

Antenna Gain Test Report

Report No.: OP20241211

Equipment: Watch

Brand Name: ONEPLUS

Model Name: OPWE242

Manufacturer:

Guangdong OPPO Mobile Telecommunications Corp.,

Ltd.

NO.18 Haibin Road, Wusha Village, Chang'an Town,

Dongguan City, Guangdong, China

Issue Date: December 11th, 2024

Project Engineer:Huiqing Sun Date:2024/12/11

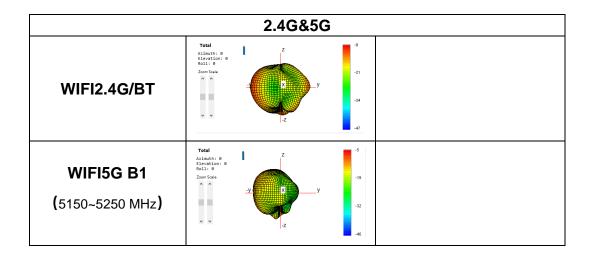
Checked by: Changhong Tang Date: 2024/12/11

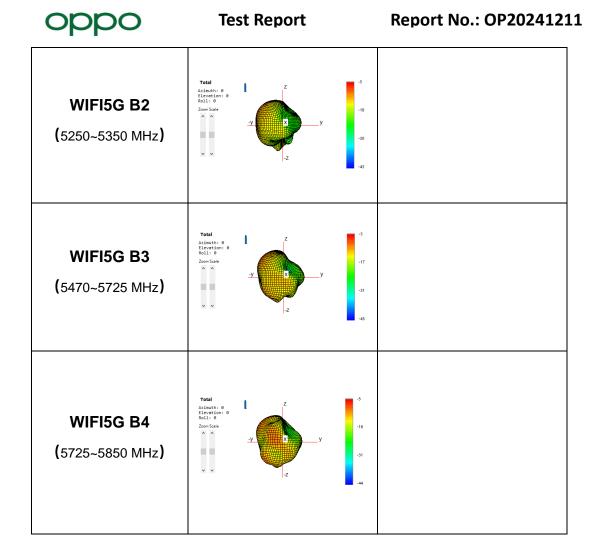
Approved by: Tianping Liang Date:2024/12/11

Test Report

Report No.: OP20241211

Antenna Gain and Antenna Type specification:


Band		Ant	Antenna Gain (dBi)	Antenna model	Antenna Type	Manufacturer
2.4G WIFI	2400~2483.5MHz	Ant1	-3.5	AC181-TOP-	Monopole	
2.4G WIFI	2400~2463.5WHZ	AIILI	-3.3	COVER	antenna	
	5150~5250 MHz	Ant1	-0.5	AC181-TOP-	Monopole	
				COVER	antenna	
	5250 5250 MU-	Ant1	-0.5	AC181-TOP-	Monopole	Everwin
	5250~5350 MHz	Ant1	-0.5	COVER	antenna	Precision Technology Co., Ltd
5G WIFI	5470~5725 MHz	Ant1	-0.5	AC181-TOP-	Monopole	
				COVER	antenna	
	5705 5050 MUI-	A m+1	0.5	AC181-TOP-	Monopole	
	5725~5850 MHz	Ant1	-0.5	COVER	antenna	
ВТ	2400~2483.5MHz	Ant1	-3.5	AC181-TOP-	Monopole	
				COVER	antenna	


Table1 Antenna Gain and Antenna Type specification

Note: Antenna gain was measured in the anechoic chamber, 3D scan was exercised, and the highest numbers are reported in this document.

According to Test standard: IEEE Std 149-2021, we measure antenna gain.

Antenna Radiation Pattern:

List of Test and Measurement Instruments

TEST EQUIPMENT

NO.	Equipment	Manufacturer	Model No.	Cal date	Test Software
1	AMS-8923	ETS-Lingen	SN1702	2024/12/11	
2	Network Analyzer E5071C	Keysight	MY4690575	2024/12/11	EMQuest

Report No.: OP20241211

I. Measurement Setup:

A. Reflection Coefficient Measurement:

Instrument: Network Analyzer (Keysight E5071C).

Setup:

1. Calibrate the Network Analyzer by one port calibration using Keysight 85093C Electronic calibration module.

- 2. Connect the antenna under test to the Network Analyzer.
- 3. Measure the S11(reflection coefficient), Return Loss....

B. Pattern Measurement:

A Fully Anechoic Chamber is used to simulate free-space conditions.

A Fully Anechoic Chamber is a shielded room lined with RF/microwave absorber on all walls, ceiling, and floor.

RF/microwave absorber reduces reflections from the inner walls of the shield.

Absorber performance depends on the depth and design of the absorber and the angle of incidence of the field.

Normal incidence is best, shallower angles are worse.

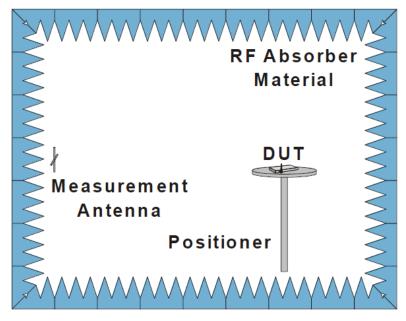


Fig. 4. The fully anechoic chamber