

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.



Certificate Number 5768.01

For Question, Please Contact with WSCT www.wsct-cert.com

# TEST REPORT

FCC ID: 2ADYY-WP02 Product: Smart Watch Model No.: WP02 Trade Mark: TECNO Report No.: WSCT-A2LA-R&E231200023A-BT Issued Date: 12 December 2023

Issued for:

TECNO MOBILE LIMITED FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG

Issued By:

World Standardization Certification & Testing Group(Shenzhen) Co.,Ltd. Building A-B, Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL: +86-755-26996192

FAX: +86-755-86376605

Note: The results contained in this report pertain only to the tested sample. This report shall not be reproduced, except in full, without written approval of World Standardization Certification & Testing Group(Shenzhen) Co., Ltd. This report must not be used by the client to claim product certification, approval, or any agency of the U.S. Government.

AW/5/27 D

WSLT Cherry

ation & Te

3 世标检测认证股份 infration Certifications, BOng Group (Shenzhen) Co. Ltd.

世际检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Member of the WSCT IN

Page 1 of 70



World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.



For Question, Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E231100022A-BT

# TABLE OF CONTENTS

| 1              | WISHT           | AVISET                  | AVISON    | AWS10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 | ATTA |
|----------------|-----------------|-------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------|
| 1.             | Test Certifi    | ication                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | 3    |
| 2.             | Test Resul      | t Summary               | <u>X.</u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,A                                                                                                              | 4    |
| 3.             | EUT Descr       | iption                  | <u></u>   | (TETA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                 | 5    |
| 4.             | ~ /             | ormation                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | 7    |
|                | 4.1. TEST ENVIR | ONMENT AND MODE         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u></u>                                                                                                         |      |
| -/             | 4.2. DESCRIPTIO | ON OF SUPPORT UNITS     | AWSET     | WST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 | 175  |
| 5.             | Facilities a    | nd Accreditations       | s         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | 8    |
| $\overline{)}$ | 5.1. FACILITIES |                         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | 8    |
| 101            | 5.2. ACCREDI    | TATIONS                 | 307       | AT STAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AUSER                                                                                                           | 8    |
|                | 5.3. MEASUREM   | IENT UNCERTAINTY        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | 9    |
|                | 5.4. MEASURE    | EMENT INSTRUMENTS       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | 10   |
| 6.             | Test Resul      | ts and Measurem         | ent Data  | A1734                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>À</u>                                                                                                        | 115  |
| /              | 6.1. ANTENNA R  | EQUIREMENT              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | 11   |
| X              | 6.2. CONDUCTE   | D EMISSION              | <u>X.</u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | 12   |
| 101            | 6.3. CONDUCTE   | D OUTPUT POWER          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | 15   |
|                | 6.4. 20DB Occu  | UPY BANDWIDTH           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /                                                                                                               | 22   |
|                | 6.5. CARRIER FI | REQUENCIES SEPARATION . | X         | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 | 29   |
|                | ATTIN           | HANNEL NUMBER           | ATT 2     | ATTIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Jacob Contraction of the second se | ATTI |
| /              | 6.7. DWELL TIM  | E                       | Aller     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | 39   |
| X              |                 | NDOM FREQUENCY HOPPING  |           | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |      |
|                |                 | D BAND EDGE MEASUREME   |           | And and an other statements of the statements of |                                                                                                                 |      |
| 14/12          | 6.10. CONDUCTE  | D SPURIOUS EMISSION MEA | SUREMENT  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -ALETAR                                                                                                         | 54   |
|                | 6.11. RADIATED  | SPURIOUS EMISSION MEASU | IREMENT   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | 64   |



Zatio

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992300 FAX-86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com 世标检测认证股份



World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.





For Question, Please Contact with WSCT

Report No.: WSCT-A2LA-R&E231100022A-B1

5

Mauro Certifications 50

#### **Test Certification** 1 www.wsct-cert.com Product: Smart Watch Model No .: WP02 Additional TECNO Model: **TECNO MOBILE LIMITED** Applicant: FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG **TECNO MOBILE LIMITED** Manufacturer: FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG Date of Test: 01 December 2023 ~ 10 December 2023 Applicable FCC CFR Title 47 Part 15 Subpart C Section 15.247 Standards:

The above equipment has been tested by World Standardization Certification & Testing Group(Shenzhen)Co., Ltd. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

1ACU Tested By: Checked By: n & i (Qin Shuiguan) (Wang Xiang) WSI Date: Approved By: (Liu Fuxin) fication & Test WSET

世标检测认证股份 Group(Shenzhen) Co., Ltd. ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-756-86376605 E-mail: Fengbing.Wang@wsct-cerl.com Http://www.wsot-cerl.com



World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. ilac MRA





For Question, Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E231100022A-BT

#### **Test Result Summary** 2.

|   | AULANA MULAN                        | The Average of the second s | AUGAN  | (TITA)                     |
|---|-------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------|----------------------------|
| 7 | Requirement                         | CFR 47 Section                                                                                                  | Result |                            |
|   | Antenna Requirement                 | §15.203/§15.247 (c)                                                                                             | PASS   |                            |
|   | AC Power Line Conducted<br>Emission | §15.207                                                                                                         | PASS   | $\checkmark$               |
| 7 | Conducted Peak Output<br>Power      | §15.247 (b)(1)<br>§2.1046                                                                                       | PASS   | WEIT                       |
|   | 20dB Occupied Bandwidth             | §15.247 (a)(1)<br>§2.1049                                                                                       | PASS   |                            |
|   | Carrier Frequencies<br>Separation   | §15.247 (a)(1)                                                                                                  | PASS   | $\mathbf{\mathbf{\nabla}}$ |
|   | Hopping Channel Number              | §15.247 (a)(1)                                                                                                  | PASS   | WETER                      |
| 7 | Dwell Time                          | §15.247 (a)(1)                                                                                                  | PASS   |                            |
|   | Radiated Emission                   | §15.205/§15.209<br>§2.1053, §2.1057                                                                             | PASS   |                            |
|   | Band Edge                           | §15.247(d)<br>§2.1051, §2.1057                                                                                  | PASS   | $\sum$                     |

Note:

ation & Tee

WSEI

S PHOM \* PT

OUP , (Shen

Cot

1. PASS: Test item meets the requirement.

- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26965192 26992300 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsci-cert.com Http://www.wsci-cert.com 世标检测认证股份 Page 4 of 70



7.4

Contration & Test

WSET

BS DUOM \* PT

60

dizatio

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.





For Question, Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E231100022A-BT

# 3. EUT Description

|   | Product Name:               | Smart Watch                                                                                                                                   |
|---|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| / | Model :                     | WP02                                                                                                                                          |
| 1 | Trade Mark:                 | TECNO                                                                                                                                         |
| - | <b>Operation Frequency:</b> | 2402MHz~2480MHz                                                                                                                               |
|   | Channel Separation:         | 1MHz                                                                                                                                          |
|   | Number of Channel:          | 797 / // // // // // // // //                                                                                                                 |
| ( | Modulation Type:            | GFSK, π/4-DQPSK, 8-DPSK                                                                                                                       |
|   | Antenna Type                | Integral Antenna                                                                                                                              |
|   | Antenna Gain:               | 0 dBi                                                                                                                                         |
|   | Operating Voltage           | Li-ion Battery :552123<br>Voltage: 3.8V<br>Rated Capacity: 300mAh<br>Limited Charge Voltage: 4.35V<br>MAGNETIC CHARGER FOR WATCH PRO:INPUT:5V |
|   | Remark:                     | N/A.                                                                                                                                          |



1.1

1-10



WSE7

PHOM \* PT

zatio

oup (Shenzy

世标检测认证股份

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd. ilac MRA





Report No.: WSCT-A2LA-R&E231100022A-BT

For Question Contact with WSCT

|    | Operatio    | n Frequenc | y each o | f channel fo | or GFSK | , π/4-DQPS | K, 8DPSP | Piease C | wsct-cert.com |
|----|-------------|------------|----------|--------------|---------|------------|----------|----------|---------------|
|    | Channel     | Frequency  | Channel  | Frequency    | Channel | Frequency  | Channel  |          |               |
| ,  | 210141      | 2402MHz    | 20       | 2422MHz      | 40      | 2442MHz    | 60       | 2462MHz  | YATAT         |
|    | 1           | 2403MHz    | 21       | 2423MHz      | 41      | 2443MHz    | 61       | 2463MHz  |               |
|    |             | $\wedge$   |          | $\wedge$     |         | $\wedge$   |          |          |               |
| 1  | 10          | 2412MHz    | 30       | 2432MHz      | 50      | 2452MHz    | 70       | 2472MHz  |               |
|    | 11          | 2413MHz    | 31       | 2433MHz      | 51      | 2453MHz    | 71       | 2473MHz  |               |
|    | X           |            | X        |              | X       |            | X        |          | X             |
|    | 18          | 2420MHz    | 38       | 2440MHz      | 58      | 2460MHz    | 78       | 2480MHz  | $ \land $     |
|    | <b>2119</b> | 2421MHz    | 39       | 2441MHz      | 59      | 2461MHz    | 1:474    |          | WSET          |
| e" |             |            |          |              |         |            |          |          |               |

Remark: Channel 0, 39 &78 have been tested for GFSK,  $\pi/4$ -DQPSK, 8DPSK modulation mode.

150

X



14

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX 86-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

671







Please Contact with WSCT

www.wsct-cert.com

Member of the WSCT IN

Report No.: WSCT-A2LA-R&E231100022A-BT

# 4. Genera Information

4.1. Test environment and mode

### Operating Environment:

| Temperature:          | 25.0 °C   |
|-----------------------|-----------|
| Humidity:             | 56 % RH   |
| Atmospheric Pressure: | 1010 mbar |

#### Test Mode:

Engineering mode:

Keep the EUT in continuous transmitting by select channel and modulations with Fully-charged battery

ilac-MRA

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

# 4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| Equipment | Model No. | Serial No. | FCC ID | Trade Name |
|-----------|-----------|------------|--------|------------|
|           | 1         |            | 1      | 1          |

Note:

M \* P

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 20dB Occupied Bandwidth, Carrier Frequencies Separation, Hopping Channel Number, Dwell Time, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL: 86-755-26996192 26992306 FAX 66-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com







For Question, Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E231100022A-BT

# 5. Facilities and Accreditations

# 5.1. Facilities

non & Te

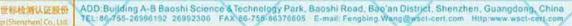
WOM \* P

5

All measurement facilities used to collect the measurement data are located at Building A-B, Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China of the World Standardization Certification & Testing Group(Shenzhen) CO., LTD

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

#### 5.2. ACCREDITATIONS CNAS - Registration Number: L3732


China National Accreditation Service for Conformity Assessment, The test firm Registration Number: L3732

#### FCC - Designation Number: CN1303

World Standardization Certification & Testing Group(Shenzhen) CO., LTD. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Designation Number: CN1303.

#### A2LA - Certificate Number: 5768.01

The EMC Laboratory has been accredited by the American Association for Laboratory Accreditation (A2LA).Certification Number: 5768.01





alon & Te

WSET

PHOM \* PT

5 (Sher





Certificate #5768.01

For Question Please Contact with WSCT www.wsct-cert.com

# Report No.: WSCT-A2LA-R&E231100022A-BT

# 5.3. Measurement Uncertainty

The reported uncertainty of measurement  $y \pm U$ , where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

|   | No. | Item                                                  | MU      |
|---|-----|-------------------------------------------------------|---------|
| 2 | 7   | Duty Cycle and Tx-Sequence and Tx-Gap                 | ±1%     |
|   | 2   | Dwell Time and Minimum Frequency Occupation           | ±1.2%   |
| 8 | 3   | Medium Utilisation Factor                             | ±1.3%   |
| 1 | 4   | Occupied Channel Bandwidth                            | ±2.4%   |
|   | 5   | Transmitter Unwanted Emission in the out-of Band      | ±1.3%   |
| 2 | 6   | Transmitter Unwanted Emissions in the Spurious Domain | ±2.5%   |
|   | 7   | Receiver Spurious Emissions                           | ±2.5%   |
|   | 8   | Conducted Emission Test                               | ±3.2dB  |
| 7 | 9   | RF power, conducted                                   | ±0.16dB |
|   | 10  | Spurious emissions, conducted                         | ±0.21dB |
| Ż | 11  | All emissions, radiated(<1GHz)                        | ±4.7dB  |
|   | 12  | All emissions, radiated(>1GHz)                        | ±4.7dB  |
|   | 13  | Temperature                                           | ±0.5°C  |
| 1 | 14  | Humidity                                              | ±2.0%   |





ation & Te

WSEI

B PHOM \* PT

oup (Shen

00

Cot

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.





Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E231100022A-BT

# 5.4. MEASUREMENT INSTRUMENTS

|   | J.4. WILASU                                | REIMEININSI               |                  |                  | $\wedge$            | www.wsc             | t-cert.com |
|---|--------------------------------------------|---------------------------|------------------|------------------|---------------------|---------------------|------------|
|   | NAME OF<br>EQUIPMENT                       | MANUFACTURER              | MODEL            | SERIAL<br>NUMBER | Calibration<br>Date | Calibration<br>Due. | डाम        |
|   | Test software                              | <                         | EZ-EMC           | CON-03A          | -                   | X-                  |            |
| 3 | Test software                              |                           | MTS8310          | ATTER            | - /                 | ATAT                |            |
|   | EMI Test Receiver                          | R&S                       | ESCI             | 100005           | 11/05/2023          | 11/04/2024          |            |
|   | LISN                                       | AFJ                       | LS16             | 16010222119      | 11/05/2023          | 11/04/2024          | X          |
|   | LISN(EUT)                                  | Mestec                    | AN3016           | 04/10040         | 11/05/2023          | 11/04/2024          | SET        |
|   | Universal Radio<br>Communication<br>Tester | R&S                       | CMU 200          | 1100.0008.02     | 11/05/2023          | 11/04/2024          |            |
|   | Coaxial cable                              | Megalon                   | LMR400           | N/A              | 11/05/2023          | 11/04/2024          |            |
|   | GPIB cable                                 | Megalon                   | GPIB             | N/A              | 11/05/2023          | 11/04/2024          | 1          |
|   | Spectrum Analyzer                          | R&S                       | FSU              | 100114           | 11/05/2023          | 11/04/2024          | $\times$   |
|   | Pre Amplifier                              | HP                        | HP8447E          | 2945A02715       | 11/05/2023          | 11/04/2024          | 514        |
|   | Pre-Amplifier                              | CDSI                      | PAP-1G18-38      |                  | 11/05/2023          | 11/04/2024          |            |
|   | Bi-log Antenna                             | SCHWARZBECK               | VULB9168         | 01488            | 7/29/2023           | 7/28/2024           |            |
|   | 9*6*6 Anechoic                             |                           | ISET -           | WISTT            | 11/05/2023          | 11/04/2024          | _          |
|   | Horn Antenna                               | COMPLIANCE<br>ENGINEERING | CE18000          | -                | 11/05/2023          | 11/04/2024          | $\times$   |
|   | Horn Antenna                               | SCHWARZBECK               | BBHA9120D        | 9120D-631        | 11/05/2023          | 11/04/2024          |            |
|   | Cable                                      | TIME MICROWAVE            | LMR-400          | N-TYPE04         | 11/05/2023          | 11/04/2024          | 6141       |
|   | System-Controller                          | ccs                       | N/A              | N/A              | N.C.R               | N.C.R               |            |
|   | Turn Table                                 | ccs                       | N/A              | N/A              | N.C.R               | N.C.R               |            |
|   | Antenna Tower                              | CCS                       | N/A              | N/A              | N.C.R               | N.C.R               | 1          |
|   | RF cable                                   | Murata                    | MXHQ87WA300<br>0 | -                | 11/05/2023          | 11/04/2024          | Х          |
|   | Loop Antenna                               | EMCO                      | 6502             | 00042960         | 11/05/2023          | 11/04/2024          | 15/10      |
| / | Horn Antenna                               | SCHWARZBECK               | BBHA 9170        | 1123             | 11/05/2023          | 11/04/2024          |            |
|   | Power meter                                | Anritsu                   | ML2487A          | 6K00003613       | 11/05/2023          | 11/04/2024          |            |
|   | Power sensor                               | Anritsu                   | MX248XD          | AUST             | 11/05/2023          | 11/04/2024          |            |
|   | Spectrum Analyzer                          | Keysight                  | N9010B           | MY60241089       | 11/05/2023          | 11/04/2024          | 1          |
|   | ~                                          | ~                         | ~                | 6                | ~                   |                     | ~          |







Please Contact with WSCT

www.wsct-cert.com

Member of the WSCT IN

Report No.: WSCT-A2LA-R&E231100022A-BT

# 6. Test Results and Measurement Data

# 6.1. Antenna requirement

#### Standard requirement: FCC Part15 C

FCC Part15 C Section 15.203 /247(c)

#### 15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

#### E.U.T Antenna:

Ś

M \* P

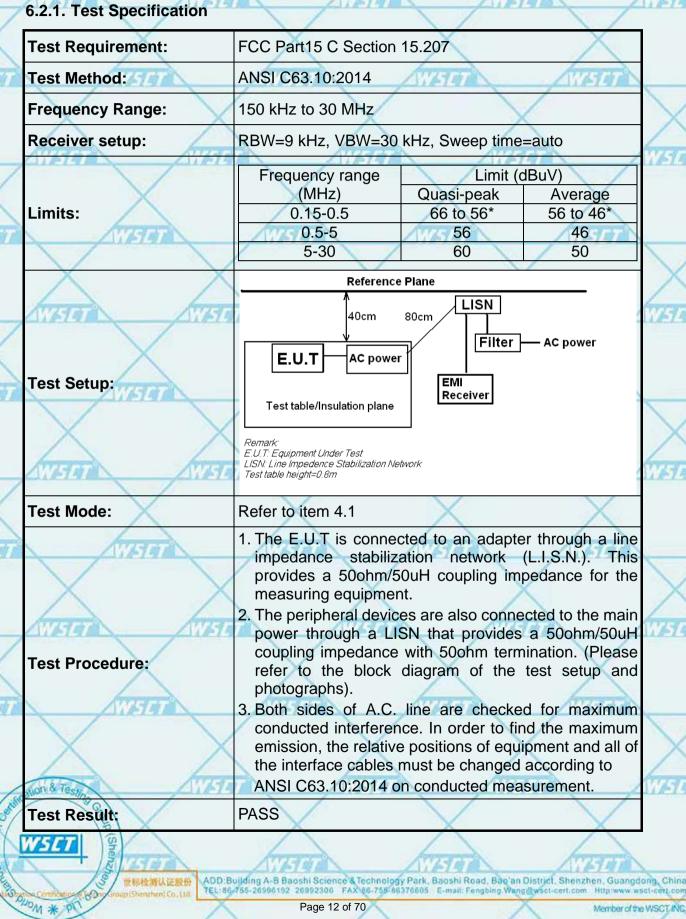
The Bluetooth antenna is a Integral Antenna. it meets the standards, and the best case gain of the antenna is 0 dBi.

Antenna

MOY.MA0021.0



World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. ilac-MRA






For Question Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E231100022A-BT

#### 6.2. **Conducted Emission**



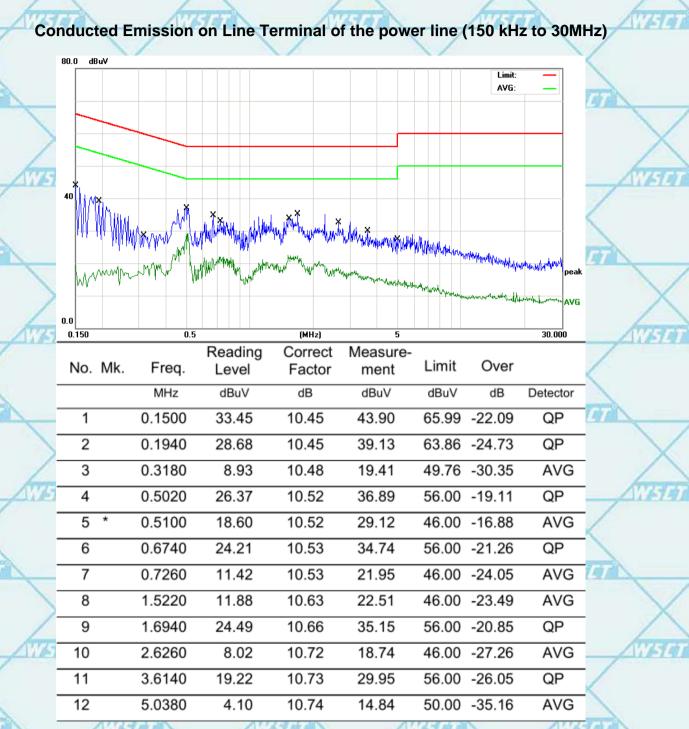


PHOM \* P

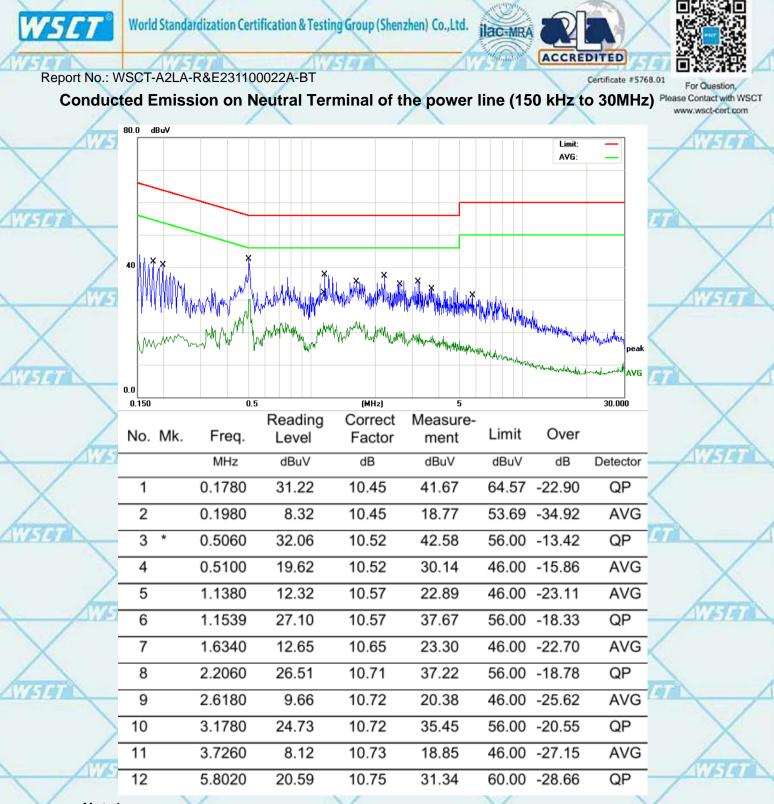
Jup (Shen

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.






For Question, Please Contact with WSCT


www.wsct-cert.com

Report No.: WSCT-A2LA-R&E231100022A-BT

#### 6.2.2. Test data



林海认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL 86-755-26996192 26992308 FAX 86-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Hitp:www.wsci-cert.com



#### Note1:

PHOM \* P

Cer

Freq. = Emission frequency in MHz

Reading level ( $dB\mu V$ ) = Receiver reading

Corr. Factor (dB) = LISN Factor + Cable loss

- Measurement  $(dB\mu V) = Reading \, level \, (dB\mu V) + Corr. Factor (dB)$
- Limit  $(dB\mu V) = Limit$  stated in standard
- Margin (dB) = Measurement (dB $\mu$ V) Limits (dB $\mu$ V)
- Q.P. = Quasi-Peak AVG = average
  - \* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

#标检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bão'an District, Shenzhen, Guangdong, China TEL:86,755-26996192 26992306 FAX 66-755 86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com



110

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.





Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E231100022A-BT

# 6.3. Conducted Output Power

| 6.3.1. | Test | Specification |
|--------|------|---------------|
| 010111 |      | opeeniealien  |

| A                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FCC Part15 C Section 15.247 (b)(3)                                                                                                                                                                                                                                                                                                                                                                                                |
| ANSI C63.10:2014                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Section 15.247 (b) The maximum peak conducted output<br>power of the intentional radiator shall not exceed the<br>following: (1) For frequency hopping systems operating<br>in the 2400-2483.5 MHz band employing at least 75<br>non-overlapping hopping channels, and all frequency<br>hopping systems in the 5725-5850 MHz band: 1 watt.<br>For all other frequency hopping systems in the<br>2400-2483.5 MHz band 0.125 watts. |
| Spectrum Analyzer EUT                                                                                                                                                                                                                                                                                                                                                                                                             |
| Transmitting mode with modulation                                                                                                                                                                                                                                                                                                                                                                                                 |
| Use the following spectrum analyzer settings:<br>Span = approximately 5 times the 20 dB bandwidth,<br>centered on a hopping channel<br>RBW > the 20 dB bandwidth of the emission being<br>measured VBW ≥ RBW<br>Sweep = auto<br>Detector function = peak<br>Trace = max hold<br>Allow the trace to stabilize.<br>Use the marker-to-peak function to set the marker to the<br>peak of the emission.                                |
| PASS                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                   |



oup (Shenzh

Contration & Test

世际检测认证表的 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China n(Shenzhen Fo. Ivi) TEL:86-755-26996192 26992300 FAX 86-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

1.1



110

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.





For Question, Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E231100022A-BT

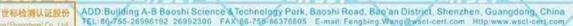
### 6.3.2. Test Data

| GFSK mode    |             |        |      |  |  |  |
|--------------|-------------|--------|------|--|--|--|
| Test channel | Limit (dBm) | Result |      |  |  |  |
| Lowest       | 6.50        | 20.97  | PASS |  |  |  |
| Middle       | 6.34        | 20.97  | PASS |  |  |  |
| Highest      | 5.54        | 20.97  | PASS |  |  |  |

| PI/4DQPSK mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |                          |                                                                                                                 |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------|--|--|
| Test channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Peak Output Power<br>(dBm) | Limit (dBm)              | Result                                                                                                          |  |  |
| Lowest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.16                       | 20.97                    | PASS                                                                                                            |  |  |
| Middle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.02                       | 20.97                    | PASS                                                                                                            |  |  |
| Highest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.28                       | 20.97                    | PASS                                                                                                            |  |  |
| (Annual Contraction of the Contr | farmen far                 | and second second second | The second se |  |  |

| 8DPSK mode   |                            |             |        |
|--------------|----------------------------|-------------|--------|
| Test channel | Peak Output Power<br>(dBm) | Limit (dBm) | Result |
| Lowest       | 7.31                       | 20.97       | PASS   |
| Middle       | 7.29                       | 20.97       | PASS   |
| Highest      | 6.54                       | 20.97       | PASS   |

Test plots as follows:


Contration & Test

WSE7

S DUOM \* PT

dizatio

youp (Shenzy





11510

Mound and

Stoup

60

(Shenz)

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. ilac-MRA





Report No.: WSCT-A2LA-R&E231100022A-BT



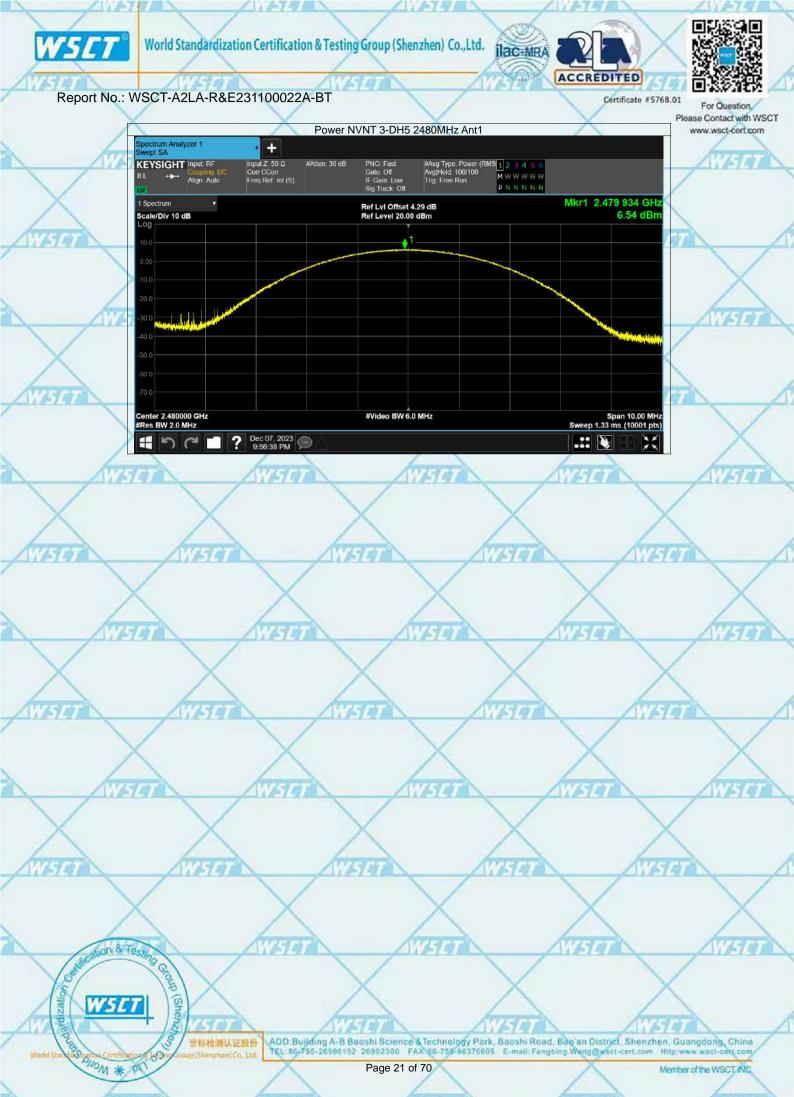
ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China TEL:86-755-26996192-26992308 FAX-86-755-86376605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com 世标检测认证股份



Member of the WSCT INC

BB DUOM \* PT




世际检测认证数的 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China niShanzhen Co. Lts. TEL:86-755-26996192 26992306 FAX 86-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

BB DUOM \* PT



Member of the WSCT INC

Mound and





1.00

Contration & Tes

WSE7

S PHOM \* PT

Zatio.

oup (Shenzk

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.





Report No.: WSCT-A2LA-R&E231100022A-BT

## 6.4. 20dB Occupy Bandwidth

Please Contact with WSCT www.wsct-cert.com

| 6.4.1. Test Specification | Ter Wister Wister                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14 |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
| Test Requirement:         | FCC Part15 C Section 15.247 (a)(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| Test Method:              | ANSI C63.10:2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _  |
| Limit:                    | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1  |
| Test Setup:               | Spectrum Analyzer EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| Test Mode:                | Transmitting mode with modulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| Test Procedure:           | <ol> <li>The testing follows ANSI C63.10:2014 Measurement<br/>Guidelines.</li> <li>The RF output of EUT was connected to the spectrum<br/>analyzer by RF cable and attenuator. The path loss<br/>was compensated to the results for each<br/>measurement.</li> <li>Set to the maximum power setting and enable the<br/>EUT transmit continuously.</li> <li>Use the following spectrum analyzer settings for 20dB<br/>Bandwidth measurement.<br/>Span = approximately 2 to 5 times the 20 dB<br/>bandwidth, centered on a hopping channel; 1%≤<br/>RBW≤5% of the 20 dB bandwidth; VBW≥3RBW;<br/>Sweep = auto; Detector function = peak; Trace = max<br/>hold.</li> <li>Measure and record the results in the test report.</li> </ol> |    |
| Test Result:              | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5  |
| X                         | X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |

世际检测认证表的 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China n(Shenzhen) [o. III] TEL:86,755-26996192 26992306 FAX 86-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com



World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.



75



Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E231100022A-BT

#### 6.4.2. Test data

| K | Test channel | 20dB Occupy Bandwidth (MHz) |           |       |            |
|---|--------------|-----------------------------|-----------|-------|------------|
|   | Test channel | GFSK                        | π/4-DQPSK | 8DPSK | Conclusion |
|   | Lowest       | 0.957                       | 1.306     | 1.298 | PASS       |
|   | Middle       | 0.942                       | 1.304     | 1.316 | PASS       |
| 1 | Highest      | 0.956                       | 1.312     | 1.294 | PASS       |
|   |              |                             | A         |       | ~          |

15E

Test plots as follows:

1.1.

Contineation & Test

WSE7

BODUOM \* PT

60

dizatio

12512



150

16-12



World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. ilac-MRA





Report No.: WSCT-A2LA-R&E231100022A-BT













110

Contration & Tes

WSET

B DUOM \* DT

Zatio.

oup (Shenzk

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. ilac MRA





Report No.: WSCT-A2LA-R&E231100022A-BT

#### **Carrier Frequencies Separation** 6.5.

For Question Please Contact with WSCT www.wsct-cert.com

| 6.5.1. Test Specificatio |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Requirement:        | FCC Part15 C Section 15.247 (a)(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Test Method:             | ANSI C63.10:2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Limit:                   | Frequency hopping systems operating in the<br>2400-2483.5 MHz band may have hopping channel<br>carrier frequencies that are separated by 25 kHz or<br>two-thirds of the 20 dB bandwidth of the hopping<br>channel, whichever is greater.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Test Setup:              | Spectrum Analyzer EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Test Mode:               | Hopping mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Test Procedure:          | <ol> <li>The testing follows ANSI C63.10:2014 Measurement<br/>Guidelines.</li> <li>The RF output of EUT was connected to the spectrum<br/>analyzer by RF cable and attenuator. The path loss was<br/>compensated to the results for each measurement.</li> <li>Set to the maximum power setting and enable the EUT<br/>transmit continuously.</li> <li>Enable the EUT hopping function.</li> <li>Use the following spectrum analyzer settings:<br/>Span = wide enough to capture the peaks of two adjacent<br/>channels; RBW is set to approximately 30% of the channel<br/>spacing, adjust as necessary to best identify the center of<br/>each individual channel; VBW≥RBW; Sweep = auto;<br/>Detector function = peak; Trace = max hold.</li> <li>Use the marker-delta function to determine the separation<br/>between the peaks of the adjacent channels. Record the<br/>value in report.</li> </ol> |
| Test Result:             | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com 世标检测认证股份

1.1



World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.





Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E231100022A-BT

# 6.5.2. Test data

| GFSK mode    |                                         |             |        |
|--------------|-----------------------------------------|-------------|--------|
| Test channel | Carrier Frequencies<br>Separation (MHz) | Limit (MHz) | Result |
| Lowest       | 1.008                                   | 2/3*20dB BW | PASS   |
| Middle       | 0.998                                   | 2/3*20dB BW | PASS   |
| Highest      | 1.024                                   | 2/3*20dB BW | PASS   |
|              |                                         | PIAN        |        |

| Pi/4 DQPSK mode |                                         |             |        |
|-----------------|-----------------------------------------|-------------|--------|
| Test channel    | Carrier Frequencies<br>Separation (MHz) | Limit (MHz) | Result |
| Lowest          | 0.996                                   | 2/3*20dB BW | PASS   |
| Middle          | 1.014                                   | 2/3*20dB BW | PASS   |
| Highest         | 1,156                                   | 2/3*20dB BW | PASS   |

|      | 8DPSK mode |                                         |             |        |
|------|------------|-----------------------------------------|-------------|--------|
| Test | channel    | Carrier Frequencies<br>Separation (MHz) | Limit (MHz) | Result |
| Lo   | west       | 1.002                                   | 2/3*20dB BW | PASS   |
| Mi   | ddle       | 0.998                                   | 2/3*20dB BW | PASS   |
| Hiç  | ghest      | 0.982                                   | 2/3*20dB BW | PASS   |

Test plots as follows:

oup (Shenz

Contration & Tes

WSET

S PHOM \* PT

Zatio.





11510

BODUOM \* PT

roup

(Shenz)

69

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd. ilac-MRA





Report No.: WSCT-A2LA-R&E231100022A-BT



ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26965192 26992300 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsci-cert.com Http://www.wsci-cert.com 世标检测认证股份



WSC

BO MOM \* PT

toup

(Shenz)

60

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd. ilac-MRA





Report No.: WSCT-A2LA-R&E231100022A-BT



ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China TEL:86-765-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing, Wang@wsct-cert.com Http://www.wsct-cert.com 世标检测认证股份



WSC

BO MOM \* PT

(oup

60

(Shenz)

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd. ilac-MRA





Certificate #5768.01

#### Report No.: WSCT-A2LA-R&E231100022A-BT



ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China TEL:86-765-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing, Wang@wsct-cert.com Http://www.wsct-cert.com 世标检测认证股份




世际检测认证表的 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China nShenzhen Fo. Lin TEL:86-755-26996192 26992300 FAX 86-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Hitp:www.wsci-cert.com

(Shenz)

60

WSC

BO MOM \* PT





World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

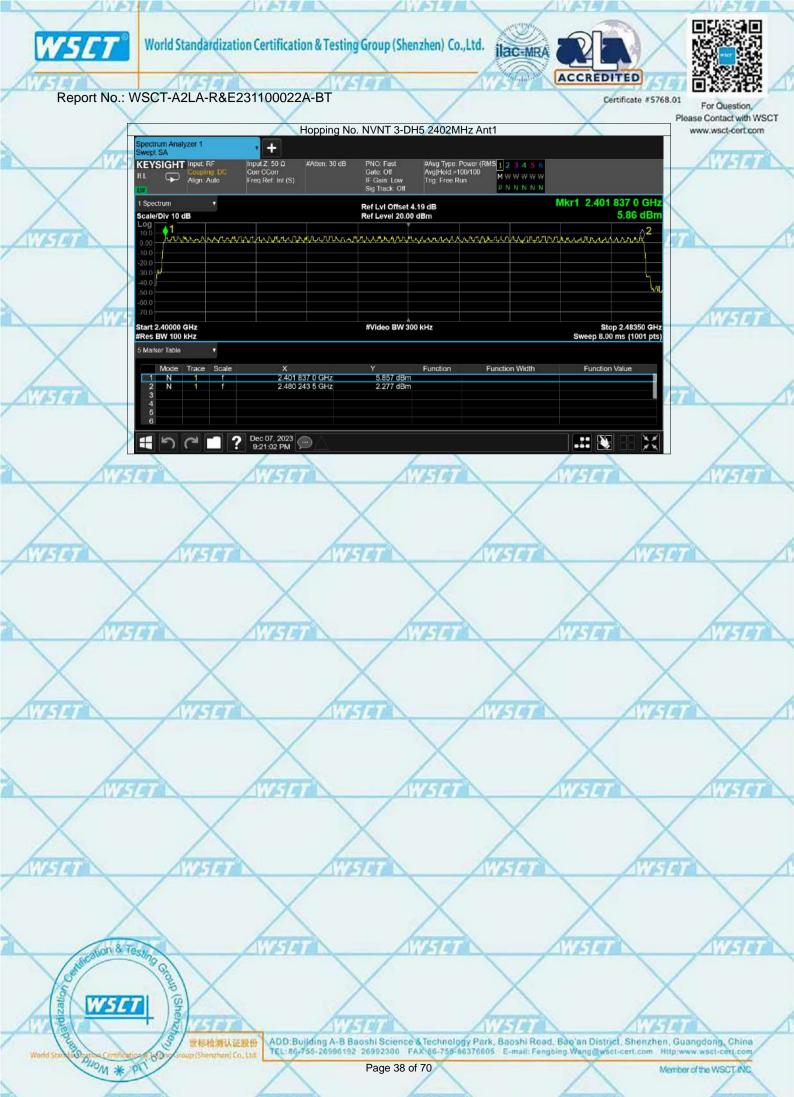




Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E231100022A-BT

# 6.6. Hopping Channel Number


### 6.6.1. Test Specification

| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Test Requirement: | FCC Part15 C Section 15.247 (a)(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Test Method:      | ANSI C63.10:2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Limit:            | Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Test Setup:       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Test Mode:        | Spectrum Analyzer         EUT           Hopping mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Test Mode:       Hopping mode         1. The testing follows ANSI C63.10:2014 Measu Guidelines.       1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuato path loss was compensated to the results for measurement.         3. Set to the maximum power setting and enable EUT transmit continuously.         4. Enable the EUT hopping function.         5. Use the following spectrum analyzer settings: the frequency band of operation; set the RBW than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; = auto; Detector function = peak; Trace = max |                   | <ol> <li>The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.</li> <li>Set to the maximum power setting and enable the EUT transmit continuously.</li> <li>Enable the EUT hopping function.</li> <li>Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold.</li> <li>The number of hopping frequency used is defined as</li> </ol> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Test Result:      | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Automa Autom      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

Contraction & Testing Grand

世标检测认证数码 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China nShenzhen Co. List. 86,755-25996192, 26992300 FAX 86-755-86376605 E-mail: Fengbing Wang@wscl-cert.com, Hitp://www.wscl-cert.com

| W51              | World Standardization Certificatio                                                                                                                               | n & Testing Group (Shenzhen) Co.                                                             |                                |                                              |         |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------|---------|
| Le.              |                                                                                                                                                                  |                                                                                              |                                |                                              | 1       |
| Repor            | t No.: WSCT-A2LA-R&E231100022A                                                                                                                                   | A-BT                                                                                         |                                | Certificate #5768.01<br>For Question         | 4       |
| 6.6              | 5.2. Test data                                                                                                                                                   |                                                                                              | X                              | Please Contact with WSC<br>www.wsct-cert.com | т       |
|                  | Mode                                                                                                                                                             | Hopping channel<br>numbers                                                                   | Limit                          | Result                                       | 4       |
| X                | GFSK, P/4-DQPSK, 8DPSK                                                                                                                                           | 79                                                                                           | 15                             | PASS                                         |         |
| WISIA            | Fest plots as follows:                                                                                                                                           | ATTAC                                                                                        | ATT A                          | WEIT                                         | 1       |
|                  |                                                                                                                                                                  | Test Graphs<br>opping No. NVNT 1-DH5 2402MI                                                  | Hz Ant1                        | $ \vee$                                      |         |
|                  |                                                                                                                                                                  | #Atten: 30 dB PNO: Fast #Avg Type: P<br>Gate: Off Avg Hold.>10                               | ower (RMS 1 2 3 4 5 6          |                                              |         |
| $\checkmark$     | Align: Auto Freq Ret: Int (S)                                                                                                                                    | IF Gain: Low Trig: Free Ru<br>Sig Track: Off                                                 |                                | 401 837 0 GHz                                | 1       |
| $\mathbf{X}$     | 1 Spectrum ▼<br>Scale/Div 10 dB<br>Log<br>100 ▲1                                                                                                                 | Ref LvI Offset 4.19 dB<br>Ref Level 20.00 dBm                                                |                                | 6.30 dBm                                     |         |
| AVERAT           | 0.00<br>-100<br>-200                                                                                                                                             | www.www.www.www.www.                                                                         | www.www.www.www.ww             | MMMMA                                        | X       |
|                  | -30.0<br>-40.0 IV<br>-50.0                                                                                                                                       |                                                                                              |                                |                                              |         |
|                  | -50.0<br>-70.0                                                                                                                                                   |                                                                                              |                                |                                              |         |
|                  | Start 2.40000 GHz<br>#Res BW 100 kHz<br>5 Marker Table                                                                                                           | #Video BW 300 kHz                                                                            | Sweep                          | Stop 2.48350 GHz<br>8.00 ms (1001 pts)       | 4       |
| $\sim$           | Mode         Trace         Scale         X           1         N         1         f         2.401 83           2         N         1         f         2.479 99 |                                                                                              | Function Width Fun             | ction Value                                  |         |
| Antes            | 2 N 1 f 2.479 99<br>3<br>4<br>5                                                                                                                                  | 5 0 GH2 5.201 UDIT                                                                           |                                |                                              | 1       |
|                  | E つ C I ? Dec 07, 2023 @<br>8:49:24 PM                                                                                                                           |                                                                                              |                                |                                              | (Creat) |
|                  | Spectrum Analyzer 1                                                                                                                                              | opping No. NVNT 2-DH5 2402MI                                                                 | Hz Ant1                        |                                              |         |
|                  |                                                                                                                                                                  | #Atten: 30 dB PNO: Fast #Avg Type: P<br>Gate: Off Avg Hold:>10<br>IF Gain: Low Trig: Free Ru | n Pi ++ ++ ++ ++               | AVE                                          | 4       |
| $\times$         | 1 Spectrum   Scale/Div 10 dB                                                                                                                                     | Sig Track: Off                                                                               | PNNNN<br>Mkr1 2.4              | 402 004 0 GHz<br>4.71 dBm                    |         |
| ALT AND          |                                                                                                                                                                  | Ref Level 20.00 dBm                                                                          | annanananan                    | <u>^2</u>                                    | 1       |
|                  | -100<br>-200<br>-300                                                                                                                                             |                                                                                              |                                |                                              | -       |
|                  | -40.0<br>-50.0<br>-60.0                                                                                                                                          |                                                                                              |                                |                                              |         |
|                  | 70 0<br>Start 2.40000 GHz<br>#Res BW 100 kHz                                                                                                                     | #Video BW 300 kHz                                                                            | Sween                          | Stop 2.48350 GHz<br>8.00 ms (1001 pts)       | 1       |
| $\sim$           | 5 Marker Table 🔻<br>Mode Trace Scale X                                                                                                                           | Y Function                                                                                   |                                | ction Value                                  |         |
| A                | 1         N         1         f         2.402.00           2         N         1         f         2.402.00           3          1         f         2.402.00    | 4 0 GHz 4.706 dBm                                                                            | - Puncaun Wourt - Pun          |                                              | ,       |
| 2114941          | 4<br>5<br>6                                                                                                                                                      |                                                                                              |                                |                                              | 4       |
|                  |                                                                                                                                                                  |                                                                                              |                                |                                              |         |
|                  | Non & Testin                                                                                                                                                     | AVISTAT                                                                                      | ATTS.                          | त्र आजन                                      | 5       |
| Contract         | Non & Tessing Gran                                                                                                                                               | $\bigvee$                                                                                    | $\mathbf{\vee}$                | $\sim$                                       |         |
| Tatio            | VSCT S                                                                                                                                                           | $\square$                                                                                    | $\square$                      | $\square$                                    |         |
| World Standard   | <b>ジラビア</b><br>(分<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の                                                                               | ding A-B Baoshi Science & Technolog                                                          | y Park, Baoshi Road, Bao'an Di | istrict, Shenzhen, Guangdong, China          | 4       |
| World Star Un 28 | M * PT                                                                                                                                                           | Page 37 of 70                                                                                | ooroovo c-man: Fengoing Wange  | Member of the WSCT INC                       |         |
|                  |                                                                                                                                                                  |                                                                                              |                                |                                              |         |





World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.





Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E231100022A-BT

## 6.7. Dwell Time

## 6.7.1. Test Specification

| Test Requirement: | FCC Part15 C Section 15.247 (a)(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:      | ANSI C63.10:2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Limit:            | The average time of occupancy on any channel shall not<br>be greater than 0.4 seconds within a period of 0.4<br>seconds multiplied by the number of hopping channels<br>employed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Test Setup:       | Spectrum Analyzer EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Test Mode:        | Hopping mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Test Procedure:   | <ol> <li>The testing follows ANSI C63.10:2014 Measurement<br/>Guidelines.</li> <li>The RF output of EUT was connected to the<br/>spectrum analyzer by RF cable and attenuator. The<br/>path loss was compensated to the results for each<br/>measurement.</li> <li>Set to the maximum power setting and enable the<br/>EUT transmit continuously.</li> <li>Enable the EUT hopping function.</li> <li>Use the following spectrum analyzer settings: Span =<br/>zero span, centered on a hopping channel; RBW<br/>shall be ≤ channel spacing and where possible<br/>RBW should be set &gt;&gt; 1 / T, where T is the expected<br/>dwell time per channel; VBW≥RBW; Sweep = as<br/>necessary to capture the entire dwell time per<br/>hopping channel; Detector function = peak; Trace =<br/>max hold.</li> <li>Measure and record the results in the test report.</li> </ol> |
| Test Result:      | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Allera            | ATTACK MITTACK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |



Contration & Test

63

世际检测认证表的 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China nShenzhen Fo. Its TEL:86-755-26996192 26992300 FAX 86-755-86376605 E-mail: Fengbing Wang@wsct-cert.com Hitp:www.wsct-cert.com

1.0



World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.





For Question, Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E231100022A-BT

## 6.7.2. Test Data

|   | Mode  | Frequency | Pulse Time | Total Dwell Time | Burst | Period Time | Limit | Verdict |
|---|-------|-----------|------------|------------------|-------|-------------|-------|---------|
|   |       | (MHz)     | (ms)       | (ms)             | Count | (ms)        | (ms)  |         |
|   | 1-DH1 | 2402      | 0.383      | 121.028          | 316   | 31600       | 400 🍡 | Pass    |
|   | 1-DH1 | 2441      | 0.382      | 121.858          | 319   | 31600       | 400   | Pass    |
|   | 1-DH1 | 2480      | 0.381      | 121.539          | 319   | 31600       | 400   | Pass    |
|   | 1-DH3 | 2402      | 1.639      | 263.879          | 161   | 31600       | 400   | Pass    |
|   | 1-DH3 | 2441      | 1.639      | 273.713          | 167   | 31600       | 400   | Pass    |
|   | 1-DH3 | 2480      | 1.639      | 260.601          | 159   | 31600       | 400   | Pass    |
|   | 1-DH5 | 2402      | 2.887      | 306.022          | 106   | 31600       | 400   | Pass    |
| 1 | 1-DH5 | 2441      | 2.886      | 279.942          | 97    | 31600       | 400   | Pass    |
| 1 | 1-DH5 | 2480      | 2.886      | 331.89           | 115   | 31600       | 400   | Pass    |

Note: 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels.

For DH1, With channel hopping rate (1600 / 2 / 79) in Occupancy Time Limit  $(0.4 \times 79)$  (s), Hops Over Occupancy Time comes to  $(1600 / 2 / 79) \times (0.4 \times 79) = 320$  hops

For DH3, With channel hopping rate (1600 / 4 / 79) in Occupancy Time Limit  $(0.4 \times 79)$  (s), Hops Over Occupancy Time comes to  $(1600 / 4 / 79) \times (0.4 \times 79) = 160$  hops

For DH5, With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit  $(0.4 \times 79)$  (s), Hops Over Occupancy Time comes to  $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$  hops

2. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

Test plots as follows:

incation & Tex

WSEI

MOM \* PT

up (She)



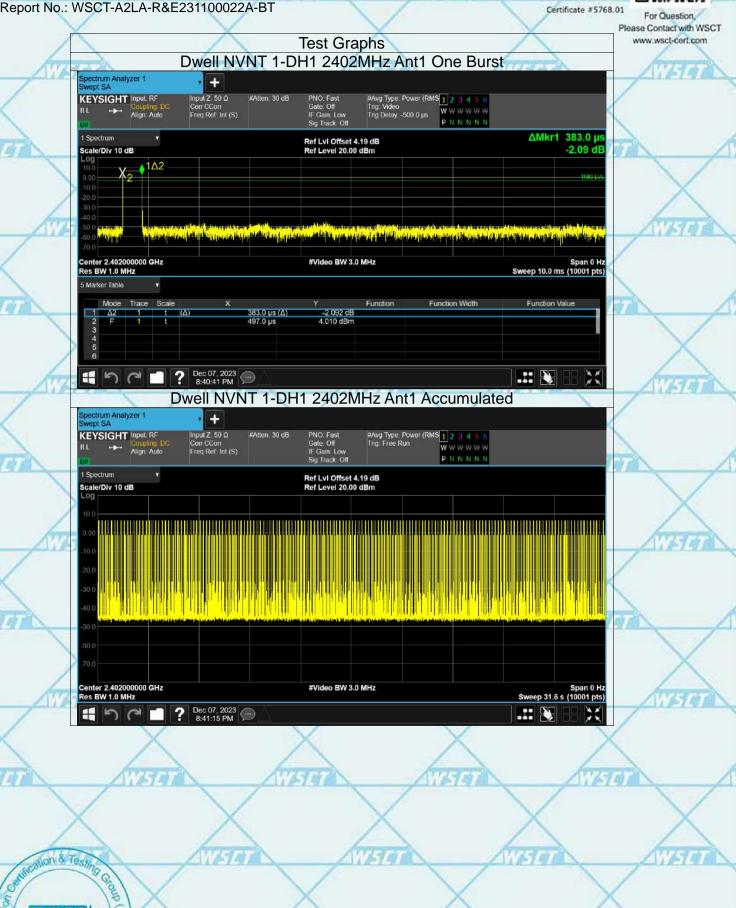


World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. ilac-MRA





For Question,


Report No.: WSCT-A2LA-R&E231100022A-BT

(Shenz)

69

WSET

BODUOM \* PT





WSET

MON \* PT

dizatio

Croup (Shenzh

69

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd. ilac-MRA



Report No.: WSCT-A2LA-R&E231100022A-BT

| 1    | VOOT AZEA RAEZSTIOOOZZA                                                                                                                                                                       |                                                                                                                                                      | Please Contact with WSCT               |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| /    | Dwell NVN                                                                                                                                                                                     | NT 1-DH1 2441MHz Ant1 One Burst                                                                                                                      | www.wsct-cert.com                      |
| 2.4- | Spectrum Analyzer 1 The Swept SA                                                                                                                                                              |                                                                                                                                                      | ATT AND                                |
|      | KEYSIGHT Input: RF<br>RL →→ Align: Auto Freq Ref: Int (S)                                                                                                                                     | Atten: 30 dB PNO: Fast #Avg Type: Power (RMS 1 2 3 4 5 6<br>Gate: Off Ting: Video<br>IF Gain: Low Ting Delay -500.0 µs<br>Sig Track: Off P N N N N N |                                        |
|      | 1 Spectrum   Scale/Div 10 dB                                                                                                                                                                  | Ref LvI Offset 4.22 dB<br>Ref Level 20.00 dBm                                                                                                        | ΔMkr1 382.0 μs<br>-0.90 dB             |
|      |                                                                                                                                                                                               |                                                                                                                                                      |                                        |
|      | 0.00<br>-100 X2 1Δ2                                                                                                                                                                           |                                                                                                                                                      | TTACLAL                                |
|      | -20.0                                                                                                                                                                                         |                                                                                                                                                      |                                        |
| 1    | -50.0 a clock in the marked on the local setting by and                                                                                                                                       | na an an ann an an an an an an an an an                                                                                                              |                                        |
|      | Center 2.441000000 GHz<br>Res BW 1.0 MHz                                                                                                                                                      | #Video BW 3.0 MHz                                                                                                                                    | Span 0 Hz<br>Sweep 10.0 ms (10001 pts) |
|      | 5 Marker Table 🔹                                                                                                                                                                              |                                                                                                                                                      | <                                      |
|      | Mode Trace Scale X<br>1 Δ2 1 t (Δ) 3                                                                                                                                                          | Y Function Function Width<br>82.0 μs (Δ) -0.8974 dB                                                                                                  | Function Value                         |
|      | 2 F 1 t 4<br>3 4                                                                                                                                                                              | 84.0 μs -10.36 dBm                                                                                                                                   |                                        |
| 1    | 5                                                                                                                                                                                             |                                                                                                                                                      |                                        |
| /    | まっで」? Dec 07, 2023                                                                                                                                                                            |                                                                                                                                                      |                                        |
| 12   | Dwell NVN                                                                                                                                                                                     | T1-DH1 2441MHz Ant1 Accumulate                                                                                                                       | dzan                                   |
|      | Spectrum Analyzer 1 Swept SA                                                                                                                                                                  |                                                                                                                                                      |                                        |
|      | KEYSIGHT         Input: RF         Input: Z: 50 Ω         #           R L         →         Coupling: DC         Corr CCorr         Coupling: DC         Corr CCorr         Freq Ref: Int (S) | Atten: 30 dB         PNO: Fast         #Avg Type: Power (RMS 1 2 3 4 5 6<br>Gate: Off<br>IF Gain: Low         Tig: Free Run         W W W W W        |                                        |
|      | 1 Spectrum                                                                                                                                                                                    | Sig Track: Off PNNNN                                                                                                                                 |                                        |
|      | Scale/Div 10 dB                                                                                                                                                                               | Ref LvI Offset 4.22 dB<br>Ref Level 20.00 dBm                                                                                                        |                                        |
| 1    | 10.0                                                                                                                                                                                          |                                                                                                                                                      |                                        |
| 1    | 0.00                                                                                                                                                                                          |                                                                                                                                                      |                                        |
| 11   | -10.0                                                                                                                                                                                         |                                                                                                                                                      | Martin Martin                          |
|      | -20.0                                                                                                                                                                                         |                                                                                                                                                      |                                        |
|      | -30.0                                                                                                                                                                                         |                                                                                                                                                      |                                        |
|      | -40.0                                                                                                                                                                                         |                                                                                                                                                      |                                        |
|      | -60.0                                                                                                                                                                                         |                                                                                                                                                      |                                        |
| 1    | -70.0                                                                                                                                                                                         |                                                                                                                                                      |                                        |
| P    | Center 2.441000000 GHz                                                                                                                                                                        | #Video BW 3.0 MHz                                                                                                                                    | Span 0 Hz                              |
| 17.  | Res BW 1.0 MHz<br>E Dec 07, 2023<br>8:41:54 PM                                                                                                                                                |                                                                                                                                                      | Sweep 31.6 s (10001 pts)               |
|      | 8341:54 PM >=                                                                                                                                                                                 |                                                                                                                                                      |                                        |



WSET

MOUN \* PT

dizatio

Atoup (Shenzh

60

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.



Report No.: WSCT-A2LA-R&E231100022A-BT

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Please Contact with WS                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Dwell NV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NT 1-DH1 2480MHz Ant1 One Bu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rst www.wsct-cert.com                        |
| Spectrum Analyzer 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AULT A                                       |
| KEYSIGHT         Input. RF         Input Z: 50 Ω           RL         Coupling_DC         Corr Corr           Coupling_DC         For Corr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | #Atten: 30 dB PNO: Fast #Avg Type: Power (RMS 1 2 3 4 5 6<br>Gate: Off Ting: Video<br>UT Char Law Tas Dolay 50 0 are W W W W W                                                                                                                                                                                                                                                                                                                                                                                                                           | - ALFINE                                     |
| Align: Auto Freq Ref. Int (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IF Gain: Low Trig Delay -500.0 µs P N N N N N<br>Sig Track Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |
| 1 Spectrum v<br>Scale/Div 10 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ref Lvi Offset 4.29 dB<br>Ref Level 20.00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ΔMkr1 381.0 μs<br>-0.39 dB                   |
| 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TRICINE                                      |
| -20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              |
| -40.0<br>-50.0 tota Altan utation in the state         | ska ješkerosta stala da izvata da britar, ob ozrat stada tak bil klada i stara ti stara ti stara ti da stala s                                                                                                                                                                                                                                                                                                                                                                                                                                           | sam in the first states and the first states |
| -60.0 Tori M. <sup>12</sup> Alt Apple and Tori An | er and anna a separation of a set of the second and set of the local day of the second s |                                              |
| Center 2.480000000 GHz<br>Res BW 1.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | #Video BW 3.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Span 0 Hz<br>Sweep 10.0 ms (10001 pts)       |
| 5 Marker Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              |
| Mode Trace Scale X<br>1 Δ2 1 t (Δ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Y Function Function Width<br>381.0 μs (Δ) -0.3866 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Function Value                               |
| 2 F 1 t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 482.0 µs -10.52 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                              |
| 4<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>N</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              |
| E C C I ? Dec 07, 2023<br>8:42:00 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | T 1-DH1 2480MHz Ant1 Accumula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ated service Awser                           |
| Spectrum Analyzer 1 T +<br>Swept SA T +<br>KEYSIGHT Input: RF Input Z: 50 Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | #Atten: 30 dB PNO: Fast #Avg Type: Power (RMS 1 2 3 4 5 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| KEYSIGHT         Input: RF         Input Z: 50 Ω           R L         Houging DC         Corr CCorr           Align: Auto         Freq Ref. Int (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Gate: Off Trig: Free Run W W W W W W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sig Track: Off P. N. N. N. N. N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |
| Scale/Div 10 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ref LvI Offset 4.29 dB<br>Ref Level 20.00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 107.00                                       |
| 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              |
| 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              |
| -20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              |
| -30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              |
| -40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | and which is the transfer to private the state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |
| -50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              |
| -30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 141.111                                      |
| -70.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              |
| Center 2.480000000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | #Video BW 3.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Span 0 Hz                                    |
| Center 2.480000000 GHz<br>Res BW 1.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Span 0 Hz<br>Sweep 31.6 s (10001 pts)        |

世际检测认证数的 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China n(Stanzben) Co. Us. TEL:86-755-25996192 26992300 FAX-85-755-86376605 E-mail: Fengbing.Wang@wsci-cert.com Http://www.wsci-cert.com



Sentication & Test

11514

BO MOM \* PT

toup

(Shenz)

60

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. ilac-MRA



Report No.: WSCT-A2LA-R&E231100022A-BT





11514

BO MOM \* PT

roup

(Shenz)

60

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd. ilac-MRA



Report No.: WSCT-A2LA-R&E231100022A-BT





WSCI

Mond & Mond

TOUP

69

(Shenz)

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. ilac-MRA



Report No.: WSCT-A2LA-R&E231100022A-BT





11514

BO MOM \* PT

toup

(Shenz)

60

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd. ilac-MRA



Report No.: WSCT-A2LA-R&E231100022A-BT





11514

BO MOM \* PT

toup

(Shenz)

69

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd. ilac-MRA



Report No.: WSCT-A2LA-R&E231100022A-BT





11514

BO MOM \* PT

TOUP

60

(Shenz)

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. ilac-MRA



Report No.: WSCT-A2LA-R&E231100022A-BT







World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.





Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E231100022A-BT

# 6.8. **Pseudorandom Frequency Hopping Sequence**

Test Requirement:

### FCC Part15 C Section 15.247 (a)(1) requirement:

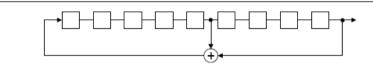
Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

### EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones; i.e. the shift register is initialized with nine ones.

Number of shift register stages: 9


on & Te

MOM \* P

5

Length of pseudo-random sequence: 2<sup>9</sup>-1 = 511 bits

Longest sequence of zeros: 8 (non-inverted signal)



Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

|   | 0 | 2 | 4 | 6 | 62 | 64 | 7 | 8 | 1 | 73 7 | 75 7 | 77 | 7 |
|---|---|---|---|---|----|----|---|---|---|------|------|----|---|
|   |   |   |   |   |    |    |   |   |   |      |      |    | 1 |
| 1 |   |   |   |   |    |    |   |   |   |      |      |    |   |
| 1 |   |   |   |   |    |    |   |   |   | 1    |      |    |   |

Each frequency used equally on the average by each transmitter. The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.





110

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.





Report No.: WSCT-A2LA-R&E231100022A-BT

# 6.9. Conducted Band Edge Measurement

For Question, Please Contact with WSCT www.wsct-cert.com

| 6.9.1. Test Specification | AVISION AVISION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Requirement:         | FCC Part15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Test Method:              | ANSI C63.10:2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Limit:                    | In any 100 kHz bandwidth outside the intentional<br>radiation frequency band, the radio frequency power<br>shall be at least 20 dB below the highest level of the<br>radiated power. In addition, radiated emissions which fall<br>in the restricted bands must also comply with the<br>radiated emission limits.                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Test Setup:               | Spectrum Analyzer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Test Mode:                | Transmitting mode with modulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Test Procedure:           | <ol> <li>The testing follows the guidelines in Band-edge<br/>Compliance of RF Conducted Emissions of ANSI<br/>C63.10:2014 Measurement Guidelines.</li> <li>Set to the maximum power setting and enable the<br/>EUT transmit continuously.</li> <li>Set RBW = 100 kHz (≥1% span=10MHz), VBW = 300<br/>kHz (≥RBW). Band edge emissions must be at least<br/>20 dB down from the highest emission level within<br/>the authorized band as measured with a 100kHz<br/>RBW. The attenuation shall be 30 dB instead of 20<br/>dB when RMS conducted output power procedure is<br/>used.</li> <li>Enable hopping function of the EUT and then repeat<br/>step 2 and 3.</li> <li>Measure and record the results in the test report.</li> </ol> |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |



世标检测认证表的 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China nShenzhen Fo. List. 86,755-25996192, 26992300 FAX-86-755-86376605 E-mail: Fengbing Wang@wsci-cert.com, Hitp:www.wsci-cert.com



世际检测认证数的 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China a(Shenzhen Co. Lin TEL:86-755-26996192 26992300 FAX 66-755-66376605 E-mail: Fengbing Wang@wsci-cert.com Hitp:www.wsci-cert.com

DUOM \* PT

69



Member of the WSCT INC

toup

69

WSET

DUOM \* PT

(Shenz



110

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd. ilac-MRA



WSE



Certificate #5768.01

For Question Please Contact with WSCT www.wsct-cert.com

## Report No.: WSCT-A2LA-R&E231100022A-BT

#### **Conducted Spurious Emission Measurement** 6.10.

#### 6.10.1. **Test Specification**

|                                                                                                                 | Test Requirement: | FCC Part15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20                                                                                                              | Test Method:      | ANSI C63.10:2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| No. of the second se | Limit:            | In any 100 kHz bandwidth outside the intentional<br>radiation frequency band, the radio frequency power<br>shall be at least 20 dB below the highest level of the<br>radiated power. In addition, radiated emissions which fall<br>in the restricted bands must also comply with the<br>radiated emission limits.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 101                                                                                                             | Test Setup:       | Spectrum Analyzer EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                 | Test Mode:        | Transmitting mode with modulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| N N                                                                                                             | Test Procedure:   | <ol> <li>The testing follows the guidelines in Spurious RF<br/>Conducted Emissions of ANSI C63.10:2014<br/>Measurement Guidelines</li> <li>The RF output of EUT was connected to the<br/>spectrum analyzer by RF cable and attenuator. The<br/>path loss was compensated to the results for each<br/>measurement.</li> <li>Set to the maximum power setting and enable the<br/>EUT transmit continuously.</li> <li>Set RBW = 100 kHz, VBW = 300kHz, scan up<br/>through 10th harmonic. All harmonics / spurs must be<br/>at least 20 dB down from the highest emission level<br/>within the authorized band as measured with a 100<br/>kHz RBW.</li> <li>Measure and record the results in the test report.</li> <li>The RF fundamental frequency should be excluded<br/>against the limit line in the operating frequency band.</li> </ol> |
|                                                                                                                 | Test Result:      | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1                                                                                                               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Contration & Tes oup (Shen WSE7 B DUOM \* PT

Zatio

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com 世标检测认证股份

150



World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd. ilac-MRA





Report No.: WSCT-A2LA-R&E231100022A-BT

(Shenz)

60

WSCI

BO MOM \* PT





Member of the WSCT INC

BO MOM \* PT

60



世际检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China a(Shenzhen) Co. Ita

BO MOM \* PT

60



ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China TEL:86-765-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing, Wang@wsct-cert.com Http://www.wsct-cert.com 世标检测认证股份

toup

WSCI

BO MOM \* PT

(Shenz)

60



ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China TEL:86-765-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing, Wang@wsct-cert.com Http://www.wsct-cert.com 世标检测认证股份

toup

60

WSCI

BODUOM \* PT

(Shenz)

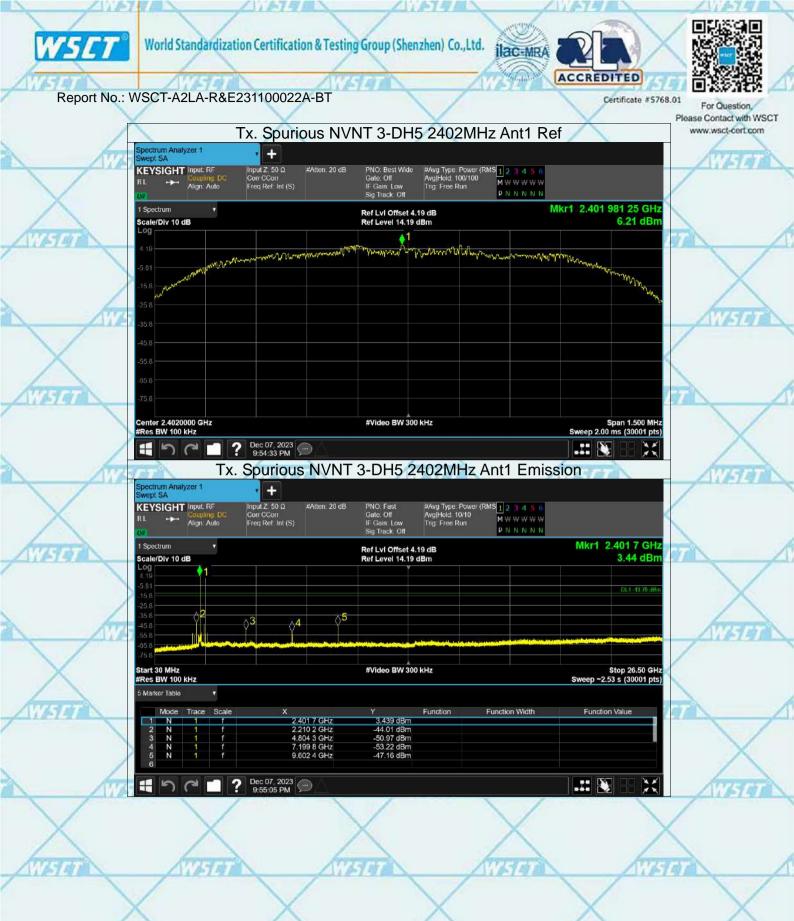


WSCI

BO MOM \* PT

toup

(Shenz)


60

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd. ilac-MRA



Report No.: WSCT-A2LA-R&E231100022A-BT





世际检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China a(Shenzhen) Co. Lis TEL:86,755-25996192 26992300 FAX-86-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

Member of the WSCT INC

Contration & Test

WSCI

BO MOM \* PT

roup

(Shenz)

60



世际检测认证数的 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China a(Shenzhen Co. Lin TEL:86-755-26996192 26992300 FAX 66-755-66376605 E-mail: Fengbing Wang@wsci-cert.com Hitp:www.wsci-cert.com

(Shenz)

60

WSCI

BODUOM \* PT



WSCI

BODUOM \* PT

60

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd. ilac-MRA



ACCREDITED

Report No.: WSCT-A2LA-R&E231100022A-BT

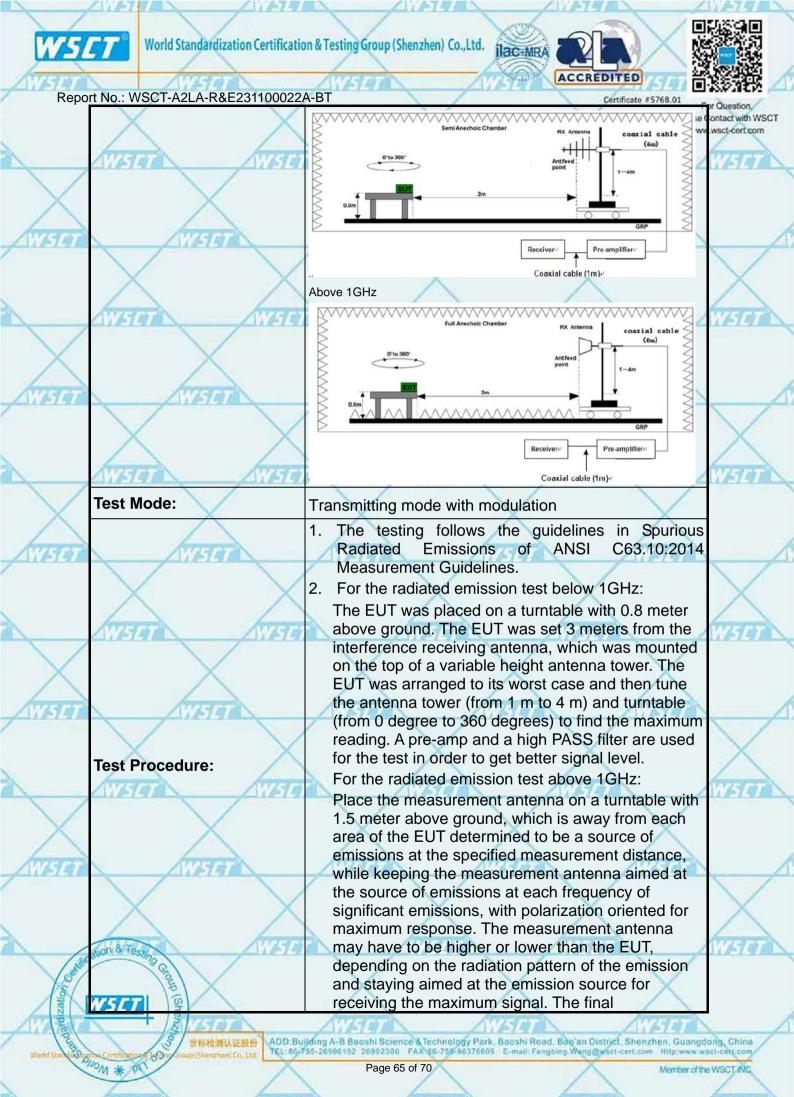


ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China TEL:86-765-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing, Wang@wsct-cert.com Http://www.wsct-cert.com 世标检测认证股份



World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd. ilac-MRA





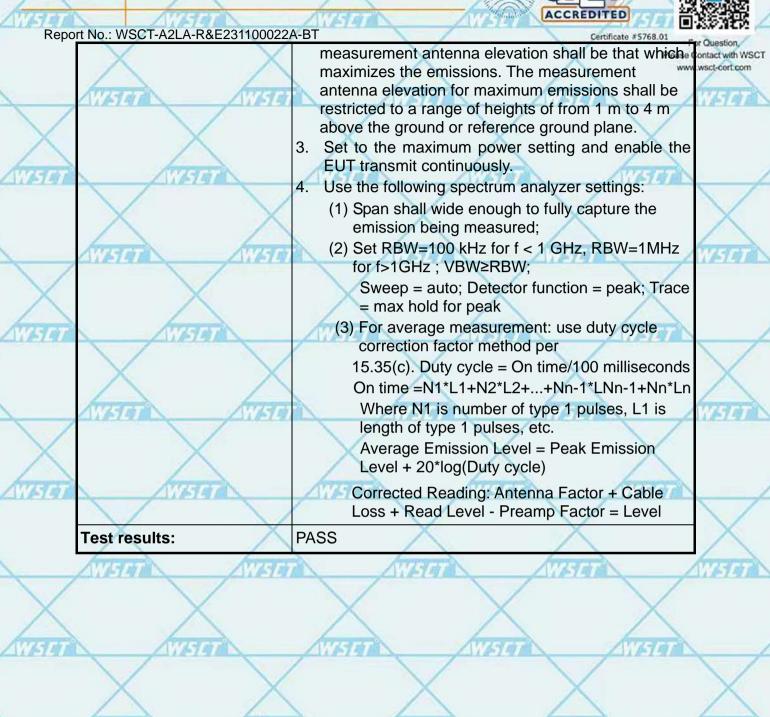

Report No.: WSCT-A2LA-R&E231100022A-BT

#### **Radiated Spurious Emission Measurement** 6.11.

For Question, Please Contact with WSCT www.wsct-cert.com

|                  | 6.11.1. Test Specification                             |                                                | WSET                  | 1                        | AVISI             |                    | 1                            | 64           |
|------------------|--------------------------------------------------------|------------------------------------------------|-----------------------|--------------------------|-------------------|--------------------|------------------------------|--------------|
| $\searrow$       | Test Requirement:                                      | FCC Part15                                     | C Section             | 0 15 200                 |                   |                    |                              |              |
| $\bigtriangleup$ | Test Method:                                           | ANSI C63.10                                    |                       |                          |                   |                    |                              |              |
| 175147           | A DIGITINE                                             | / 1. 1. 1. 1.                                  |                       | ATAT                     | ~                 | AVE                | THE AL                       |              |
|                  | Frequency Range:                                       | 9 kHz to 25 (                                  |                       |                          | X                 |                    |                              | $\times$     |
|                  | Measurement Distance:                                  | 3 m                                            | $\Delta$              |                          |                   | 7                  |                              |              |
|                  | Antenna Polarization:                                  | Horizontal &                                   | Vertical              | <u></u>                  | ATH               |                    | 18                           | 114          |
| $\sim$           | $\mathbf{\nabla}$                                      | Frequency<br>9kHz- 150kHz                      | Detector<br>Quasi-pea |                          | VBW<br>1kHz       | Rema<br>Quasi-peal |                              |              |
| $\wedge$         |                                                        | 150kHz-                                        | Quasi-pea             |                          | 30kHz             | Quasi-peal         |                              |              |
| WSET             | Receiver Setup:                                        | 30MHz<br>30MHz-1GHz                            | Quasi-pea             | k 100KHz                 | 300KHz            | Quasi-peal         | 1 447 444 1                  |              |
|                  | $\vee$ $\vee$                                          | Above 1GHz                                     | Peak                  | 1MHz                     | 3MHz              | Peak Va            |                              | $\checkmark$ |
|                  | $\land$ $\land$                                        | Above ronz                                     | Peak                  | 1MHz                     | 10Hz              | Average '          | Value                        | $\wedge$     |
|                  | AVERT AVERT                                            | Frequen                                        | cy//5/1               | Field Stre               |                   | Measure            |                              | 151          |
| $\checkmark$     |                                                        | 0.009-0.4                                      | 90                    | (microvolts/<br>2400/F(k | ,                 | Distance (n<br>300 | neters)                      |              |
| X                | X                                                      | 0.490-1.7                                      |                       | 24000/F(                 | KHz)              | 30                 |                              |              |
| WISTAT           | AULTER -                                               | 1.705-3<br>30-88                               | 0                     | 30                       | 1                 | 30<br>3            | THE                          |              |
|                  |                                                        | 88-216                                         |                       | 150                      | 1                 | 3                  | 1                            |              |
|                  | Limit:                                                 | 216-96<br>Above 9                              |                       | 200<br>500               | X                 | 3                  |                              | X            |
|                  | NUT AVER                                               |                                                | harris                | A                        | horse             |                    | 6                            |              |
|                  |                                                        | Frequency                                      |                       | d Strength               | Measure<br>Distan |                    | tector                       | FIR          |
| X                | X                                                      | - X                                            | (micr                 | ovolts/meter)            | (meter            |                    | $\left\langle \right\rangle$ |              |
| $ \land $        | ATT A A                                                | Above 1GHz                                     | :                     | 500<br>5000              | 3                 |                    | erage<br>eak                 |              |
| 17-14            |                                                        | For radiated emis                              | sions below           | v 30MHz                  |                   | Pile               | 14 mil                       |              |
|                  | $\times$ $\times$                                      |                                                |                       |                          |                   |                    |                              | $\times$     |
|                  | $\Delta$ $\Delta$                                      | Dis                                            | stance = 3m           |                          |                   | Computer           | 1                            |              |
| ~                | AWEER                                                  | +                                              |                       | $\frown$                 | Pre -A            | Amplifier          | 11                           | 1-14         |
| X                | Test setup:                                            |                                                | (                     | $\checkmark$ Г           |                   |                    |                              |              |
|                  |                                                        | EUT                                            | ]<br>Turn table       |                          | r                 |                    |                              |              |
| WASIAN           | AWSTAT                                                 |                                                |                       |                          |                   | eceiver            |                              |              |
|                  | $\vee$ $\vee$                                          |                                                | Grou                  | nd Plane                 |                   |                    |                              | $\searrow$   |
|                  | $\land$ $\land$                                        | 30MHz to 1GHz                                  | 1                     | <u></u>                  | /                 | /                  | 1                            |              |
| -                | ation & Testing                                        |                                                | 11/5/11               |                          | AIM               |                    | -11                          | 1514         |
| 100 million      | alion & Testing Group (Shenchen) Co., Lis<br>Mont * PT | $\sim$                                         |                       | X                        |                   | 1                  | 1                            |              |
| zatio            | WSET S                                                 | $\wedge$                                       |                       |                          |                   | /                  | 1                            |              |
| Plep             |                                                        | ATATA                                          | and the second        | ATT                      | and Pasting D     | ATA                | 141                          | Chick        |
| World Star Laury | 3 世际检测认证股份<br>TEL:864<br>化                             | Iding A-B Baoshi Scier<br>55-26996192 26992306 |                       | 6376605 E-mail: F        | angbing.Wang(     |                    | Contraction of the second    |              |
| 1                | M * P                                                  | Page 6                                         | 4 OT /U               |                          | /                 |                    | Member of the WS             | SCLINC       |






Jon & Te

WOM \* P

She

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.





世标检测认证表的 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86/755-26996192 26992300 FAX:86-755-86376605 E-mail: Fengbing, Wang@wsci-cert.com Http://www.wsci-cert.com

Member of the WSCT INC

up (Shen

WSCI

PHOM \* P



| 1  |     |     |          |                  |                   |                  |        | ~      |          |    |
|----|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|----|
| 75 | No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   | ET .     |    |
|    |     |     | MHz      | dBuV             | dB                | dBuV/m           | dBuV/m | dB     | Detector | 2  |
|    | 1   | *   | 30.1054  | 37.48            | -1.73             | 35.75            | 40.00  | -4.25  | QP       | 5  |
|    | 2   | 1   | 36.7662  | 33.00            | -0.97             | 32.03            | 40.00  | -7.97  | QP       | 75 |
| 1  | 3   |     | 54.4516  | 29.41            | -1.46             | 27.95            | 40.00  | -12.05 | QP       |    |
| 1  | 4   |     | 110.1816 | 32.63            | -3.21             | 29.42            | 43.50  | -14.08 | QP       |    |
| 15 | 5 5 | Z   | 771.4486 | 27.60            | 10.84             | 38.44            | 46.00  | -7.56  | QP       |    |
|    | 6   |     | 1000.000 | 26.82            | 14.33             | 41.15            | 54.00  | -12.85 | QP       | -  |
|    |     |     | ~ ~      |                  |                   |                  |        |        |          |    |

Note1:

non & Te

WSET

PHOM \* P

up (Sher

Freq. = Emission frequency in MHz

Reading level  $(dB\mu V)$  = Receiver reading Corr. Factor (dB) = Antenna factor + Cable loss - Amplifier factor. Measurement  $(dB\mu V)$  = Reading level  $(dB\mu V)$  + Corr. Factor (dB)Limit  $(dB\mu V)$  = Limit stated in standard Margin (dB) = Measurement  $(dB\mu V)$  – Limits  $(dB\mu V)$ 



Page 68 of 70



Report No.: WSCT-A2LA-R&E231100022A-BT

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. ilac-MRA





Certificate #5768.01

For Question, Please Contact with WSCT www.wsct-cert.com

Member of the WSCT INC

### Above 1GHz

| GF | SK             |         | ATT TAL    | k           | ( A A A A A A A A A A A A A A A A A A A | k        | (JAAA) |        |
|----|----------------|---------|------------|-------------|-----------------------------------------|----------|--------|--------|
| 1  | Frog           |         |            | Low cha     | nnel: 2402                              | 2MHz     |        |        |
|    | Freq.<br>(MHz) | Ant.Pol | Emission L | _evel(dBuV) | Limit 3m                                | (dBuV/m) | Ove    | r(dB)  |
|    |                | H/V     | PK         | AV          | PK                                      | AV       | PK     | AV     |
| 2  | 4804           | V       | 60.17      | 40.94       | 74                                      | 54       | -13.83 | -13.06 |
|    | 7206           | V       | 59.37      | 40.90       | 74                                      | 54       | -14.63 | -13.10 |
|    | 4804           | Н       | 58.05      | 40.07       | 74                                      | 54       | -15.95 | -13.93 |
|    | 7206           | Н       | 58.02      | 39.02       | 74                                      | 54       | -15.98 | -14.98 |

| Frog           | Middle channel: 2441MHz |            |             |          |          |          |        |  |  |  |
|----------------|-------------------------|------------|-------------|----------|----------|----------|--------|--|--|--|
| Freq.<br>(MHz) | Ant.Pol                 | Emission l | _evel(dBuV) | Limit 3m | (dBuV/m) | Over(dB) |        |  |  |  |
|                | H/V                     | PK         | AV          | PK       | AV       | PK       | AV     |  |  |  |
| 4882           | West Vir                | 59.00      | 39.54       | 74       | 54       | -15.00   | -14.46 |  |  |  |
| 7323           | V                       | 59.30      | 39.05       | 74       | 54       | -14.70   | -14.95 |  |  |  |
| 4882           | Н                       | 58.40      | 39.89       | 74       | 54       | -15.60   | -14.11 |  |  |  |
| 7323           | Н                       | 58.89      | 39.89       | 74       | 54       | -15.11   | -14.11 |  |  |  |

| ALLAND         |                       | ATT2 - Carlo and | AT          | I and she all    | ~  | Salad and a star |        |  |  |  |
|----------------|-----------------------|------------------|-------------|------------------|----|------------------|--------|--|--|--|
| Freq.<br>(MHz) | High channel: 2480MHz |                  |             |                  |    |                  |        |  |  |  |
|                | Ant.Pol               | Emission l       | _evel(dBuV) | Limit 3m(dBuV/m) |    | Over(dB)         |        |  |  |  |
|                | H/V                   | PK               | AV          | PK               | AV | PK               | AV     |  |  |  |
| 4960           | West V T              | 58.51            | 40.63       | 74               | 54 | -15.49           | -13.37 |  |  |  |
| 7440           | V                     | 59.87            | 40.98       | 74               | 54 | -14.13           | -13.02 |  |  |  |
| 4960           | Н                     | 59.72            | 40.09       | 74               | 54 | -14.28           | -13.91 |  |  |  |
| 7440           | Н                     | 58.69            | 39.69       | 74               | 54 | -15.31           | -14.31 |  |  |  |
|                |                       |                  |             |                  |    |                  |        |  |  |  |

## Note:

Contration & Tes

WSCI

3.

The emission levels of other frequencies are very lower than the limit and not show in test report. 1.

Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. 2.

Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

Measurements were conducted in all three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (GFSK) was submitted only.



5







<sup>01</sup> For Question, Please Contact with WSCT www.wsct-cert.com

#### Report No.: WSCT-A2LA-R&E231100022A-BT Restricted Bands Requirements

| Test result | for GFSK M | hurst             | à.                | hurse    |        |       |          |    |
|-------------|------------|-------------------|-------------------|----------|--------|-------|----------|----|
| Frequency   | Reading    | Correct<br>Factor | Emission<br>Level | Limit    | Margin | Polar | Detector |    |
| (MHz)       | (dBuV/m)   | dB/m              | (dBuV/m)          | (dBuV/m) | (dB)   | H/V   |          | K  |
| A Company   | Aurana     |                   | Low Cha           | nnel     | Anna   | -A-   | Aug.     |    |
| 2390        | 61.32      | -8.76             | 52.56             | 74       | 21.44  | H     | PK       | 12 |
| 2390        | 54.82      | -8.76             | 46.06             | 54       | 7.94   | н     | AV       |    |
| 2390        | 63.79      | -8.73             | 55.06             | 74       | 18.94  | V     | PK       |    |
| 2390        | 55.83      | -8.73             | 47.10             | 54       | 6.90   | V     | AV       |    |
|             |            |                   | High Cha          | innel    |        |       | 1        | /  |
| 2483.5      | 63.08      | -8.76             | 54.32             | 74       | 19,68  | н     | PK       | 1  |
| 2483.5      | 53.15      | -8.76             | 44.39             | 54       | 9.61   | Н     | AV       | R  |
| 2483.5      | 60.16      | -8.73             | 51.43             | 74       | 22.57  | V     | PK       |    |
| 2483.5      | 55.47      | -8.73             | 46.74             | 54       | 7.26   | V     | AV       |    |

Note: Freq. = Emission frequency in MHz

Reading level  $(dB\mu V)$  = Receiver reading Corr. Factor (dB) = Attenuation factor + Cable loss

Level  $(dB\mu V)$  = Reading level  $(dB\mu V)$  + Corr. Factor (dB)

Limit  $(dB\mu V)$  = Limit stated in standard

Contration & Test

WSE7

S PHOM \* PT

OUP

Margin (dB) = Level (dB $\mu$ V) – Limits (dB $\mu$ V)

\*\*\*\*\*END OF REPORT\*\*\*\*\*

