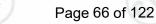
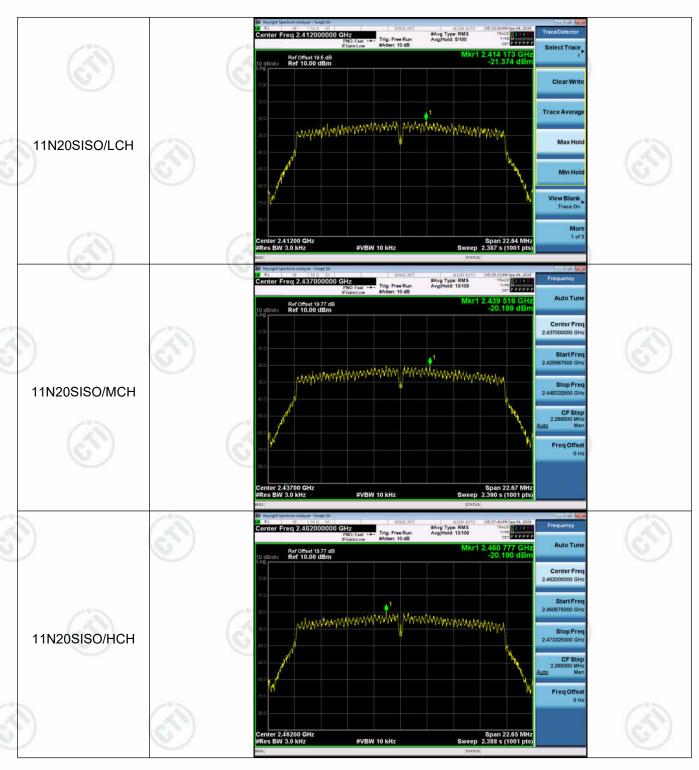
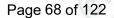


Page 65 of 122





Page 67 of 122



Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2dBi.

Page 69 of 122

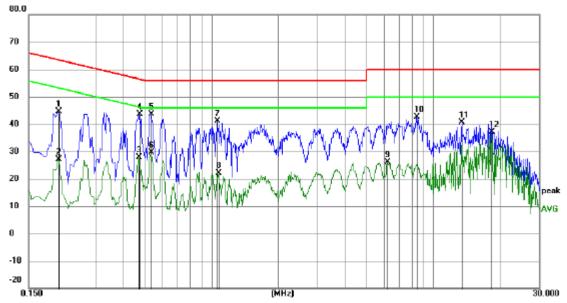
Appendix G): AC Power Line Conducted Emission

Test Procedure:	Test frequency range :150KHz-	30MHz						
	1) The mains terminal disturbance voltage test was conducted in a shielded room.							
	2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50μH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2 which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.							
	The tabletop EUT was place reference plane. And for floorizontal ground reference	oor-standing arrange		•				
	4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This							
	distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.							
	5) In order to find the maximum the interface cables must measurement.	n emission, the relati	ve positions of equipm	ent and all o				
Limit:		- 1000						
	[Limit (dBµV)					
	Frequency range (MHz)	Quasi-peak	Average					
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56 46						
	5-30 60 50							
	* The limit decreases linearly w to 0.50 MHz. NOTE: The lower limit is applic			ge 0.15 MHz				

Measurement Data

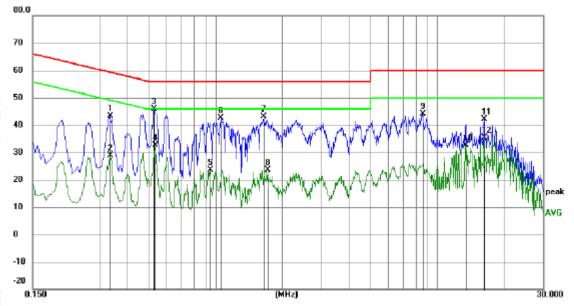
An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.



Page 70 of 122

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.2040	34.85	9.88	44.73	63.45	-18.72	QP	
2		0.2040	17.17	9.88	27.05	53.45	-26,40	AVG	
3		0.4695	17.98	9.96	27.94	46.52	-18.58	AVG	
4		0.4740	33.69	9.96	43.65	56.44	-12.79	QP	
5	*	0.5325	33.66	9.99	43.65	56.00	-12.35	QP	
6		0.5325	19.66	9.99	29.65	46.00	-16.35	AVG	
7		1.0635	31.27	9.83	41.10	56.00	-14.90	QP	
8		1.0770	12.21	9.83	22.04	46.00	-23,96	AVG	
9		6.2070	16.26	9.79	26.05	50.00	-23.95	AVG	
10		8.3940	32.96	9.79	42.75	60.00	-17.25	QP	
11		13.4790	30.72	9.88	40.60	60.00	-19.40	QP	
12		18.2445	27.17	9.96	37.13	50.00	-12.87	AVG	



Neutral line:

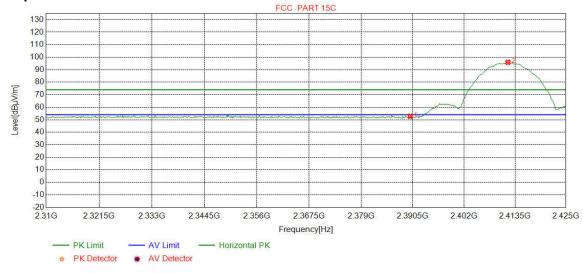
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.3345	33.41	10.04	43.45	59.34	-15.89	QP	
2		0.3345	18.78	10.04	28.82	49.34	-20.52	AVG	
3	*	0.5280	35.94	9.98	45.92	56.00	-10.08	QP	
4		0.5370	22.59	9.99	32.58	46.00	-13.42	AVG	
5		0.9465	13.91	9.84	23.75	46.00	-22.25	AVG	
6		1.0545	32.82	9.83	42.65	56.00	-13.35	QP	
7		1.6485	33.28	9.80	43.08	56.00	-12.92	QP	
8		1.7205	13.86	9.80	23.66	46.00	-22.34	AVG	
9		8.5470	34.27	9.78	44.05	60.00	-15.95	QP	
10		13.3575	22.82	9.88	32.70	50.00	-17.30	AVG	
11		16.2285	32.12	9.94	42.06	60.00	-17.94	QP	
12		16.2285	25.55	9.94	35.49	50.00	-14.51	AVG	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix H): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peal	k
	Ab 4011-	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	13
Test Procedure:	Below 1GHz test proced	ure as below:	6	9		(0)
	Test method Refer as KDI a. The EUT was placed of at a 3 meter semi-ane determine the position b. The EUT was set 3 meters was mounted on the to c. The antenna height is determine the maximum polarizations of the an d. For each suspected en the antenna was tuned was turned from 0 deg	on the top of a rot choic camber. The of the highest ra- eters away from to op of a variable-howeried from one movalue of the fietenna are set to romission, the EUT do to heights from prees to 360 degr	ne table wandiation. The interfermeter to found the interfermeter to found the interfermeter to found the interfermeter to found the interfermeter to find indicate in the interfermeter to indicate in the interfermeter to indicate in the i	ence-receinna tower. Four meters Four Both hore Four measurements Four Both hore	above the greet above the greet and vent. worst case a and the rotat num reading	to a, which round to vertica and the cable
	e. The test-receiver system Bandwidth with Maxim f. Place a marker at the frequency to show corbands. Save the spector lowest and highest	num Hold Mode. end of the restric npliance. Also mo rum analyzer plo	ted band c easure any	losest to the	he transmit s in the restr	icted
	f. Place a marker at the frequency to show corbands. Save the speci	num Hold Mode. end of the restrice enpliance. Also moderum analyzer plotechannel ure as below: ve is the test site enber change form 1 meter and table ewest channel, the ements are perform d found the X ax	eted band of easure any of. Repeat f of table 0.8 de is 1.5 mone he Highest rmed in X, is positioni	closest to the community emissions for each posterior of the community of the community and the community of	he transmit s in the restrower and mo Anechoic Cl .5 meter(Ab positioning for	icted dulation hamber pove or use.
Limit:	Bandwidth with Maxim f. Place a marker at the frequency to show cor bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between about of fully Anechoic Char 18GHz the distance is h. Test the EUT in the lot i. The radiation measure Transmitting mode, ar j. Repeat above procede	num Hold Mode. end of the restric inpliance. Also me rum analyzer plo channel ure as below: we is the test site inber change form 1 meter and tabl west channel, the ements are perfor ind found the X ax ures until all frequ	eted band content of the content of	rom Semi- meter to 1 channel Y, Z axis ping which i	he transmit s in the restrower and mo Anechoic Cl .5 meter(Ab positioning for t is worse casts complete.	icted dulation hamber pove or use.
imit:	Bandwidth with Maxim f. Place a marker at the frequency to show cor bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abot to fully Anechoic Char 18GHz the distance is h. Test the EUT in the lo i. The radiation measure Transmitting mode, ar j. Repeat above procede	um Hold Mode. end of the restric enpliance. Also me rum analyzer plo channel ure as below: ve is the test site nber change form 1 meter and tabl ewest channel, the ements are perfor ad found the X ax ures until all frequ Limit (dBµV/	eted band of easure any ot. Repeat f e, change fr n table 0.8 le is 1.5 me ne Highest rmed in X, is positioni uencies me	rom Semi- meter to 1 eter). channel Y, Z axis ping which i	he transmit s in the restrower and mo Anechoic Cl .5 meter(Ab positioning for t is worse ca as complete.	icted dulation hamber pove or use.
imit:	Bandwidth with Maxim f. Place a marker at the frequency to show cor bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between above to fully Anechoic Char 18GHz the distance is h. Test the EUT in the lot i. The radiation measure Transmitting mode, ar j. Repeat above proceds Frequency 30MHz-88MHz	um Hold Mode. end of the restric inpliance. Also mo irum analyzer plo channel ure as below: we is the test site inber change form 1 meter and tabl indexest channel, the ements are perform ind found the X ax ures until all frequ Limit (dBµV/ 40.0	eted band ceasure any of the Repeat for table 0.8 le is 1.5 mened in X, tis positioni uencies medim @3m)	rom Semi-meter to 1 channel Y, Z axis ping which i casured wa	he transmit s in the restr ower and mo Anechoic Cl .5 meter(Ab cositioning fo t is worse ca as complete. mark eak Value	icted dulation hamber pove or use.
imit:	Bandwidth with Maxim f. Place a marker at the frequency to show cor bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between above to fully Anechoic CharalsGHz the distance is h. Test the EUT in the lot. i. The radiation measure Transmitting mode, ar j. Repeat above procede Frequency 30MHz-88MHz 88MHz-216MHz	num Hold Mode. end of the restric inpliance. Also me rum analyzer plo channel ure as below: ve is the test site inber change form 1 meter and tabl invest channel, the ments are perfor ind found the X ax ures until all freque Limit (dBµV/ 40.0 43.5	eted band of easure any ot. Repeat f e, change from table 0.8 le is 1.5 me ne Highest rmed in X, is positioni uencies me (m @3m)	rom Semi- meter to 1 eter). channel Y, Z axis p ing which i easured wa Rei Quasi-pe	Anechoic Cl .5 meter(Ab positioning for t is worse ca as complete.	icted dulation hamber pove or use.
imit:	Bandwidth with Maxim f. Place a marker at the frequency to show cor bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abot to fully Anechoic Char 18GHz the distance is h. Test the EUT in the lot i. The radiation measure Transmitting mode, ar j. Repeat above proced Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	um Hold Mode. end of the restric inpliance. Also me irum analyzer plo channel ure as below: we is the test site inber change form in meter and tabl in the ments are perform ind found the X ax irures until all frequil Limit (dBµV/ 40.0 43.5 46.0	eted band ceasure any of. Repeat for table 0.8 le is 1.5 mented in X, its positioniquencies mented in X (m @3m)	rom Semi- meter to 1 eter). channel Y, Z axis p ing which i easured wa Rei Quasi-pe Quasi-pe	Anechoic Cl .5 meter(Ab cositioning for t is worse ca as complete. mark eak Value eak Value	icted dulation hamber pove or use.
_imit:	Bandwidth with Maxim f. Place a marker at the frequency to show cor bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between above to fully Anechoic CharalsGHz the distance is h. Test the EUT in the lot. i. The radiation measure Transmitting mode, ar j. Repeat above procede Frequency 30MHz-88MHz 88MHz-216MHz	um Hold Mode. end of the restric inpliance. Also more rum analyzer plo channel ure as below: we is the test site inber change form 1 meter and tabl indexest channel, the ements are perform ind found the X ax ires until all frequence Limit (dBµV/ 40.0 43.5 46.0 54.0	ted band ceasure any of the Repeat for table 0.8 le is 1.5 mented in X, tis positioni uencies mediale (m @3m)	rom Semi- meter to 1 eter). channel Y, Z axis p ing which i easured wa Rer Quasi-pe Quasi-pe Quasi-pe	Anechoic Cl .5 meter(Ab positioning for t is worse ca as complete. mark eak Value eak Value eak Value	icted dulation hamber pove or use.
_imit:	Bandwidth with Maxim f. Place a marker at the frequency to show cor bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abot to fully Anechoic Char 18GHz the distance is h. Test the EUT in the lot i. The radiation measure Transmitting mode, ar j. Repeat above proced Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	um Hold Mode. end of the restric inpliance. Also me irum analyzer plo channel ure as below: we is the test site inber change form in meter and tabl in the ments are perform ind found the X ax irures until all frequil Limit (dBµV/ 40.0 43.5 46.0	eted band ceasure any ot. Repeat for table 0.8 le is 1.5 mene Highest red in X, is positioni uencies mene (m @3m)	rom Semi- meter to 1 eter). channel Y, Z axis p ing which i easured wa Rei Quasi-pe Quasi-pe Quasi-pe Average	Anechoic Cl .5 meter(Ab cositioning for t is worse ca as complete. mark eak Value eak Value	icted dulation hamber pove or use.

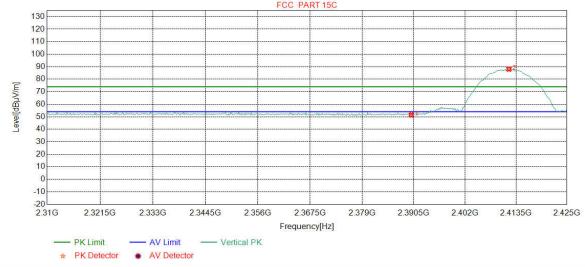


Page 73 of 122

Test plot as follows:

Mode:	802.11 b(1Mbps) Transmitting	Channel:	2412
Remark:	PK		

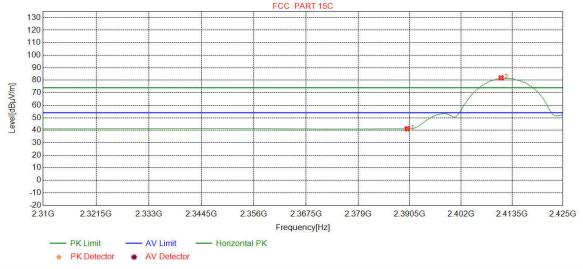
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	50.27	52.77	74.00	21.23	Pass	Horizontal
2	2411.9024	32.28	13.35	-43.12	93.40	95.91	74.00	-21.91	Pass	Horizontal



Page 74 of 122

Mode:	802.11 b(1Mbps) Transmitting	Channel:	2412
Remark:	PK		

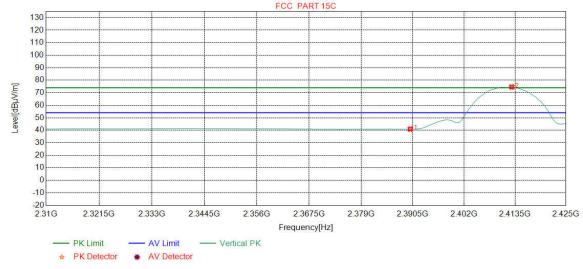
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	48.95	51.45	74.00	22.55	Pass	Vertical
2	2411.9024	32.28	13.35	-43.12	85.55	88.06	74.00	-14.06	Pass	Vertical



Page 75 of 122

Mode:	802.11 b(1Mbps) Transmitting	Channel:	2412
Remark:	AV		

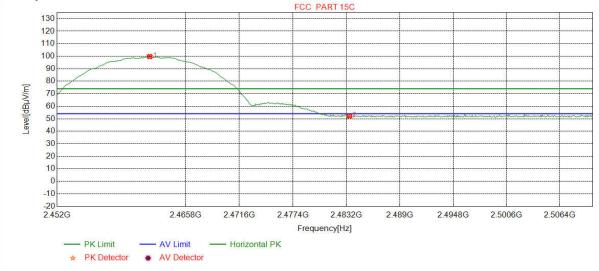
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	38.69	41.19	54.00	12.81	Pass	Horizontal
2	2411.0388	32.28	13.35	-43.12	79.33	81.84	54.00	-27.84	Pass	Horizontal



Page 76 of 122

Mode:	802.11 b(1Mbps) Transmitting	Channel:	2412
Remark:	AV		

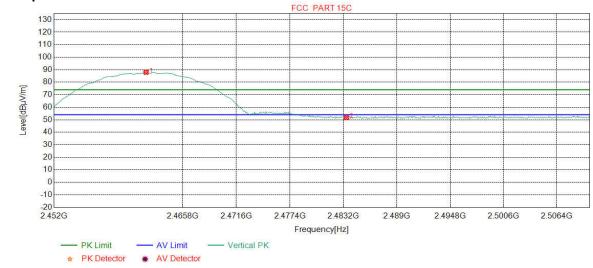
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	38.44	40.94	54.00	13.06	Pass	Vertical
2	2412.7660	32.28	13.36	-43.12	72.07	74.59	54.00	-20.59	Pass	Vertical



Page 77 of 122

Mode:	802.11 b(1Mbps) Transmitting	Channel:	2462
Remark:	PK		

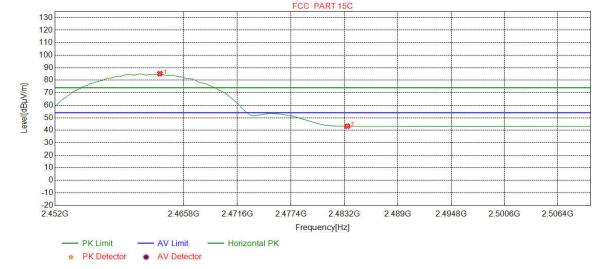
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2461.9449	32.35	13.48	-43.12	97.00	99.71	74.00	-25.71	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	49.53	52.18	74.00	21.82	Pass	Horizontal



Page 78 of 122

Mode:	802.11 b(1Mbps) Transmitting	Channel:	2462
Remark:	PK		

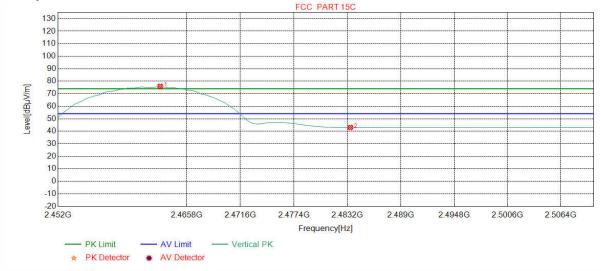
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2461.8723	32.35	13.48	-43.12	85.24	87.95	74.00	-13.95	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	49.14	51.79	74.00	22.21	Pass	Vertical



Page 79 of 122

		. 0. 1	
Mode:	802.11 b(1Mbps) Transmitting	Channel:	2462
Remark:	AV		

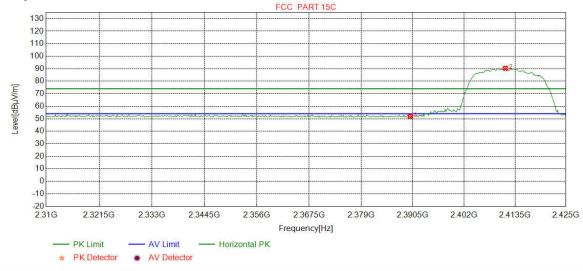
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2463.2516	32.35	13.47	-43.11	82.54	85.25	54.00	-31.25	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	40.60	43.25	54.00	10.75	Pass	Horizontal



Page 80 of 122

		. 0. 1	
Mode:	802.11 b(1Mbps) Transmitting	Channel:	2462
Remark:	AV		

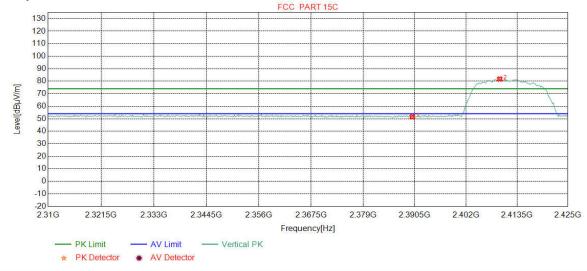
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2462.9612	32.35	13.47	-43.11	73.17	75.88	54.00	-21.88	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	40.39	43.04	54.00	10.96	Pass	Vertical



Page 81 of 122

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2412
Remark:	PK		

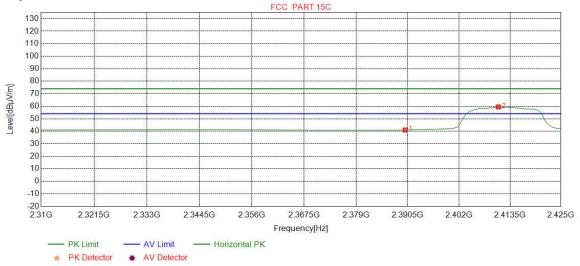
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	49.42	51.92	74.00	22.08	Pass	Horizontal
2	2411.3267	32.28	13.35	-43.12	87.85	90.36	74.00	-16.36	Pass	Horizontal



Page 82 of 122

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2412
Remark:	PK		

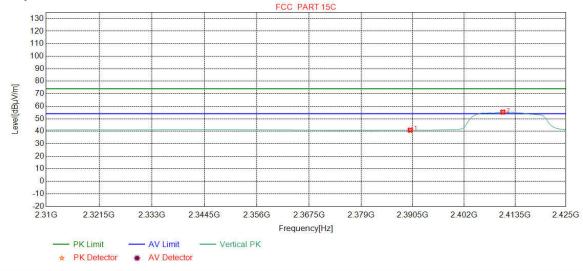
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	49.02	51.52	74.00	22.48	Pass	Vertical
2	2409.5995	32.27	13.34	-43.11	79.24	81.74	74.00	-7.74	Pass	Vertical



Page 83 of 122

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2412
Remark:	AV		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	38.50	41.00	54.00	13.00	Pass	Horizontal
2	2410.8949	32.28	13.35	-43.12	56.94	59.45	54.00	-5.45	Pass	Horizontal



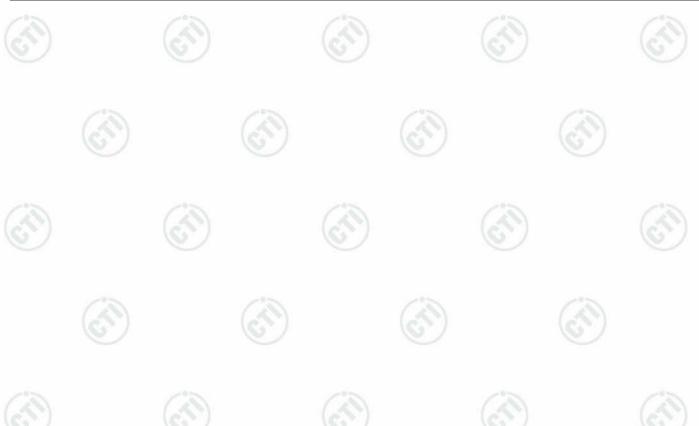
Page 84 of 122

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2412
Remark:	AV		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	38.39	40.89	54.00	13.11	Pass	Vertical
2	2410.7509	32.28	13.35	-43.12	52.83	55.34	54.00	-1.34	Pass	Vertical

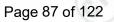
Mode:	802.11 g(6Mbps) Transmitting	Channel:	2462
Remark:	PK		

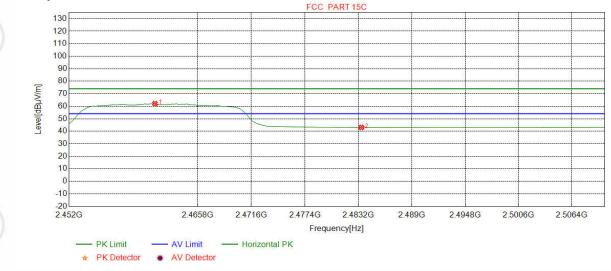
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2463.5419	32.35	13.47	-43.11	90.30	93.01	74.00	-19.01	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	49.05	51.70	74.00	22.30	Pass	Horizontal



Page 86 of 122

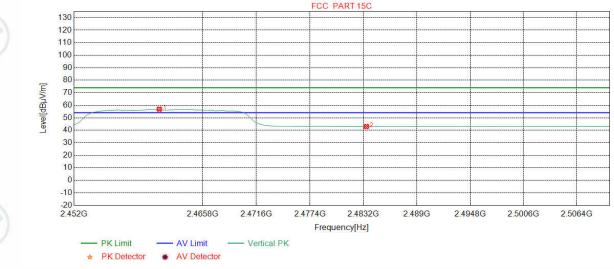
Mode:	802.11 g(6Mbps) Transmitting	Channel:	2462
Remark:	PK		


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2463.3967	32.35	13.47	-43.11	78.90	81.61	74.00	-7.61	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	49.03	51.68	74.00	22.32	Pass	Vertical



Mode:	802.11 g(6Mbps) Transmitting	Channel:	2462
Remark:	AV		

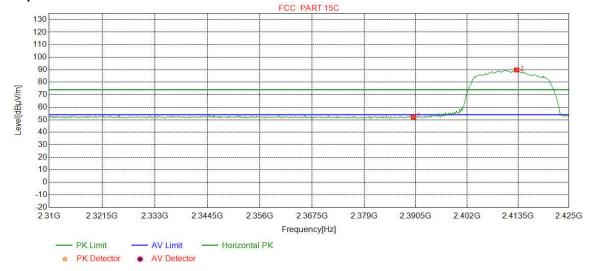
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2461.2190	32.35	13.48	-43.11	59.40	62.12	54.00	-8.12	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	40.42	43.07	54.00	10.93	Pass	Horizontal



Page 88 of 122

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2462
Remark:	AV		

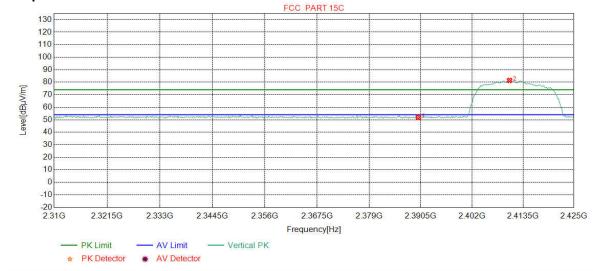
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2461.1464	32.35	13.48	-43.11	54.15	56.87	54.00	-2.87	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	40.36	43.01	54.00	10.99	Pass	Vertical



Page 89 of 122

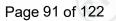
Mode:	802.11 n(HT20) (6.5Mbps) Transmitting	Channel:	2462
Remark:	PK		

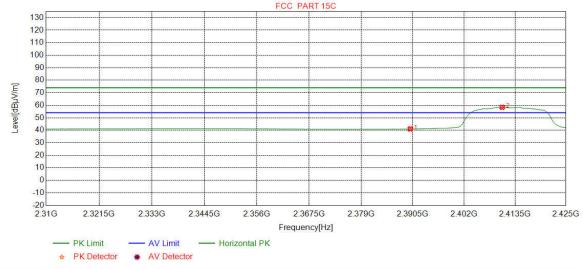
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	49.60	52.10	74.00	21.90	Pass	Horizontal
2	2413.1977	32.28	13.36	-43.12	87.28	89.80	74.00	-15.80	Pass	Horizontal



Page 90 of 122

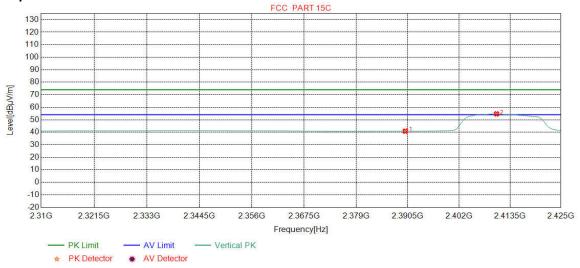
Mode:	802.11 n(HT20) (6.5Mbps) Transmitting	Channel:	2412
Remark:	PK	/	


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	49.44	51.94	74.00	22.06	Pass	Vertical
2	2410.4631	32.27	13.35	-43.12	78.92	81.42	74.00	-7.42	Pass	Vertical



Mode:	802.11 n(HT20) (6.5Mbps) Transmitting	Channel:	2412
Remark:	AV	/	

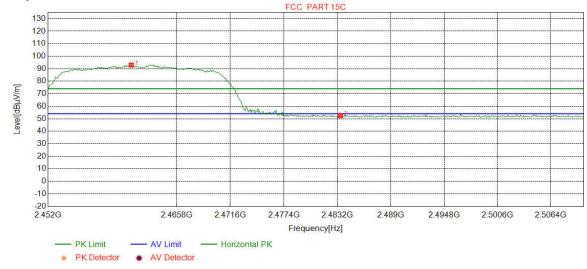
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	38.56	41.06	54.00	12.94	Pass	Horizontal
2	2410.6070	32.27	13.35	-43.11	55.84	58.35	54.00	-4.35	Pass	Horizontal



Page 92 of 122

Mode:	802.11 n(HT20) (6.5Mbps) Transmitting	Channel:	2412
Remark:	AV	/	

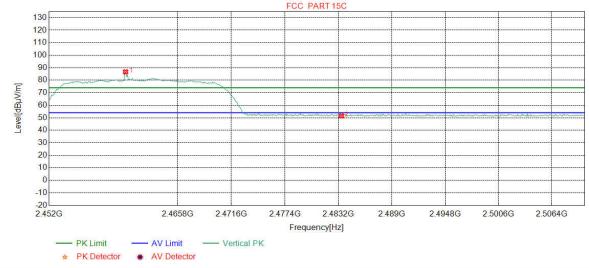
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	38.38	40.88	54.00	13.12	Pass	Vertical
2	2410.4631	32.27	13.35	-43.12	52.20	54.70	54.00	-0.70	Pass	Vertical



Page 93 of 122

Mode:	802.11 n(HT20) (6.5Mbps) Transmitting	Channel:	2462
Remark:	PK	/	

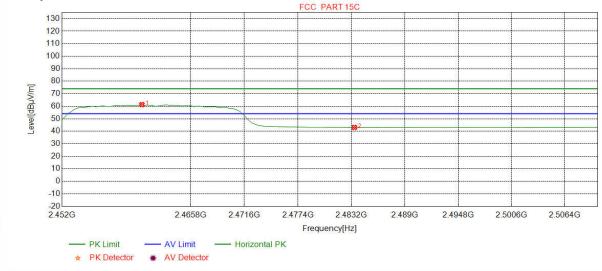
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2460.9287	32.35	13.48	-43.11	90.20	92.92	74.00	-18.92	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	49.86	52.51	74.00	21.49	Pass	Horizontal



Page 94 of 122

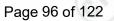
Mode:	802.11 n(HT20) (6.5Mbps) Transmitting	Channel:	2462
Remark:	PK		

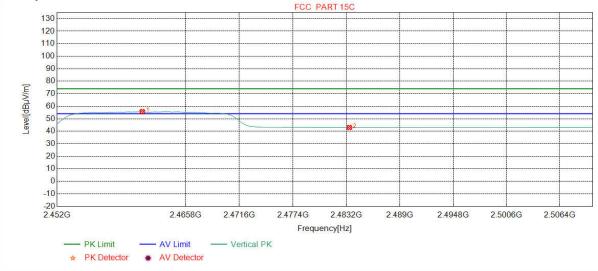
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2460.2028	32.34	13.48	-43.10	83.96	86.68	74.00	-12.68	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	48.85	51.50	74.00	22.50	Pass	Vertical



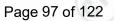
Page 95 of 122

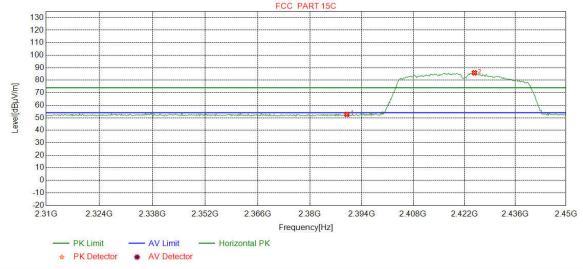
Mode:	802.11 n(HT20) (6.5Mbps) Transmitting	Channel:	2462
Remark:	AV		


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2460.5657	32.34	13.48	-43.10	58.58	61.30	54.00	-7.30	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	40.43	43.08	54.00	10.92	Pass	Horizontal



Mode:	802.11 n(HT20) (6.5Mbps) Transmitting	Channel:	2462
Remark:	AV	/	


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2461.1464	32.35	13.48	-43.11	53.01	55.73	54.00	-1.73	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	40.37	43.02	54.00	10.98	Pass	Vertical



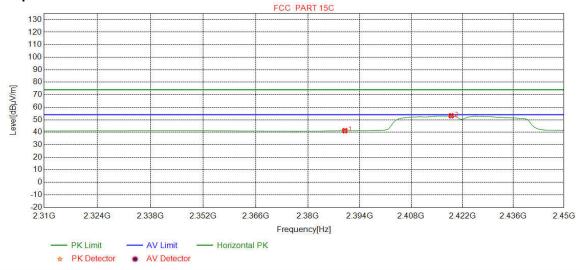
Mode:	802.11 n(HT40) (13.5Mbps) Transmitting	Channel:	2422
Remark:	PK	/	

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	50.19	52.69	74.00	21.31	Pass	Horizontal
2	2424.7685	32.29	13.41	-43.11	83.30	85.89	74.00	-11.89	Pass	Horizontal

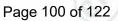
Page 98 of 122

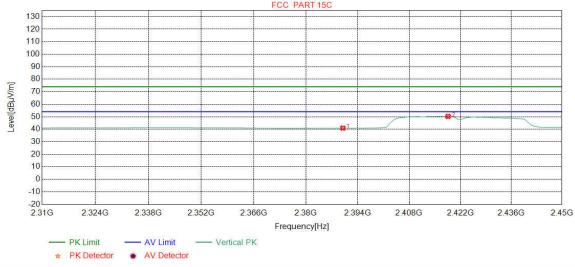
Mode:	802.11 n(HT40) (13.5Mbps) Transmitting	Channel:	2422
Remark:	PK		


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	49.66	52.16	74.00	21.84	Pass	Vertical
2	2416.7084	32.28	13.38	-43.12	75.46	78.00	74.00	-4.00	Pass	Vertical



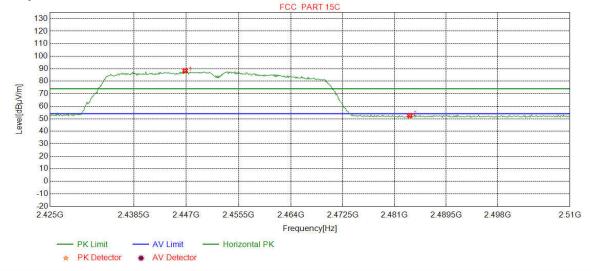
Mode:	802.11 n(HT40) (13.5Mbps) Transmitting	Channel:	2422
Remark:	AV	/	


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	38.73	41.23	54.00	12.77	Pass	Horizontal
2	2418.9862	32.29	13.39	-43.12	50.61	53.17	54.00	0.83	Pass	Horizontal



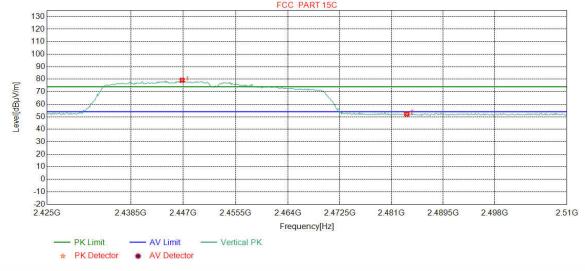
Mode:	802.11 n(HT40) (13.5Mbps) Transmitting	Channel:	2422
Remark:	AV	/	

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	38.43	40.93	54.00	13.07	Pass	Vertical
2	2418.6358	32.29	13.39	-43.12	47.73	50.29	54.00	3.71	Pass	Vertical



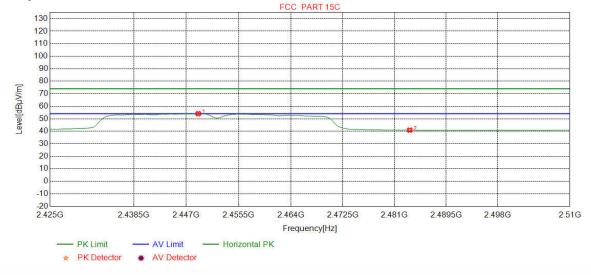
Mode:	802.11 n(HT40) (13.5Mbps) Transmitting	Channel:	2452
Remark:	PK		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2446.8085	32.33	13.52	-43.12	85.65	88.38	74.00	-14.38	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	49.89	52.54	74.00	21.46	Pass	Horizontal



Mode:	802.11 n(HT40) (13.5Mbps) Transmitting	Channel:	2452
Remark:	PK		

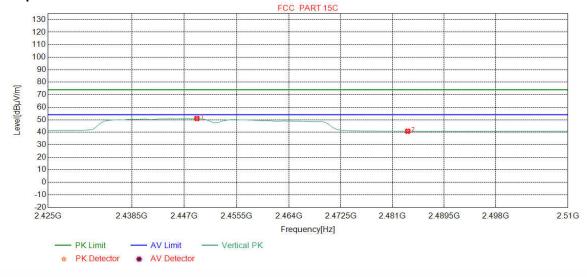
	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
Ī	1	2446.8085	32.33	13.52	-43.12	76.39	79.12	74.00	-5.12	Pass	Vertical
	2	2483.5000	32.38	13.38	-43.11	49.48	52.13	74.00	21.87	Pass	Vertical



Page 103 of 122

Mode:	802.11 n(HT40) (13.5Mbps) Transmitting	Channel:	2452
Remark:	AV		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2448.9362	32.33	13.53	-43.12	51.31	54.05	54.00	-0.05	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	38.28	40.93	54.00	13.07	Pass	Horizontal



Page 104 of 122

Mode:	802.11 n(HT40) (13.5Mbps) Transmitting	Channel:	2452
Remark:	AV	/	

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2449.0426	32.33	13.53	-43.12	48.27	51.01	54.00	2.99	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	38.17	40.82	54.00	13.18	Pass	Vertical

Note:

- 1) Through Pre-scan transmitting mode and charge+transmitter mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbpsof rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40), and then Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 105 of 122

Appendix I): Radiated Spurious Emissions

Receiver Setup:

		-0.		
Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Ab 21/2 4011=	Peak	1MHz	3MHz	Peak
Above 1GHz	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

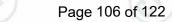
Above 1GHz test procedure as below:

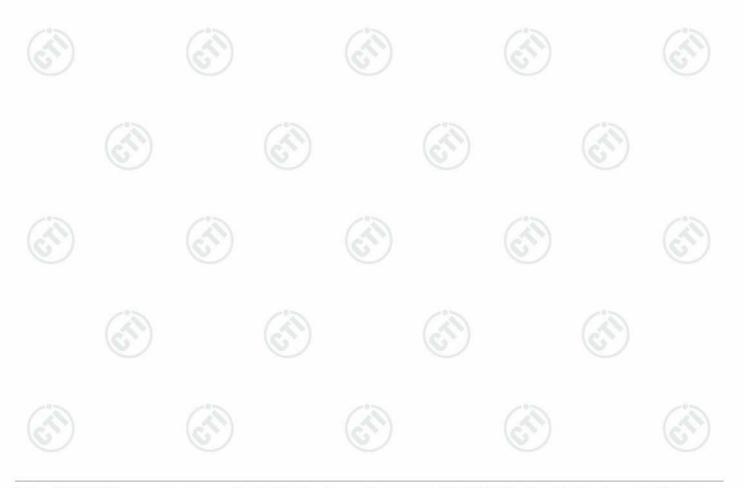
- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel, the middle channel ,the Highest channel .
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

	:		_	:	
ı	ı	n	n	ı	Т

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	(3)	-	300
0.490MHz-1.705MHz	24000/F(kHz)	_	-	30
1.705MHz-30MHz	30	-	-	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.





Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes with all channels, 802.11b, Channel 2437MHz was selected as the worst condition. The test data of the worst-case condition was recorded in this report.

Mode	e:		802.11	b Transm	itting			Channel:		2437		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	36.5967	11.21	0.67	-31.38	52.14	32.64	40.00	7.36	Pass	Н	PK	
2	104.7945	10.95	1.20	-31.98	51.46	31.63	43.50	11.87	Pass	Н	PK	
3	167.9478	8.34	1.52	-31.97	48.58	26.47	43.50	17.03	Pass	Н	PK	
4	250.0180	12.20	1.88	-31.90	48.37	30.55	46.00	15.45	Pass	Н	PK	
5	498.7509	16.98	2.67	-31.90	42.81	30.56	46.00	15.44	Pass	Н	PK	
6	750.0060	20.35	3.29	-32.04	34.28	25.88	46.00	20.12	Pass	Н	PK	
7	36.5967	11.21	0.67	-31.38	52.95	33.45	40.00	6.55	Pass	V	PK	
8	150.0010	7.55	1.45	-32.01	47.84	24.83	43.50	18.67	Pass	V	PK	
9	250.0180	12.20	1.88	-31.90	46.28	28.46	46.00	17.54	Pass	V	PK	
10	439.9630	16.04	2.48	-31.88	38.13	24.77	46.00	21.23	Pass	V	PK	
11	750.0060	20.35	3.29	-32.04	36.05	27.65	46.00	18.35	Pass	V	PK	
12	974.9715	22.55	3.75	-30.95	34.85	30.20	54.00	23.80	Pass	V	PK	

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 107 of 122

Transmitter Emission above 1GHz

Mode	Mode:		802.11	b(1Mbps)	Transmittir	ng		Channel:		2412	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1592.4592	29.01	3.06	-42.91	53.42	42.58	74.00	31.42	Pass	Н	PK
2	1997.4998	31.68	3.47	-43.19	52.68	44.64	74.00	29.36	Pass	Н	PK
3	3911.0607	33.73	4.34	-43.02	50.05	45.10	74.00	28.90	Pass	Н	PK
4	4824.0000	34.50	4.61	-42.80	49.34	45.65	74.00	28.35	Pass	Н	PK
5	7235.2824	36.34	5.79	-42.16	54.43	54.40	74.00	19.60	Pass	Н	PK
6	9648.0000	37.66	6.72	-42.10	46.63	48.91	74.00	25.09	Pass	Н	PK
7	7235.6864	36.34	5.79	-42.15	48.89	48.87	54.00	5.13	Pass	Н	AV
8	1339.6340	28.24	2.81	-42.75	50.96	39.26	74.00	34.74	Pass	V	PK
9	2127.5128	31.88	3.62	-43.18	56.49	48.81	74.00	25.19	Pass	V	PK
10	3992.0661	33.79	4.33	-43.00	52.29	47.41	74.00	26.59	Pass	V	PK
11	4824.0000	34.50	4.61	-42.80	48.50	44.81	74.00	29.19	Pass	V	PK
12	7235.2824	36.34	5.79	-42.16	57.04	57.01	74.00	16.99	Pass	V	PK
13	9648.0000	37.66	6.72	-42.10	46.16	48.44	74.00	25.56	Pass	V	PK
14	7235.7444	36.34	5.79	-42.15	52.76	52.74	54.00	1.26	Pass	V	AV

Mode	Mode:		802.11	b(1Mbps)	Transmittir	ng		Channel:		2437	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1062.0062	27.96	2.52	-43.03	55.61	43.06	74.00	30.94	Pass	Н	PK
2	1594.4594	29.02	3.07	-42.91	53.66	42.84	74.00	31.16	Pass	Н	PK
3	2133.3133	31.89	3.63	-43.18	58.99	51.33	74.00	22.67	Pass	Н	PK
4	4874.0000	34.50	4.78	-42.80	52.41	48.89	74.00	25.11	Pass	Н	PK
5	7310.2874	36.41	5.85	-42.14	54.90	55.02	74.00	18.98	Pass	Н	PK
6	9748.0000	37.70	6.77	-42.10	47.28	49.65	74.00	24.35	Pass	Н	PK
7	7310.7044	36.41	5.85	-42.14	51.22	51.34	54.00	2.66	Pass	Н	AV
8	1254.0254	28.15	2.69	-42.83	51.35	39.36	74.00	34.64	Pass	V	PK
9	2126.1126	31.88	3.62	-43.18	57.80	50.12	74.00	23.88	Pass	V	PK
10	4265.0843	34.17	4.48	-42.90	56.95	52.70	74.00	21.30	Pass	V	PK
11	4874.0000	34.50	4.78	-42.80	50.68	47.16	74.00	26.84	Pass	V	PK
12	7309.2873	36.41	5.85	-42.14	55.75	55.87	74.00	18.13	Pass	V	PK
13	9748.0000	37.70	6.77	-42.10	46.26	48.63	74.00	25.37	Pass	V	PK
14	7308.9753	36.41	5.85	-42.14	48.84	48.96	54.00	5.04	Pass	V	AV

Page 108 of 122

Mode	e:		802.11	b(1Mbps)) Transmittir	ng		Channel:		2462		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1066.6067	27.97	2.53	-43.04	54.94	42.40	74.00	31.60	Pass	Н	PK	
2	1596.6597	29.04	3.07	-42.91	53.07	42.27	74.00	31.73	Pass	Н	PK	
3	3481.0321	33.39	4.47	-43.10	50.69	45.45	74.00	28.55	Pass	Н	PK	
4	4924.0000	34.50	4.85	-42.80	54.56	51.11	74.00	22.89	Pass	Н	PK	
5	7386.2924	36.49	5.85	-42.13	54.50	54.71	74.00	19.29	Pass	Н	PK	
6	9848.0000	37.74	6.83	-42.10	49.07	51.54	74.00	22.46	Pass	Н	PK	
7	7386.0434	36.49	5.85	-42.12	50.69	50.91	54.00	3.09	Pass	Н	AV	
8	1446.8447	28.35	2.95	-42.88	51.56	39.98	74.00	34.02	Pass	V	PK	
9	2123.9124	31.87	3.61	-43.17	57.72	50.03	74.00	23.97	Pass	V	PK	
10	4248.0832	34.15	4.51	-42.90	52.16	47.92	74.00	26.08	Pass	V	PK	
11	4924.0000	34.50	4.85	-42.80	52.75	49.30	74.00	24.70	Pass	V	PK	
12	7386.2924	36.49	5.85	-42.13	54.05	54.26	74.00	19.74	Pass	V	PK	
13	9848.0000	37.74	6.83	-42.10	46.76	49.23	74.00	24.77	Pass	V	PK	
14	7386.0694	36.49	5.85	-42.12	51.12	51.34	54.00	2.66	Pass	V	AV	

Mode	e:		802.11	g(6Mbps)	Transmittir	ng		Channel:		2412		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1331.4331	28.23	2.79	-42.75	54.19	42.46	74.00	31.54	Pass	Н	PK	
2	2657.3657	32.65	4.09	-43.09	55.43	49.08	74.00	24.92	Pass	Н	PK	
3	3362.0241	33.34	4.53	-43.10	49.69	44.46	74.00	29.54	Pass	Н	PK	
4	4824.0000	34.50	4.61	-42.80	47.58	43.89	74.00	30.11	Pass	Н	PK	
5	7236.0000	36.34	5.79	-42.16	45.51	45.48	74.00	28.52	Pass	Н	PK	
6	9648.0000	37.66	6.72	-42.10	45.90	48.18	74.00	25.82	Pass	Н	PK	
7	1363.4363	28.26	2.84	-42.71	51.22	39.61	74.00	34.39	Pass	V	PK	
8	2131.7132	31.88	3.62	-43.16	59.05	51.39	74.00	22.61	Pass	V	PK	
9	4249.0833	34.15	4.51	-42.90	51.63	47.39	74.00	26.61	Pass	V	PK	
10	4824.0000	34.50	4.61	-42.80	47.45	43.76	74.00	30.24	Pass	V	PK	
11	7236.0000	36.34	5.79	-42.16	46.23	46.20	74.00	27.80	Pass	V	PK	
12	9648.0000	37.66	6.72	-42.10	45.60	47.88	74.00	26.12	Pass	V	PK	



Page	109	of	122
------	-----	----	-----

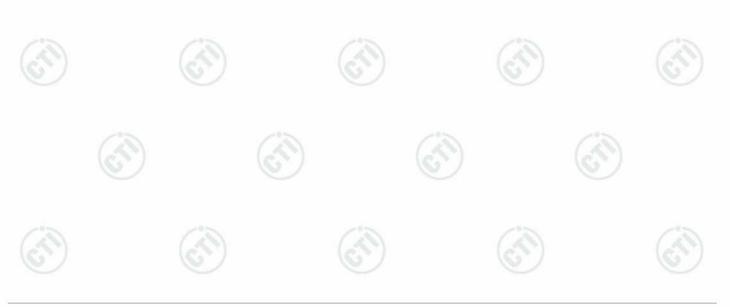
Mode	e:		802.11	g(6Mbps)) Transmittir	ng		Channel:		2437		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1298.2298	28.20	2.75	-42.79	52.53	40.69	74.00	33.31	Pass	Н	PK	
2	2128.3128	31.88	3.62	-43.18	56.52	48.84	74.00	25.16	Pass	Н	PK	
3	3810.0540	33.65	4.37	-43.04	49.66	44.64	74.00	29.36	Pass	Н	PK	
4	4874.0000	34.50	4.78	-42.80	47.61	44.09	74.00	29.91	Pass	Н	PK	
5	7311.0000	36.41	5.85	-42.14	46.48	46.60	74.00	27.40	Pass	Н	PK	
6	9748.0000	37.70	6.77	-42.10	46.41	48.78	74.00	25.22	Pass	Н	PK	
7	1324.0324	28.22	2.78	-42.75	51.17	39.42	74.00	34.58	Pass	V	PK	
8	2130.3130	31.88	3.62	-43.17	54.19	46.52	74.00	27.48	Pass	V	PK	
9	4254.0836	34.16	4.50	-42.90	52.74	48.50	74.00	25.50	Pass	V	PK	
10	4874.0000	34.50	4.78	-42.80	47.49	43.97	74.00	30.03	Pass	V	PK	
11	7311.0000	36.41	5.85	-42.14	47.02	47.14	74.00	26.86	Pass	V	PK	
12	9748.0000	37.70	6.77	-42.10	46.50	48.87	74.00	25.13	Pass	V	PK	

Mode	e:		802.11	g(6Mbps)	Transmittir	ng		Channel:		2462		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1062.8063	27.96	2.52	-43.03	54.95	42.40	74.00	31.60	Pass	Н	PK	
2	1440.0440	28.34	2.94	-42.85	52.21	40.64	74.00	33.36	Pass	Н	PK	
3	1991.8992	31.65	3.46	-43.18	53.31	45.24	74.00	28.76	Pass	Н	PK	
4	4924.0000	34.50	4.85	-42.80	47.17	43.72	74.00	30.28	Pass	Н	PK	
5	7390.2927	36.49	5.85	-42.12	49.65	49.87	74.00	24.13	Pass	Н	PK	
6	10400.493	38.36	7.20	-42.02	48.92	52.46	74.00	21.54	Pass	Н	PK	
7	1421.0421	28.32	2.92	-42.77	51.40	39.87	74.00	34.13	Pass	V	PK	
8	2128.5129	31.88	3.62	-43.17	58.96	51.29	74.00	22.71	Pass	V	PK	
9	4253.0835	34.15	4.50	-42.89	53.31	49.07	74.00	24.93	Pass	V	PK	
10	4924.0000	34.50	4.85	-42.80	47.76	44.31	74.00	29.69	Pass	V	PK	
11	7468.2979	36.57	5.89	-42.11	49.39	49.74	74.00	24.26	Pass	V	PK	
12	9825.4550	37.73	6.69	-42.10	48.36	50.68	74.00	23.32	Pass	V	PK	

Page 110 of 1	122
---------------	-----

Mode	e:		802.11	n(HT20)	(6.5Mbps) T	ransmitting		Channel:		2412	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1062.6063	27.96	2.52	-43.03	54.73	42.18	74.00	31.82	Pass	Н	PK
2	1593.8594	29.02	3.07	-42.92	55.43	44.60	74.00	29.40	Pass	Н	PK
3	4167.0778	34.03	4.50	-42.93	49.71	45.31	74.00	28.69	Pass	Н	PK
4	4824.0000	34.50	4.61	-42.80	47.80	44.11	74.00	29.89	Pass	Н	PK
5	7236.0000	36.34	5.79	-42.16	46.07	46.04	74.00	27.96	Pass	Н	PK
6	9648.0000	37.66	6.72	-42.10	46.77	49.05	74.00	24.95	Pass	Н	PK
7	1261.4261	28.16	2.70	-42.83	51.30	39.33	74.00	34.67	Pass	V	PK
8	2130.7131	31.88	3.62	-43.17	52.17	44.50	74.00	29.50	Pass	V	PK
9	3987.0658	33.79	4.33	-43.00	51.27	46.39	74.00	27.61	Pass	V	PK
10	4824.0000	34.50	4.61	-42.80	47.59	43.90	74.00	30.10	Pass	V	PK
11	7236.0000	36.34	5.79	-42.16	47.30	47.27	74.00	26.73	Pass	V	PK
12	9648.0000	37.66	6.72	-42.10	45.74	48.02	74.00	25.98	Pass	V	PK

Mode	e:		802.11	n(HT20)	(6.5Mbps) T	ransmitting		Channel:		2437		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1063.8064	27.96	2.52	-43.03	55.11	42.56	74.00	31.44	Pass	Н	PK	
2	1329.0329	28.23	2.79	-42.75	52.14	40.41	74.00	33.59	Pass	Н	PK	
3	2660.3660	32.66	4.10	-43.11	57.86	51.51	74.00	22.49	Pass	Н	PK	
4	4874.0000	34.50	4.78	-42.80	46.91	43.39	74.00	30.61	Pass	Н	PK	
5	7311.0000	36.41	5.85	-42.14	45.97	46.09	74.00	27.91	Pass	Н	PK	
6	9748.0000	37.70	6.77	-42.10	47.19	49.56	74.00	24.44	Pass	Н	PK	
7	1338.4338	28.24	2.80	-42.74	51.26	39.56	74.00	34.44	Pass	V	PK	
8	2130.3130	31.88	3.62	-43.17	58.79	51.12	74.00	22.88	Pass	V	PK	
9	4249.0833	34.15	4.51	-42.90	52.90	48.66	74.00	25.34	Pass	V	PK	
10	4874.0000	34.50	4.78	-42.80	47.09	43.57	74.00	30.43	Pass	V	PK	
11	7311.0000	36.41	5.85	-42.14	46.36	46.48	74.00	27.52	Pass	V	PK	
12	9748.0000	37.70	6.77	-42.10	46.66	49.03	74.00	24.97	Pass	V	PK	



Mode:			802.11	n(HT20)	(6.5Mbps) T	ransmitting	Channel:		2462		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1062.6063	27.96	2.52	-43.03	52.43	39.88	74.00	34.12	Pass	Н	PK
2	1595.2595	29.03	3.07	-42.91	52.81	42.00	74.00	32.00	Pass	Н	PK
3	1999.5000	31.70	3.47	-43.20	53.42	45.39	74.00	28.61	Pass	Н	PK
4	4924.0000	34.50	4.85	-42.80	47.20	43.75	74.00	30.25	Pass	Н	PK
5	7386.0000	36.49	5.85	-42.13	47.19	47.40	74.00	26.60	Pass	Н	PK
6	9848.0000	37.74	6.83	-42.10	45.79	48.26	74.00	25.74	Pass	Н	PK
7	1279.2279	28.18	2.72	-42.81	52.36	40.45	74.00	33.55	Pass	V	PK
8	2130.9131	31.88	3.62	-43.17	56.23	48.56	74.00	25.44	Pass	V	PK
9	4257.0838	34.16	4.49	-42.89	53.60	49.36	74.00	24.64	Pass	V	PK
10	4924.0000	34.50	4.85	-42.80	46.90	43.45	74.00	30.55	Pass	V	PK
11	7386.0000	36.49	5.85	-42.13	46.09	46.30	74.00	27.70	Pass	V	PK
12	9848.0000	37.74	6.83	-42.10	46.45	48.92	74.00	25.08	Pass	V	PK

Mode	Mode:			n(HT40)	(13.5Mbps)	Transmitting	Channel:		2422		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1328.6329	28.23	2.79	-42.76	54.51	42.77	74.00	31.23	Pass	Н	PK
2	1995.2995	31.67	3.47	-43.19	53.91	45.86	74.00	28.14	Pass	Н	PK
3	3194.0129	33.28	4.64	-43.10	50.81	45.63	74.00	28.37	Pass	Н	PK
4	4844.0000	34.50	4.66	-42.80	47.40	43.76	74.00	30.24	Pass	Н	PK
5	7266.0000	36.37	5.80	-42.15	46.24	46.26	74.00	27.74	Pass	Н	PK
6	9688.0000	37.68	6.62	-42.10	46.25	48.45	74.00	25.55	Pass	Н	PK
7	1630.6631	29.26	3.11	-42.82	51.70	41.25	74.00	32.75	Pass	V	PK
8	2127.9128	31.88	3.62	-43.18	57.67	49.99	74.00	24.01	Pass	V	PK
9	4252.0835	34.15	4.51	-42.90	52.19	47.95	74.00	26.05	Pass	V	PK
10	4844.0000	34.50	4.66	-42.80	46.74	43.10	74.00	30.90	Pass	V	PK
11	7266.0000	36.37	5.80	-42.15	46.51	46.53	74.00	27.47	Pass	V	PK
12	9688.0000	37.68	6.62	-42.10	47.76	49.96	74.00	24.04	Pass	V	PK

Mode	Mode:			n(HT40)	(13.5Mbps)	Transmitting	Channel:		2437		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1065.0065	27.97	2.53	-43.04	55.20	42.66	74.00	31.34	Pass	Н	PK
2	1440.2440	28.34	2.94	-42.85	52.13	40.56	74.00	33.44	Pass	Н	PK
3	2130.9131	31.88	3.62	-43.17	58.55	50.88	74.00	23.12	Pass	Н	PK
4	4874.0000	34.50	4.78	-42.80	47.01	43.49	74.00	30.51	Pass	Н	PK
5	7311.0000	36.41	5.85	-42.14	46.08	46.20	74.00	27.80	Pass	Н	PK
6	9748.0000	37.70	6.77	-42.10	46.43	48.80	74.00	25.20	Pass	Н	PK
7	1299.2299	28.20	2.75	-42.79	52.33	40.49	74.00	33.51	Pass	V	PK
8	2131.7132	31.88	3.62	-43.16	56.77	49.11	74.00	24.89	Pass	V	PK
9	3992.0661	33.79	4.33	-43.00	52.29	47.41	74.00	26.59	Pass	V	PK
10	4874.0000	34.50	4.78	-42.80	47.49	43.97	74.00	30.03	Pass	V	PK
11	7311.0000	36.41	5.85	-42.14	46.10	46.22	74.00	27.78	Pass	V	PK
12	9748.0000	37.70	6.77	-42.10	46.04	48.41	74.00	25.59	Pass	V	PK

Mode	Mode:			802.11 n(HT40) (13.5Mbps) Transmitting						2452	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1329.6330	28.23	2.79	-42.75	53.18	41.45	74.00	32.55	Pass	Н	PK
2	1997.8998	31.69	3.47	-43.20	52.45	44.41	74.00	29.59	Pass	Н	PK
3	3990.0660	33.79	4.33	-43.00	50.45	45.57	74.00	28.43	Pass	Н	PK
4	4904.0000	34.50	4.88	-42.80	47.22	43.80	74.00	30.20	Pass	Н	PK
5	7356.0000	36.46	5.85	-42.13	46.37	46.55	74.00	27.45	Pass	Н	PK
6	9808.0000	37.72	6.59	-42.10	46.50	48.71	74.00	25.29	Pass	Н	PK
7	1322.4322	28.22	2.78	-42.76	51.19	39.43	74.00	34.57	Pass	V	PK
8	2131.5132	31.88	3.62	-43.17	56.11	48.44	74.00	25.56	Pass	V	PK
9	3989.0659	33.79	4.33	-43.00	52.54	47.66	74.00	26.34	Pass	V	PK
10	4904.0000	34.50	4.88	-42.80	46.12	42.70	74.00	31.30	Pass	V	PK
11	7356.0000	36.46	5.85	-42.13	46.15	46.33	74.00	27.67	Pass	V	PK
12	9808.0000	37.72	6.59	-42.10	46.64	48.85	74.00	25.15	Pass	V	PK

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

