TEST REPORT DT&C Co., Ltd. 42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 17042 Tel: 031-321-2664, Fax: 031-321-1664 1. Report No: DRTFCC2004-0099 2. Customer Name: HYUNDAI MOBIS CO., LTD. Address (FCC): 203, Teheran-ro Gangnam-gu, Seoul, South Korea 135-977 3. Use of Report: FCC Original Grant 4. Product Name / Model Name : DISPLAY CAR SYSTEM / ADB10S2AN0 FCC ID: TQ8-ADB10S2AN0 5. Test Method Used: KDB905462 D02v02, KDB905462 D03v1r02 Test Specification: FCC Part 15.407 6. Date of Test: 2020.03.31 7. Testing Environment: See appended test report. 8. Test Result: Refer to the attached test result. Affirmation Name : JungWoo Kim Reviewed by Name : JaeJin Lee The test results presented in this test report are limited only to the sample supplied by applicant and the use of this test report is inhibited other than its purpose. This test report shall not be reproduced except in full, without the written approval of DT&C Co., Ltd. 2020.04.28. DT&C Co., Ltd. If this report is required to confirmation of authenticity, please contact to report@dtnc.net (Signature) # **Test Report Version** | Test Report No. | Date | Description | Tested by | Reviewed by | |-----------------|---------------|---------------|-------------|-------------| | DRTFCC2004-0099 | Apr. 28, 2020 | Initial issue | JungWoo Kim | JaeJin Lee | # **Table of Contents** | 1. GENERAL INFORMATIONEUT DESCRIPTION | . 4 | |--|----------| | 1.1. EUT Description | . 4 | | 1.2. Auxiliary equipment | . 5 | | 1.3. Testing environment | . 5 | | 2. DYNAMIC FREQUENCY SELECTION TEST DESCRIPTION | . 5 | | 2.1. Applicability of DFS requirements prior to use of a channel | . 5 | | 2.2. Applicability of DFS requirements during normal operation | . 5 | | 2.3. Requirements of client devices | . 6 | | 2.4. DFS response requirement values | . 7 | | 2.5. DFS detection thresholds | . 7 | | 2.6. Radar test waveforms | . 8 | | 3. Test procedure | . 9 | | 3.1. Setup for Client with injection at the Master | . 9 | | 3.2. Spectrum analyzer setting parameter | . 9 | | 3.3. Conducted test procedure | . 9 | | 4. SUMMARY OF TESTS | 10 | | 5. LIST OF EQUIPMENTS | .11 | | 6. TEST RESULTS | 12 | | 6.1. Move time and aggregate time | 12 | | 6.1.1. U-NII-2A: 5310 MHz | 12 | | 6.1.2. U-NII-2C: 5510 MHz | | | 6.2. Non-occupancy period | | | 6.2.1. U-NII-2A: 5310 MHz | | | 6.2.2. U-NII-2C: 5510 MHz | 13
11 | | | 71 /1 | # 1. GENERAL INFORMATIONEUT DESCRIPTION # 1.1. EUT Description | Equipment class | Unlicensed National Information Infrastructure (UNII) | | | | | | |-----------------------|--|------------|--|-------------|------------------|--| | Product | DISPLAY CAR SYSTEM | | | | | | | Model Name | ADB10S2AN0 | ADB10S2AN0 | | | | | | Add Model Name Note3 | ADB40S2AN, ADB20S2AN, ADB10S1GG, ADB11S1GG, ADB12S1GG, ADB13S1GG, ADB10S1MG, ADB10S1GN, ADB10S1GL, ADB10S1GP, ADB11S1MG, ADB12S1MG, ADB10S1EG, ADB12S1EG, ADB10S1EP, ADB13S1EP, ADB14S1EP, ADBC0S1EP, ADBC1S1EP, ADB10S1UA, ADB10S1RP, ADB20S2FN | | | | | | | EUT capabilities | DFS | | | | | | | Power supply | DC 14.4 V | | | | | | | Test condition | □ Conducted | | Radiated | | | | | Channel bandwidth | 802.11a/n/ac: 20 MHz | | 802.11n/ad | c: 40 MHz | 802.11ac: 80 MHz | | | | U-NII 2A(5250 ~ 5350 MHz) | | U-NII 2C(5470 ~ | · 5725 MHz) | | | | Frequency Range | 802.11a/n(HT20)/ac(VHT20): 5260 ~ 5320 MHz 802.11n(HT40)/ac(VHT40): 5270 ~ 5310 MHz 802.11ac(VHT80) 5290 MHz | | ■ 802.11a/n(HT20)/ac(VHT20):
5500 ~ 5580, 5660 ~ 5720 MHz
■ 802.11n(HT40)/ac(VHT40):
5510 ~ 5550, 5670~5710 MHz
■ 802.11ac(VHT80):
5530, 5690 MHz | | | | | Modulation type | OFDM | | | | | | | Operational mode | ☐ Master mode ☑ Client mode without radar detection ☐ Client mode with radar detection | | | | | | | | Antenna type: PCB Pattern Antenna | | | | | | | Antenna specification | Antenna gain U-NII- U-NII- | | I-2A | -0.18 dBi | | | | | | | I-2C | -0.77 dBi | | | Report No.: DRTFCC2004-0099 Note1: The above EUT information was declared by the manufacturer. Note2: Refer to UNII report. Note3: Difference between models | | Model Name | Difference | | |------------|--|--|--| | Base model | ADB10S2AN0 | NA | | | Add model | ADB40S2AN | This model contains module approved under Part 22/24/27. (FCC ID: YZP-VL3010) | | | Add models | ADB20S2AN, ADB10S1GG, ADB11S1GG,
ADB12S1GG, ADB13S1GG, ADB10S1MG,
ADB10S1GN, ADB10S1GL, ADB10S1GP,
ADB11S1MG, ADB12S1MG, ADB10S1EG,
ADB12S1EG, ADB10S1EP, ADB11S1EP,
ADB12S1EP, ADB13S1EP, ADB14S1EP,
ADBC0S1EP, ADBC1S1EP, ADB10S1UA,
ADB10S1RP, ADB20S2FN | Same as base model (There is no difference of electrical and circuit performance.) | | # 1.2. Auxiliary equipment | Equipment | Model No. | Serial No. | Manufacturer | Note | |-----------------------|-----------|---------------|--------------|---| | Access Point (Master) | DIR-868L | R3X81E6000093 | D-Link | FCC ID: KA2IR868LA1
Contains FCC ID: RRK2012060056-1 | Report No.: DRTFCC2004-0099 ### 1.3. Testing environment | Ambient Condition | | |-------------------|---------------| | Temperature | 22 °C ~ 23 °C | | Relative Humidity | 37 % ~ 39 % | # 2. DYNAMIC FREQUENCY SELECTION TEST DESCRIPTION # 2.1. Applicability of DFS requirements prior to use of a channel | | Operational mode | | | | |---------------------------------|------------------|-----------------|-------------------|--| | Requirement | Master | Client without | Client with radar | | | | iviaster | radar detection | detection | | | Non-Occupancy Period | Yes | Not required | Yes | | | DFS Detection Threshold | Yes | Not required | Yes | | | Channel Availability Check time | Yes | Not required | Not required | | | U-NII Detection Bandwidth | Yes | Not required | Yes | | # 2.2. Applicability of DFS requirements during normal operation | | Operational mode | | | | |-----------------------------------|---------------------------------------|--------------------------------|--|--| | Requirement | Master or client with radar detection | Client without radar detection | | | | DFS Detection Threshold | Yes | Not required | | | | Channel Closing Transmission Time | Yes | Yes | | | | Channel Move time | Yes | Yes | | | | U-NII Detection Bandwidth | Yes | Not required | | | | Additional requirements for devices | Operational mode | | | | |---|---------------------------------------|--|--|--| | with multiple bandwidth modes | Master or client with radar detection | Client without radar detection | | | | U-NII Detection Bandwidth and Statistical Performance Check | All BW modes must be tested | Not required | | | | Channel Move Time and Channel Closing Transmission Time | Test using widest BW mode available | Test using the widest BW mode available for the link | | | | All other tests | Any single BW mode | Not required | | | Report No.: DRTFCC2004-0099 **Note:** Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency. The EUT was tested according to the following specification: 905462 D02 UNII DFS Compliance Procedure New Rules v02 905462 D03 UNII Client Without Radar Detection New Rules v01r02 #### 2.3. Requirements of client devices - a) A Client Device will not transmit before having received appropriate control signals from a Master Device. - b) A Client Device will stop all its transmissions whenever instructed by a Master Device to which it is associated and will meet the Channel Move Time and Channel Closing Transmission Time requirements. The Client Device will not resume any transmissions until it has again received control signals from a Master Device. - c) If a Client Device is performing In-Service Monitoring and detects a Radar Waveform above the DFS Detection Threshold, it will inform the Master Device. This is equivalent to the Master Device detecting the Radar Waveform and d) through f) of section 5.1.1 apply. - d) Irrespective of Client Device or Master Device detection the Channel Move Time and Channel Closing Transmission Time requirements remain the same. - e) The client test frequency must be monitored to ensure no transmission of any type has occurred for 30 minutes. Note: If the client moves with the master, the device is considered compliant if nothing appears in the client non-occupancy period test. For devices that shut down (rather than moving channels), no beacons should appear. #### 2.4. DFS response requirement values | Parameter | Value | | | |-----------------------------------|---|--|--| | Non-occupancy period | Minimum 30 minutes | | | | Channel availability check time | 60 seconds | | | | Channel move time | 10 seconds | | | | | See Note 1. | | | | Channel closing transmission time | 200 milliseconds + an aggregate of 60 milliseconds over | | | | Chamber steeling manifestion time | remaining 10 second period. See Notes 1 and 2. | | | Report No.: DRTFCC2004-0099 - **Note 1**: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst. - **Note 2**: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.. #### 2.5. DFS detection thresholds Below provides the DFS Detection Thresholds for Master Devices as well as Client Devices incorporating In-Service Monitoring. | Maximum Transmit Power | Value
(See Notes 1, 2, and 3) | |--|----------------------------------| | EIRP ≥ 200 milliwatt | -64 dBm | | EIRP < 200 milliwatt and power spectral density < 10 dBm/MHz | -62 dBm | | EIRP < 200 milliwatt that do not meet the power spectral density requirement | -64 dBm | - Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna. - **Note 2**: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response. - Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01. # 2.6. Radar test waveforms | Radar
type | Pulse
width
(µsec) | PRI
(µsec) | Number of pulses | Minimum percentage of successful detection | Minimum
number
of
trials | |---------------|-----------------------------|---|--|--|-----------------------------------| | 0 | 1 | 1428 | 18 | See Note 1 | See Note 1 | | 1 | 1 | Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in section 2.6.2. Test B: 15 unique PRI values randomly selected within the range of 518- 3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A | Roundup $\left\{ \left(\frac{1}{360} \right) \cdot \left(\frac{19 \cdot 10^6}{PRI_{\mu sec}} \right) \right\}$ | 60% | 30 | | 2 | 1-5 | 150-230 | 23-29 | 60% | 30 | | 3 | 6-10 | 200-500 | 16-18 | 60% | 30 | | 4 | 11-20 | 200-500 | 12-16 | 60% | 30 | | Aggregat | Aggregate (Radar Types 1-4) | | | 80% | 120 | Report No.: DRTFCC2004-0099 Note 1: As the EUT is a Client Device with no Radar Detection only one type radar pulse is required for the testing. Radar Pulse type 0 was used in the evaluation of the Client device for the purpose of measuring the Channel Move Time and the Channel Closing Transmission Time. Note 2: This report was applied Short Pulse Radar Type 0. # 3. Test procedure #### 3.1. Setup for Client with injection at the Master The setup method is shown below diagram. The method according to the 905462 D02 UNII DFS Compliance Procedure New Rules v02 - section 7.2 Report No.: DRTFCC2004-0099 #### 3.2. Spectrum analyzer setting parameter The setting parameter is shown below and it according to the 905462 D02 UNII DFS Compliance Procedure New Rules v02 - section 7.5 - 1) RBW /VBW ≥ 3MHz - Detector = Peak - 3) Span = zero span - 4) Sweep time ≥ 12s #### 3.3. Conducted test procedure - 1) One frequency will be chosen from the Operating Channels of the UUT within the 5250-5350 MHz or 5470-5725 MHz bands - 2) The Client Device (EUT) is set up the above diagram and communications between the Master device and the Client is established. - 3) Stream the channel loading test file from the Master Device to the Client Device on the test Channel for the entire period of the test. (The MPEG file specified by the FCC ("6 ½ Magic Hours")) - 4) An additional 1 dB is added to the radar test signal to ensure it is at or above the DFS Detection Threshold, accounting for equipment variations/errors. - 5) Observe the transmissions of the UUT at the end of the Burst on the Operating Channel for duration greater than 12 seconds for Radar Type 0 to ensure detection occurs. - 6) After the initial radar burst the channel is monitored for 30 minutes to ensure no transmissions or beacons occur. A second monitoring setup is used to verify that the Master and Client have both moved to different channels. # 4. SUMMARY OF TESTS | Parameter | Limit | Status
Note 1 | |-----------------------------------|---|------------------| | Channel move time | 10 seconds | C
Note 2 | | Channel closing transmission time | 200ms + aggregate of 60ms over remaining 10 second period | C
Note 2, 3 | | Non-occupancy period | 30 minutes | С | Report No.: DRTFCC2004-0099 - Note 1: C=Comply NC=Not Comply NT=Not Tested NA=Not Applicable - Note 2: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst. - Note 3: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions. # 5. LIST OF EQUIPMENTS | Туре | Manufacturer | Model | Cal.Date
(yy/mm/dd) | Next.Cal.Date
(yy/mm/dd) | S/N | |-------------------|-------------------------|----------|------------------------|-----------------------------|------------| | Spectrum Analyzer | Agilent
Technologies | N9020A | 20/02/26 | 21/02/26 | MY46471251 | | DC Power Supply | Agilent
Technologies | 66332A | 19/06/25 | 20/06/25 | US37473422 | | Multimeter | FLUKE | 17B | 19/12/16 | 20/12/16 | 26030065WS | | DFS Bridge System | DTNC | DFS-01 | 19/12/16 | 20/12/16 | T001 | | Signal Generator | Rohde Schwarz | SMBV100A | 19/12/16 | 20/12/16 | 255571 | | Thermohygrometer | BODYCOM | BJ5478 | 19/12/18 | 20/12/18 | 120612-1 | | PXIS-2670(G) | ADLINK | 3025C | 19/06/25 | 20/06/25 | 302581/834 | | PXIS-2670(G) | ADLINK | 3035C | 19/06/25 | 20/06/25 | 303581/927 | | Cable | DT&C | CABLE | 20/01/16 | 21/01/16 | DFS-1 | | Cable | DT&C | CABLE | 20/01/16 | 21/01/16 | DFS-2 | | Cable | DT&C | CABLE | 20/01/16 | 21/01/16 | DFS-3 | | Cable | DT&C | CABLE | 20/01/16 | 21/01/16 | DFS-4 | | Cable | DT&C | CABLE | 20/01/16 | 21/01/16 | DFS-5 | Report No.: DRTFCC2004-0099 Note1: The cable is not a regular calibration item, so it has been calibrated by DT & C itself. #### 6. TEST RESULTS ### 6.1. Move time and aggregate time #### 6.1.1. U-NII-2A: 5310 MHz Report No.: DRTFCC2004-0099 #### 6.1.2. U-NII-2C: 5510 MHz #### 6.2. Non-occupancy period #### 6.2.1. U-NII-2A: 5310 MHz Report No.: DRTFCC2004-0099 #### 6.2.2. U-NII-2C: 5510 MHz #### APPENDIX I # **Channel loading** #### U-NII-2A: 5310 MHz Timing plots: A minimum channel loading of approximately 17% or greater Report No.: DRTFCC2004-0099 #### - Spectrum Analyzer setting 1) Span: Zero 2) Sweep points: 40001 #### Calculation: Channel loading = (Channel loading sweep points / Total sweep points) x 100 = (7472 / 40001) x 100 = 18.68 % Note: The Channel loading sweep points were extracted from the spectrum and calculated. ### **Channel loading** #### U-NII-2C: 5510 MHz Timing plots: A minimum channel loading of approximately 17% or greater Report No.: DRTFCC2004-0099 #### - Spectrum Analyzer setting 1) Span: Zero 2) Sweep points: 40001 #### **Calculation:** Channel loading = (Channel loading sweep points / Total sweep points) x 100 = (7129 / 40001) x 100 = 17.82 % Note: The Channel loading sweep points were extracted from the spectrum and calculated.