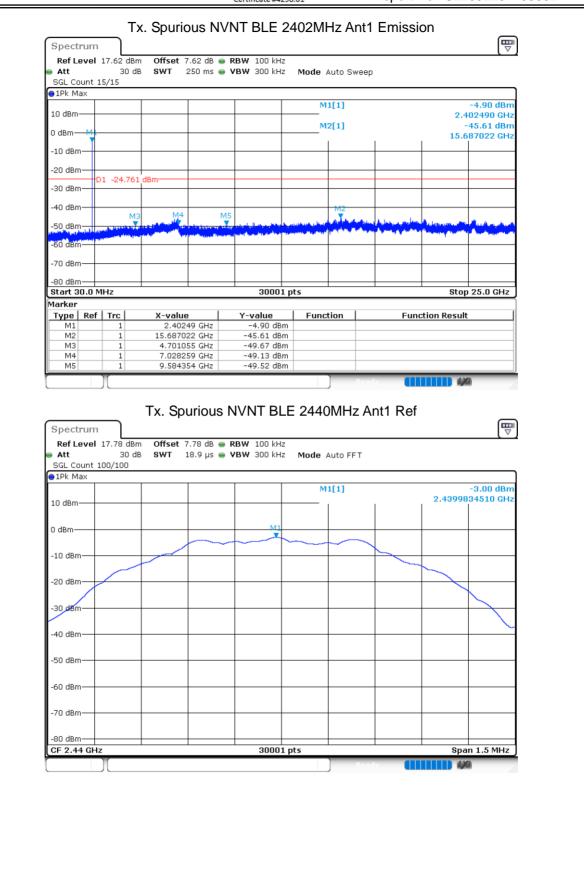


	Spectrum Ref Level Att SGL Count ID dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm	27.62 dBm 30 dB	P Offset 7.	SD NV	RBW 31	_E 2402	-19.297 MHz Ant Auto FFT M1[1]	1		8 	Pass
	Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	27.62 dBm 30 dB 1000/1000	Offset 7.	62 dB 👄 F	RBW 31	:Hz :Hz Mode	Auto FFT	1		19.27 dBm	
	Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	27.62 dBm 30 dB 1000/1000	Offset 7.	62 dB 👄 F	RBW 31	:Hz :Hz Mode	Auto FFT			19.27 dBm	
	Att SGL Count SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	30 dB 1000/1000				Hz Mode					
	1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm						M1[1]				
	10 dBm 0 dBm -10 dBm -20 dBm -30 dBm						M1[1]				
	0 dBm										
	0 dBm	. A. MMI									
	-10 dBm -20 dBm -30 dBm	m. A. AMMI						1			
	-20 dBm	m. A. AMMI			1						
	-30 d8m	m.A. MM			M						
	AMMM	M.A. MMI	A Anna A	um Art	mM	NA MAN MA	10,10,101	14 10			
		WW H	MMM P	1.111	M.A.	<u>i y kryfwr</u>	MMMM	₩v"MAA	M. M. M	ай . а. А. а.	
	-40 ubiii	····v r				- r	_	· · ·	••••₩·	MANIAM	
	-50 dBm						_				
	-60 dBm										
	-70 dBm CF 2.402 G	Hz			10	001 pts			Span 1	L.044 MHz	
[][]					Rea	4 7 (11		a	

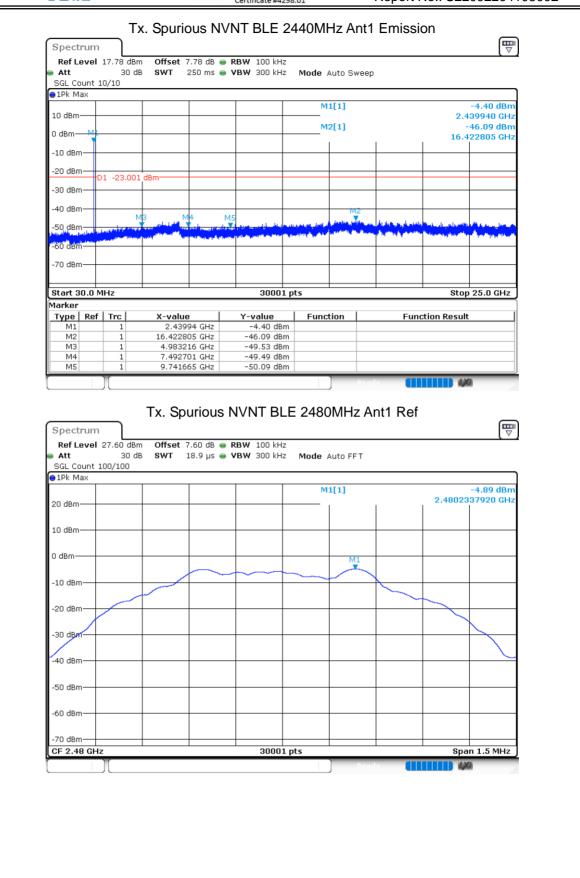


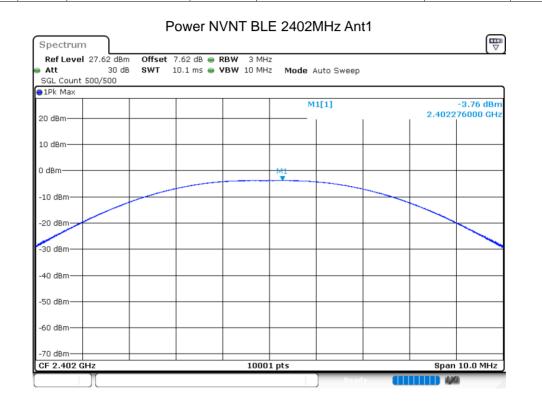
8.1.4 BAND EDGE

	Mode BLE	Frequen	cy (MHz)	Antenna	Max Valu		Limit (dBc)	
NVNT NVNT	BLE		.02 .80	Ant 1 Ant 1	-45. -48.		-20 -20	Pass Pass
				lge NVNT E				1 400
	Spect							
	Att SGL Co	vel 17.62 dBm 30 dB punt 100/100		dB e RBW 100 μs e VBW 300		ito FFT		
	● 1Pk M 10 dBm				M1	[1]	2.4	-5.20 dBm 0197600 GHz
	0 dBm-				M1			
	-10 dBn	n			m			
	-20 dBn	n						
	-30 dBn	n			+	~		
	-40 dBn					\uparrow		
	-50 dBn -60 dBn		mm			har	m	·····
	-70 dBn	n						_
	-70 dBn -80 dBn							
	-80 dBn			10	001 pts		SI	pan 8.0 MHz
	-80 dBn	n		10	001 pts	Ready		pan 8.0 MHz)
	-80 dBn	n		10	001 pts	Peady		
	-80 dBn	n		11	001 pts	Peady		
	-80 dBn	n		10	001 pts	Ready		
	-80 dBn	n			001 pts	Deady		
	-80 dBn	n		10	001 pts	Beadv		
	-80 dBn	n		11	001 pts	Peadv		
	-80 dBn	n		11	001 pts	Peady		
	-80 dBn	n		10	001 pts	Peady		
	-80 dBn	n			001 pts	Beady		
	-80 dBn	n			DO1 pts	Beadv		
	-80 dBn	n			001 pts	Peadv		

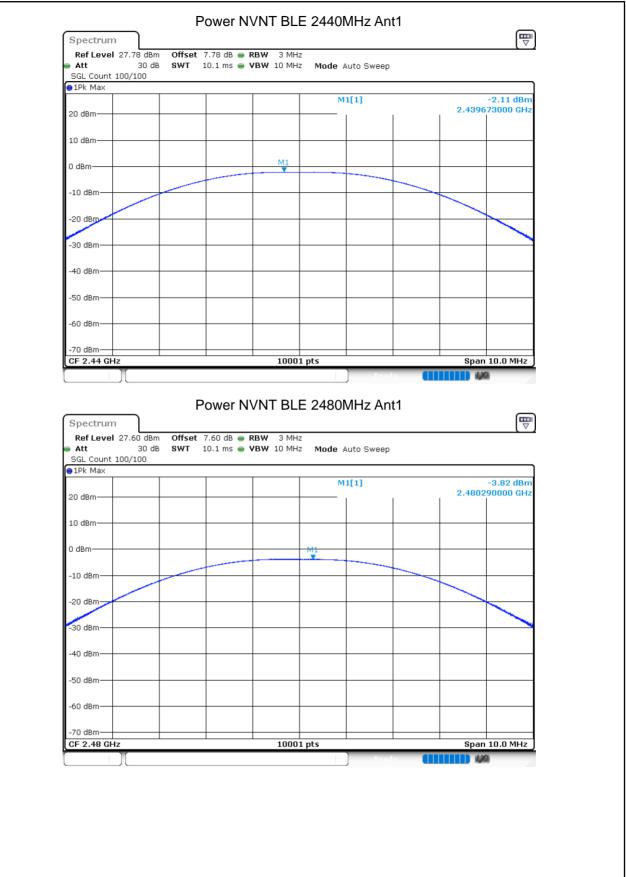

Band Edge NVNT BLE 2480MHz Ant1 Emission ₽ Spectrum Ref Level 17.60 dBm Offset 7.60 dB ■ RBW 100 kHz SWT 227.5 μs ■ VBW 300 kHz Att 30 dB Mode Auto FFT SGL Count 500/500 ⊖1Pk Max M1[1] -4.71 dBm 10 dBm· 2.47995000 GHz M2[1] -53.99 dBm 0 d<mark>5</mark>m 2.48350000 GHz -10 dBm -20 dBm D1 -24.709 dBm -30 dBm--40 dBm∙ -50 dem24 way of the monthe whenterm mound while the way make when mounder marghand ununun -60 dBm· -70 dBm· -80 dBm-Start 2.476 GHz 1001 pts Stop 2.576 GHz Marker Type | Ref | Trc | X-value Y-value Function Function Result М1 <u>î</u> 2.47995 GHz -4.71 dBm -53.99 dBm M2 1 2.4835 GHz 2.5 GHz 2.4863 GHz -54.84 dBm -52.74 dBm MЗ 1 M4

8.1.5 CONDUCTED RF SPURIOUS EMISSION Condition Mode Frequency (MHz) Antenna Max Value (dBc) Limit (dBc) Verdict **NVNT** BLE 2402 -40.85 Pass Ant 1 -20 NVNT 2440 -20 BLE Ant 1 -43.08 Pass **NVNT** BLE 2480 Ant 1 -40.81 -20 Pass Tx. Spurious NVNT BLE 2402MHz Ant1 Ref ₽ Spectrum Offset 7.62 dB 🖷 RBW 100 kHz Ref Level 17.62 dBm Att 30 dB SWT 18.9 µs 👄 VBW 300 kHz Mode Auto FFT SGL Count 100/100 ●1Pk Max M1[1] -4.76 dBm 2.4019810510 GHz 10 dBm-0 dBm -10 dBm -20 dBm· -30 dBm -40 dBm -50 dBm -60 dBm· -70 dBm· -80 dBm-Span 1.5 MHz 30001 pts CF 2.402 GHz LXI

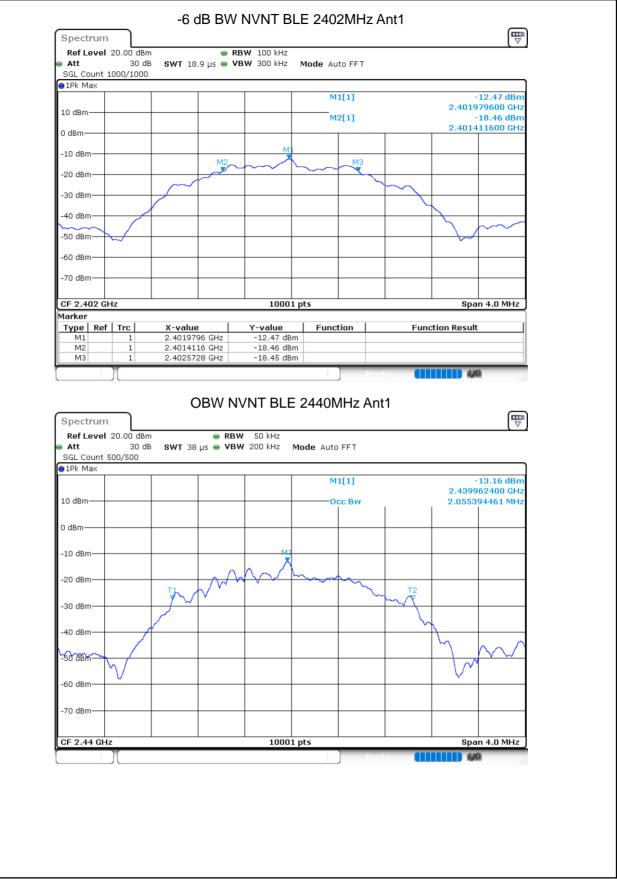



Tx. Spurious NVNT BLE 2480MHz Ant1 Emission ₽ Spectrum Offset 7.60 dB **RBW** 100 kHz SWT 250 ms **VBW** 300 kHz Ref Level 27.60 dBm Att 30 dB Mode Auto Sweep SGL Count 30/30 ⊖1Pk Max M1[1] -4.65 dBm 20 dBm· 2.479890 GHz M2[1] -45.70 dBm 10 dBm· 16.635050 GHz 0 dBm--10 dBm -20 dBm-01 -24.889 dBm -30 dBm· -40 dBm M3 M Μ Ţ -50 dBm--60 dBm -70 dBm· Stop 25.0 GHz Start 30.0 MHz 30001 pts Marker Type Ref Trc M1 1 Function **Function Result** X-value Y-value 2.47989 GHz 4.65 dBm M2 16.63505 GHz -45.70 dBm ΜЗ 4.86003 GHz -49.26 dBm 1 7.387827 GHz 10.021329 GHz -49.48 dBm -49.09 dBm M4 1 M5 4,44

2M:

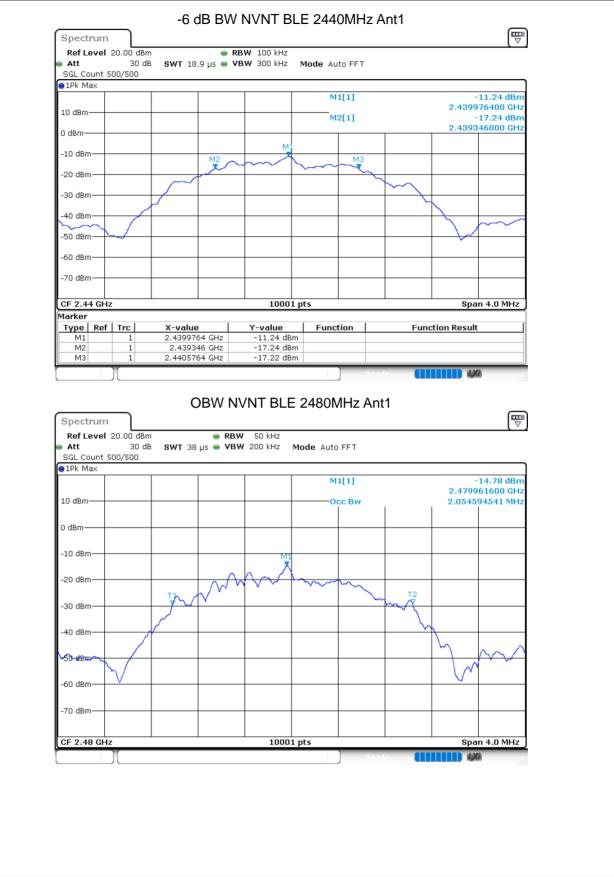

8.1.6 MAXIMUM CONDUCTED OUTPUT POWER

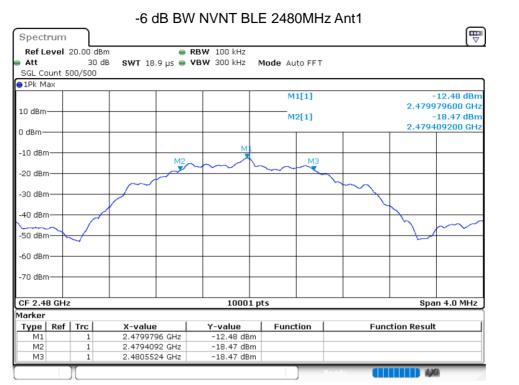
l	Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
	NVNT	BLE	2402	Ant 1	-3.762	30	Pass
	NVNT	BLE	2440	Ant 1	-2.114	30	Pass
	NVNT	BLE	2480	Ant 1	-3.823	30	Pass

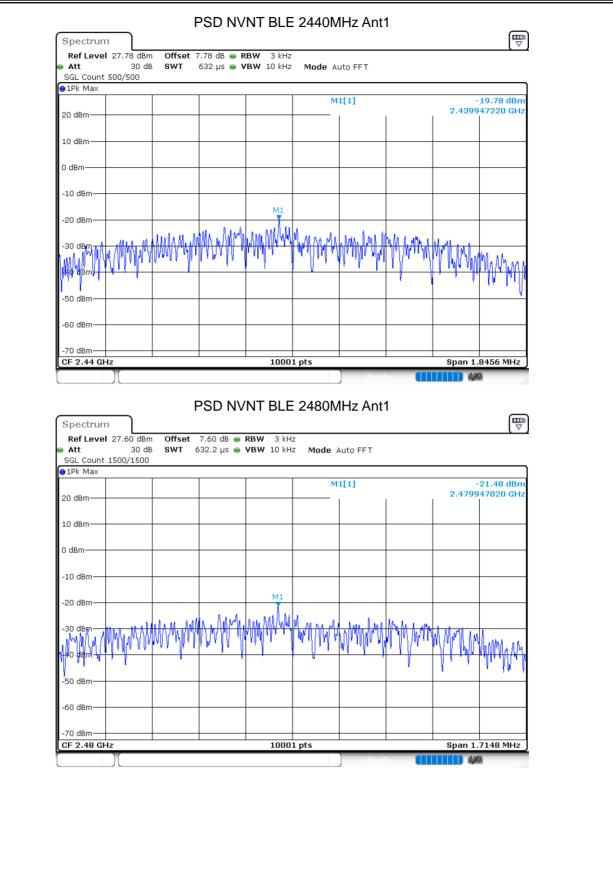


8.1.7 OCCUPIED CHANNEL BANDWIDTH

Condition	Mode	Frequency	Antenna	99%	-6 dB	Limit -6 dB	Verdict
		(MHz)		OBW	Bandwidth	Bandwidth	
				(MHz)	(MHz)	(MHz)	
NVNT	BLE	2402	Ant 1	2.0566	1.1612	0.5	Pass
NVNT	BLE	2440	Ant 1	2.0554	1.2304	0.5	Pass
NVNT	BLE	2480	Ant 1	2.0546	1.1432	0.5	Pass
	Spectrui Ref Leve	m al 20.00 dBm	e RBW 5	T BLE 2402			
	SGL Coun	t 1000/1000					
					M1[1]	-14.63 dBm 2.401965200 GHz	
	10 dBm				Dec Bw	2.056594341 MHz	
	0 dBm						
	-10 dBm—						
	-20 dBm—			\sim			
	-30 dBm—	Th.		,			
	-40 dBm—						
	SB-dBm					$\gamma \gamma \gamma \gamma$	
		\mathbb{N}					
	-60 dBm—		+				
	-70 dBm—						
		1		1	1 1		





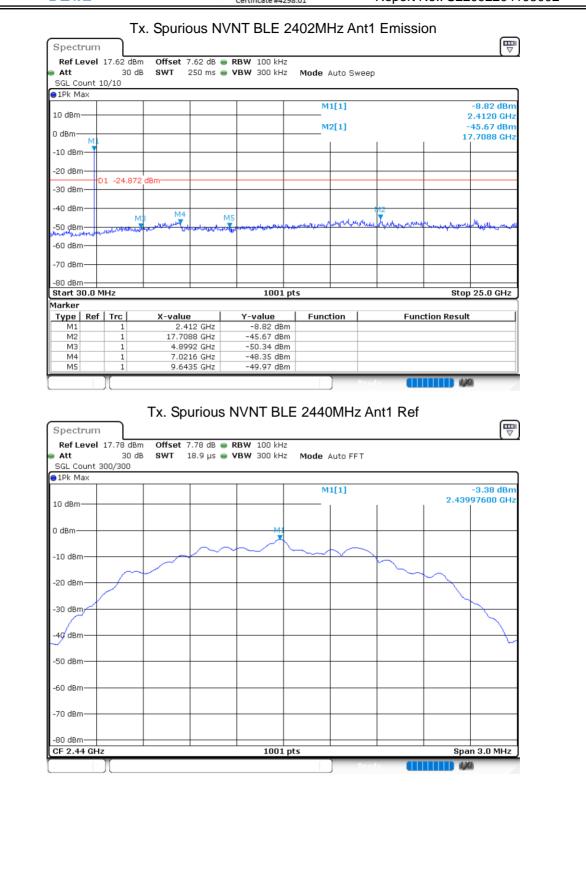


Б

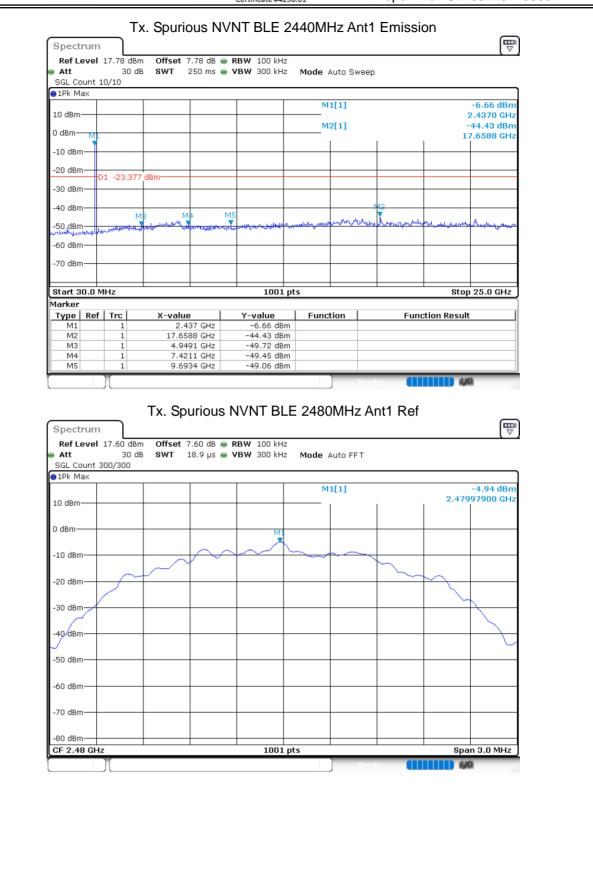
Version.1.3

8.1.9 BAND EDGE

NVNT BLE 2402 Ant 1 -45.54 -20 Pass NVNT BLE 2480 Ant 1 -47.08 -20 Pass Band Edge NVNT BLE 2402MHz Ant1 Ref Vertical State State State State Made Auto FFT Sold Switt 18.9 µs VBW 300 kH2 Made Auto FFT -4.90 dBm Odbm -0 dBm -0 dBm -4.90 dBm -4.90 dBm -4.90 dBm -0 dBm -0 dBm -0 dBm -0 dBm -0 dBm -0 dBm -0 dBm -0 dBm -0 dBm -0 dBm -0 dBm -0 dBm -0 dBm -0 dBm	NVNT BLE 2480 Ant 1 -47.08 -20 Pass Band Edge NVNT BLE 2402MHz Ant1 Ref Spectrum Image: Colspan="2">Image: Colspan="2" Image: Colspa="2" Image: Colspa="2" Image: Colspan="2" Image: Colsp	NVNT BLE 2480 Ant 1 -47.08 -20 Pass Band Edge NVNT BLE 2402MHz Ant1 Ref Spectrum Image: Colspan="2">Image: Colspan="2" Image: Colspa="2" Image: Colspa="2" Image: Colspan="2" Image: Colsp	Condition	Mode		cy (MHz)		Max Value		Limit (dBo	
Band Edge NVNT BLE 2402MHz Ant1 Ref Spectrum Ref Level 17.62 dB e RBW 100 kHz Att 30 dB SWT 18.9 µs e VBW 300 kHz Mode Auto FFT SGL Count 200/200 #1Pk Max -4.90 dBm 10 dBm 4.40197600 GHz 0 dBm 0 dBm -10 dBm -4.90 dBm -20 dBm -0 dBm -30 dBm -0 dBm -50 dBm -0 dBm -50 dBm -0 dBm -70 dBm -0 dBm	Band Edge NVNT BLE 2402MHz Ant1 Ref Spectrum Ref Level 17.62 dB e RBW 100 kHz Att 30 dB SWT 18.9 µs e VBW 300 kHz Mode Auto FFT SGL Count 200/200 #1Pk Max -4.90 dBm 10 dBm 4.40197600 GHz 0 dBm 0 dBm -10 dBm -4.90 dBm -20 dBm -0 dBm -30 dBm -0 dBm -50 dBm -0 dBm -50 dBm -0 dBm -70 dBm -0 dBm	Band Edge NVNT BLE 2402MHz Ant1 Ref Spectrum Ref Level 17.62 dB @ RBW 100 kHz Att 30 dB WT 18.9 µs @ VBW 300 kHz Mode Auto FFT SGL Count 200/200 Image: Count 200/200 Image: Count 200/200 Ima									
Spectrum Image: Creating and the system of the	Spectrum Image: Creating and the system of the	Spectrum Image: Creating and the system of the	NVNT	BLE	24	80	Ant 1	-47.0	8	-20	Pass
Ref Level 17.62 dBm Offset 7.62 dB RBW 100 kHz Att 30 dB SWT 18.9 µs VBW 300 kHz Mode Auto FFT SGL Count 200/200 Image: Count 200/200 Miling -4.90 dBm ID dBm Miling -4.90 dBm ID dBm Miling -4.90 dBm -10 dBm Miling -4.90 dBm -20 dBm Miling -4.90 dBm -30 dBm Miling -4.90 dBm -50 dBm Miling -4.90 dBm -70 dBm Miling -4.90 dBm -70 dBm Miling Miling Miling -70 dBm Miling Miling Miling Milin	Ref Level 17.62 dBm Offset 7.62 dB RBW 100 kHz Att 30 dB SWT 18.9 µs VBW 300 kHz Mode Auto FFT SGL Count 200/200 Image: Count 200/200 Miling -4.90 dBm ID dBm Miling -4.90 dBm ID dBm Miling -4.90 dBm -10 dBm Miling -4.90 dBm -20 dBm Miling -4.90 dBm -30 dBm Miling -4.90 dBm -50 dBm Miling -4.90 dBm -70 dBm Miling -4.90 dBm -70 dBm Miling Miling Miling -70 dBm Miling Miling Miling Milin	Ref Level 17.62 dBm Offset 7.62 dB RBW 100 kHz Att 30 dB SWT 18.9 µs • VBW 300 kHz Mode Auto FFT SGL Count 200/200 • IPk Max • · · · · · · · · · · · · · · · · · · ·				Band E	dge NVNT	BLE 2402M	Hz Ant1	Ref	_
Att 30 dB SWT 18.9 µs VBW 300 kHz Mode Auto FFT SGL Count 200/200 •	Att 30 dB SWT 18.9 µs VBW 300 kHz Mode Auto FFT SGL Count 200/200 •	Att 30 dB SWT 18.9 µs VBW 300 kHz Mode Auto FFT SGL Count 200/200 •		Spect	rum						
SGL Count 200/200 I 1k Max 10 dBm M1[1] 2.40197600 GHz 0 dBm M1 -10 dBm M1 -20 dBm M1 -30 dBm M1 -40 dBm M1 -50 dBm M1 -70 dBm M1 -70 dBm M1 -80 dBm M1	SGL Count 200/200 I 1k Max 10 dBm M1[1] 2.40197600 GHz 0 dBm M1 -10 dBm M1 -20 dBm M1 -30 dBm M1 -40 dBm M1 -50 dBm M1 -70 dBm M1 -70 dBm M1 -80 dBm M1	SGL Count 200/200 I 1k Max 10 dBm M1[1] 2.40197600 GHz 0 dBm M1 -10 dBm M1 -20 dBm M1 -30 dBm M1 -40 dBm M1 -50 dBm M1 -70 dBm M1 -70 dBm M1 -80 dBm M1									
10 dBm	10 dBm	10 dBm		SGL Co	unt 200/200	3WI 10.9	o ha 🖷 ABM 300	KH2 MOUE AUTO	JFFI		
10 dBm 2.40197600 GHz 0 dBm ML -10 dBm ML -20 dBm -0 -30 dBm -0 -50 dBm -0 -60 dBm -0 -70 dBm -0 -70 dBm -0 -80 dBm -0 -70 dBm -0 -80 dBm -0 -70 dBm -0 -70 dBm -0 -70 dBm -0 -70 dBm -0 -80 dBm -0 -80 dBm -0 -90 dBm -0<	10 dBm 2.40197600 GHz 0 dBm ML -10 dBm ML -20 dBm -0 -30 dBm -0 -50 dBm -0 -60 dBm -0 -70 dBm -0 -70 dBm -0 -80 dBm -0 -70 dBm -0 -80 dBm -0 -70 dBm -0 -70 dBm -0 -70 dBm -0 -70 dBm -0 -80 dBm -0 -80 dBm -0 -90 dBm -0<	10 dBm 2.40197600 GHz 0 dBm ML -10 dBm ML -20 dBm -0 -30 dBm -0 -50 dBm -0 -60 dBm -0 -70 dBm -0 -70 dBm -0 -80 dBm -0 -70 dBm -0 -80 dBm -0 -70 dBm -0 -70 dBm -0 -70 dBm -0 -70 dBm -0 -80 dBm -0 -80 dBm -0 -90 dBm -0<		●1Pk Ma	эх			M1[1	11		-4 90 dBm
-10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm -80	-10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm -80	-10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm -80		10 dBm·					•1	2.	
-10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm -80	-10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm -80	-10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm -80									
-20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -50 dBm -60 dBm -70 dBm -80	-20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -50 dBm -60 dBm -70 dBm -80	-20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -50 dBm -60 dBm -70 dBm -80		0 dBm—				м			
-20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -80 dBm -80 dBm -80 dBm -80 dBm -70 dB	-20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -80 dBm -80 dBm -80 dBm -80 dBm -70 dB	-20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -80 dBm -80 dBm -80 dBm -80 dBm -70 dB		-10 dBm)			$\sim \sim $			
-20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -80 dBm -80 dBm -80 dBm -80 dBm -70 dB	-20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -80 dBm -80 dBm -80 dBm -80 dBm -70 dB	-20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -80 dBm -80 dBm -80 dBm -80 dBm -70 dB						1 m			
-40 dBm -50 dBm -60 dBm -70 dBm -80 dBm -80 dBm -1001 pts Span 8.0 MHz	-40 dBm -50 dBm -60 dBm -70 dBm -80 dBm -80 dBm -1001 pts Span 8.0 MHz	-40 dBm -50 dBm -60 dBm -70 dBm -80 dBm (F 2.402 GHz) (F 2		-20 dBm)				\uparrow		
-40 dBm -50 dBm -60 dBm -70 dBm -80 dBm (F 2.402 GHz) (F 2	-40 dBm -50 dBm -60 dBm -70 dBm -80 dBm (F 2.402 GHz) (F 2	-40 dBm -50 dBm -60 dBm -70 dBm -80 dBm (F 2.402 GHz) (F 2		-30 dBm)		_/		\rightarrow		
-50 dBm -50 dBm -60 dBm -70 dBm -80 dB	-50 dBm -50 dBm -60 dBm -70 dBm -80 dB	-50 dBm -50 dBm -60 dBm -70 dBm -80 dB				A	1				
-60 dBm -60 dBm -70 dBm -80 dBm -70 dB	-60 dBm -60 dBm -70 dBm -80 dBm -70 dB	-60 dBm -60 dBm -70 dBm -80 dBm CF 2.402 GHz 1001 pts Span 8.0 MHz		-40 dBm)	\mathcal{T}					
-70 dBm -80 dBm- GF 2.402 GHz 1001 pts Span 8.0 MHz	-70 dBm -80 dBm- GF 2.402 GHz 1001 pts Span 8.0 MHz	-70 dBm -80 dBm- GF 2.402 GHz 1001 pts Span 8.0 MHz		-50 dBm)	/					
-70 dBm -80 dBm GF 2.402 GHz 1001 pts Span 8.0 MHz	-70 dBm -80 dBm GF 2.402 GHz 1001 pts Span 8.0 MHz	-70 dBm -80 dBm- GF 2.402 GHz 1001 pts Span 8.0 MHz		~~~~	mm					J~~~	nm
-80 dBm	-80 dBm	-80 dBm		-60 dBm)						
CF 2.402 GHz 1001 pts Span 8.0 MHz	CF 2.402 GHz 1001 pts Span 8.0 MHz	CF 2.402 GHz 1001 pts Span 8.0 MHz									
CF 2.402 GHz 1001 pts Span 8.0 MHz	CF 2.402 GHz 1001 pts Span 8.0 MHz	CF 2.402 GHz 1001 pts Span 8.0 MHz		-/U dBm							
				-80 dBm	1		1	001 pts			Snan 8.0 MHz
				-80 dBm	1		1	001 pts			
				-80 dBm	1		1	001 pts	Beady		
				-80 dBm	1		1	001 pts	Peadv		
				-80 dBm	1		1	001 pts	Readv		
				-80 dBm	1		1	001 pts	Readv		
				-80 dBm	1		1	001 pts	Beadv		
				-80 dBm	1			001 pts	Peadv		
				-80 dBm	1			001 pts	Peadv		
				-80 dBm	1			001 pts	Readv		
				-80 dBm	1			001 pts	Readv		
				-80 dBm	1			001 pts	Peadv		
				-80 dBm	1			001 pts	Readv		
				-80 dBm	1			001 pts	Readv		


Band Edge NVNT BLE 2480MHz Ant1 Emission ₽ Spectrum Ref Level 17.60 dBm Offset 7.60 dB ■ RBW 100 kHz SWT 227.5 μs ■ VBW 300 kHz Att 30 dB Mode Auto FFT SGL Count 100/100 ⊖1Pk Max M1[1] -7.59 dBm 10 dBm· 2.47995000 GHz M2[1] -55.01 dBm 0 dBm 2.48350000 GHz -10 Bm -20 dBm D1 -25.436 dBm -30 dBm 🕫 ժ🖣 -\$0 dBhore manual and a star well-thomas hours and mather www.www.wallinghugay.www.hula.hu meder prose -60 dBm· -70 dBm· -80 dBm-Start 2.476 GHz 1001 pts Stop 2.576 GHz Marker Type | Ref | Trc | X-value Y-value Function Function Result М1 2.47995 GHz -7.59 dBm 1 M2 1 2.4835 GHz -55.01 dBm 2.5 GHz 2.4886 GHz -54.44 dBm -52.53 dBm ΜЗ 1 M4

8.1.10 CONDUCTED RF SPURIOUS EMISSION Condition Mode Frequency (MHz) Antenna Max Value (dBc) Limit (dBc) Verdict **NVNT** BLE 2402 -40.79 Pass Ant 1 -20 NVNT 2440 -41.05 -20 BLE Ant 1 Pass **NVNT** BLE 2480 Ant 1 -39.66 -20 Pass Tx. Spurious NVNT BLE 2402MHz Ant1 Ref ₽ Spectrum Offset 7.62 dB 🖷 RBW 100 kHz Ref Level 17.62 dBm Att 30 dB SWT 18.9 µs 👄 VBW 300 kHz Mode Auto FFT SGL Count 300/300 ●1Pk Max M1[1] -4.87 dBm 2.40197900 GHz 10 dBm-0 dBm -10 dBm -20 dBm· -30 dBm--40 dBm -50 dBm -60 dBm· -70 dBm· -80 dBm-Span 3.0 MHz 1001 pts CF 2.402 GHz LXI



Tx. Spurious NVNT BLE 2480MHz Ant1 Emission ₽ Spectrum Ref Level 17.60 dBm Offset 7.60 dB **RBW** 100 kHz SWT 250 ms **VBW** 300 kHz Att 30 dB Mode Auto Sweep SGL Count 15/15 ⊖1Pk Max -10.15 dBm M1[1] 10 dBm· 2.4870 GHz M2[1] -44.61 dBm 0 dBm 15.6612 GHz -10 dBm· -20 dBm· D1 -24.936_dBm--30 dBm--40 dBm· Νз M м hard -50 dBm· -60 dBm· -70 dBm--80 dBm-Start 30.0 MHz 1001 pts Stop 25.0 GHz Marker Type Ref Trc M1 1 Y-value Function Function Result X-value 2.487 GHz -10.15 dBm M2 15.6612 GHz -44.61 dBm 1 ΜЗ 5.1489 GHz -49.67 dBm 1 7.3712 GHz 9.9681 GHz -49.56 dBm -49.98 dBm M4 1 M5 4,44

END OF REPORT

Version.1.3