	Report No.: DACE241113002RL001
DAC	RF TEST REPORT
V -	For Pinzhong Electronic Technology Co.,Ltd. : BEITONG KunPeng 40 Intelligent Gaming Controller
e di	Test Model(s).: BTP-KP40
Report Reference No.	: DACE241113002RL001
FCC ID	: 2AWMK-BTP-KP40
D P	ALE . G
Applicant's Name	: Guangzhou Pinzhong Electronic Technology Co.,Ltd.
Address	Room 611-612, Greenland Center of Financial City, No. 662, Huangpu Avenue Middle Road, Tianhe District, Guangzhou City
Testing Laboratory	: Shenzhen DACE Testing Technology Co., Ltd.
Address	 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Test Specification Standard	: 47 CFR Part 15.247
Date of Receipt	: November 13, 2024
Date of Test	: November 13, 2024 to November 26, 2024
Data of Issue	: November 26, 2024
Result	: Pass
DAE	DIE
Testing Technology Co., Ltd. Th	produced except in full, without the written approval of Shenzhen DACE is document may be altered or revised by Shenzhen DACE Testing Technology hall be noted in the revision section of the document. The test results in the cample
102, Building H1, & 1/F., Building H, Hongfa Scie	ence & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Web: http://www.dace-lab.com	Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 1 of 74

276 276		vision History Of Repo	rt DAG
Version	Description	REPORT No.	Issue Date
V1.0	Original	DACE241113002RL001	November 26, 2024
			24
	200		
	VE	20	C
6			
AE.		DAE	6
	Ĭ		DAG
DAG	5		
2h		SAC	DAE
			DL
	E	. 6	
	DAE	DAE	DAG
			DE
	DAG	-	C.
	2r	- DD	
AE		DAE	DAC
		V	2P

 \sim

CONTENTS

	V	Report No.: DACE241113002R
Sie	CONTEN	ITS
Jr.	200	
1 TEST SUMMARY		
1.1 TEST STANDARDS		
2 GENERAL INFORMATION		
		<u></u>
2.2 DESCRIPTION OF DEVIC	CE (EUT)*	
2.3 DESCRIPTION OF TEST	MODES	
3.1 ANTENNA REQUIREMEN	NT	<u></u>
3.1.1 Conclusion:		
4 RADIO SPECTRUM MATTER	R TEST RESULTS (RF)	
4.1.2 Test Setup Di	iagram:	
4.2.1 E.U.T. Operat	tion:	
4.2.2 Test Setup Di	iagram:	
-		
	-	
	-	
4.5 EMISSIONS IN NON-RES	STRICTED FREQUENCY BANDS	
4.5.1 E.U.T. Operat	tion:	
4.5.2 Test Setup Di	iagram:	
-		
•		

V1.0	OVE	Report No.: DACE241113002RL0
V1.0		Report No.: DACE241113002RL0
APPENDIX		
2. 99% OCCUPIED BANDWIDTH		
4. PEAK OUTPUT POWER		
		20
. C		
DAC		SE
		DAG
C.		
	ODE	
		DAC
. Ca		V
DAG	- C.	
	DAG	DAG
		V
DAC	. (.	
DA	DAG	SD
		26
	6	
SC		DAG
	1	
· (c.	G	
DAE	DAG	DAE
	V	DA
S.C.	la la	trict, Bao'an District, Shenzhen, Guangdong, China

V

NE

C

V1.0

1 TEST SUMMARY

1.1 Test Standards

DVG

NE

The tests were performed according to following standards:

47 CFR Part 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

1.2 Summary of Test Result

Item	Method	Requirement	Result
Antenna requirement	1	47 CFR 15.203	Pass
Conducted Emission at AC power line	ANSI C63.10-2013 section 6.2	47 CFR 15.207(a)	Pass
6dB Bandwidth	ANSI C63.10-2013, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(2)	Pass
Maximum Conducted Output Power	ANSI C63.10-2013, section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(b)(3)	Pass
Power Spectral Density	ANSI C63.10-2013, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(e)	Pass
Emissions in non-restricted frequency bands	ANSI C63.10-2013 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Band edge emissions (Radiated)	ANSI C63.10-2013 section 6.10 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (below 1GHz)	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (above 1GHz)	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass

Note: 1.N/A -this device(EUT) is not applicable to this testing item

2. RF-conducted test results including cable loss.

 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com
 Page 6 of 74

C

)AC

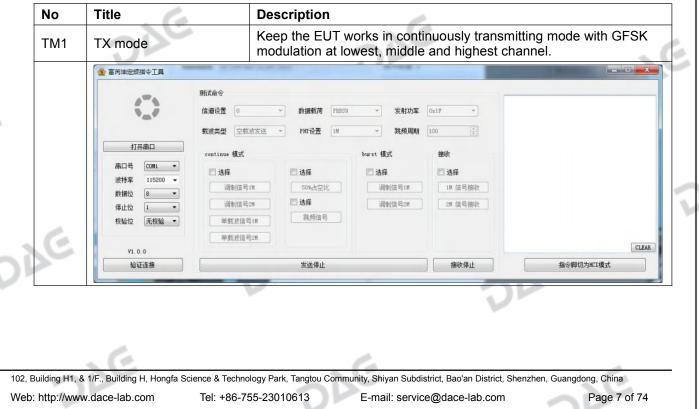
)AG

V1.0 Report No.: DACE241113002RL001

ø

2.1 Client Information

DΔG


2

Applicant's Name	:	Guangzhou Pinzhong Electronic Technology Co.,Ltd.
Address	:	Room 611-612, Greenland Center of Financial City, No. 662, Huangpu Avenue Middle Road, Tianhe District, Guangzhou City
Manufacturer	:	Guangzhou Pinzhong Electronic Technology Co.,Ltd.
Address	:	Room 611-612, Greenland Center of Financial City, No. 662, Huangpu Avenue Middle Road, Tianhe District, Guangzhou City

2.2 Description of Device (EUT)*

Product Name:	BEITONG KunPeng 40 Intelligent Gaming Controller
Model/Type reference:	BTP-KP40
Trade Mark:	BEITONG
Product Description:	BEITONG KunPeng 40 Intelligent Gaming Controller
Power Supply:	DC3.7V from internal-battery
Operation Frequency:	2402MHz to 2480MHz
Number of Channels:	40
Modulation Type:	GFSK
Antenna Type:	PCB Antenna
Antenna Gain:	1.6dBi
Hardware Version:	BTP-KP_V6
Software Version:	V1.0.0

2.3 Description of Test Modes

2.4 Description of Support Units

DVC

1

NE

Title	Manufacturer	Model No.	Serial No.
Adapter	PHOTON	ATXC-069AC65B	Provide by lab

C.

2.5 Equipments Used During The Test

Conducted Emission at AC power line						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
Pulse Limiter	SCHWARZ BECK	VTSD 9561-F Pulse limiter 10dB	561-G071	2023-12-12	2024-12-11	
50ΩCoaxial Switch	Anritsu	MP59B	M20531	/	1	
Test Receiver	Rohde & Schwarz	ESPI TEST RECEIVER	1164.6607K03 -102109-MH	2024-06-12	2025-06-11	
L.I.S.N	R&S	ESH3-Z5	831.5518.52	2023-12-12	2024-12-11	
L.I.S.N	SCHWARZ BECK	NSLK 8126	05055	2024-06-14	2025-06-13	
Pulse Limiter	CYBERTEK	EM5010A	/	2024-09-27	2025-09-26	
EMI test software	EZ -EMC	EZ	V1.1.42	1	/	

6dB Bandwidth Maximum Conducted Output Power Power Spectral Density

Emissions in non-restricted frequency bands

NE

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RF Test Software	Tachoy Information	RTS-01	V1.0.0	51	
Power divider	MIDEWEST	PWD-2533	SMA-79	2023-05-11	2026-05-10
RF Sensor Unit	Tachoy Information	TR1029-2	000001	1	/
Signal Generator	Keysight	N5181A	MY48180415	2023-12-11	2024-12-10
Signal Generator	Keysight	N5182A	MY50143455	2023-12-12	2024-12-11
Spectrum Analyzer	Keysight	N9020A	MY53420323	2023-12-12	2024-12-11

DAG

)AC

C

1/1	n

DAG

Band edge emissions Emissions in frequenc Emissions in frequenc	y bands (below 10			2ÀC	E
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
EMI Test software	Farad	EZ -EMC	V1.1.42	/	/
Positioning Controller	E /	MF-7802	e 1	1	1
Amplifier(18-40G)	COM-POWER	AH-1840	10100008-1	2022-04-05	2025-04-04
Horn antenna	COM-POWER	AH-1840 (18-40G)	10100008	2023-04-05	2025-04-04
Loop antenna	ZHINAN	ZN30900C	ZN30900C	2024-06-14	2026-06-13
Cable(LF)#2	Schwarzbeck	/	/	2024-02-19	2025-02-18
Cable(LF)#1	Schwarzbeck	/	1	2024-02-19	2025-02-18
Cable(HF)#2	Schwarzbeck	AK9515E	96250	2024-03-20	2025-03-19
Cable(HF)#1	Schwarzbeck	SYV-50-3-1		2024-03-20	2025-03-19
Power amplifier(LF)	Schwarzbeck	BBV9743	9743-151	2024-06-12	2025-06-11
Power amplifier(HF)	Schwarzbeck	BBV9718	9718-282	2024-06-12	2025-06-11
Spectrum Analyzer	R&S	FSP30	1321.3008K40 -101729-jR	2024-06-12	2025-06-11
Test Receiver	R&S	ESCI 3	1166.5950K03 -101431-Jq	2024-06-13	2025-06-12
Horn Antenna	Sunol Sciences	DRH-118	A091114	2023-05-13	2025-05-12
Broadband Antenna	Sunol Sciences	JB6 Antenna	A090414	2024-09-28	2026-09-27

2.6 Statement Of The Measurement Uncertainty

Test Item	Measurement Uncertainty
Conducted Disturbance (0.15~30MHz)	±3.41dB
Occupied Bandwidth	±3.63%
RF conducted power	±0.733dB
RF power density	±0.234%
Conducted Spurious emissions	±1.98dB
Radiated Emission (Above 1GHz)	±5.46dB
Radiated Emission (Below 1GHz)	±5.79dB
Note: (1) This uncertainty represents an expanded u confidence level using a coverage factor of k=2.	uncertainty expressed at approximately the 95%

2.7 Authorizations

Company Name:	Shenzhen DACE Testing Technology Co., Ltd.
Address:	102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613

Web: http://www.dace-lab.com

ø

Report No.: DACE241113002RL001

AC

Identification of the Responsible Testing Location

Company Name:	Shenzhen DACE Testing Technology Co., Ltd.
Address:	102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252
FCC Registration Number:	0032847402
Designation Number:	CN1342
Test Firm Registration No.:	778666
A2LA Certificate Number:	6270.01
FCC Registration Number: Designation Number: Test Firm Registration No.:	0032847402 CN1342 778666

2.8 Announcement

NE

DA

(1) The test report reference to the report template version v0.

NE

(2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.

(3) The test report is invalid if there is any evidence and/or falsification.

(4) This document may not be altered or revised in any way unless done so by DACE and all revisions are duly noted in the revisions section.

(5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

(6) We hereby declare that the laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant(information with "*" provided by applicant). the laboratory is not responsible for the accuracy of the information provided by the client. When the information provided by the customer may affect the effectiveness of the results, the responsibility lies with the customer, and the laboratory does not assume any responsibility.

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Page 10 of 74 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

C

Evaluation Results (Evaluation) 3

3.1 Antenna requirement

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

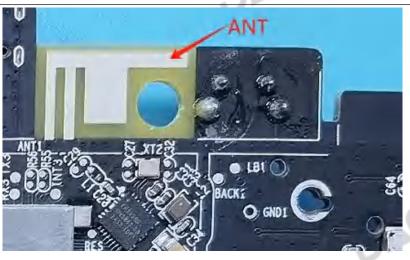
3.1.1 Conclusion:

4

)DE

DAE

NE


0

4

DAG

Test Requirement:

DVC

)DE

)AC

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China E-mail: service@dace-lab.com Web: http://www.dace-lab.com Tel: +86-755-23010613

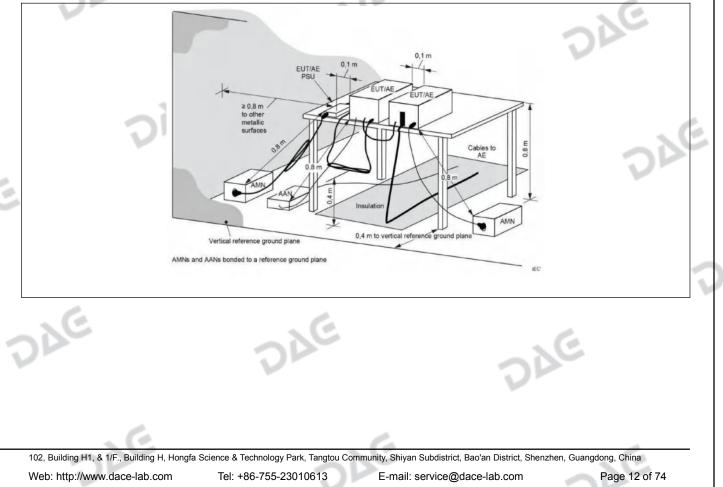
)AC

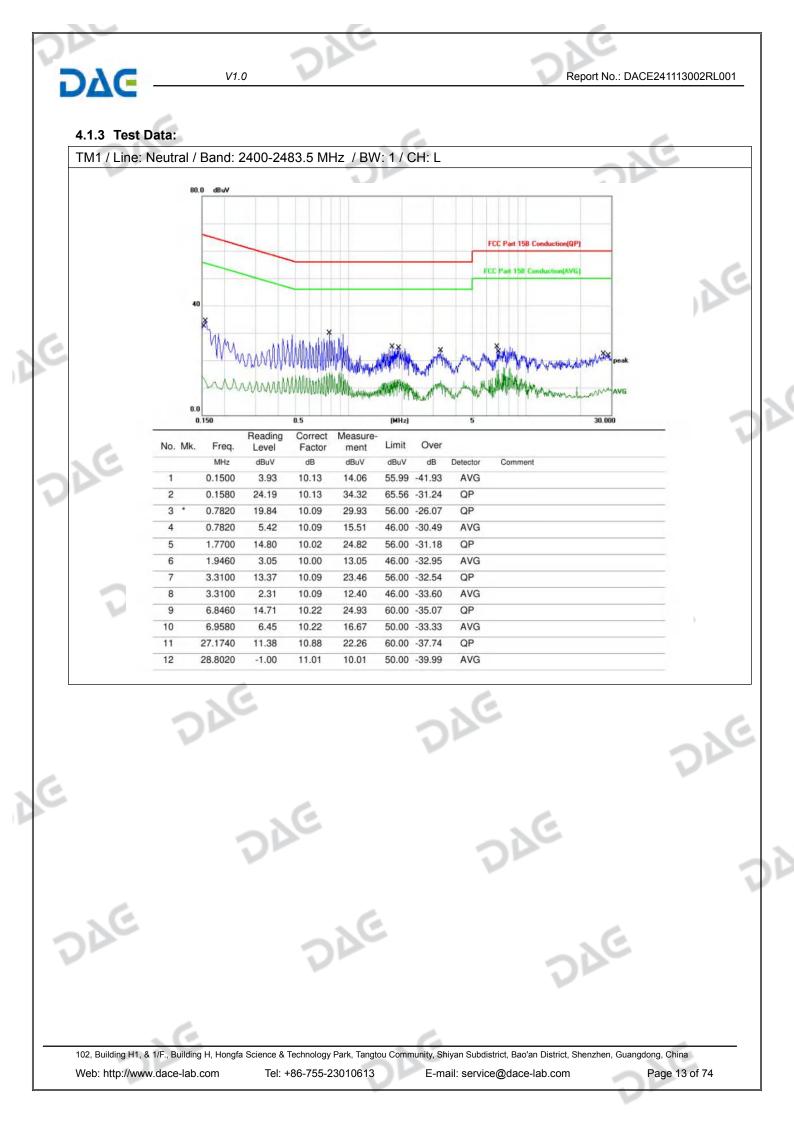
)AC

6

Radio Spectrum Matter Test Results (RF) 4

4.1 Conducted Emission at AC power line


Test Requirement: Refer to 47 CFR 15.207(a), Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 µH/50 ohms line impedance stabilization network (LISN).							
Test Limit:	Frequency of emission (MHz)	Conducted limit (dBµV					
		Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	*Decreases with the logarithm of the frequency.						
Test Method:	ANSI C63.10-2013 section 6.2	J.					
Procedure:	Refer to ANSI C63.10-2013 section conducted emissions from unlicense		od for ac power-line				
4.1.1 E.U.T. Operation:	.e		4				


4.1.1 E.U.T. Operation:

DAG

Operating Environment:							
Temperature:	22.8 °C		Humidity:	55 %	Atmospheric Pressure:	102 kPa	
Pretest mode:		TM1			V.		
Final test mode: TM1							

4.1.2 Test Setup Diagram:

DΔG V1.0 1 Report No.: DACE241113002RL001 TM1 / Line: Line / Band: 2400-2483.5 MHz / BW: 1 / CH: L 80.0 dBuV FCC Part 158 Conduction(QP) CC Part 158 C AVG NE al Martine 1 0.0 0.150 0.5 (MHz) 30,000 Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment MHz dBuV dB dBuV dBuV dB Detector Comment De 0.1500 25.48 10.13 35.61 65.99 -30.38 QP 1 2 0.1539 4.38 10.13 14.51 55.78 -41.27 AVG 0 3 0.4820 2.92 10.09 13.01 46.30 -33.29 AVG QP 4 0.5060 16.13 10.09 26.22 56.00 -29.78 5 . 0.8860 19.36 10.10 29.46 56.00 -26.54 QP 46.00 -29.17 6 0.8860 6.73 10.10 AVG 16.83 7 1.9740 0.12 9.99 10.11 46.00 -35.89 AVG QP 8 2.0980 10.74 10.01 20.75 56.00 -35.25 9 7.8700 10.26 50.00 -33.32 AVG 6.42 16.68 10 8.3220 10.27 23.87 60.00 -36.13 QP 13.60 11 24.2139 AVG -1.12 10.72 9.60 50.00 -40.40 12 25.4500 13.92 10.77 24.69 60.00 -35.31 QP DAG OVE)DE 4 DAG DAG DAG DAG DAE 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613

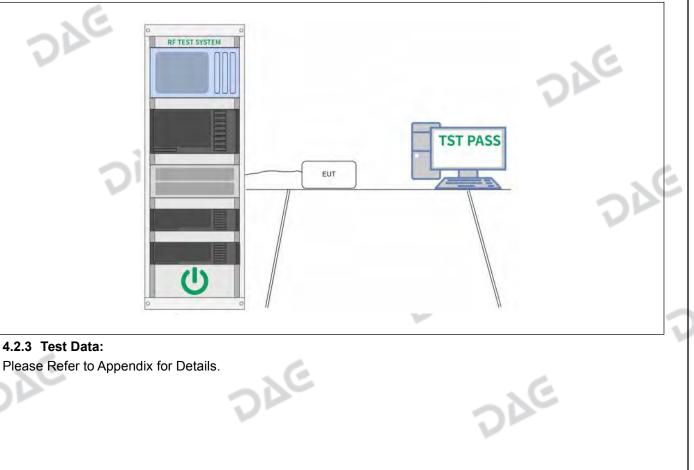
E-mail: service@dace-lab.com

Page 14 of 74

4.2 6dB Bandwidth

DAG

Test Requirement:	47 CFR 15.247(a)(2)
Test Limit:	Refer to 47 CFR 15.247(a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Test Method:	ANSI C63.10-2013, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 a) Set RBW = 100 kHz. b) Set the VBW >= [3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.


e.

4.2.1 E.U.T. Operation:

Operating Envir	onment:					
Temperature:	22.8 °C	_	Humidity:	55 %	Atmospheric Pressure:	102 kPa
Pretest mode:		TM1	20	~		6
Final test mode	:	TM1	V		~	
122 Test Satu		m 1				

4.2.2 Test Setup Diagram:

1

V1.0

DAG

Report No.: DACE241113002RL001

4.3 Maximum Conducted Output Power

Test Requirement:	47 CFR 15.247(b)(3)
Test Limit:	Refer to 47 CFR 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Test Method:	ANSI C63.10-2013, section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013, section 11.9.1 Maximum peak conducted output power Note: Per ANSI C63.10-2013, if there are two or more antnnas, the conducted powers at Core 0, Core 1,, Core i were first measured separately, as shown in the section above(this product olny have one antenna). The measured values were then summed in linear power units then converted back to dBm. Per ANSI C63.10-2013 Section 14.4.3.2.3, the directional gain is calculated using the following formula, where GN is the gain of the nth antenna and NANT, the total number of antennas used. For correlated unequal antenna gain Directional gain = 10*log[(10G1/20 + 10G2/20 + + 10GN/20)2 / NANT] dBi For completely uncorrelated unequal antenna gain Directional gain = 10*log[(10G1/10 + 10G2/10 + + 10GN/10)/ NANT] dBi Sample Multiple antennas Calculation: Core 0 + Core 1 +Core i. = MIMO/CDD (i is the number of antennas) (#VALUE! mW + mW) = #VALUE! mW = dBm Sample e.i.r.p. Calculation: e.i.r.p. (dBm) = Conducted Power (dBm) + Ant gain (dBi)

. 6

4.3.1 E.U.T. Operation:

Operating Environment:								
Temperature:	22.8 °C		Humidity:	55 %	1	Atmospheric Pressure:	102 kPa	
Pretest mode:		TM1						22
Final test mode:		TM1						

4.3.2 Test Setup Diagram:

NE

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, ChinaWeb: http://www.dace-lab.comTel: +86-755-23010613E-mail: service@dace-lab.comPage 16 of 74

)ÀC

C

		S.C.	× (e.
DAG —	V1.0		Report No.: DACE241113002RL001
DYE	O O O		DYE
5		EUT	TST PASS
4.3.3 Test Data: Please Refer to Appe	endix for Details.		DIE
DYE		DAE	DÀC
Ţ.)AE	5	JE DÀE
	DYE		DIE
DAE)AC	DIE
6			

V1.0

Report No.: DACE241113002RL001

ø

4.4 Power Spectral Density

DAG

Test Requirement:	47 CFR 15.247(e)
Test Limit:	Refer to 47 CFR 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Method:	ANSI C63.10-2013, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013, section 11.10, Maximum power spectral density level in the fundamental emission

6

4.4.1 E.U.T. Operation:

ø

٩

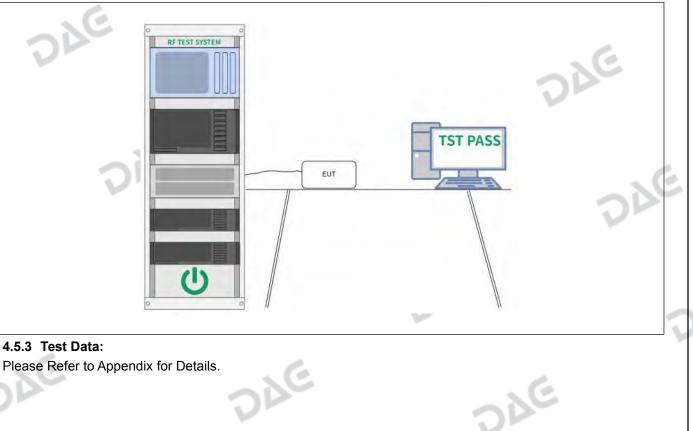
Operating Environment:							
Temperature:	22.8 °C		Humidity:	55 %	Atmospheric Pressure:	102 kPa	
Pretest mode:		TM1			VE		
Final test mode:		TM1					

4.4.2 Test Setup Diagram:

4.4.2 Test Setup Diagram.	
O RF TEST SYSTEM	J.C
	EUT
	DAG
4.4.3 Test Data: Please Refer to Appendix for Details.	DIE
DIE DIE	DDE
s.C.	

Report No.: DACE241113002RL001

4.5 Emissions in non-restricted frequency bands


Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2013 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013 Section 11.11.1, Section 11.11.2, Section 11.11.3

4.5.1 E.U.T. Operation:

DAG

Operating Envir	onment:					
Temperature:	22.8 °C		Humidity:	55 %	Atmospheric Pressure:	102 kPa
Pretest mode:		TM1	20		<u></u>	6
Final test mode:		TM1	V		2	
4 5 0 Tast Osts						

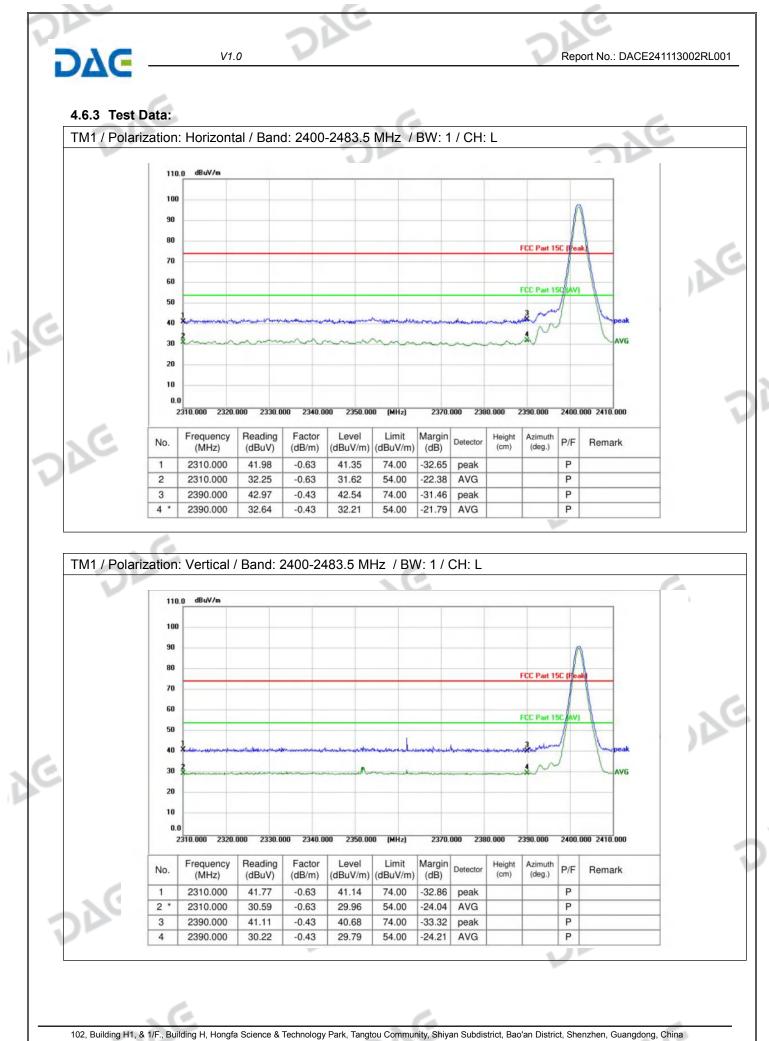
4.5.2 Test Setup Diagram:

DAG

4.6 Band edge emissions (Radiated)

Test Requirement:	restricted bands, as	247(d), In addition, radiated defined in § 15.205(a), must ified in § 15.209(a)(see § 15.	also comply with the radiated
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
- 2	0.009-0.490	2400/F(kHz)	300
26	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
)E	radiators operating u 54-72 MHz, 76-88 M these frequency ban and 15.241. In the emission table The emission limits	under this section shall not be IHz, 174-216 MHz or 470-80	
	110-490 kHz and at	quasi-peak detector except f	for the frequency bands 9–90 kHz, hission limits in these three bands age detector.
Test Method:	110–490 kHz and at are based on measu ANSI C63.10-2013 s	quasi-peak detector except f pove 1000 MHz. Radiated en irements employing an avera	nission limits in these three bands age detector.

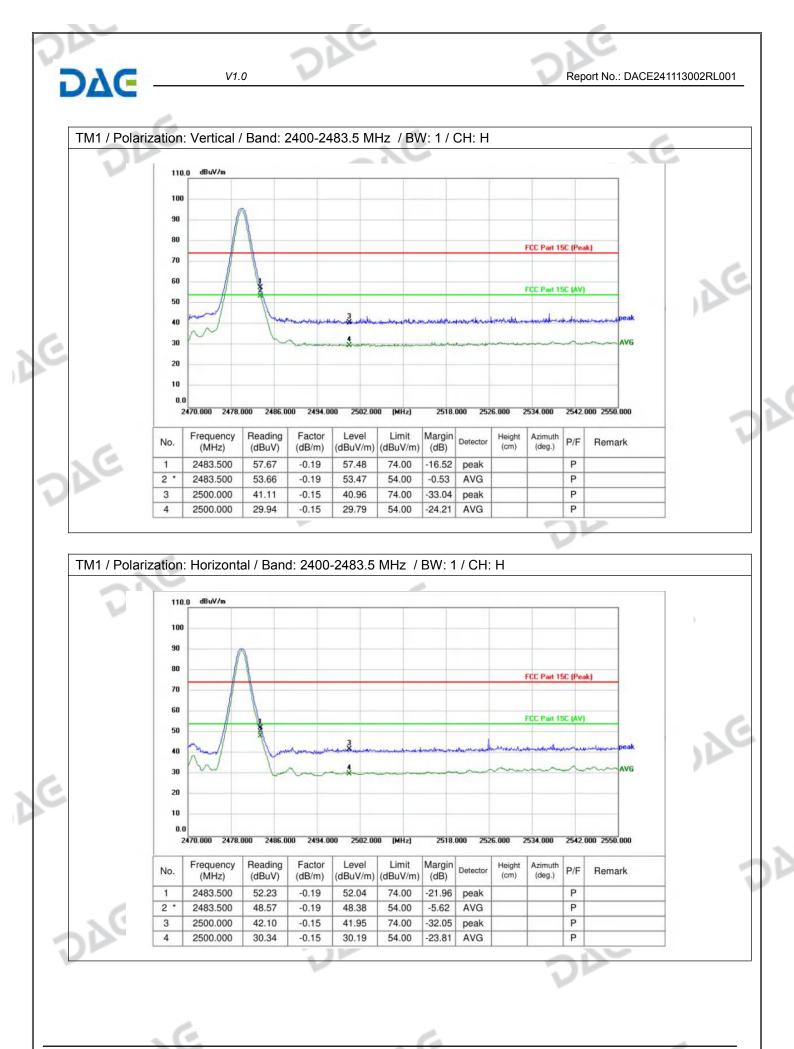
6

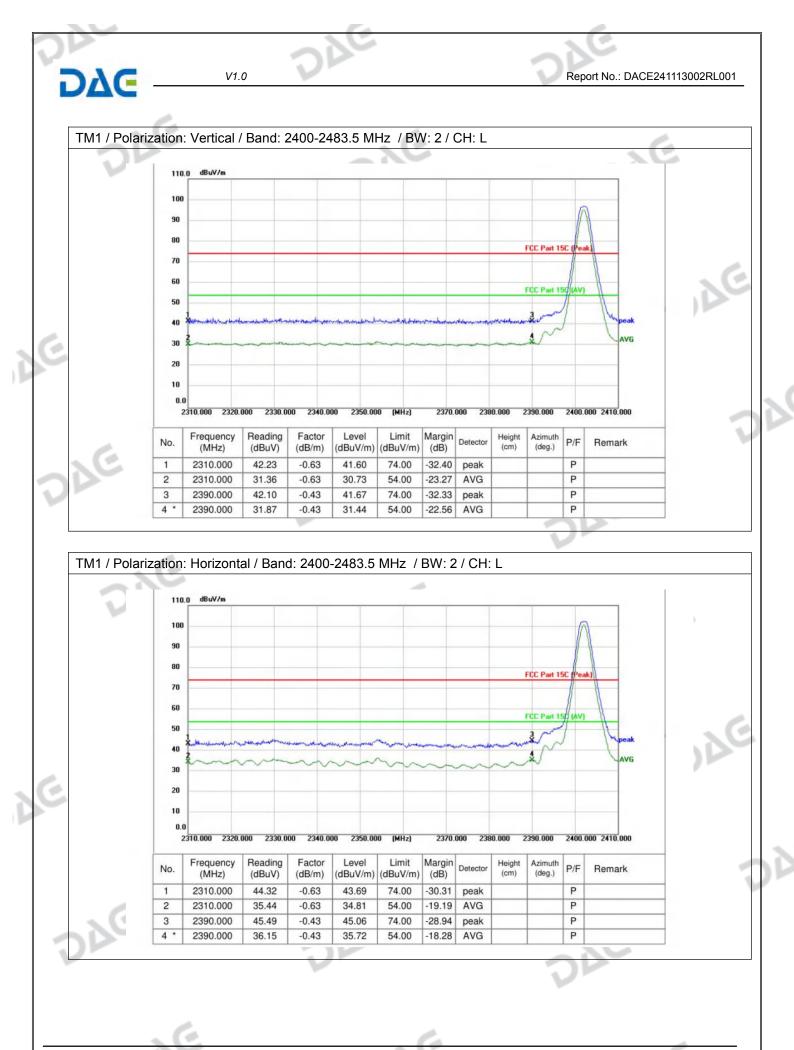

4.6.1 E.U.T. Operation:

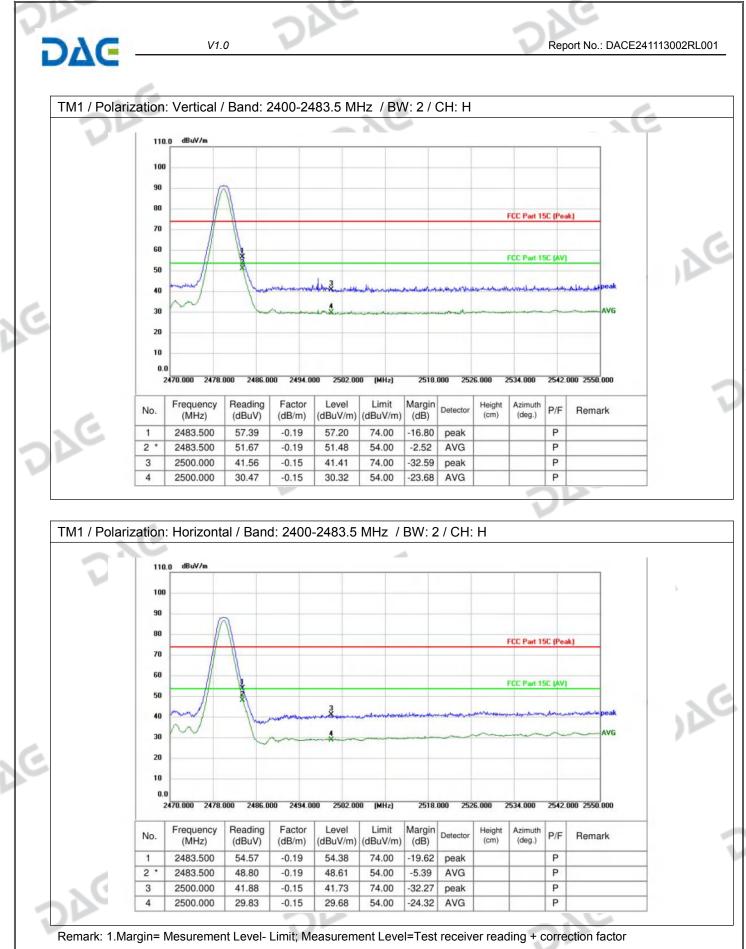
 \sim

Operating Envir	onment:					JF 1
Temperature:	22.8 °C		Humidity:	55 %	Atmospheric Pressure:	102 kPa
Pretest mode:		TM1				
Final test mode		TM1			. C	

4.6.2 Test Setup Diagram:






Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

2. The EMC test software will only record the worst test angle and height, and only the worst case will be recorded in the test report.

1

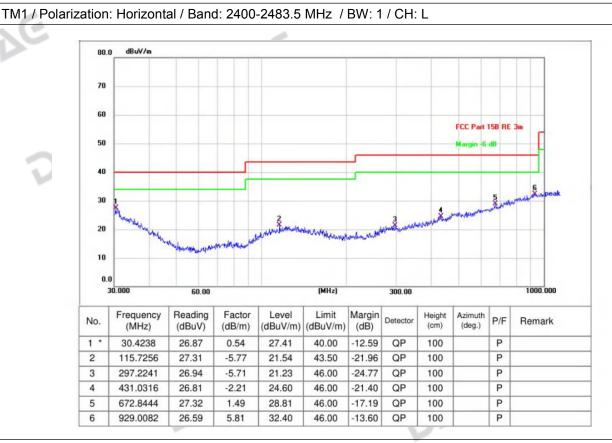
DΔC

4.7 Emissions in frequency bands (below 1GHz)

Test Requirement:	restricted bands, as de	7(d), In addition, radiated ei fined in § 15.205(a), must a d in § 15.209(a)(see § 15.2	lso comply with the radiated			
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)			
- 20	0.009-0.490	2400/F(kHz)	300			
26	0.490-1.705	24000/F(kHz)	30			
	1.705-30.0	30	30			
	30-88	100 **	3			
	88-216	150 **	3			
	216-960	200 **	3			
	Above 960	500	3			
AC	54-72 MHz, 76-88 MHz these frequency bands and 15.241. In the emission table al The emission limits sho employing a CISPR qu 110–490 kHz and abov	z, 174-216 MHz or 470-806 is permitted under other se pove, the tighter limit applie own in the above table are b asi-peak detector except fo	based on measurements r the frequency bands 9–90 kHz ssion limits in these three bands			
Test Method:	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02					
DD DD	360 degrees to determine b. For above 1GHz, the above the ground at a 3 degrees to determine th c. The EUT was set 3 c which was mounted on d. The antenna height if determine the maximum polarizations of the anter e. For each suspected the antenna was tuned below 30MHz, the anter was turned from 0 degr f. The test-receiver syst Bandwidth with Maximum g. If the emission level specified, then testing of reported. Otherwise the tested one by one using reported in a data sheet h. Test the EUT in the le i. The radiation measur Transmitting mode, and j. Repeat above proced Remark:	ine the position of the higher e EUT was placed on the to 3 meter fully-anechoic chan be position of the highest ra- or 10 meters away from the the top of a variable-height s varied from one meter to n value of the field strength enna are set to make the m emission, the EUT was arra- to heights from 1 meter to nna was tuned to heights 1 rees to 360 degrees to find tem was set to Peak Detect um Hold Mode. of the EUT in peak mode w could be stopped and the pe e emissions that did not hav g peak, quasi-peak or avera- t. owest channel, the middle of ements are performed in X. d found the X axis positionir lures until all frequencies m	p of a rotating table 1.5 meters nber. The table was rotated 360 idiation. interference-receiving antenna, a antenna tower. four meters above the ground to . Both horizontal and vertical easurement. anged to its worst case and then 4 meters (for the test frequency of meter) and the rotatable table the maximum reading. Function and Specified as 10dB lower than the limit eak values of the EUT would be re 10dB margin would be re- age method as specified and the channel, the Highest channel. , Y, Z axis positioning for ng which it is the worst case.			

DγG ——	V1.0	Report No.: DACE241113002RL0
DAC	Preamplifier. The basic equati Final Test Level =Receiver Re Preamplifier Factor 3) Scan from 9kHz to 25GHz, was very low. The points mark found when testing, so only at spurious emissions from the ra	ted by adding the Antenna Factor, Cable Factor & on with a sample calculation is as follows: ading + Antenna Factor + Cable Factor "C the disturbance above 12.75GHz and below 30MHz ed on above plots are the highest emissions could be oove points had been displayed. The amplitude of adiator which are attenuated more than 20dB below Fundamental frequency is blocked by filter, and only

4.7.1 E.U.T. Operation:


Operating Enviro	onment:					_	V
Temperature:	22.8 °C		Humidity:	55 %	Atmospheric Pressure:	102 kPa	
Pretest mode:		TM1	C .		4		
Final test mode:	1	TM1			. C.		
					200		

4.7.2 Test Data:

1

4

DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

NE

DAG

DΔC V1.0 Report No.: DACE241113002RL001 TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: L dBuV/m 80.0 70 60 FCC Part 15B RE 3 50 -40 30 20 10 0.0 30.000 (MHz) 1000.000 300.00 60.00 Frequency Reading Azimuth (deg.) Limit Factor Level Margin Height Detector P/F No. Remark 10 (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) (cm) 1 30.8535 26.61 0.26 26.87 40.00 -13.13 QP 100 Ρ ວ 2 83.5222 34.63 -11.63 23.00 40.00 -17.00 QP 100 Ρ 3 140.3421 27.50 -6.08 21.42 43.50 -22.08 QP 100 Ρ 4 287.9904 27.36 -5.79 21.57 46.00 -24.43 QP 100 Ρ 5 416.1791 26.94 -2.79 24.15 46.00 -21.85 QP 100 Ρ 6 801.7863 26.92 4.08 31.00 46.00 -15.00 QP 100 Ρ

Remark: 1.Margin= Mesurement Level- Limit; Measurement Level=Test receiver reading + correction factor 2.The EMC test software will only record the worst test angle and height, and only the worst case will be recorded in the test report.

DAG

)AC

ODE

Se

DAG

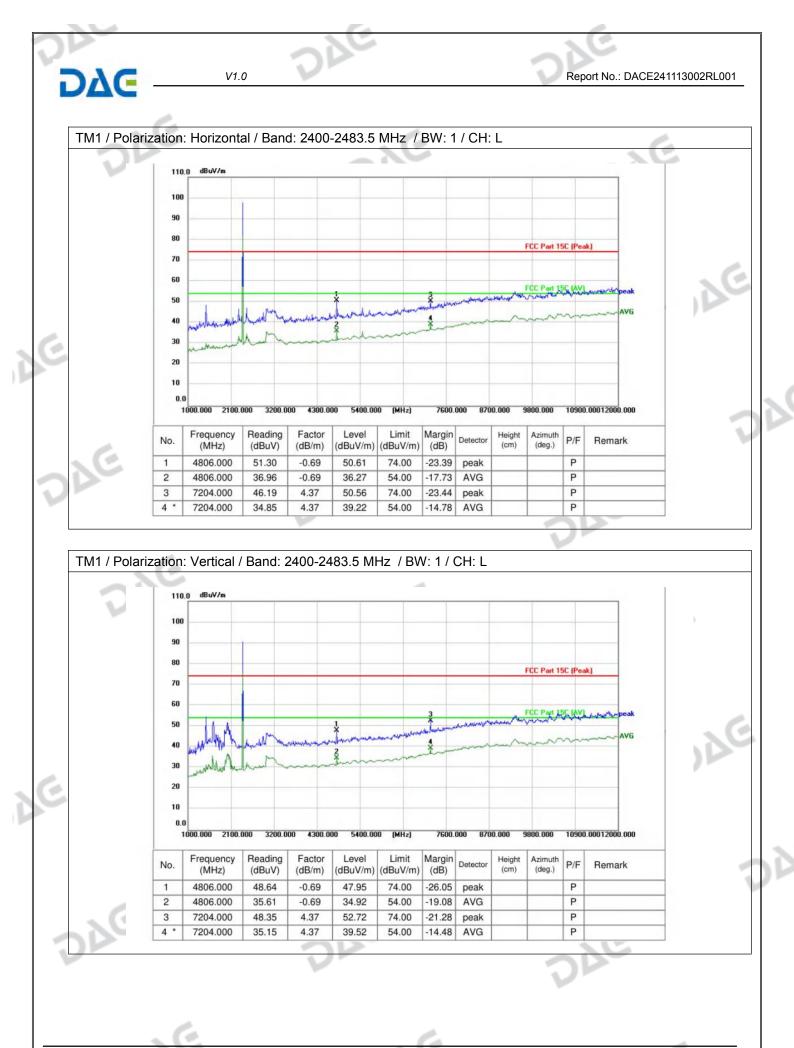
NE

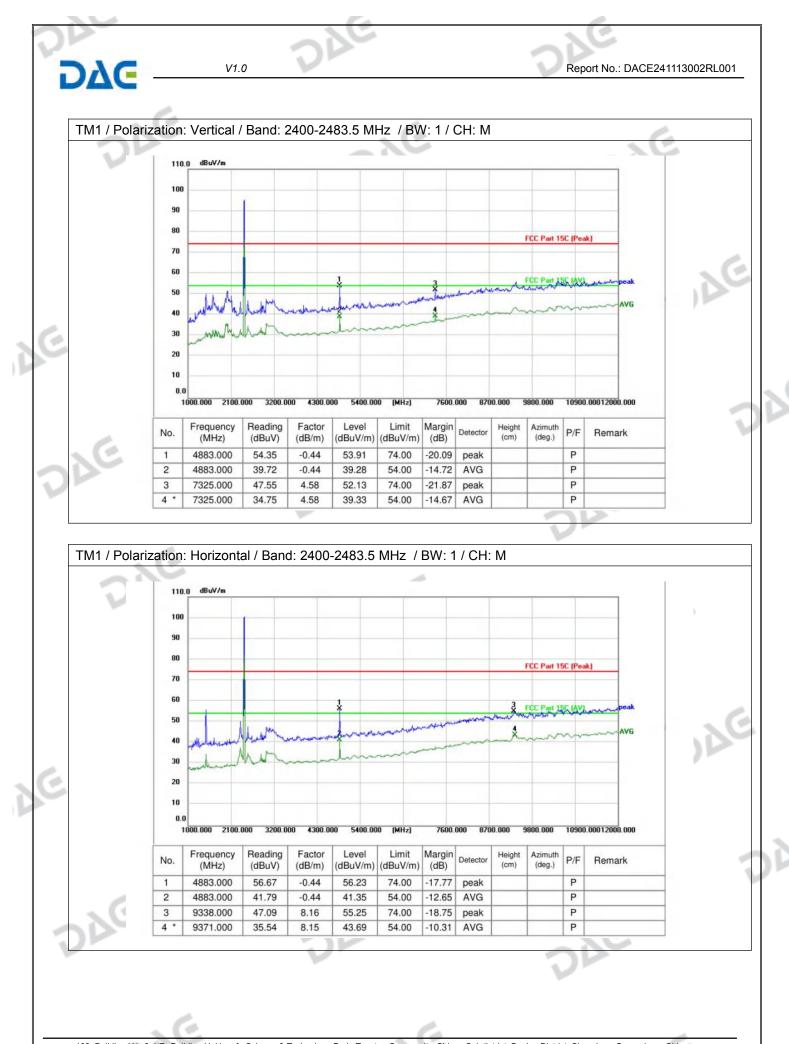
4

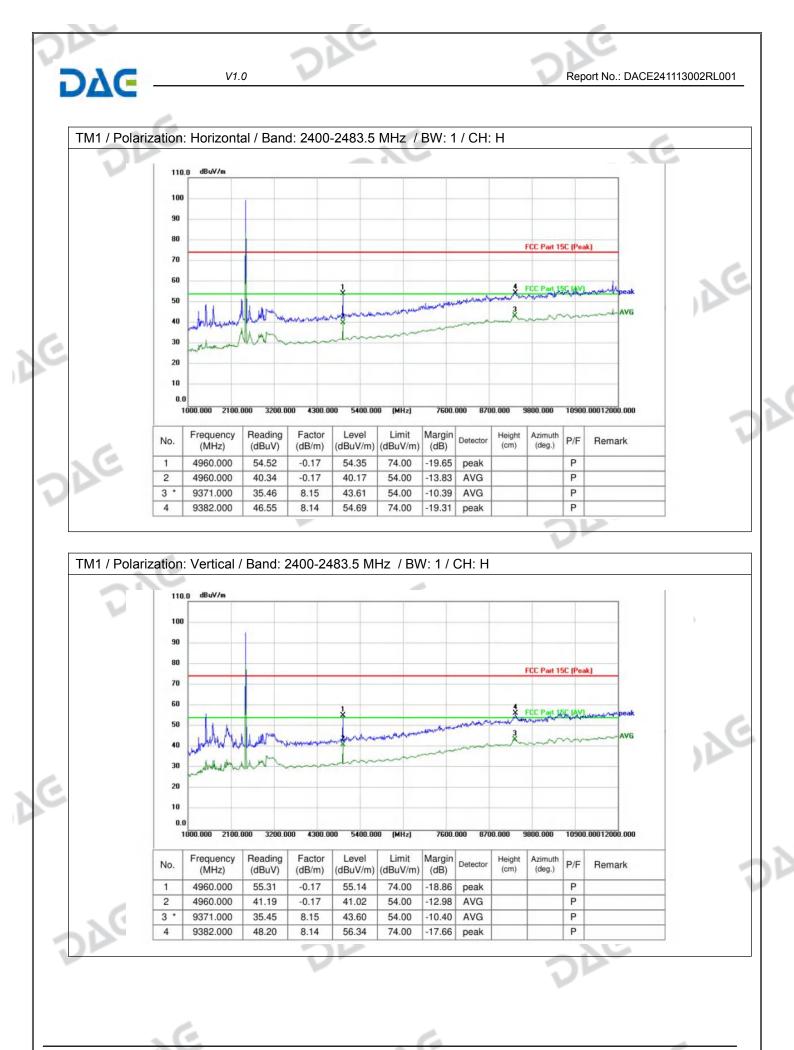
DAG

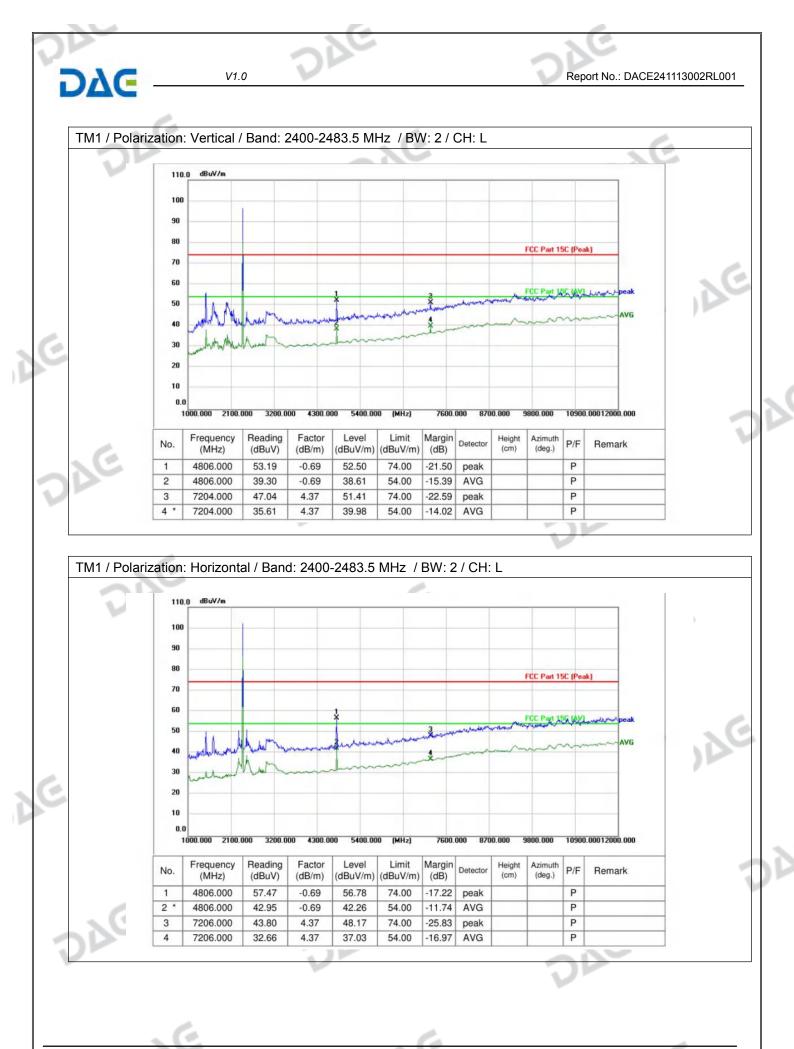
DAG

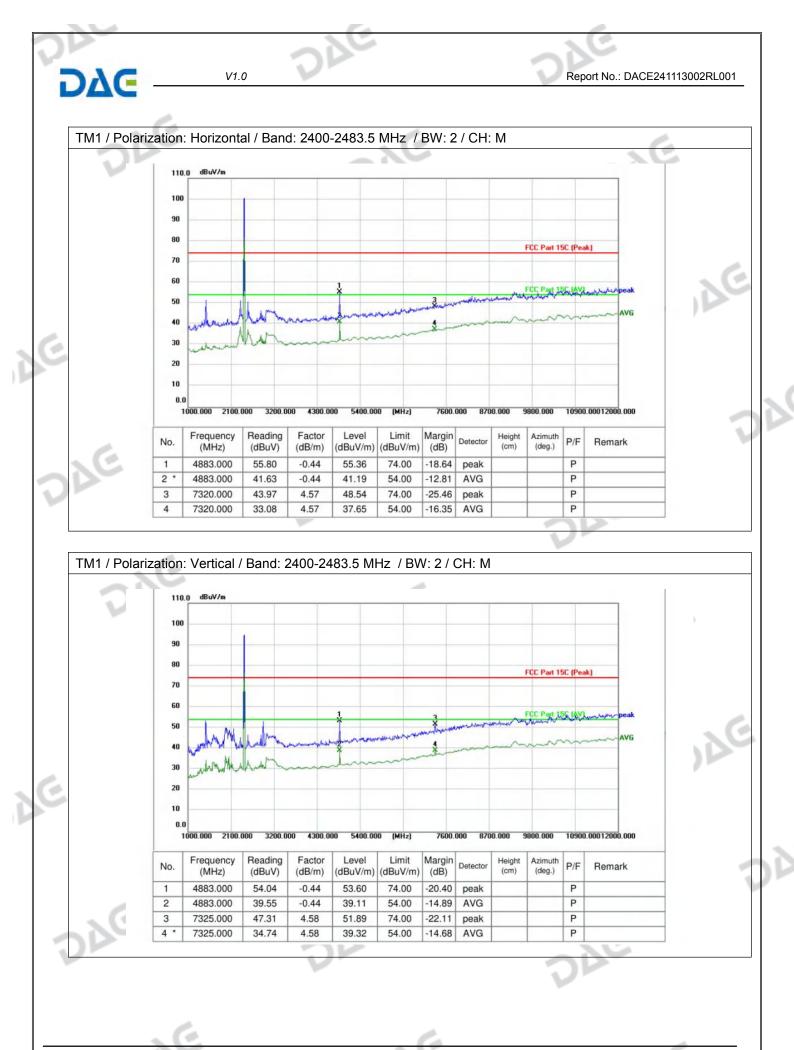
DΔC

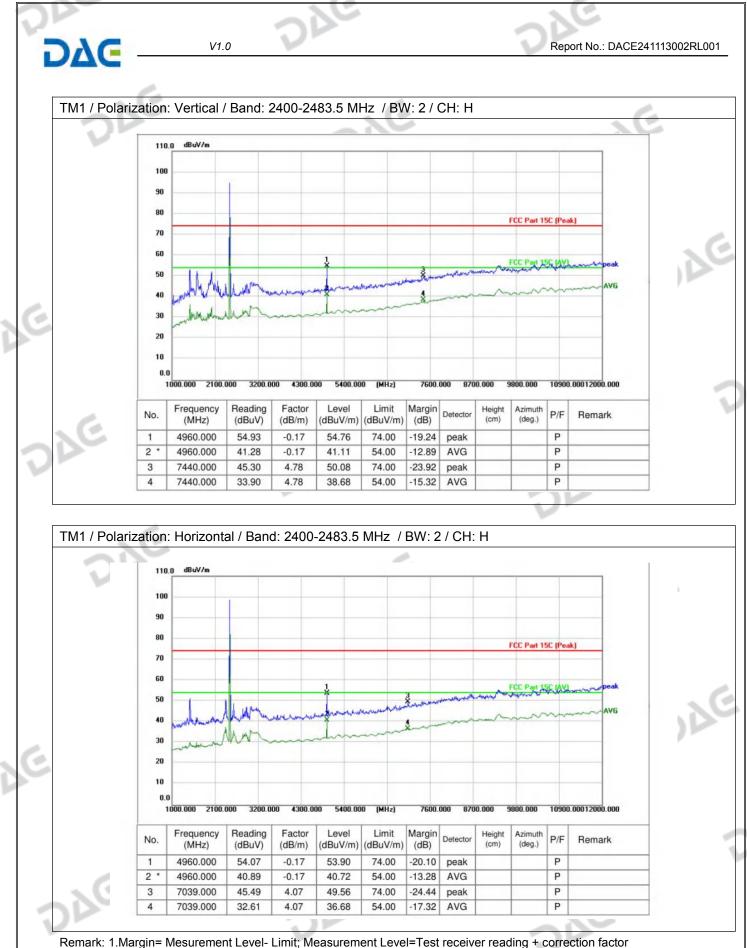

Report No.: DACE241113002RL001


1


4.8 Emissions in frequency bands (above 1GHz)

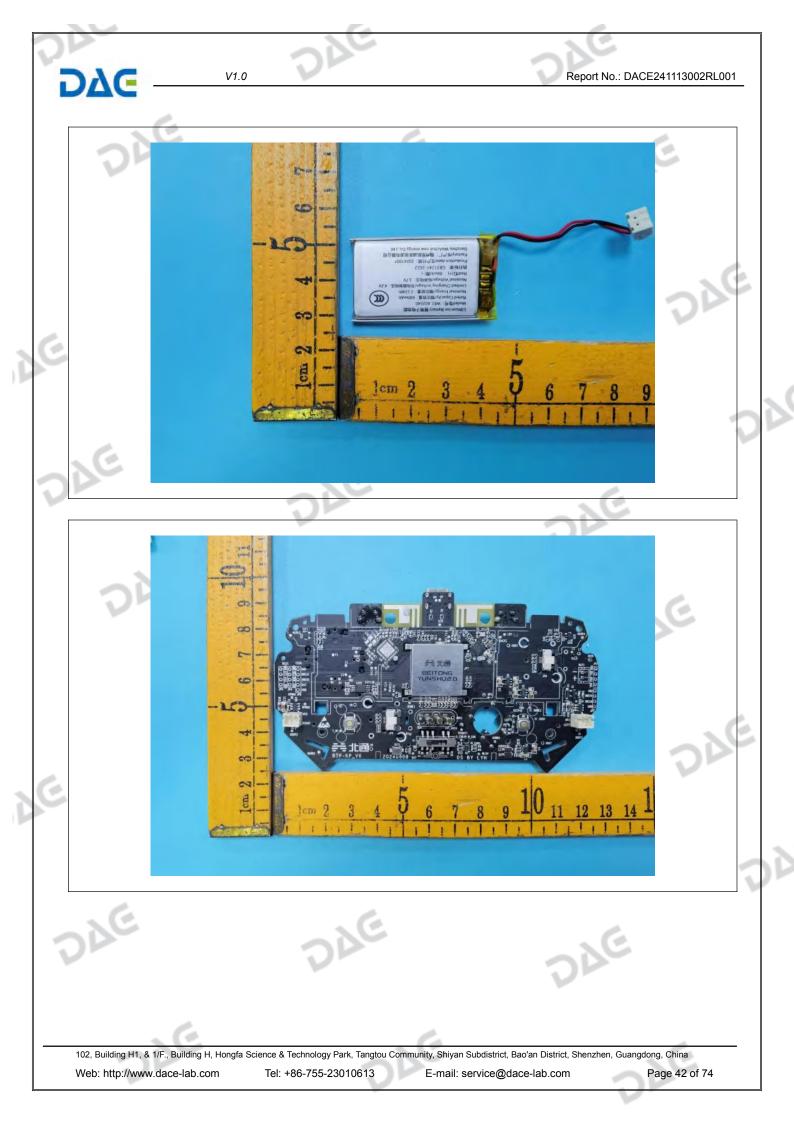

Test Requirement:	15.205(a), must also c	In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).					
Test Limit:	Frequency (MHz)	Frequency (MHz) Field strength (microvolts/meter)					
- 2	0.009-0.490	2400/F(kHz)	300				
26	0.490-1.705	24000/F(kHz)	30				
	1.705-30.0	30	30				
	30-88	100 **	3				
	88-216	150 **	3				
	216-960	200 **	3				
	Above 960	500	3				
AE	these frequency bands and 15.241. In the emission table a The emission limits sh employing a CISPR qu 110–490 kHz and abov	s is permitted under other s bove, the tighter limit appli own in the above table are uasi-peak detector except f	based on measurements or the frequency bands 9–90 kHz hission limits in these three bands				
Test Method:		ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02					
Di	360 degrees to determ b. For above 1GHz, th above the ground at a degrees to determine to c. The EUT was set 3 which was mounted or d. The antenna height determine the maximu polarizations of the an e. For each suspected the antenna was tuned below 30MHz, the anter was turned from 0 deg f. The test-receiver sys Bandwidth with Maxim g. If the emission level specified, then testing reported. Otherwise th tested one by one usir reported in a data she h. Test the EUT in the i. The radiation measu Transmitting mode, an	nine the position of the high e EUT was placed on the t 3 meter fully-anechoic cha the position of the highest r or 10 meters away from the n the top of a variable-heigh is varied from one meter to m value of the field strengt tenna are set to make the r emission, the EUT was ar d to heights from 1 meter to enna was tuned to heights rees to 360 degrees to find stem was set to Peak Deter um Hold Mode. of the EUT in peak mode could be stopped and the e emissions that did not ha ng peak, quasi-peak or ave et. lowest channel, the middle rements are performed in 2	op of a rotating table 1.5 meters imber. The table was rotated 360 radiation. e interference-receiving antenna, ht antenna tower. o four meters above the ground to h. Both horizontal and vertical measurement. ranged to its worst case and then o 4 meters (for the test frequency 1 meter) and the rotatable table d the maximum reading. ct Function and Specified was 10dB lower than the limit peak values of the EUT would be ave 10dB margin would be re- rage method as specified and the e channel, the Highest channel. X, Y, Z axis positioning for ing which it is the worst case.				
, la	1) For emission below	1GHz, through pre-scan for st case is recorded in the re	ound the worst case is the lowest eport.				
		- C.A.	o'an District, Shenzhen, Guangdong, China				

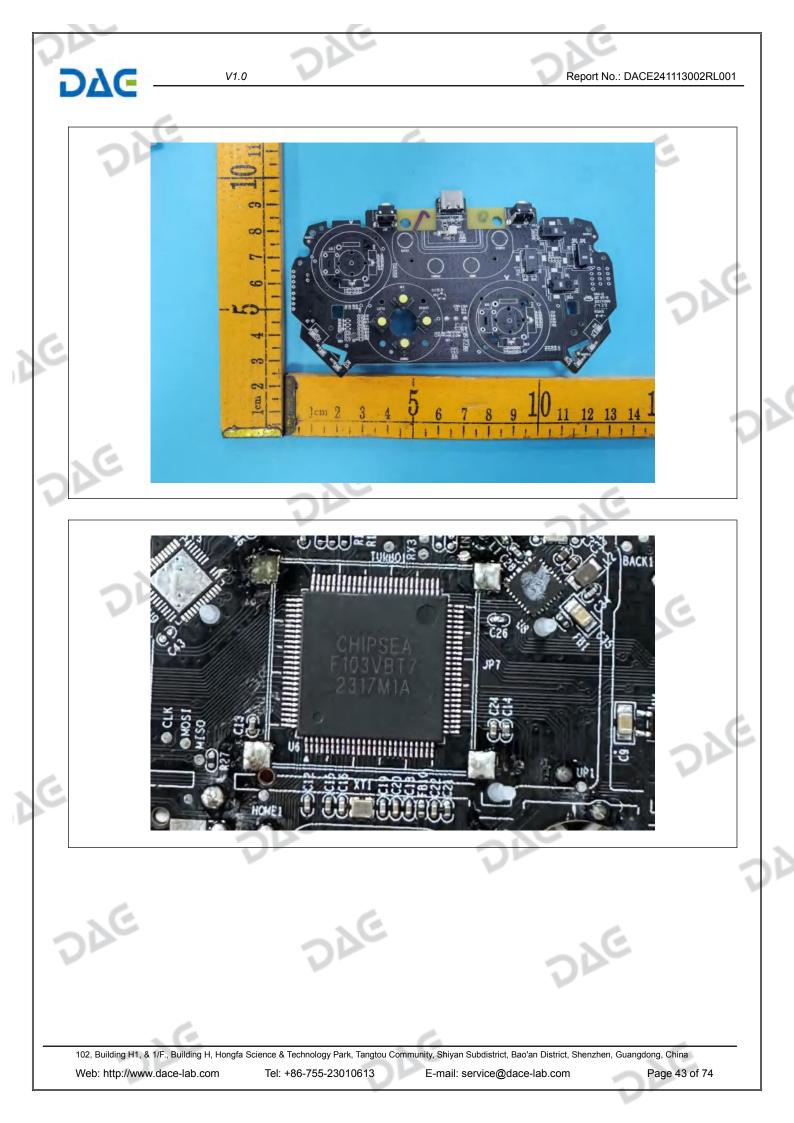

DA		Preamplifier. The Final Test Level = Preamplifier Fact 3) Scan from 9kH was very low. The found when testin spurious emission	basic equation Receiver Restor to 25GHz, to 25GHz, to points mark g, so only ab the from the rate be reported.	ted by adding the Antenna Fa on with a sample calculation is ading + Antenna Factor + Cal the disturbance above 12.750 ed on above plots are the hig ove points had been displaye adiator which are attenuated r Fundamental frequency is blo	s as follows: ble Factor [~] C GHz and below 30MHz hest emissions could be ed. The amplitude of nore than 20dB below
4.8.1 E.U.T. O	peration:			V	2P
Operating Envi					V
Temperature:	22.8 °C	Humidity:	55 %	Atmospheric Pressure:	102 kPa
Pretest mode:		TM1			
Final test mode	e:	TM1		XC	
4.8.2 Test Dat	a.			2h-	
DA	5 20	E	22	e Die	DIE
		DAE		DAE	20
OVE			V.C.		AC



Page 34 of 74

2. The EMC test software will only record the worst test angle and height, and only the worst case will be recorded in the test report.





Report No.: DACE241113002RL001

DAE


Appendix

1. -6dB Bandwidth

e

DVC

Condition	Antenna	Rate	Frequency (MHz)	-6dB BW(kHz)	limit(kHz)	Result
NVNT	ANT1	1Mbps	2402.00	719.76	500	Pass
NVNT	ANT1	1Mbps	2440.00	720.70	500	Pass
NVNT	ANT1	1Mbps	2480.00	725.91	500	Pass
NVNT	ANT1	2Mbps	2402.00	1371.04	500	Pass
NVNT	ANT1	2Mbps	2440.00	1370.08	500	Pass
NVNT	ANT1	2Mbps	2480.00	1371.09	500	Pass

2 P	AC STREET	.C.
240	V1.0	Report No.: DACE241113002RL001
DVC		
. C.		
2P	-6dB_Bandwidth_NVNT_ANT1_2M	Mbps_2480
	Keysight Spectrum Analyzer - Occupied BW RL RF 50 Ω AC SENSE:INTI (ALIGN AU Center Freq 2.480000000 GHz Trig: Freq Run Avg Hold: 10/1	TO/NO RF 109:25:50 AM Nov 26, 2024 Radio Std: None Frequency
	#IFGain:Low #Atten: 30 dB Ref Offset 3.85 dB 10 dB/div Ref 14./0 dBm	Radio Device: BTS
	10 dB/div. Ref 14.70 dBm	Center Freq
5	6.30 -15.3	2.48000000 GHz
	45.3	man Jie
	65.3	
E	-75.3	Span 6 MHz
	#Res BW 100 kHz #VBW 300 kHz Occupied Bandwidth Total Power	9.98 dBm
	2.0494 MHz	FreqOffset
6	Transmit Freq Error 8.244 kHz % of OBW Power x dB Bandwidth 1.371 MHz x dB	99.00 % 0Hz
- Ne		
	MSG 🕻	STATUS CRF Alignment Failure
		DAC
. 6		
DAG	· (c.	<i>.</i>
	DAC	DAC
		VE
		4
-	DAG DA	E
1	2	DYE
		1 Pres
3		
	DIE	DAC
	VE	24
DAE	. 6	4
DP-	DAE	DAC
	V	Dr
		-
- 6	6	4
	ing H, Hongfa Science & Technology Park, Tangtou Community, Shiyan S	Subdistrict Basion District Shanzhon Guanadana, China

2. 99% Occupied Bandwidth

DAC

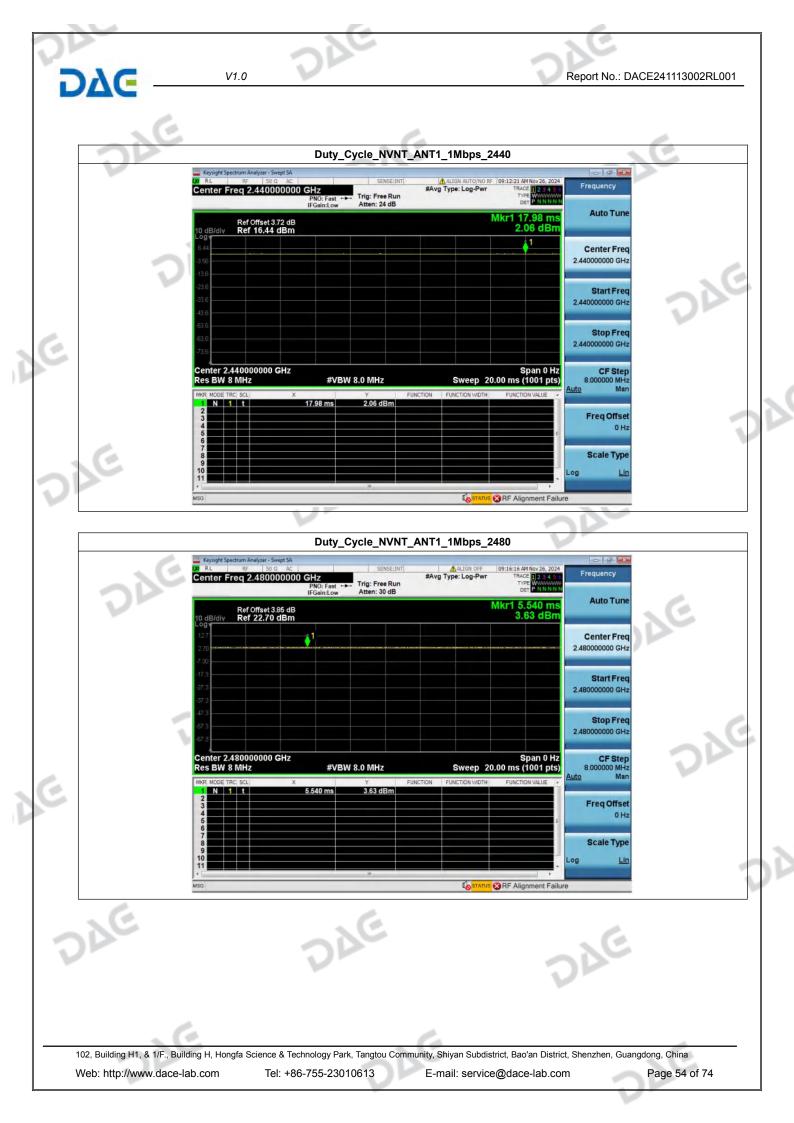
Condition	Antenna	Rate	Frequency (MHz)	99%%BW(MHz)
NVNT	ANT1	1Mbps	2402.00	1.064
NVNT	ANT1	1Mbps	2440.00	1.066
NVNT	ANT1	1Mbps	2480.00	1.067
NVNT	ANT1	2Mbps	2402.00	2.073
NVNT	ANT1	2Mbps	2440.00	2.077
NVNT	ANT1	2Mbps	2480.00	2.077

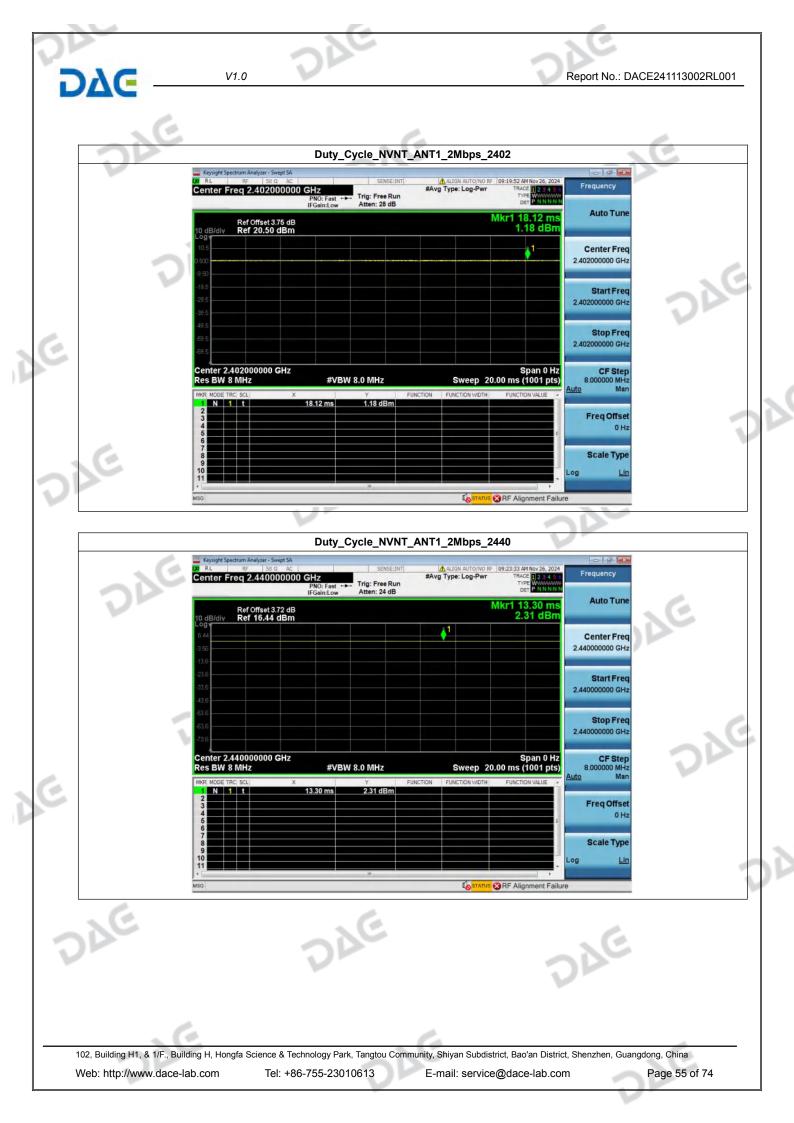
C

DAG	99%_Occupied_Bandwidth_NVI	NT_ANT1_2Mbps_2480	E
	Keysight Spectrum Analyzer - Occupied BW SENSE:INT Center Freq 2.480000000 GHz Center Freq: 2.480000000 GHz #/FGaint.ue Trig: Free Run Av. #/FGaint.ue 3 dB	ALISH ALITO/NO RF 09:26:12 AM Nov 26, 2024 GHz Radio Std: None giHold: 10/10 Radio Device: BTS	
	Ref Offset 3.85 dB 10 dB/div Ref 14.70 dBm Log		
1	4.70 6.30 -15.3	2.48000000 GHz	
	25.3 35.3 45.3 5.5 8	Jummer and the second	DAC
1			
	Center 2.48 GHz #Res BW 30 kHz #VBW 100 kHz Occupied Bandwidth Total Powe	Span 6 MHz Sweep 6.333 ms er 9.46 dBm	2
	2.0768 MHz Transmit Freq Error 19.131 kHz % of OBW	FreqOffset	
E	x dB Bandwidth 2.633 MHz x dB	-26.00 dB	
0P2	MSG	€ STATUS © RF Alignment Failure	
		DAC	
240			
2r	DAC		AC
	V	Ĭ	
	.C.	6	
	DAC	DAG	DAE
			2h-
Ē	. Co	6	
	DAE	DAE	
			1
DAE	.C.		
2P	DAG	DAG	j.

21

Report No.: DACE241113002RL001


3. Duty Cycle


DΔC

Condition	Antenna	Rate	Frequency (MHz)	Dutycycle(%)	Duty_factor
NVNT	ANT1	1Mbps	2402.00	100	0.00
NVNT	ANT1	1Mbps	2440.00	100	0.00
NVNT	ANT1	1Mbps	2480.00	100	0.00
NVNT	ANT1	2Mbps	2402.00	100	0.00
NVNT	ANT1	2Mbps	2440.00	100	0.00
NVNT	ANT1	2Mbps	2480.00	100	0.00

1

		Du Spectrum Analyzer - Swept SA	uty_Cycle_NVNT_/	ANT1_2Mbps_2480		C	
	LX RL	RF 50 Ω AC Freq 2.480000000 GHz	SENSE:INT Fast ↔ Trig: Free Run Atten: 30 dB	ALIGN AUTO/NO RF 09:26 #Avg Type: Log-Pwr	28 AM Nov 26, 2024 TRACE 2 3 4 5 5 TYPE WWWWWW DET P.N.N.N.N		
	10 dB/div Log	Ref Offset 3.85 dB Ref 22.70 dBm		Mkr1	16.68 ms 3.59 dBm Cente	Tune	
	2.70				2.4800000	00 GHz	.C
	-27.3 -37.3 -47.3				2.4800000		
3	-57 3 -67 3				2.4800000	D Freq D0 GHz	
	Center: Res BW	TRC SCL X		Sweep 20.00 n	Span 0 Hz Is (1001 pts) ICTION VALUE	Step 00 MHz Man	
	2 3 4 5 6				Freq	Offset 0 Hz	1
- ic	7 8 9 10 11				Log	EType	
	MSG	0		ι <mark>δ^{status} ⊗</mark> RF	Alignment Failure	-	
					25		
-)AE			6			
V			SAC	5		DAG	
						VE	
	20	E		. C.			
	25			DAG) A E
5				-		V	
		.e			6		
		DAG		2	1e		
							1
200			AE		24	6	
					- 2		

21

Report No.: DACE241113002RL001


1

4. Peak Output Power

DAC

Condition	Antenna	Rate	Frequency (MHz)	Max. Conducted Power(dBm)	Max. Conducted Power(mW)	Limit(mW)	Result
NVNT	ANT1	1Mbps	2402.00	0.82	1.21	1000	Pass
NVNT	ANT1	1Mbps	2440.00	2.04	1.60	1000	Pass
NVNT	ANT1	1Mbps	2480.00	3.61	2.30	1000	Pass
NVNT	ANT1	2Mbps	2402.00	1.10	1.29	1000	Pass
NVNT	ANT1	2Mbps	2440.00	2.28	1.69	1000	Pass
NVNT	ANT1	2Mbps	2480.00	3.54	2.26	1000	Pass

C

	🤐 Keysight Spectrum A	nalyzer - Swept SA 50 Ω AC SE	Ver_NVNT_ANT1_2Mbps	:26:49 AM Nov 26, 2024	
	Ref	2.480000000 GHz PNO: Fast +++ IFGain:Low Diffset 3.85 dB	0 dB	TRACE 12 14 Frequency TYPE MWWWW DEF PNNNNN 179 920 GHz 3,536 dBm	
	Log dB/div Ref	22.70 dBm		Center Freq 2.48000000 GHz	
	-7.30			Start Freq 2.476000000 GHz	2AC
1	-17.3			Stop Freq 2.484000000 GHz	
	-37.3			CF Step 800.000 kHz <u>Auto</u> Man	
	-47.3			Freq Offset 0 Hz	1
-16	-67.3	0 GHz	s	Scale Type	
0F	#Res BW 3.0 N MSG	HZ #VBW 8.0 MH2	Sweep 1.000	Dims (1001 pts) RF Alignment Failure	
				2P	
-	DAG		6		
1		5	A.	-)AC
	DAG		DAG		
	VE		2P		DAG
3					
	-	DAG		AG	
	1		2		-
SAC	4	DAG			
			6	DAC	

Report No.: DACE241113002RL001


5. Power Spectral Density

DAC


Condition	Antenna	Rate	Frequency (MHz)	Power Spectral Density(dBm/3kHz)	Limit(dBm/3kHz)	Result
NVNT	ANT1	1Mbps	2402.00	-15.83	8	Pass
NVNT	ANT1	1Mbps	2440.00	-14.69	8	Pass
NVNT	ANT1	1Mbps	2480.00	-13.10	8	Pass
NVNT	ANT1	2Mbps	2402.00	-19.99	8	Pass
NVNT	ANT1	2Mbps	2440.00	-18.73	8	Pass
NVNT	ANT1	2Mbps	2480.00	-17.25	8	Pass

C

Report No.: DACE241113002RL001

6. Bandedge

DΔC

				A 12			
Condition	Antenna	Rate	TX_Frequency (MHz)	Max. Mark Frequency (MHz)	Spurious level(dBm)	limit(dBm)	Result
NVNT	ANT1	1Mbps	2402.00	2399.585	-55.192	-20.376	Pass
NVNT	ANT1	1Mbps	2480.00	2484.800	-56.976	-17.563	Pass
NVNT	ANT1	2Mbps	2402.00	2399.965	-36.668	-21.987	Pass
NVNT	ANT1	2Mbps	2480.00	2483.650	-56.815	-19.502	Pass

e.

Report No.: DACE241113002RL001

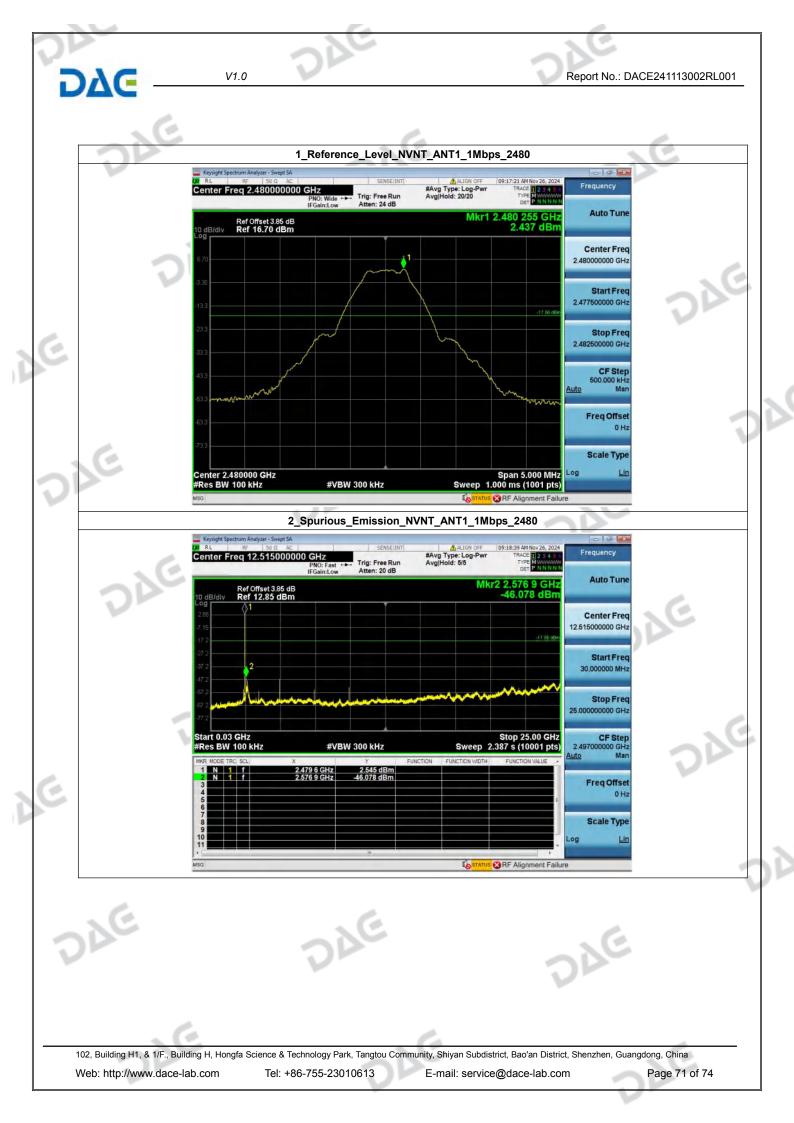
V1.0

7. **Spurious Emission**

DAC

Condition	Antenna	Rate	TX_Frequency(MHz)	Spurious MAX.Value(dBm)	Limit	Result
NVNT	ANT1	1Mbps	2402.00	-47.231	-20.376	Pass
NVNT	ANT1	1Mbps	2440.00	-45.327	-19.244	Pass
NVNT	ANT1	1Mbps	2480.00	-46.078	-17.563	Pass
NVNT	ANT1	2Mbps	2402.00	-49.971	-21.987	Pass
NVNT	ANT1	2Mbps	2440.00	-47.449	-20.854	Pass
NVNT	ANT1	2Mbps	2480.00	-47.750	-19.502	Pass


C.



102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613

Web: http://www.dace-lab.com

E-mail: service@dace-lab.com

