<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>		DAG	Report	No.: DACE241113015RL001
BESING TECHNOLOGY (SHENZHEN) CO., LTD Product Name: Wireless Earphone Test Model(s):: T15 Meport Reference No. : DACE241113015RL001 FC ID : ATUB-TI5 Applicant's Name : BESING TECHNOLOGY (SHENZHEN) CO., LTD Address : 2F, Block 1, Tianxin Resident Group Industrial Park, Shangwu Address : 2F, Block 1, Tianxin Resident Group Industrial Park, Shangwu Community, Shiyan Street, Baoan District, Shenzhen, China Testing Laboratory : Shenzhen DACE Testing Technology Co., Ltd.	DYE	RF TEST R	EPORT	0
Product Name: Wireless Earphone Test Model(s).: T15 Report Reference No. : DACE241113015RL001 FC ID : 2ATUB-T15 Applicant's Name : BESING TECHNOLOGY (SHENZHEN) CO., LTD Address : 2F, Block 1, Tianxin Resident Group Industrial Park, Shangwu Address : 2F, Block 1, Tianxin Resident Group Industrial Park, Shangwu Community, Shiyan Street, Baoan District, Shenzhen, China Testing Laboratory : Shenzhen DACE Testing Technology Co., Ltd. Micross : Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Test Specification Standard : 47 CFR Part 15.247 Date of Receipt : November 13, 2024 to November 19, 2024 Date of Issue : November 19, 2024 Result : Pass Note: This report shall not be reproduced except in full, without the written approval of Shenzhen DACE Testing Technology Co., Ltd, This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd, This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd, This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd, This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd, This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd, This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd, This document may be altered or revised by Shenzhen DACE Testing Technology Co.	1C	_		
Report Reference No. E DACE241113015RL001 CC ID ZATUB-T15 Applicant's Name E BESING TECHNOLOGY (SHENZHEN) CO., LTD Address 2F. Block 1, Tianxin Resident Group Industrial Park, Shangwu Community, Shiyan Street, Baoan District, Shenzhen, China Testing Laboratory E Shenzhen DACE Testing Technology Co., Ltd. L02, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Address Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Test Specification Standard Test of Test November 13, 2024 Date of Receipt November 19, 2024 Date of Issue November 19, 2024 Result Yass Note: This report shall not be reproduced except in full, without the written approval of Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Te				
Report Reference No. : DACE241113015RL001 FCC ID : 2ATU8-T15 Applicant's Name : BESING TECHNOLOGY (SHENZHEN) CO., LTD Address : 2F, Block 1, Tianxin Resident Group Industrial Park, Shangwu Community, Shiyan Street, Bacan District, Shenzhen, China : Testing Laboratory : Shenzhen DACE Testing Technology Co., Ltd. . . . 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Address : Shenzhen DACE Testing Technology Co., Ltd. Test Specification Standard : 47 CFR Part 15.247 Date of Receipt : November 13, 2024 Date of Issue : November 19, 2024 Test specification shall not be reproduced except in full, without the written approval of Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. This docume			-	
FCC ID : 2ATU8-T15 Applicant's Name : BESING TECHNOLOGY (SHENZHEN) CO., LTD Address : 2F, Block 1, Tianxin Resident Group Industrial Park, Shangwu Address : 2F, Block 1, Tianxin Resident Group Industrial Park, Shangwu Testing Laboratory :: Shenzhen DACE Testing Technology Co., Ltd. Address : Shenzhen DACE Testing Technology Co., Ltd. Address :: Shenzhen DACE Testing Technology Co., Ltd. Address :: Tangadou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Test Specification Standard :: 47 CFR Part 15.247 Date of Receipt :: November 13, 2024 Data of Issue :: November 19, 2024 Result :: Pass Note: This report shall not be reproduced except in full, without the written approval of Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revi			,	
FCC ID : 2ATU8-T15 Applicant's Name : BESING TECHNOLOGY (SHENZHEN) CO., LTD Address : 2F, Block 1, Tianxin Resident Group Industrial Park, Shangwu Address : 2F, Block 1, Tianxin Resident Group Industrial Park, Shangwu Testing Laboratory :: Shenzhen DACE Testing Technology Co., Ltd. Address : Shenzhen DACE Testing Technology Co., Ltd. Address :: Shenzhen DACE Testing Technology Co., Ltd. Address :: Tangadou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Test Specification Standard :: 47 CFR Part 15.247 Date of Receipt :: November 13, 2024 Data of Issue :: November 19, 2024 Result :: Pass Note: This report shall not be reproduced except in full, without the written approval of Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revi				
Applicant's Name : BESING TECHNOLOGY (SHENZHEN) CO., LTD Address : 2F, Block 1, Tianxin Resident Group Industrial Park, Shangwu Community, Shiyan Street, Baoan District, Shenzhen, China : Testing Laboratory : Shenzhen DACE Testing Technology Co., Ltd. Mdress : 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Address : Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China : Test Specification Standard Test Specification Standard : 47 CFR Part 15.247 Date of Receipt : November 13, 2024 Data of Issue : November 19, 2024 Result : Pass Note: This report shall not be reproduced except in full, without the written approval of Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technolo	Report Reference No.	: DACE241113015RL001		
Address 2F, Block 1, Tianxin Resident Group Industrial Park, Shangwu Community, Shiyan Street, Baoan District, Shenzhen, China Testing Laboratory : Shenzhen DACE Testing Technology Co., Ltd. 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Guangdong, China Address : Test Specification Standard : 47 CFR Part 15.247 Date of Receipt : in November 13, 2024 Data of Issue : in Standard : Note: This report shall not be reproduced except in full, without the written approval of Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE 	FCC ID	: 2ATU8-T15		
Address 2F, Block 1, Tianxin Resident Group Industrial Park, Shangwu Community, Shiyan Street, Baoan District, Shenzhen, China Testing Laboratory : Shenzhen DACE Testing Technology Co., Ltd. 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Guangdong, China Address : Test Specification Standard : 47 CFR Part 15.247 Date of Receipt : in November 13, 2024 Data of Issue : in Standard : Note: This report shall not be reproduced except in full, without the written approval of Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or field by Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. Personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample				
Address Community, Shiyan Street, Baoan District, Shenzhen, China Testing Laboratory Shenzhen DACE Testing Technology Co., Ltd. 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Guangdong, China Test Specification Standard Targotu Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Test Specification Standard targotu Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Date of Receipt November 13, 2024 Date of Test November 13, 2024 to November 19, 2024 Data of Issue November 19, 2024 Result Pass Note: This report shall not be reproduced except in full, without the written approval of Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technolog Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technolog Co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample	Applicant's Name	: BESING TECHNOLOGY	Y (SHENZHEN) CO., LTD	
Address 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Test Specification Standard : 47 CFR Part 15.247 Date of Receipt : November 13, 2024 Date of Test : November 13, 2024 to November 19, 2024 Data of Issue : November 19, 2024 Result : Pass	Address			
Address 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Test Specification Standard : 47 CFR Part 15.247 Date of Receipt : November 13, 2024 Date of Test : November 13, 2024 to November 19, 2024 Data of Issue : November 19, 2024 Result : Pass Note: This report shall not be reproduced except in full, without the written approval of Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample				
Address : Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Test Specification Standard : 47 CFR Part 15.247 Date of Receipt : November 13, 2024 Date of Test : November 13, 2024 to November 19, 2024 Data of Issue : November 19, 2024 Result : Pass Note: This report shall not be reproduced except in full, without the written approval of Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technolog Co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample	Testing Laboratory			
Date of Receipt : November 13, 2024 Date of Test : November 13, 2024 to November 19, 2024 Data of Issue : November 19, 2024 Result : Pass Note: This report shall not be reproduced except in full, without the written approval of Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or frevised by Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or frevised by Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or frevised by Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or frevised by Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or frevised by Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or frevised by Shenzhen DACE Testing Technology Co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample	Address	: Tangtou Community, Sh	Building H, Hongfa Science iyan Subdistrict, Bao'an Dist	e & Technology Park, rict, Shenzhen,
Date of Test : November 13, 2024 to November 19, 2024 Data of Issue : November 19, 2024 Result : Pass Note: This report shall not be reproduced except in full, without the written approval of Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technolog Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technolog co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technolog co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample	Test Specification Standard	: 47 CFR Part 15.247		
Data of Issue : November 19, 2024 Result : Pass Note: This report shall not be reproduced except in full, without the written approval of Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technolog Co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample	Date of Receipt	: November 13, 2024		
Result : Pass Note: This report shall not be reproduced except in full, without the written approval of Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technolog Co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample	Date of Test	: November 13, 2024 to N	lovember 19, 2024	
Note: This report shall not be reproduced except in full, without the written approval of Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technolog Co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample	Data of Issue	: November 19, 2024		
Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technolog Co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample	Result	: Pass		
102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China	Testing Technology Co., Ltd. Th Co., Ltd. personnel only, and sh	nis document may be altered on nall be noted in the revision se	or revised by Shenzhen DAC	E Testing Technology
102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China	.C	6		
Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 1 of 102				

Ì

Apply for company information

Applicant's Name	: BESING TECHNOLOGY (SHENZHEN) CO., LTD				
Address	:	2F, Block 1, Tianxin Resident Group Industrial Park, Shangwu Community, Shiyan Street, Baoan District, Shenzhen, China			
Product Name	:	Wireless Earphone			
Test Model(s)	:	T15			
Series Model(s)		Т5			
Test Specification Standard(s)	Ŧ	47 CFR Part 15.247			

NOTE1:

)De

DA

200

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

NC

Compiled by: Keren Huang

Keren Huang / Test Engineer November 19, 2024

Supervised by: Ben Tang

Ben Tang / Project Engineer November 19, 2024

Approved by:

.

1 om chen

Tom Chen / Manager November 19, 2024

)AC

C

		DAC	DAC
Version	Description	REPORT No.	Issue Date
V1.0	Original	DACE241113015RL001	November 19, 2024
		VE	AC
	.6		

١

CONTENTS

	Report No.: DACE241113015RL
	ONTENTS
24	
TEST SUMMARY	<u> </u>
	<u>_</u>
2.3 DESCRIPTION OF TEST MODES	
	RTAINTY
2.8 ANNOUNCEMENT	
BEVALUATION RESULTS (EVALUATION)	
	RF)
4.1 CONDUCTED EMISSION AT AC POWER LINE	
4.1.1 E.U.T. Operation:	2/2
4.2.1 E.U. I. Operation:	<u>.</u>
•	
4.4.1 E.U.T. Operation:	
4.4.3 Test Data:	<u></u>
4.5 NUMBER OF HOPPING FREQUENCIES	
•	
	<i>C</i>
	Y BANDS

DΔC

DAG

3

DAG

DAE

Report No.: DACE241113015RL001

1

4.8.2 Test Setup Diagram:	24
4.8.3 Test Data:	
4.9 EMISSIONS IN FREQUENCY BANDS (BELOW 1GHZ)	
4.9.1 E.U.T. Operation:	
4.9.2 Test Data:	
4.10 EMISSIONS IN FREQUENCY BANDS (ABOVE 1GHZ)	32
4.10.1 E.U.T. Operation:	
4.10.2 Test Data:	
5 TEST SETUP PHOTOS	39
6 PHOTOS OF THE EUT	
APPENDIX	57
1. DUTY CYCLE	58
220dB Bandwidth	62
3. 99% OCCUPIED BANDWIDTH	66
4. PEAK OUTPUT POWER	
5. SPURIOUS EMISSIONS	
7. CARRIER FREQUENCIES SEPARATION (HOPPING)	
8. NUMBER OF HOPPING CHANNEL (HOPPING)	
9. DWELL TIME (HOPPING)	97

)DE

DAG

)DE

DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAE

)ÀC

0

Page 5 of 102

DAG

)DE

TEST SUMMARY 1

1.1 Test Standards

DAG

The tests were performed according to following standards:

47 CFR Part 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

1.2 Summary of Test Result

Item	Standard	Method	Requirement	Result
Antenna requirement	47 CFR Part 15.247		47 CFR 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15.247	ANSI C63.10-2013 section 6.2	47 CFR 15.207(a)	Pass
20dB Bandwidth	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.7 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(1)	Pass
Maximum Conducted Output Power	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.5 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(b)(1)	Pass
Channel Separation	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.2 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(1)	Pass
Number of Hopping Frequencies	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.3 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(1)(iii)	Pass
Dwell Time	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(1)(iii)	Pass
Emissions in non-restricted frequency bands	47 CFR Part 15.247	ANSI C63.10-2013 section 7.8.8 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Band edge emissions (Radiated)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.10 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (below 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (above 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass

E-mail: service@dace-lab.com

Page 6 of 102

					2		
<u>ΔC</u> -	V1.0	V			Re	port No.: DACE	E241113015RL0
GEN	ERAL INF		FION C				
	Information		200				
	mormation						
Applicant	t's Name	: BESING	TECHNOLOGY	(SHENZHE	N) CO., LTD		
Address			1, Tianxin Resi treet, Baoan Dis			Shangwu C	community,
				20			
Manufact	urer		TECHNOLOGY				\sim
Address			1, Tianxin Resi treet, Baoan Dis			Shangwu C	community,
				,	,		
2 Descri	ption of Dev	vice (EUT)					
Product N	ame: 🗸 🗸	Wireless Ea	rphone		26		
Model/Typ	e reference:	T15					
Series Mo	del:	Т5					
Model Diff	ference:		has many mod as the circuit pri				
Trade Mai	rk:	N/A					
Power Su	pply:	DC 5V/1A fr	om adapter Bat	ttery:DC3.7∖	/ 65mAH	NC.	
	Frequency:	2402MHz to	2480MHz		5		
Number o	f Channels:	79					
Modulatio	n Type:	GFSK, π/4 I	DQPSK				
Antenna T	уре:	Chip antenn	ia 🔍 🤇				-
Antenna C	Gain:	1.8dBi	2P				C
Hardware	Version:	V1.0					
Software	Version:	V1.0					
•			ed by the custo		is not respons	ible for	
	n Frequency e		s associated w				
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2402MHz	21	2423MHz	42	2443MHz	62	2463MHz
3	2403MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	23	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	23	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
10	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
12	21101112	22		52	2454MU-7	72	2474MU-

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613

2434MHz

33

Web: http://www.dace-lab.com

2414MHz

13

E-mail: service@dace-lab.com

53

2454MHz

Page 7 of 102

2474MHz

73

Report No.: DACE241113015RL001

.6

NE

14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

DAG

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Test channel	Frequency (MHz)	
rest channel	BDR/EDR	
Lowest channel	2402MHz	
Middle channel	2441MHz	
Highest channel	2480MHz	

2.3 Description of Test Modes

No	Title	Description			
TM1	TX-GFSK (Non- Hopping)	Keep the EUT in continuously transmitting mode (non-hopping) with GFSK modulation.			
TM2	TX-Pi/4DQPSK (Non- Hopping)	Keep the EUT in continuously transmitting mode (non-hopping) with Pi/4DQPSK modulation.			
ТМ3	TX-GFSK (Hopping)	Keep the EUT in continuously transmitting mode (hopping) with GFSK modulation,.			
TM4	TX-Pi/4DQPSK (Hopping)	Keep the EUT in continuously transmitting mode (hopping) with Pi/4DQPSK modulation.			
Remark: Only the data of the worst mode would be recorded in this report					

Remark:Only the data of the worst mode would be recorded in this report.

2.4 Description of Support Units

NE

Title	Manufacturer	Model No.	Serial No.
AC-DC adapter	HUAWEI	P0005	

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, ChinaWeb: http://www.dace-lab.comTel: +86-755-23010613E-mail: service@dace-lab.comPage 8 of 102

C

2.5 Equipments Used During The Test

Conducted Emission at AC power line								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
Power absorbing clamp	SCHWARZ BECK	MESS- ELEKTRONIK	/	2024-03-25	2025-03-24			
Electric Network	SCHWARZ BECK	CAT5 8158	CAT5 8158#207	/	1			
Cable	SCHWARZ BECK	124	1	2024-03-20	2025-03-19			
Pulse Limiter	SCHWARZ BECK	VTSD 9561-F Pulse limiter 10dB Attenuation	561-G071	2023-12-12	2024-12-11			
50ΩCoaxial Switch	Anritsu	MP59B	M20531	/	/			
Test Receiver	Rohde & Schwarz	ESPI TEST RECEIVER	ID:1164.6607K 03-102109- MH	2024-06-12	2025-06-11			
L.I.S.N	R&S	ESH3-Z5	831.5518.52	2023-12-12	2024-12-11			
L.I.S.N	SCHWARZ BECK	NSLK 8126	05055	2024-06-14	2025-06-13			
Pulse Limiter	CYBERTEK	EM5010A	/	2024-09-27	2025-09-26			
EMI test software	EZ -EMC	EZ	V1.1.42	1	1			

Dwell Time

DVC

Emissions in non-restricted frequency bands 20dB Bandwidth **Maximum Conducted Output Power Channel Separation**

Number of Hopping Frequencies

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RF Test Software	TACHOY	RTS-01	V1.0.0	/	1		
Power divider	MIDEWEST	PWD-2533	SMA-79	2023-05-11	2026-05-10		
RF Sensor Unit	Tachoy Information Technology(she nzhen) Co.,Ltd.	tion TR1029-2 000001 /					
Wideband radio communication tester	R&S	CMW500	113410	2024-06-12	2025-06-11		
Signal Generator	Keysight	N5181A	MY48180415	2023-12-11	2024-12-10		
Signal Generator	Keysight	N5182A	MY50143455	2023-12-12	2024-12-11		
Spectrum Analyzer	Keysight	N9020A	MY53420323	2023-12-12	2024-12-11		

2

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAG

Report No.: DACE241113015RL001

1

Band edge emissions Emissions in frequence	. ,	GHz)			
Emissions in frequence	•			DP	
Equipment	Manufacturer	Inventory No	Cal Date	Cal Due Date	
EMI Test software	Farad	EZ -EMC	V1.1.42	/	1
Positioning Controller	<u> </u>	MF-7802	C /	1	1
Amplifier(18-40G)	COM-POWER	AH-1840	10100008-1	2022-04-05	2025-04-04
Horn antenna	COM-POWER	AH-1840 (18-40G)	10100008	2023-04-05	2025-04-04
Loop antenna	ZHINAN	ZN30900C	ZN30900C	2024-06-14	2026-06-13
Cable(LF)#2	Schwarzbeck	/	/	2024-02-19	2025-02-18
Cable(LF)#1	Schwarzbeck	/	1	2024-02-19	2025-02-18
Cable(HF)#2	Schwarzbeck	AK9515E	96250	2024-03-20	2025-03-19
Cable(HF)#1	Schwarzbeck	SYV-50-3-1		2024-03-20	2025-03-19
Power amplifier(LF)	Schwarzbeck	BBV9743	9743-151	2024-06-12	2025-06-11
Power amplifier(HF)	Schwarzbeck	BBV9718	9718-282	2024-06-12	2025-06-11
Wideband radio communication tester	R&S	CMW500	113410	2024-06-12	2025-06-11
Spectrum Analyzer	R&S	FSP30	1321.3008K40 -101729-jR	2024-06-12	2025-06-11
Test Receiver	R&S	ESCI 3	1166.5950K03 -101431-Jq	2024-06-13	2025-06-12
Horn Antenna	Sunol Sciences	DRH-118	A091114	2023-05-13	2025-05-12
Broadband Antenna	Sunol Sciences	JB6 Antenna	A090414	2024-09-28	2026-09-27

DAE

)DE

DAE

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)DE

)AC

5

DAG

)DE

V1.0

DAG

2

3

DAE

DAC

2.6 Statement Of The Measurement Uncertainty

Test Item	Measurement Uncertainty
Conducted Disturbance (0.15~30MHz)	±3.41dB
Occupied Bandwidth	±3.63%
RF conducted power	±0.733dB
Duty cycle	±3.1%
Conducted Spurious emissions	±1.98dB
Radiated Emission (Above 1GHz)	±5.46dB
Radiated Emission (Below 1GHz)	±5.79dB
Noto: (1) This upcortainty represents an expanded u	incortainty expressed at approximately the 05%

Note: (1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2.7 Identification of Testing Laboratory

Company Name:	Shenzhen DACE Testing Technology Co., Ltd.				
Address:	102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdon China				
Phone Number:	+86-13267178997				
Fax Number:	86-755-29113252				
Identification of the Respons	ible Testing Location				
Company Name:	Shenzhen DACE Testing Technology Co., Ltd.				
Address:	102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China				
Phone Number:	+86-13267178997				
Fax Number:	86-755-29113252				
FCC Registration Number:	0032847402				
Designation Number:	CN1342				
Test Firm Registration Number:	778666				
A2LA Certificate Number:	6270.01				

2.8 Announcement

(1) The test report reference to the report template version v0.

(2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.

(3) The test report is invalid if there is any evidence and/or falsification.

(4) This document may not be altered or revised in any way unless done so by DACE and all revisions are duly noted in the revisions section.

(5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

(6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

Evaluation Results (Evaluation) 3

3.1 Antenna requirement

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.1.1 Conclusion:

Test Requirement:

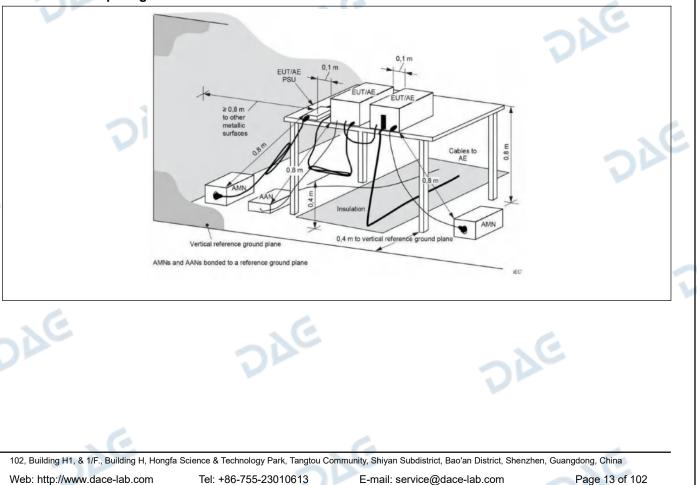
DΔC

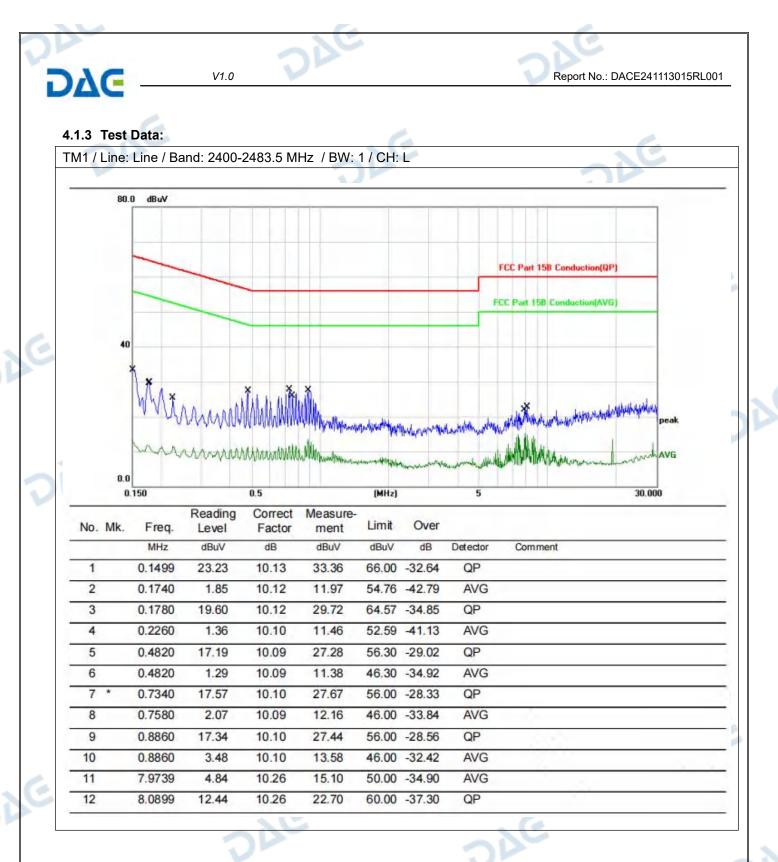
Report No.: DACE241113015RL001

4 Radio Spectrum Matter Test Results (RF)

4.1 Conducted Emission at AC power line

	-						
Test Requirement:	Refer to 47 CFR 15.207(a), Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).						
Test Limit:	Frequency of emission (MHz)	(MHz) Conducted limit (dBµV)					
		Quasi-peak	Average				
	0.15-0.5	66 to 56* 56 to 46* 56 46					
	0.5-5						
	5-30	5-30 60 50					
	*Decreases with the logarithm of the frequency.						
Test Method:	ANSI C63.10-2013 section 6.2						
Procedure:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices						


4.1.1 E.U.T. Operation:

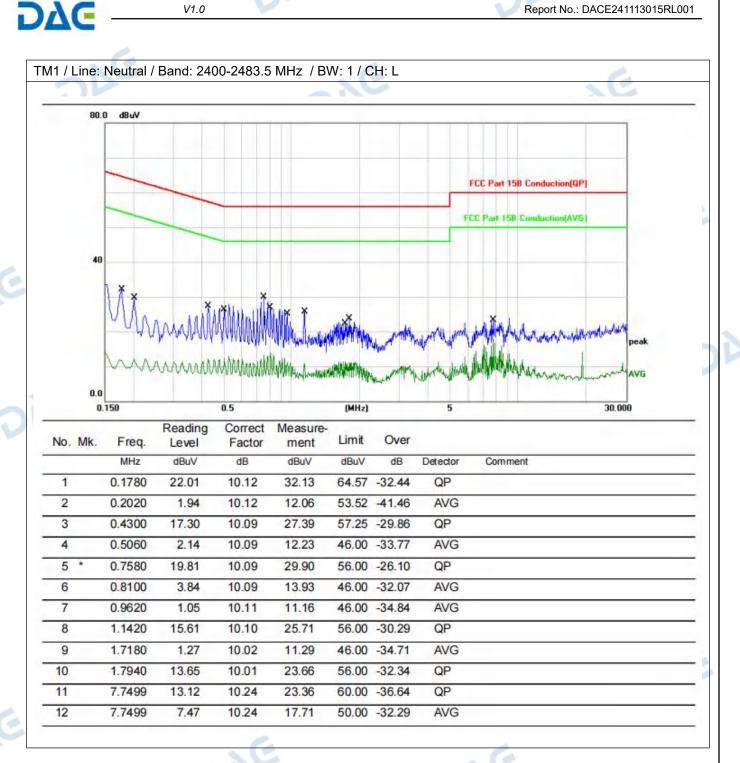

DAG

Operating Environment:							
Temperature:	23.9 °C		Humidity:	49 %	Atmospheric Pressure:	102 kPa	
Pretest mode:	Pretest mode: TM1, TM2						
Final test mode:		TM1					

× (e.

4.1.2 Test Setup Diagram:

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com


)De

DAG

Page 14 of 102

DAG

Report No.: DACE241113015RL001

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)De

DAG

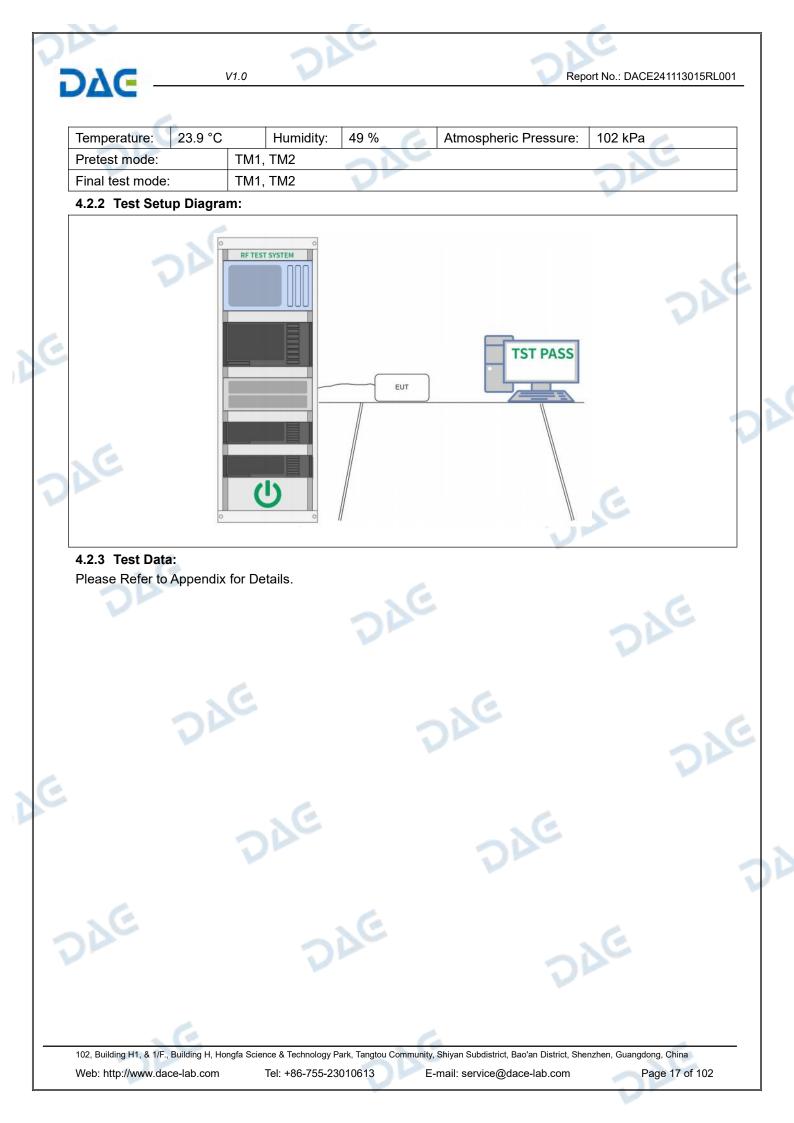
)AC

Page 15 of 102

Report No.: DACE241113015RL001

4.2 20dB Bandwidth

DΔC


4.2 20dB Bandwid	in 💦 🌈	
Test Requirement:	47 CFR 15.247(a)(1)	Ne
Test Limit:	Refer to 47 CFR 15.215(c), intentional radiators operating provisions to the general emission limits, as contained in and in subpart E of this part, must be designed to ensure of the emission, or whatever bandwidth may otherwise be rule section under which the equipment operates, is cont band designated in the rule section under which the equi	§§ 15.217 through 15.257 that the 20 dB bandwidth e specified in the specific ained within the frequency
Test Method:	ANSI C63.10-2013, section 7.8.7, For occupied bandwidd procedure in 6.9.2. KDB 558074 D01 15.247 Meas Guidance v05r02	th measurements, use the
Procedure:	 a) The spectrum analyzer center frequency is set to the r center frequency. The span range for the EMI receiver or be between two times and five times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the OBW and video bandwidth (VBW) shall be approximation unless otherwise specified by the applicable requirement c) Set the reference level of the instrument as required, k 	t spectrum analyzer shall in the range of 1% to 5% of ately three times RBW,
	 exceeding the maximum input mixer level for linear operation of the spectral envelope shall be more than [10 log (OBW reference level. Specific guidance is given in 4.1.5.2. d) Steps a) through c) might require iteration to adjust with tolerances. e) The dynamic range of the instrument at the selected R dB below the target "-xx dB down" requirement; that is, it measuring the -20 dB OBW, the instrument noise floor at be at least 30 dB below the 	ation. In general, the peak V/RBW)] below the thin the specified RBW shall be more than 10 f the requirement calls for
	 reference value. f) Set detection mode to peak and trace mode to max hol g) Determine the reference value: Set the EUT to transm or modulated signal, as applicable. Allow the trace to stat analyzer marker to the highest level of the displayed trace value). h) Determine the "-xx dB down amplitude" using [(reference Alternatively, this calculation may be made by using the r instrument. i) If the reference value is determined by an unmodulated modulation ON, and either clear the existing trace or star 	it an unmodulated carrier bilize. Set the spectrum e (this is the reference nce value) – xx]. marker-delta function of the d carrier, then turn the EUT
	spectrum analyzer and allow the new trace to stabilize. C step g) shall be used for step j). j) Place two markers, one at the lowest frequency and the frequency of the envelope of the spectral display, such th slightly below the "-xx dB down amplitude" determined in below this "-xx dB down amplitude" value, then it shall be this value. The occupied bandwidth is the frequency diffe markers. Alternatively, set a marker at the lowest frequen spectral display, such that the marker is at or slightly below	Otherwise, the trace from e other at the highest hat each marker is at or step h). If a marker is e as close as possible to erence between the two hey of the envelope of the pow the "-xx dB down
AE	amplitude" determined in step h). Reset the marker-delta marker to the other side of the emission until the delta ma same level as the reference marker amplitude. The mark at this point is the specified emission bandwidth. k) The occupied bandwidth shall be reported by providing instrument display; the plot axes and the scale units per labeled. Tabular data may be reported in addition to the p	arker amplitude is at the er-delta frequency reading g plot(s) of the measuring division shall be clearly
4.2.1 E.U.T. Operation:		
Operating Environment:		
12		4

1

Web: http://www.dace-lab.com

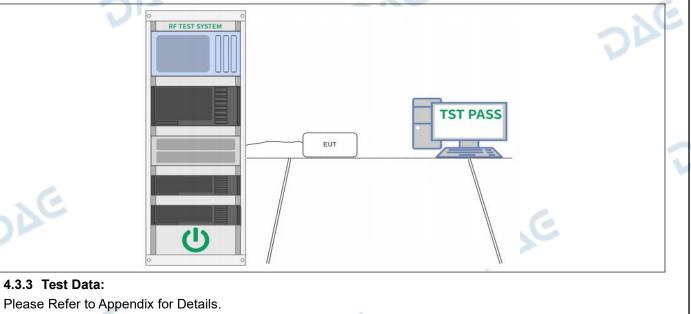
102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China E-mail: service@dace-lab.com

Tel: +86-755-23010613

DγG

1

1


4.3 Maximum Conducted Output Power

2400-2483.5 MHz band employing at least 75 non-overlapping hopping chan and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For a other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts Test Method: ANSI C63.10-2013, section 7.8.5 KDB 558074 D01 15.247 Meas Guidance v05r02 Procedure: This is an RF-conducted test to evaluate maximum peak output power. Use a connection between the antenna port of the unlicensed wireless device and t spectrum analyzer, through suitable attenuation. The hopping shall be disable this test: a) Use the following spectrum analyzer settings: 1) Span: Approximately five times the 20 dB bandwidth, centered on a hoppi channel. 2) RBW > 20 dB bandwidth of the emission being measured. 3) VBW >= RBW. 4) Sweep: Auto. 5) Detector function: Peak. 6) Trace: Max hold. b) Allow trace to stabilize. c) Use the marker-to-peak function to set the marker to the peak of the emissed of the emissed of the emissed of the test results and setup description shall be included in the test NOTE—A peak responding power meter may be used, where the power meter sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.		
2400-2483.5 MHz band employing at least 75 non-overlapping hopping chan and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For a other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts Test Method: ANSI C63.10-2013, section 7.8.5 KDB 558074 D01 15.247 Meas Guidance v05r02 Procedure: This is an RF-conducted test to evaluate maximum peak output power. Use a connection between the antenna port of the unlicensed wireless device and t spectrum analyzer, through suitable attenuation. The hopping shall be disable this test: a) Use the following spectrum analyzer settings:	Test Requirement:	47 CFR 15.247(b)(1)
KDB 558074 D01 15.247 Meas Guidance v05r02 Procedure: This is an RF-conducted test to evaluate maximum peak output power. Use a connection between the antenna port of the unlicensed wireless device and t spectrum analyzer, through suitable attenuation. The hopping shall be disable this test: a) Use the following spectrum analyzer settings: 1) Span: Approximately five times the 20 dB bandwidth, centered on a hoppi channel. 2) RBW > 20 dB bandwidth of the emission being measured. 3) VBW >= RBW. 4) Sweep: Auto. 5) Detector function: Peak. 6) Trace: Max hold. b) Allow trace to stabilize. c) Use the marker-to-peak function to set the marker to the peak of the emissed of the indicated level is the peak output power, after any corrections for extent attenuators and cables. e) A plot of the test results and setup description shall be included in the test NOTE—A peak responding power meter may be used, where the power meter sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer. 	Test Limit:	Refer to 47 CFR 15.247(b)(1), For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
 connection between the antenna port of the unlicensed wireless device and t spectrum analyzer, through suitable attenuation. The hopping shall be disable this test: a) Use the following spectrum analyzer settings: 1) Span: Approximately five times the 20 dB bandwidth, centered on a hoppi channel. 2) RBW > 20 dB bandwidth of the emission being measured. 3) VBW >= RBW. 4) Sweep: Auto. 5) Detector function: Peak. 6) Trace: Max hold. b) Allow trace to stabilize. c) Use the marker-to-peak function to set the marker to the peak of the emission of the indicated level is the peak output power, after any corrections for extendate attenuators and cables. e) A plot of the test results and setup description shall be included in the test NOTE—A peak responding power meter may be used, where the power meter sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer. 	Test Method:	
	Procedure:	 a) Use the following spectrum analyzer settings: 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel. 2) RBW > 20 dB bandwidth of the emission being measured. 3) VBW >= RBW. 4) Sweep: Auto. 5) Detector function: Peak. 6) Trace: Max hold. b) Allow trace to stabilize. c) Use the marker-to-peak function to set the marker to the peak of the emission. d) The indicated level is the peak output power, after any corrections for external attenuators and cables. e) A plot of the test results and setup description shall be included in the test report. NOTE—A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the
4.3.1 E.U.T. Operation:	4.3.1 E.U.T. Operation:	SE E

4.3.1 E.U.T. Operation:

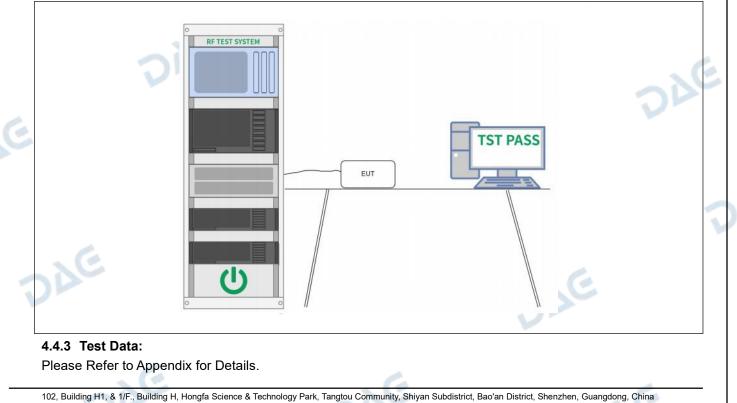
Operating Environment:							
Temperature:23.9 °CHumidity:49 %Atmospheric Pressure:102 kPa					102 kPa		
Pretest mode: TM1, TM2					÷		
Final test mode:		TM1,	TM2				

4.3.2 Test Setup Diagram:

102, Building H1, & 1/F., Building H, Hongfa	Science & Technology Park, Tangtou C	community, Shiyan Subdistrict, Bao'an District, Shenzhe	en, Guangdong, China
Web: http://www.dace-lab.com	Tel: +86-755-23010613	E-mail: service@dace-lab.com	Page 18 of 102

Report No.: DACE241113015RL001

4.4 Channel Separation


DAG

		_
Test Requirement:	47 CFR 15.247(a)(1)	
Test Limit:	Refer to 47 CFR 15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.	
Test Method:	ANSI C63.10-2013, section 7.8.2 KDB 558074 D01 15.247 Meas Guidance v05r02	
Procedure:	 The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Wide enough to capture the peaks of two adjacent channels. b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel. c) Video (or average) bandwidth (VBW) ≥ RBW. 	
1e	 d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report. 	

4.4.1 E.U.T. Operation:

Operating Environment:						
Temperature: 23.9 °C		Humidity:	49 %		Atmospheric Pressure:	102 kPa
Pretest mode:	ΤМ3,	TM4	- 2	C		. 6
Final test mode:	ТМ3,	TM4	2			

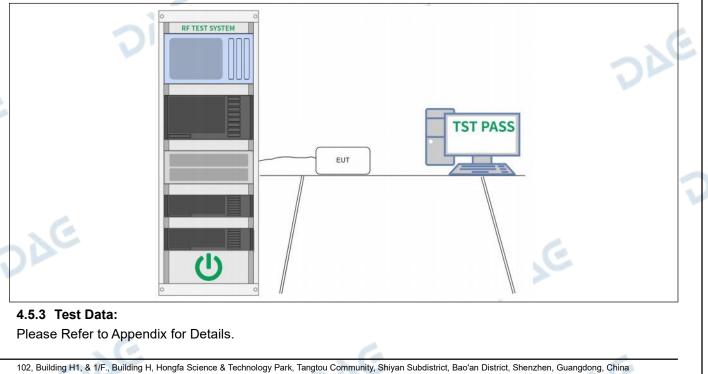
4.4.2 Test Setup Diagram:

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

DAG


Report No.: DACE241113015RL001

4.5 Number of Hop	ping Frequencies
Test Requirement:	47 CFR 15.247(a)(1)(iii)
Test Limit:	Refer to 47 CFR 15.247(a)(1)(iii), Fequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	ANSI C63.10-2013, section 7.8.3 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen. b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
AC	 c) VBW ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies. Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A plot of the data shall be included in the test report.

4.5.1 E.U.T. Operation:

Operating Envir	onment:							
Temperature:	23.9 °C		Humidity:	49 %	20	Atmospheric Pressure:	102 kPa	C
Pretest mode:		ТМЗ,	TM4				22	
Final test mode: TM3, TM			TM4					

4.5.2 Test Setup Diagram:

Web: http://www.dace-lab.com

Tel: +86-755-23010613 E-mai

E-mail: service@dace-lab.com

Report No.: DACE241113015RL001

4.6 Dwell Time

DAG

4.6 Dwell line	
Test Requirement:	47 CFR 15.247(a)(1)(iii)
Test Limit:	Refer to 47 CFR 15.247(a)(1)(iii), Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	ANSI C63.10-2013, section 7.8.4 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation: (Number of hops in the period specified in the requirements, using the following equation: (Number of hops in the period specified in the requirements. J analyzer sweep time) The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation. The measured transmit time and time between hops shall be consistent with the
	values described in the operational description for the EUT.
4.6.1 E.U.T. Operation:	

4.6.1 E.U.T. Operation:

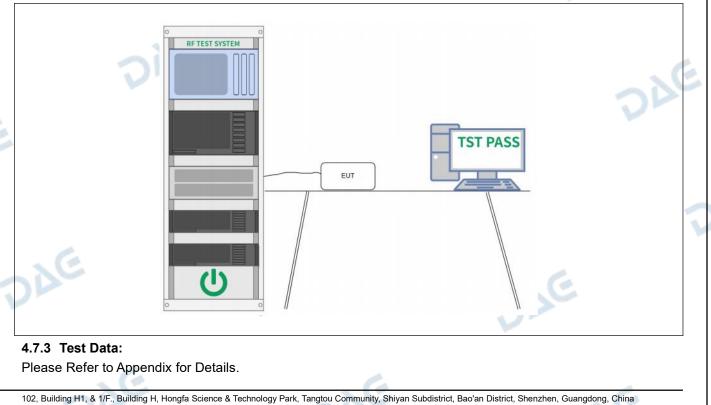
Operating Environment:							
Temperature:	23.9 °C		Humidity:	49 %	Atmospheric Pressure:	102 kPa	
Pretest mode:		ТМ3,	TM4				
Final test mode	:	ТМЗ,	TM4	6			
20						6	

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Web: http://www.dace-lab.com

DAG	V1.0	Report No.: DACE241113015RL001
4.6.2 Test Setup Dia	gram:	
E DL		TST PASS
4.6.3 Test Data: Please Refer to Apper	Idix for Details.	1

DAG

Report No.: DACE241113015RL001


4.7 Emissions in non-restricted frequency bands

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2013 section 7.8.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	Conducted spurious emissions shall be measured for the transmit frequency, per 5.5 and 5.6, and at the maximum transmit powers. Connect the primary antenna port through an attenuator to the spectrum analyzer input; in the results, account for all losses between the unlicensed wireless device output and the spectrum analyzer. The instrument shall span 30 MHz to 10 times the operating frequency in GHz, with a resolution bandwidth of 100 kHz, video bandwidth of 300 kHz, and a coupled sweep time with a peak detector. The band 30 MHz to the highest frequency may be split into smaller spans, as long as the entire spectrum is covered.

4.7.1 E.U.T. Operation:

Operating Environment:								
Temperature:	23.9 °C		Humidity:	49 %		Atmospheric Pressure:	102 kPa	
Pretest mode:	Pretest mode: TM1, TM2, TM3, TM4						. 6	
Final test mode:		TM1,	TM2, TM3, 1	M4			2	

4.7.2 Test Setup Diagram:

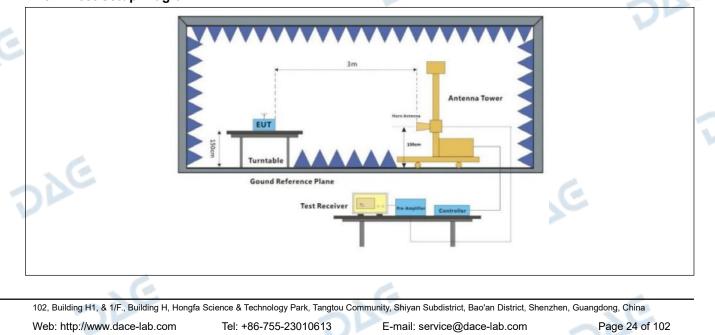
Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

4.8 Band edge emissions (Radiated)

DAG


Test Requirement:	restricted bands, as def	(d), In addition, radiated emission ned in § 15.205(a), must also co I in § 15.209(a)(see § 15.205(c)	omply with the radiated
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
20	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
AE	radiators operating under 54-72 MHz, 76-88 MHz, these frequency bands and 15.241. In the emission table ab The emission limits sho employing a CISPR qua 110–490 kHz and above	paragraph (g), fundamental em er this section shall not be locate 174-216 MHz or 470-806 MHz. s permitted under other sections ove, the tighter limit applies at th wn in the above table are based isi-peak detector except for the e 1000 MHz. Radiated emission nents employing an average det	ed in the frequency bands However, operation within s of this part, e.g., §§ 15.231 he band edges. on measurements frequency bands 9–90 kHz, limits in these three bands
Test Method:	ANSI C63.10-2013 sect KDB 558074 D01 15.24	ion 6.10 7 Meas Guidance v05r02	
Procedure:	ANSI C63.10-2013 sect	ion 6.10.5.2	.C.
4.8.1 E.U.T. Operation	r.		202

. 6

4.8.1 E.U.T. Operation:

Operating Environment:							
Temperature:	23.9 °C		Humidity:	49 %	Atmospheric Pressure:	102 kPa	
Pretest mode: TM1, TM2							
Final test mode:	DP	TM1			200		

4.8.2 Test Setup Diagram:

DΔG V1.0 Report No.: DACE241113015RL001 4.8.3 Test Data: TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: L dBuV/m 110.0 100 90 80 FCC Part 15C (Pr 70 60 FCC Part 15C 50 40 30 AVG 20 10 0.0 2310.000 2320.000 2330.000 2340.000 2350.000 (MHz) 2370.000 2380.000 2390.000 2400.000 2410.000 Frequency Reading Factor Level Limit Margin Height Azimuth No. Detector P/F Remark (MHz) (dBuV) (dB/m)(dBuV/m) (dBuV/m) (dB) (cm) (deg.) 2310.000 1 34.66 -3.63 31.03 74.00 42.97 peak P 2 2310.000 23.15 -3.63 19.52 54.00 -34.48 AVG P peak 3 2390.000 38.38 -3.42 34.96 74.00 -39.04 P AVG 4 * 2390.000 27.83 -3.42 24.41 54.00 -29.59 P

DAG

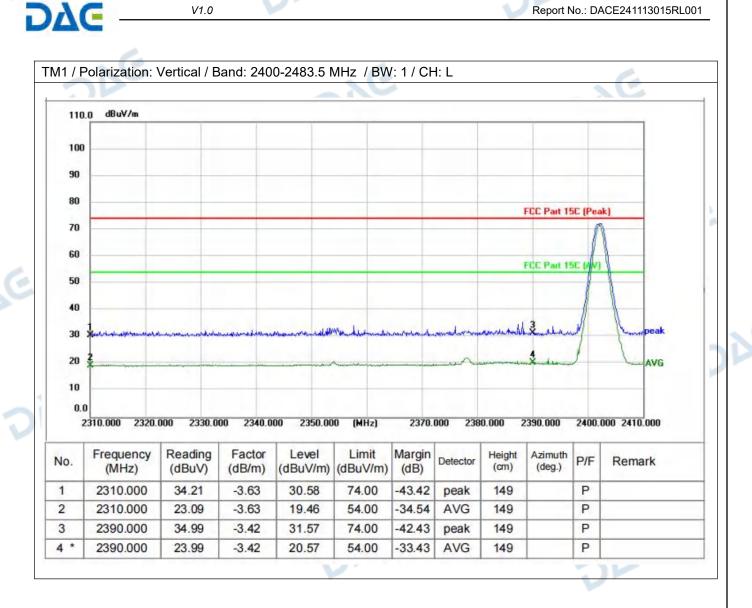
)AC

DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)De

)AC


DAG

٧

DAE

)DE

Report No.: DACE241113015RL001

DAE

4

DAG

DAE

)AC

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAG

)AC

Page 26 of 102

DAG

)DE

DAC V1.0 Report No.: DACE241113015RL001 TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: H dBu∀/m 110.0 100 90 80 FCC Part 15C (Peak) 70 60 FCC Part 15C (AV) 50 40 30 AVG 20 10 0.0 2480.000 2482.500 2497.500 2500.000 2475.000 2477.500 2485.000 (MHz) 2490.000 2492.500 2495.000 Frequency Reading Factor Level Limit Margin Height Azimuth Detector P/F No. Remark (MHz) (dBuV) (dB/m)(dBuV/m) (dBuV/m) (dB) (cm) (deg.) 2483.500 49.83 P -3.17 46.66 74.00 -27.34 149 1 peak 2 * 2483.500 44.24 -3.17 41.07 54.00 -12.93 AVG 149 P 3 2500.000 39.53 -3.13 36.40 74.00 -37.60 peak 149 P

DAE

28.72

-3.13

DAG

25.59

DAG

54.00

٧

4

4

DAG

2500.000

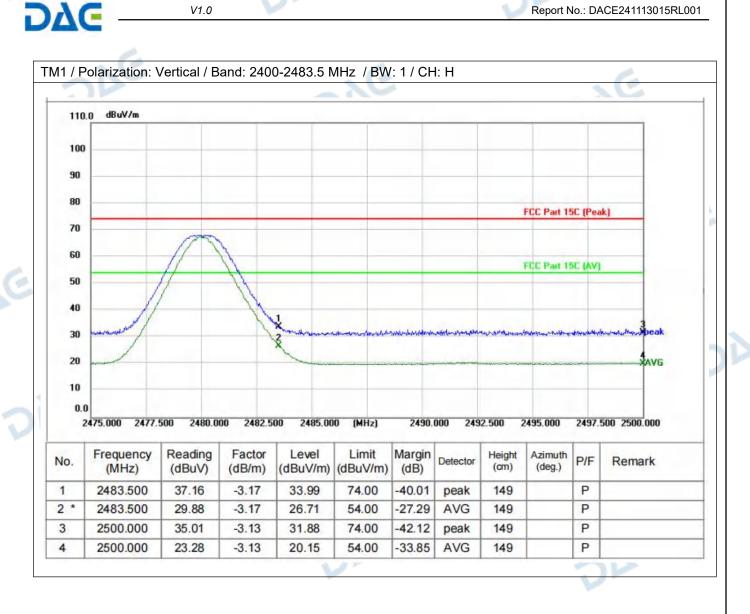
DAE

-28.41

AVG

149

2AC


DAG

P

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

NE

Report No.: DACE241113015RL001

DAE

4

DAG

DAE

)AC

DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAE

DAG

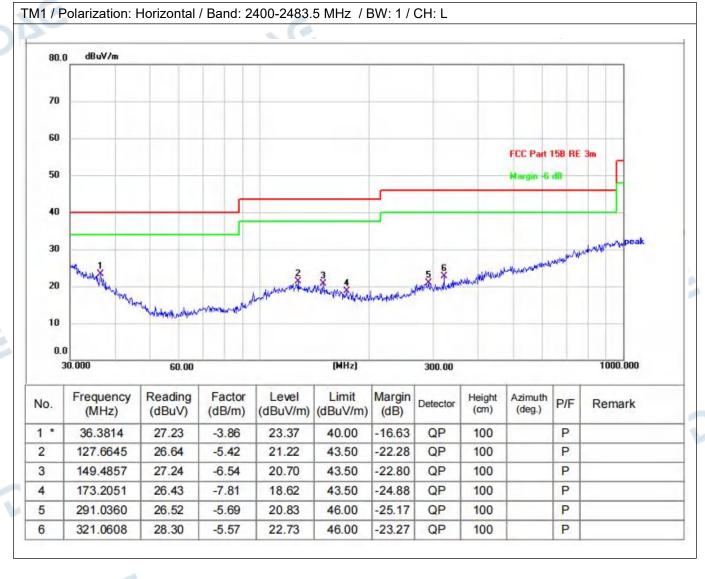
Page 28 of 102

)De

DΔC

4.9 Emissions in frequency bands (below 1GHz)

Test Requirement:	Refer to 47 CFR 15.247(d), In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).						
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)				
	0.009-0.490	2400/F(kHz)	300				
	0.490-1.705	24000/F(kHz)	30				
	1.705-30.0	30	30				
	30-88	100 **	3				
	88-216	150 **	3				
	216-960	200 **	3				
	Above 960	500	3				
	54-72 MHz, 76-88 MHz, these frequency bands is and 15.241. In the emission table abo The emission limits show employing a CISPR quas 110–490 kHz and above	r this section shall not be located in 174-216 MHz or 470-806 MHz. Ho is permitted under other sections of ove, the tighter limit applies at the k vn in the above table are based on si-peak detector except for the freq 1000 MHz. Radiated emission limit ents employing an average detector	wever, operation within this part, e.g., §§ 15.23 pand edges. measurements uency bands 9–90 kHz ts in these three bands				
Test Method:							
	360 degrees to determin b. For above 1GHz, the above the ground at a 3 degrees to determine the c. The EUT was set 3 or which was mounted on t d. The antenna height is determine the maximum polarizations of the anten e. For each suspected e the antenna was tuned to below 30MHz, the anten was turned from 0 degree f. The test-receiver syste Bandwidth with Maximur g. If the emission level of specified, then testing cor reported. Otherwise the tested one by one using reported in a data sheet. h. Test the EUT in the low i. The radiation measure Transmitting mode, and	f the EUT in peak mode was 10dB buld be stopped and the peak value emissions that did not have 10dB r peak, quasi-peak or average meth	on. ating table 1.5 meters table was rotated 360 nce-receiving antenna, tower. ers above the ground to vrizontal and vertical ent. its worst case and then (for the test frequency of and the rotatable table mum reading. n and Specified lower than the limit es of the EUT would be nargin would be re- od as specified and then the Highest channel. s positioning for it is the worst case.				
	Remark:	GHz, through pre-scan found the w	veret ease is the lowest				

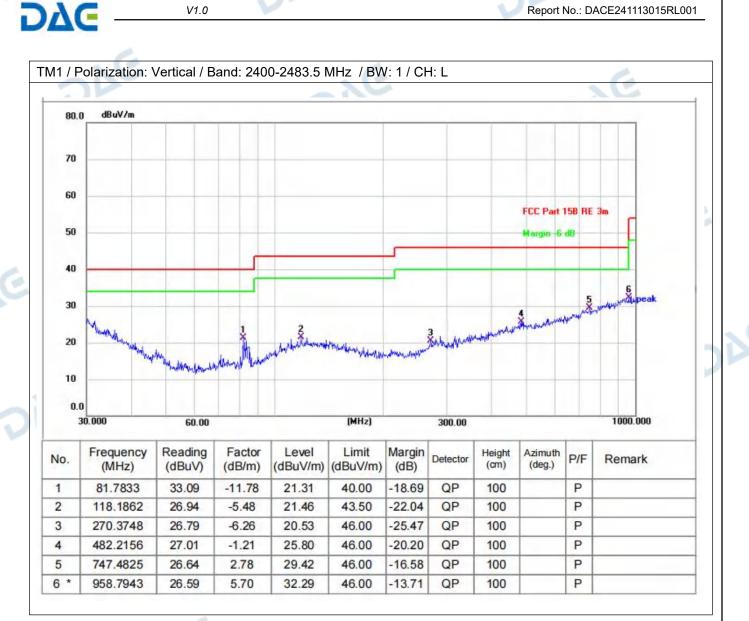

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com
 Pail

DAG -	V1.0	Report No.: DACE241113015RL001
DAG	Preamplifier. The basic equation Final Test Level =Receiver Re Preamplifier Factor 3) Scan from 9kHz to 25GHz, was very low. The points mark found when testing, so only ab spurious emissions from the ra	is recorded in the report. ated by adding the Antenna Factor, Cable Factor & ion with a sample calculation is as follows: eading + Antenna Factor + Cable Factor "C the disturbance above 12.75GHz and below 30MHz ked on above plots are the highest emissions could be bove points had been displayed. The amplitude of adiator which are attenuated more than 20dB below . Fundamental frequency is blocked by filter, and only

4.9.1 E.U.T. Operation:

Operating Environment:						
Temperature:	23.9 °C		Humidity:	49 %	Atmospheric Pressure:	102 kPa
Pretest mode: TM1, TM2						
Final test mode: TM1						

4.9.2 Test Data:



102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Web: http://www.dace-lab.com

E-mail: service@dace-lab.com

Page 30 of 102

Report No.: DACE241113015RL001

ODE

)AC

DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAG

)AC

)AC

NE

DγG

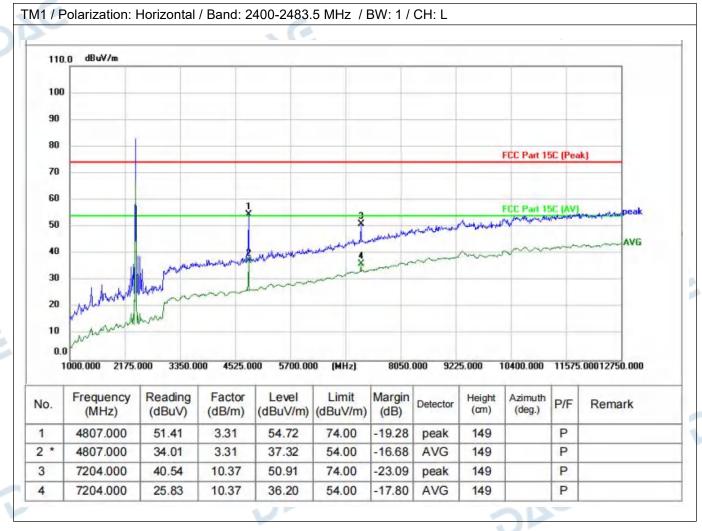
Report No.: DACE241113015RL001

4.10 Emissions in frequency bands (above 1GHz)

Test Requirement:	In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).						
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)				
	0.009-0.490	2400/F(kHz)	300				
	0.490-1.705	24000/F(kHz)	30				
	1.705-30.0	30	30				
	30-88	100 **	3				
	88-216	150 **	3				
	216-960	200 **	3				
	Above 960	500	3				
	 these frequency bands is permitted under other sections of this part, e.g., §§ 15.23° and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. 						
Test Method:	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02						
Procedure:	 a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to Function and Specified Bandwidth with Maximum Hold Mode. g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be retested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. h. Test the EUT in the lowest channel, the middle channel, the Highest channel. i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. j. Repeat above procedures until all frequencies measured was complete. 						
		GHz, through pre-scan found the					

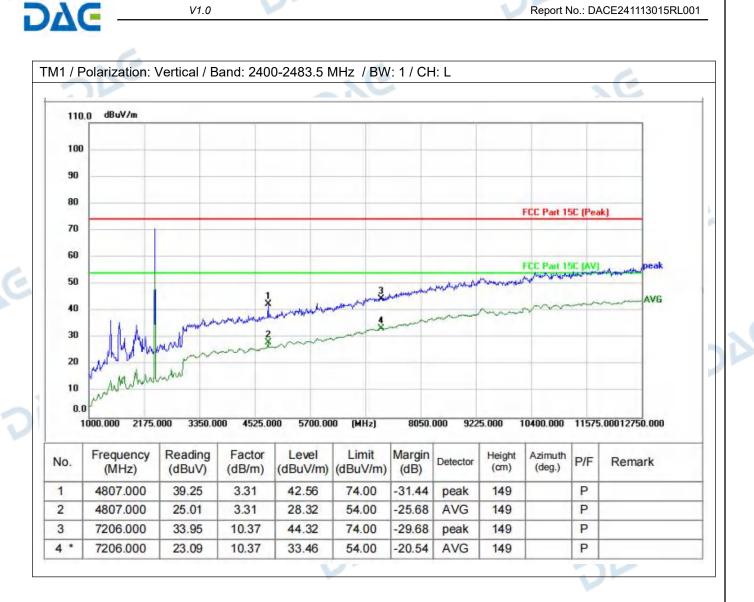
 102, Building H1, & 1/F., Building H, Hongra Science & Technology Park, Tangtou Community, Sniyan Subdistrict, Bao an District, Snenznen, Guang

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613


 E-mail: service@dace-lab.com

DAG —	V1.0	Report No.: DACE241113015RL00
DAC	Preamplifier. The basic equation Final Test Level =Receiver Re Preamplifier Factor 3) Scan from 9kHz to 25GHz, was very low. The points mark found when testing, so only at spurious emissions from the ra	ted by adding the Antenna Factor, Cable Factor & on with a sample calculation is as follows: ading + Antenna Factor + Cable Factor [•] C the disturbance above 12.75GHz and below 30MHz and above plots are the highest emissions could be pove points had been displayed. The amplitude of adiator which are attenuated more than 20dB below
4.10.1E.U.T. Operatio	spurious emission is shown.	Fundamental frequency is blocked by filter, and only

4.10.1 E.U.T. Operation:


Operating Environment:								
Temperature:	23.9 °C	~	Humidity:	49 %	Atmospheric Pressure:	102 kPa		
Pretest mode: TM1, TM2								
Final test mode:	nal test mode: TM1							

4.10.2 Test Data:

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

Report No.: DACE241113015RL001

DAE

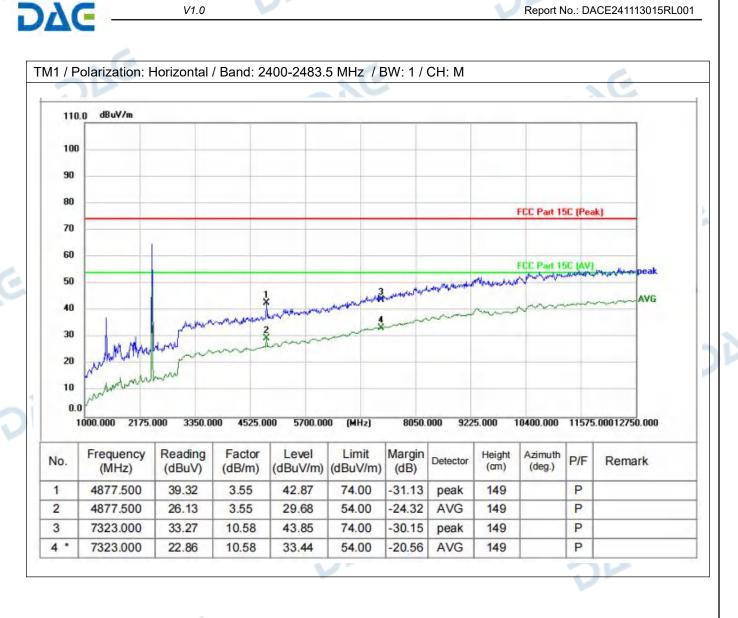
DAG

DAG

)De

DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com


DAG

DAG

Page 34 of 102

DE

Report No.: DACE241113015RL001

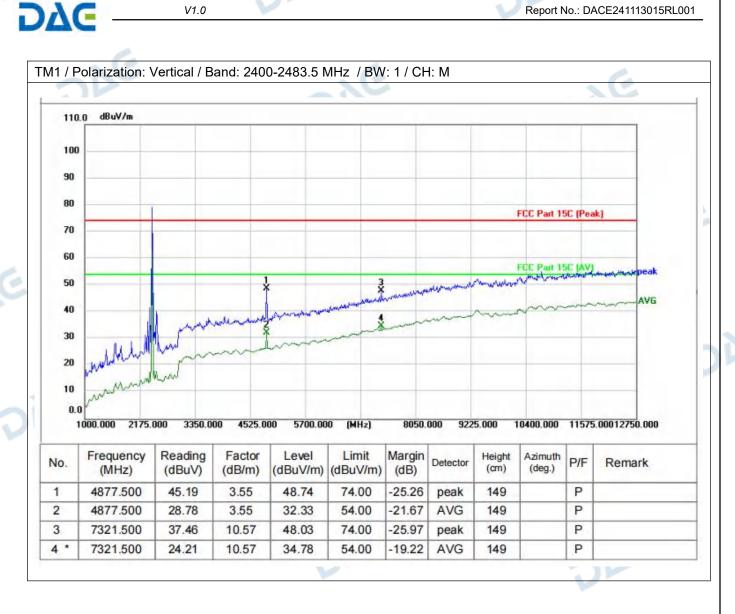
DAE

DAG

DAG

)AC

DAG


102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAG

DAG

DE

Report No.: DACE241113015RL001

DAG

4

DAG

DAE

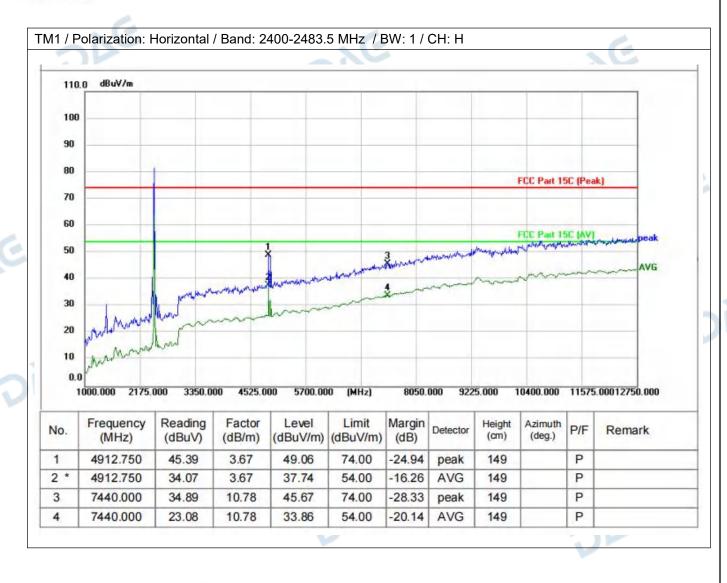
)AC

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAG

DAG

Page 36 of 102


DAG

)DE

V1.0

DAC

Report No.: DACE241113015RL001

DAG

4

DAG

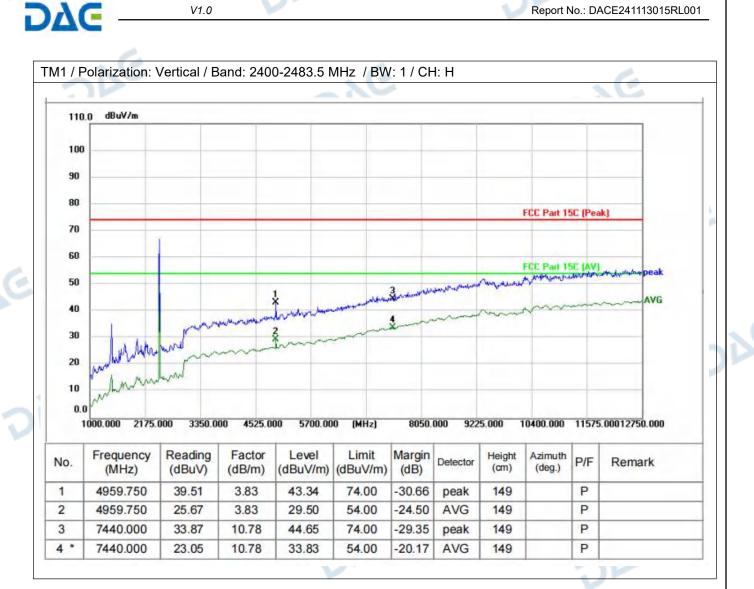
DAE

)AC

DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAG


DAG

Page 37 of 102

)DE

V1.0

Report No.: DACE241113015RL001

DAG

DAG

DAG

)AC

DAG

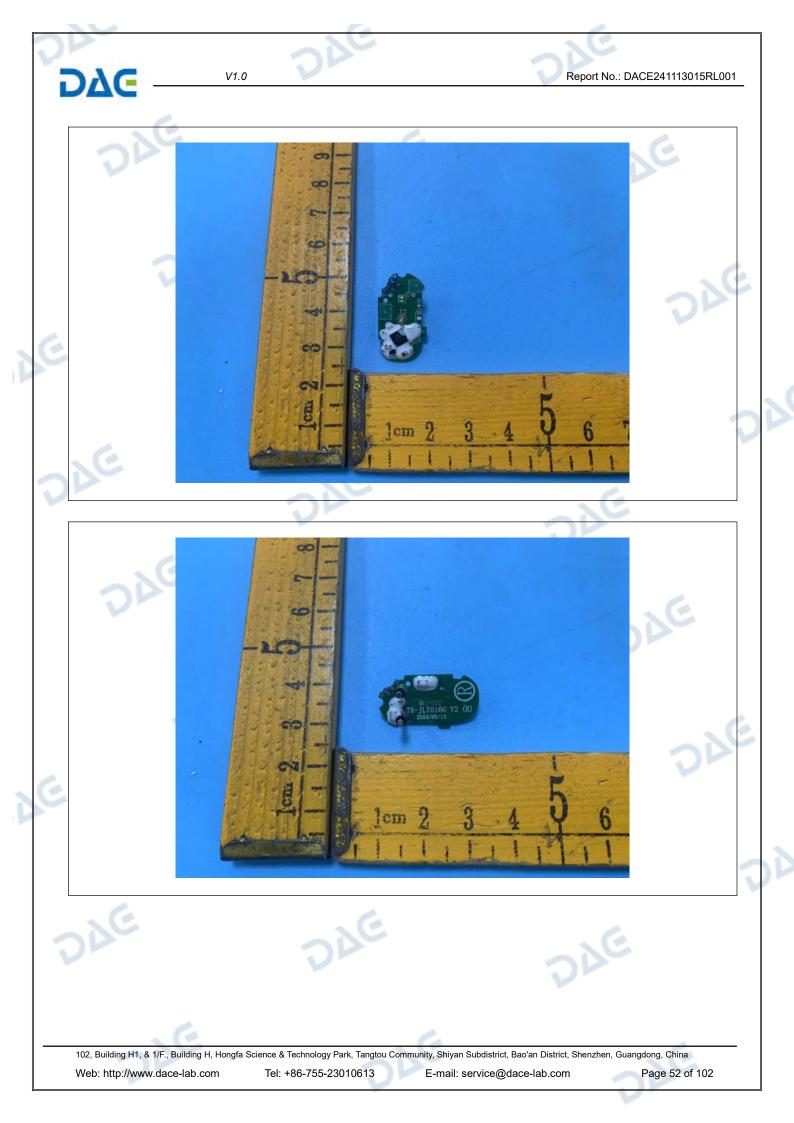
102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

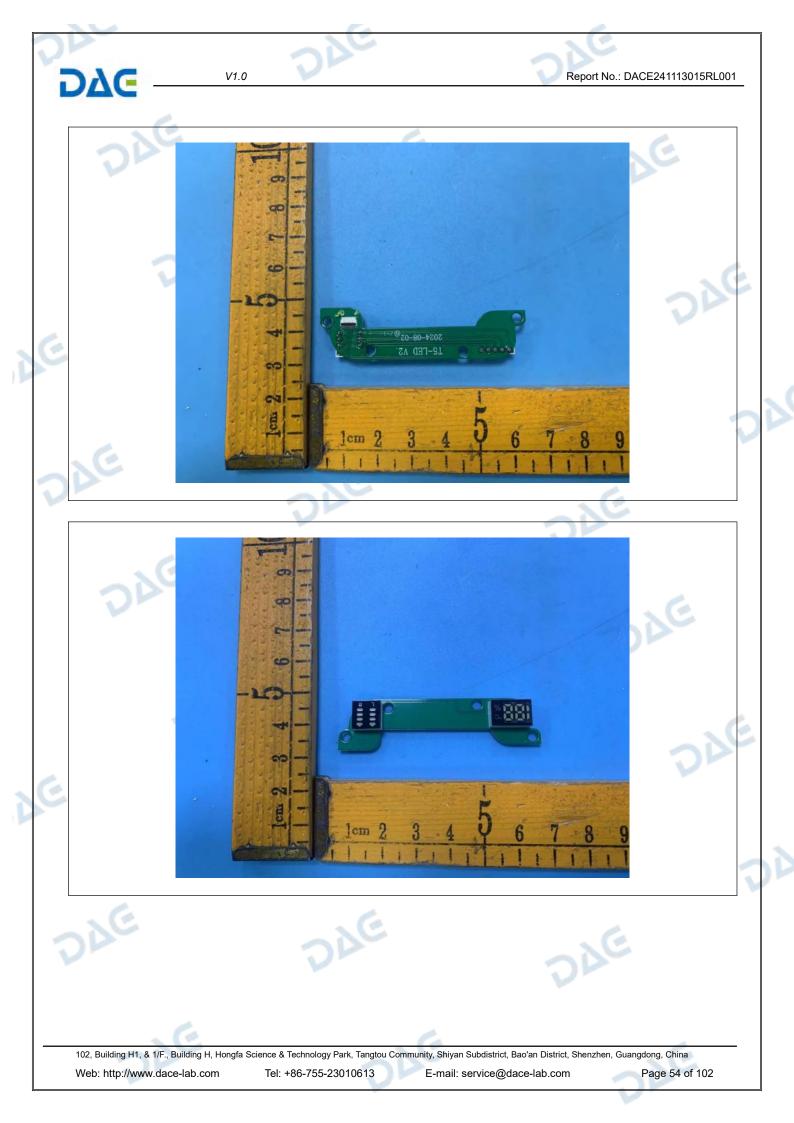
DAG

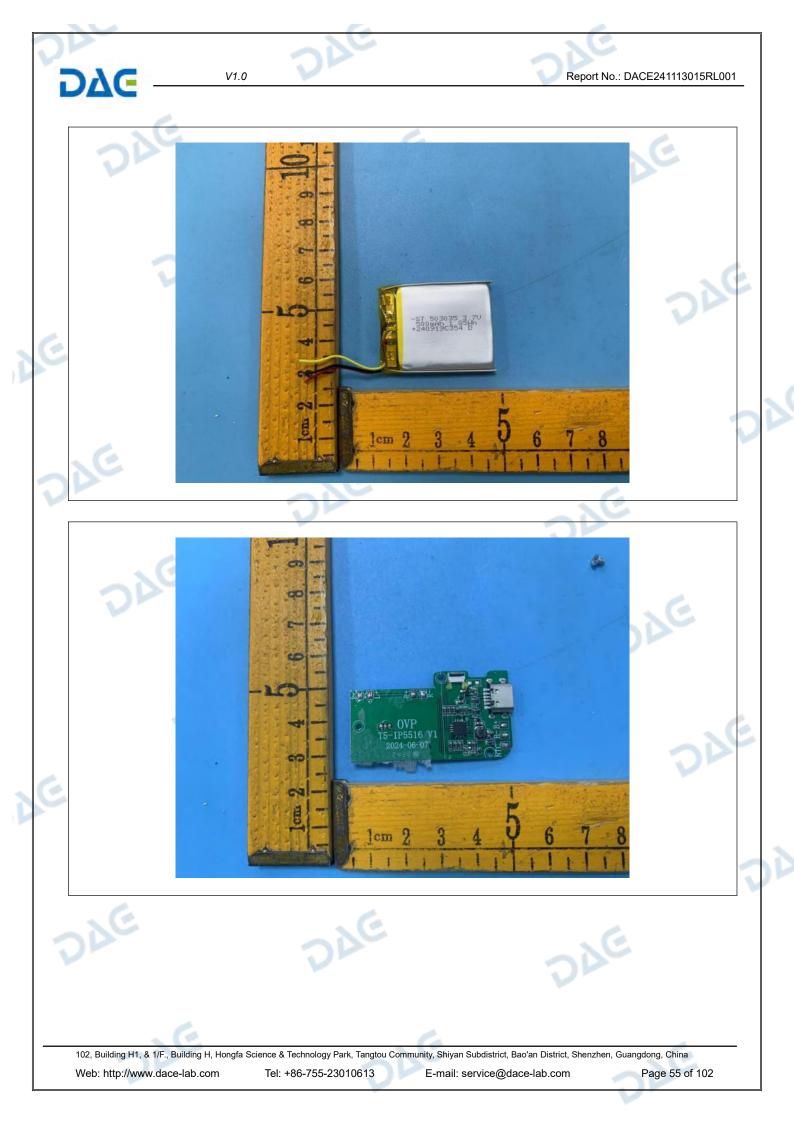
DAG

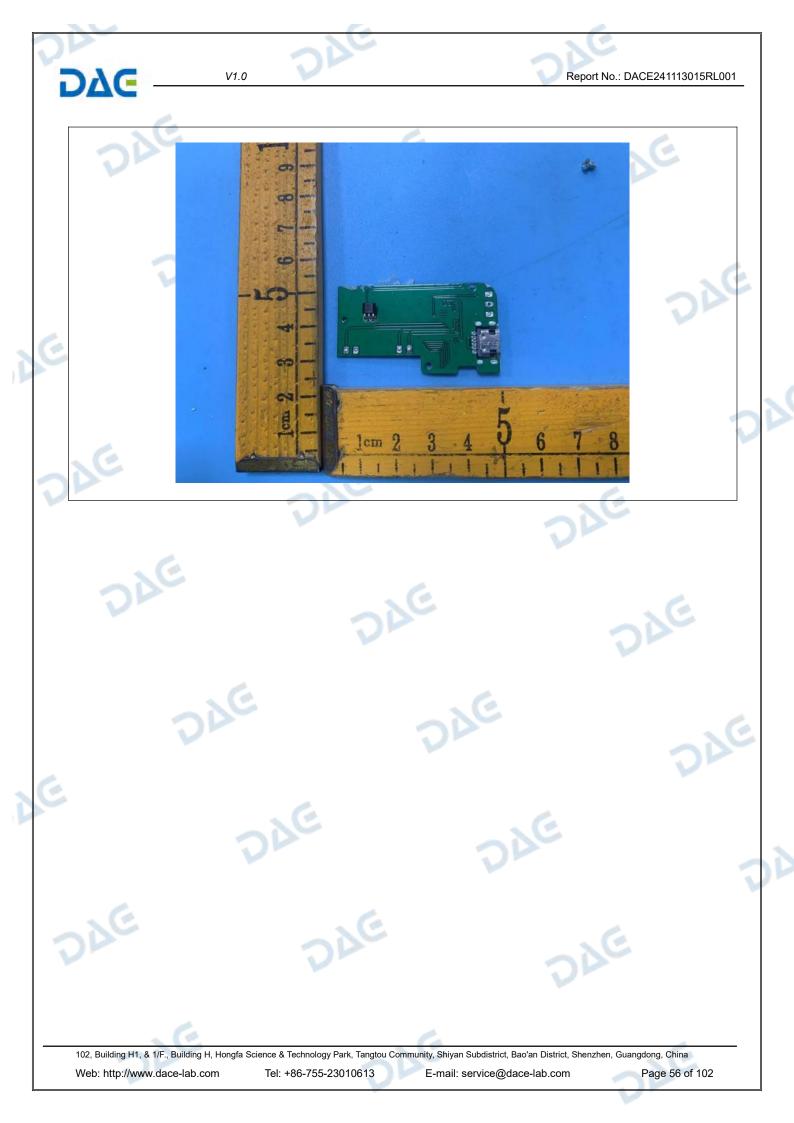
Page 38 of 102

DE





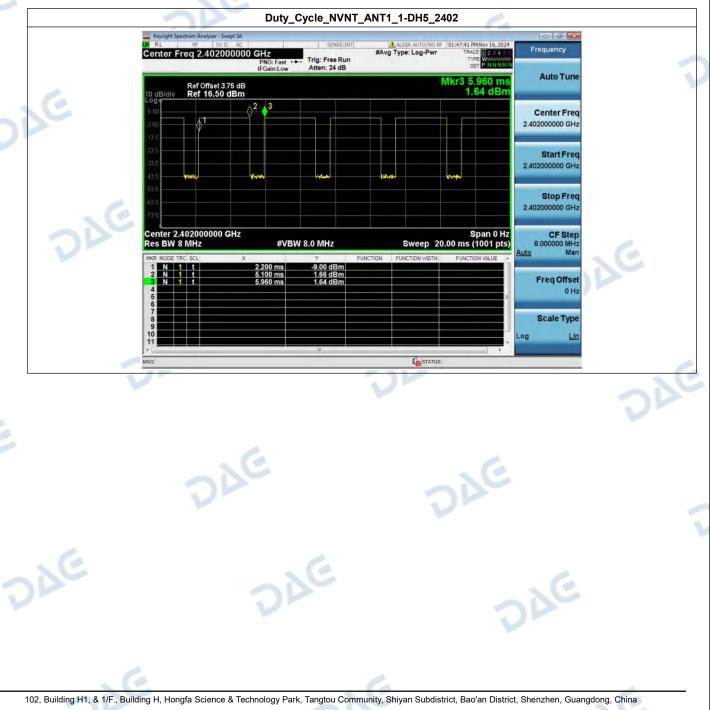




Report No.: DACE241113015RL001

C

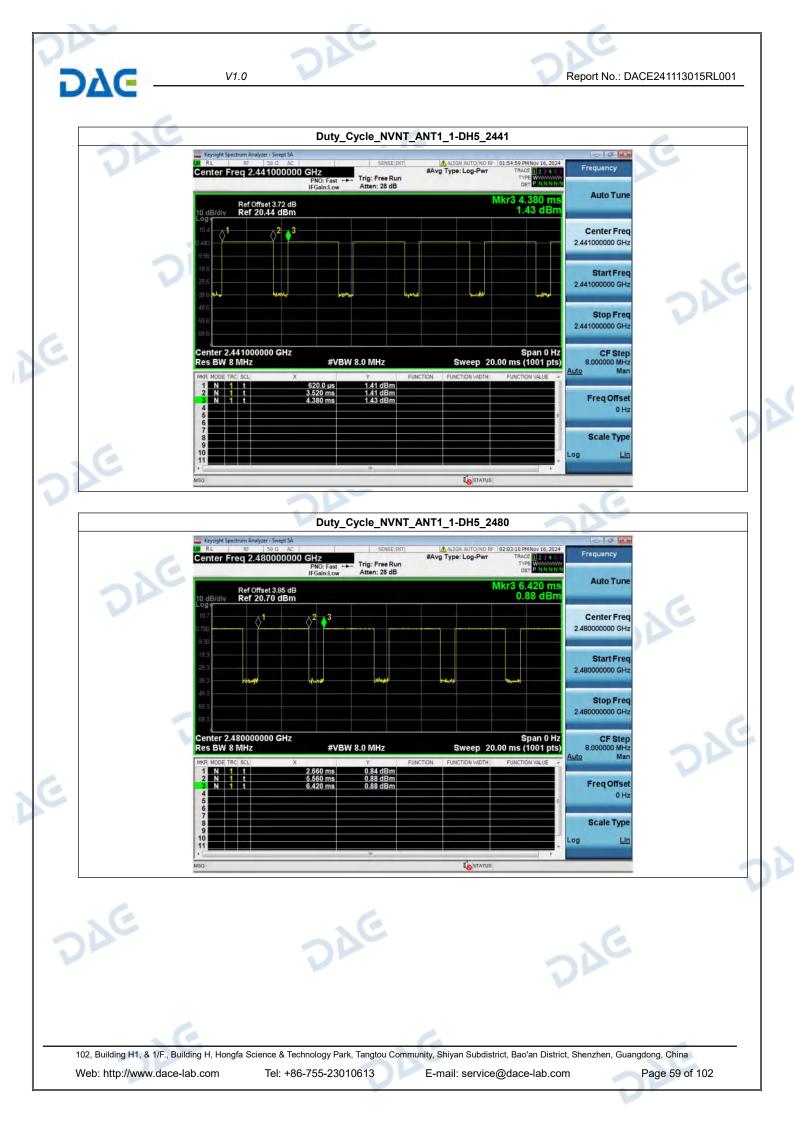
HT241111015--T15--EDR--FCC FCC_BT (Part15.247) Test Data

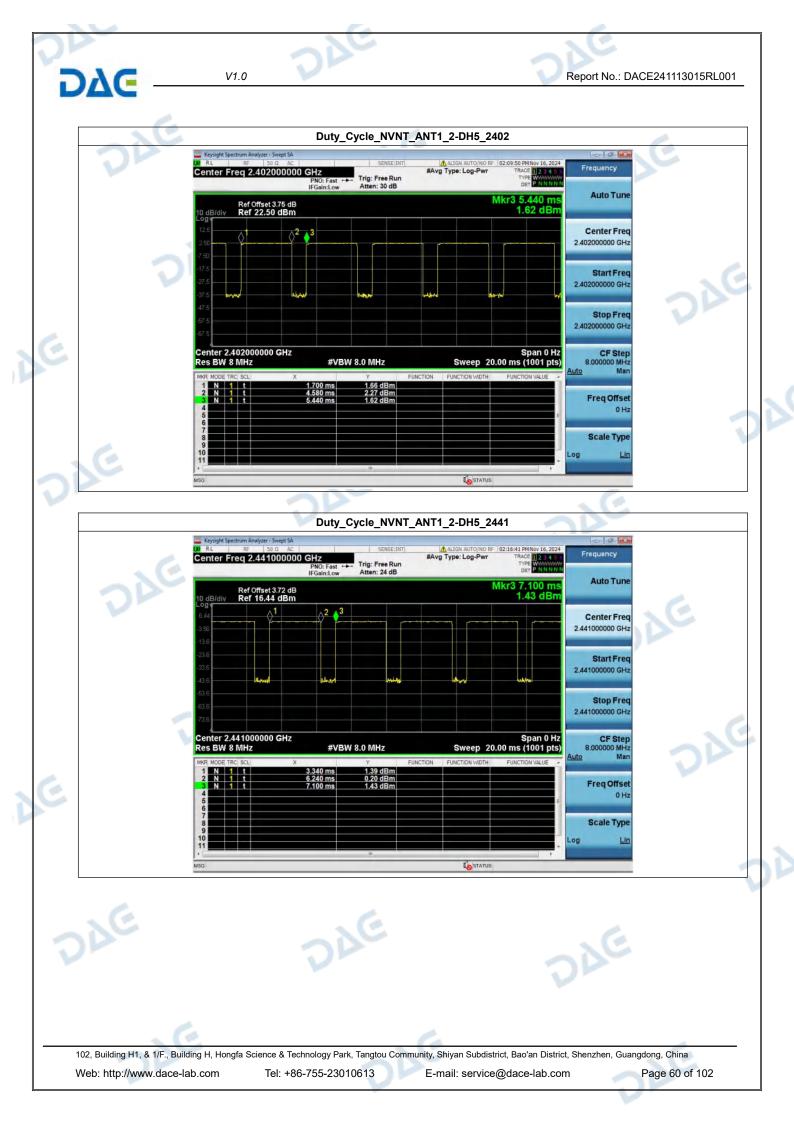

1. Duty Cycle

V1.0

DAG

1


Condition	Antenna	Rate	Frequency (MHz)	Dutycycle(%)	Duty_factor
NVNT	ANT1	1-DH5	2402.00	77.66	1.10
NVNT	ANT1	1-DH5	2441.00	77.13	1.13
NVNT 💋	ANT1	1-DH5	2480.00	77.66	1.10
NVNT	ANT1	2-DH5	2402.00	77.54	1.10
NVNT	ANT1	2-DH5	2441.00	77.66	1.10
NVNT	ANT1	2-DH5	2480.00	77.66	1.10



Tel: +86-755-23010613

Web: http://www.dace-lab.com

E-mail: service@dace-lab.com

1E	Duty_Cycle_NVNT_AN1	1_2-DH5_2480	
LX RL		ALISN ALITO/NO RF 02:23:04 PM Nov 16, 2024 vg Type: Log-Pwr TRACE 02:34 34 Frequency	2e
10 dB/dl	IFGain:Low Atten: 24 dB Ref Offset 3.85 dB	Mkr3 6.360 ms 0.79 dBm	e
6.70 = -3.30		Center Fre 2.48000000 GH	-
		Start Fre 2.48000000 G	9
-433 -633 -633	have been have	stop Fre	
	2.480000000 GHz	2.48000000 GH Span 0 Hz CF Ste	p
MKR MOD	X #VBW 8.0 MHz TRC SCL X Y FUNCTION 1 t 2.600 ms 0.78 dBm 1 t 5.500 ms 0.49 dBm		n
5 4 5 6 7	1 t 6.360 ms 0.79 dBm	Freq Offso	
		Log L	
MSG	"	, Laistatus	
	VE		
			DAG
		.C.	

Report No.: DACE241113015RL001

2. -20dB Bandwidth

DAG

Condition	Antenna	Modulation	Frequency (MHz)	-20dB BW(MHz)	if larger than CFS
NVNT	ANT1	1-DH5	2402.00	0.953	No
NVNT	ANT1	1-DH5	2441.00	0.952	No
NVNT	ANT1	1-DH5	2480.00	0.953	No
NVNT	ANT1	2-DH5	2402.00	1.284	Yes
NVNT	ANT1	2-DH5	2441.00	1.305	Yes
NVNT	ANT1	2-DH5	2480.00	1.309	Yes

C

DAG V1.0 Report No.: DACE241113015RL001 -20dB_Bandwidth_NVNT_ANT1_2-DH5_2402_00 10 SENSE:INT ALL Center Freq: 2.402000000 GHz Trig: Free Run Avg|Hold #Atten: 30 dB 02:10:09 PM Nov 16, 2024 Radio Std: None Frequency Center Freq 2.402000000 GHz Avg|Hold: 10/10 #IFGain:Low Radio Device: BTS Ref Offset 3.75 dB Ref 18.50 dBm Center Freq 2.40200000 GHz Center 2.402 GHz #Res BW 30 kHz Span 3 MHz Sweep 3.2 ms CF Step #VBW 100 kHz **Occupied Bandwidth** Total Power 8.87 dBm 1.1723 MHz Freq Offset % of OBW Power 0 Hz Transmit Freq Error 6.154 kHz 99.00 % 1.284 MHz x dB Bandwidth x dB -20.00 dB . STATUS -20dB_Bandwidth_NVNT_ANT1_2-DH5_2441_00 1 B 1 Center Freq: 2.44100000 GHz Trig: Free Run Avg|Hold: 10/10 #Atten: 30 dB 02:16:59 PM Nov 16, 2024 Radio Std: None Frequency Center Freq 2.441000000 GHz ø #IFGain:Low Radio Device: BTS Ref Offset 3.72 dB Ref 18.44 dBm **Center Freq** 2.441000000 GHz Center 2.441 GHz #Res BW 30 kHz Span 3 MHz Sweep 3.2 ms CF Step 300.000 kH #VBW 100 kHz Auto **Occupied Bandwidth** Total Power 8.55 dBm 1.1717 MHz Freq Offset 0 Hz Transmit Freq Error 5.646 kHz % of OBW Power 99.00 % 1.305 MHz -20.00 dB x dB Bandwidth x dB **E**STATU DAG)AC DAG 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 64 of 102

Dγc	V1.0		Report No.: DAC	E241113015RL001
25	-20dB Keysight Spectrum Analyzer - Occupied BW WRL RF 50 Q AC Center Freq 2.480000000 GHz #FGair	Center Freq: 2.480000000 GHz Trig: Free Run Avg Hold: 10/10	_2480_00	E
	Ref Offset 3.85 dB Log Ref 12.70 dBm 2.70	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Center Freq 2.480000000 GHz	
	27.3 37.3 47.3 47.3 47.3 47.3 47.3 47.3			
Ē	Center 2.48 GHz #Res BW 30 kHz Occupied Bandwidth	#VBW 100 kHz Total Power 7.9	Span 3 MHz Sweep 3.2 ms 2 dBm	
	Transmit Freq Error		9.00 % Offset	
ole	MSG	Сызтати		
			DAG	
		6		

D

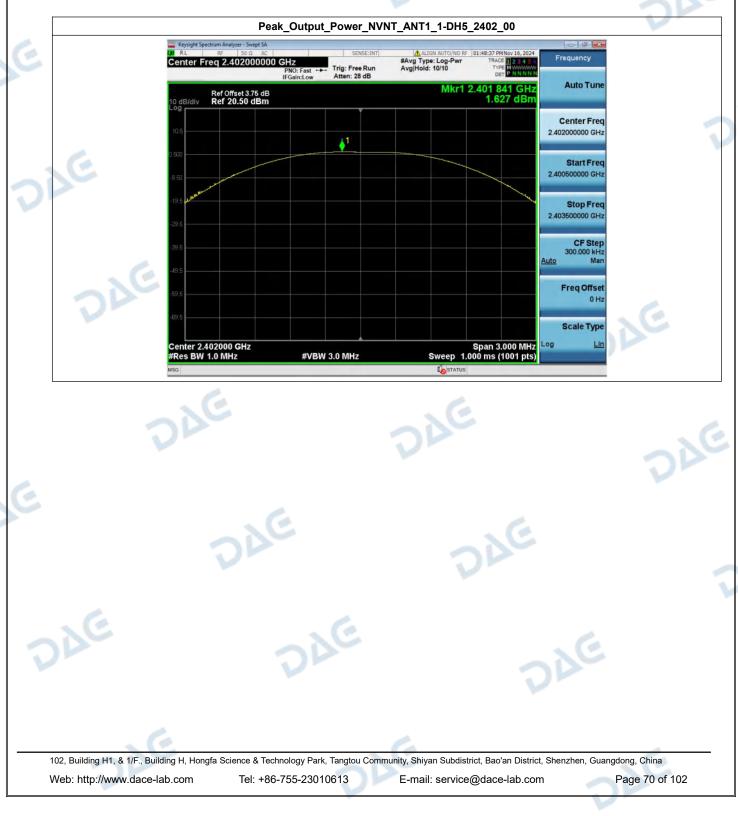
Report No.: DACE241113015RL001

3. 99% Occupied Bandwidth

DVC

Condition	Antenna	Antenna Modulation		99%%BW(MHz)
NVNT	ANT1	1-DH5	2402.00	0.856
NVNT	ANT1	1-DH5	2441.00	0.854
NVNT	ANT1	1-DH5	2480.00	0.855
NVNT	ANT1	2-DH5	2402.00	1.172
NVNT	ANT1	2-DH5	2441.00	1.173
NVNT	ANT1	2-DH5	2480.00	1.172

DAG -	V1.0		Report No.: DA	CE241113015RL001
- Se	99%_Occup	pied_Bandwidth_NVNT_ANT1_2	P-DH5_2480_00	
DA	Keysight Spectrum Analyzer - Occupied BW Μ RL RF S0 Ω AC Center Freq 2.480000000 GHz	Center Freq: 2.480000000 GHz	Radio Std: None Frequency	Se
	#IFGain Ref Offset 3.85 dB	Trig: Free Run Avg Hold: 10/10 :Low #Atten: 30 dB	Radio Device: BTS	
	10 dB/div Ref 12.70 dBm		Center Freq	
	-7.30	man man	2.480000000 GHz	
	-27.3			
	-47.3		Mar	
	-77.3			
E	Center 2.48 GHz #Res BW 30 kHz	#VBW 100 kHz	Span 3 MHz Sweep 3.2 ms 300.000 kHz	
	Occupied Bandwidth	Total Power 7.9 9 MHz	92 dBm	
			99.00 % Freq Offset	
	x dB Bandwidth 1.	.384 MHz x dB -20	6.00 dB	
xe				
22-	MSG	K ostat		
			DAG	
	-			


D

Report No.: DACE241113015RL001


4. Peak Output Power

DVG

Condition	Antenna	Modulation	Frequency (MHz)	Max. Conducted Power(dBm)	Max. Conducted Power(mW)	Limit(mW)	Result
NVNT	ANT1	1-DH5	2402.00	1.63	1.45	1000	Pass
NVNT	ANT1	1-DH5	2441.00	1.44	1.39	1000	Pass
NVNT	ANT1	1-DH5	2480.00	0.93	1.24	1000	Pass
NVNT	ANT1	2-DH5	2402.00	2.54	1.80	125	Pass
NVNT	ANT1	2-DH5	2441.00	2.22	1.67	125	Pass
NVNT	ANT1	2-DH5	2480.00	1.61	1.45	125	Pass

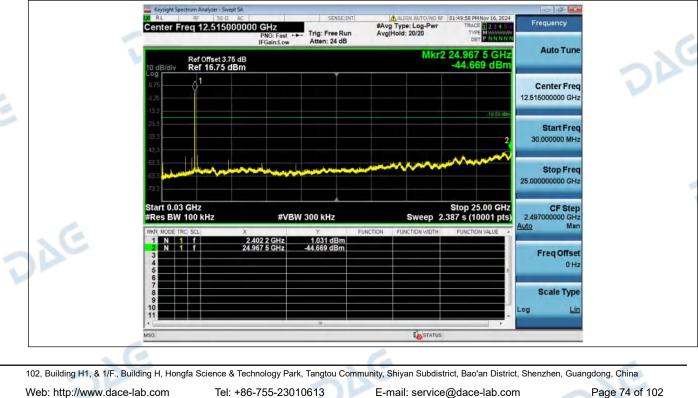
DVG -	V1.0	Report No.: DACE241113015RL00	01
	Peak_Output_Power_NVNT_AN	T1_2-DH5_2480_00	
DA	Cepter Fred 2 48000000 GHz #Avg	ALIGN AUTO/NO RF 02:24:01 PM Nov 16, 2024 Type: Log-Pwr TRACE 02:24 01 PM Nov 16, 2024 Frequency Ioid: 10/10 TYPE	
	IFGainLow Atten: 28 dB Ref Offset 3.85 dB 10 dB/div Ref 20.70 dBm	Mkr1 2.479 760 GHz 1.607 dBm	
		Center Freq 2.48000000 GHz	
-	0.700	Start Freg	
	-0.30	2.476000000 GHz	9
	-19.3	Stop Freq 2.484000000 GHz	
	-39.3	CF Step 800.000 kHz	
	-49.3	Auto Man Freq Offset	
	-69.3	0 Hz	-
6	Center 2.480000 GHz	Span 8.000 MHz	
24C	#Res BW 3.0 MHz #VBW 8.0 MHz	Sweep 1.000 ms (1001 pts)	
	Building H, Hongfa Science & Technology Park, Tangtou Community, S		_

V1.0

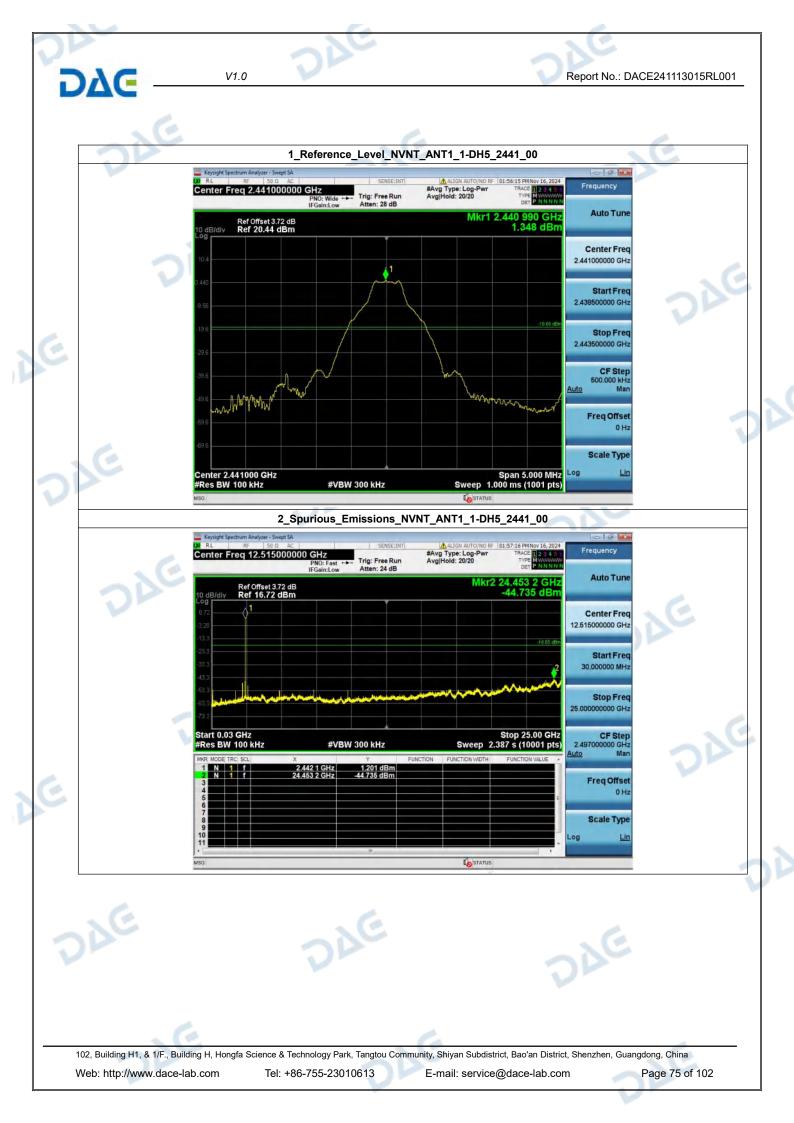
5. Spurious Emissions

DΔG

0


4

Condition	Antenna	Modulation	TX Mode	Spurious MAX.Value(dBm)	Limit	Result
NVNT	ANT1	1-DH5	2402.00	-44.669	-18.502	Pass
NVNT	ANT1	1-DH5	2441.00	-44.735	-18.652	Pass
NVNT	ANT1	1-DH5	2480.00	-46.428	-19.219	Pass
NVNT	ANT1	2-DH5	2402.00	-45.295	-18.411	Pass
NVNT	ANT1	2-DH5	2441.00	-44.370	-18.681	Pass
NVNT	ANT1	2-DH5	2480.00	-49.570	-19.238	Pass


C

2_Spurious_Emissions_NVNT_ANT1_1-DH5_2402_00

Web: http://www.dace-lab.com

Web: http://www.dace-lab.com

E-mail: service@dace-lab.com

Page 76 of 102

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 77 of 102

E-mail: service@dace-lab.com

Tel: +86-755-23010613

Web: http://www.dace-lab.com

Page 78 of 102

Web: http://www.dace-lab.com Tel: +86-755-23010613

E-mail: service@dace-lab.com

6. Bandedge

V1.0

DΔC

. Bandedg	е							
Condition	Antenna	Modulation	TX Mode	Bandedge MAX.Value	Limit	Result		
NVNT	ANT1	1-DH5	2402.00	-44.735	-18.502	Pass		
NVNT	ANT1	1-DH5	Hopping_LCH	-45.248	-18.490	Pass		
NVNT	ANT1	1-DH5	2480.00	-53.570	-19.219	Pass		
NVNT	ANT1	1-DH5	Hopping_HCH	-54.919	-18.348	Pass		
NVNT	ANT1	2-DH5	2402.00	-43.165	-18.411	Pass		
NVNT	ANT1	2-DH5	Hopping_LCH	-49.614	-18.331	Pass		
NVNT	ANT1	2-DH5	2480.00	-54.662	-19.238	Pass		
NVNT	ANT1	2-DH5	Hopping_HCH	-55.692	-18.330	Pass		

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

	2_Band_Edge_(Hopping)	NVNT_ANT1_2-DH5_Hopping	6 -
VE	RL RF 50 Ω AC SENSE:IN Center Freq 2.487500000 GHz SENSE:IN SENSE:IN SENSE:IN	T ALIGN AUTO/NO RF 02:28:21 PM Nov 16, 2024 #Avg Type: Log-Pwr TRACE 123435 Freque	
	PN0: Fast ++ Trig: Free Run IFGain:Low Atten: 24 dB Ref Offset 3:85 dB	Mkr3 2.496 250 GHz Au	o Tune
	10 dB/div Ref 16.85 dBm	-55.692 dBm	er Freg
	132	2.487500	
ī	-33.2		art Freq
	-43,2		ort Freq
	-73.2	2.500000	000 GHz
E	Start 2.47500 GHz #Res BW 100 kHz #VBW 300 kHz	Sweep 2.400 ms (1001 pts) 2.500	CF Step
	MKR MODE TRC SCL X Y 1 N 1 f 2.477 850 GHz 0.878 dBm 2 N 1 f 2.483 500 GHz -57.335 dBm		Man
	3 N 1 f 2.496 250 GHz -55.692 dBm 4 - - - - - - - - 5 - - - - - - 5 - - - - - - 5 -	Fred a	0 Hz
	7 8 9		Іе Туре
-XC	10 11 11 11 11 11 11 11 11 11 11 11 11 1	Log	
	MSG	K ISTATUS	6
		AC	
		DAL	
	DAC		

D

Limit(MHz)

0.953

0.952

0.953

NE

Result

Pass

Pass

Pass

Pass

Pass

Pass

Carrier Frequencies Separation(MHz)

1.00

1.32

1.13

V1.0

1-DH5

1-DH5

1-DH5

Antenna

ANT1

ANT1

ANT1

DVC

Condition

NVNT

NVNT

NVNT

NVNI	ANI1	1-DH5	2480.00	2478.855	2479.983	1.13	0.953	P
NVNT	ANT1	2-DH5	2402.00	2401.849	2403.172	1.32	0.856	P
NVNT	ANT1	2-DH5	2441.00	2440.849	2441.857	1.01	0.870	P
NVNT		2-DH5	2480.00	2478.867	2479.992	1.13	0.873	P
		Comis		Concretion /11	opping) NIV/NT	ANTI 1 DUE Usening		
				separation_(He	opping)_NVNI	_ANT1_1-DH5_Hopping		
		Keysight Spectrum Anal	50 Ω AC	SENSE:INT		NO RF 01:54:23 PM Nov 16, 2024 Pwr TRACE 12 8 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4		
		Center Freq 2.4	402500000 GHz PNO: Wide IFGain:Low	Trig: Free Run Atten: 28 dB	#Avg Type: Log-P Avg Hold: 10/10	Pwr TRACE 2 3 4 5 5 TYPE MWWWWW DET PNNNNN		
		Ref Of	fset 3.75 dB 0.50 dBm	Awr. 20 00		ΔMkr1 1.002 MHz -0.011 dB	e	
		10 dB/div Ref 2	0.50 dBm	Ĭ		-0.011 dB Center Fre	a	
		10.5			<u>_</u> 1∆2	2.402500000 GH		
		0.500	m-X2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	many			
		-9.50		N N	1 mg	2.40100000 GH		
			or and the second	maria		my work		
		-19.5				Stop Fre 2,404000000 GH		
		-29.5				2.40400000 GP		
		-39.5 mm mm				CF Ste 300.000 kH		
		-49.5				Auto Ma		
		10.5				FreqOffse	et	
		-59.5				01		
		-69.5				Scale Typ		
		Center 2.402500	GHz			Span 3.000 MHz		
		#Res BW 100 kH		BW 300 kHz		o 1.000 ms (1001 pts)		
		MSG			to st	ATUS		
	114 0 4/2 2 2							
						odistrict, Bao'an District, Shenzhen, Gu		100
	//www.dace-la	ap.com	Tel: +86-755-23	010013	⊢-mail: serv	/ice@dace-lab.com 🛛 🚽	Page 89 of	102
						0		
eb. nup./				V				

Hopping NO.1 (MHz)

2402.989

2442.169

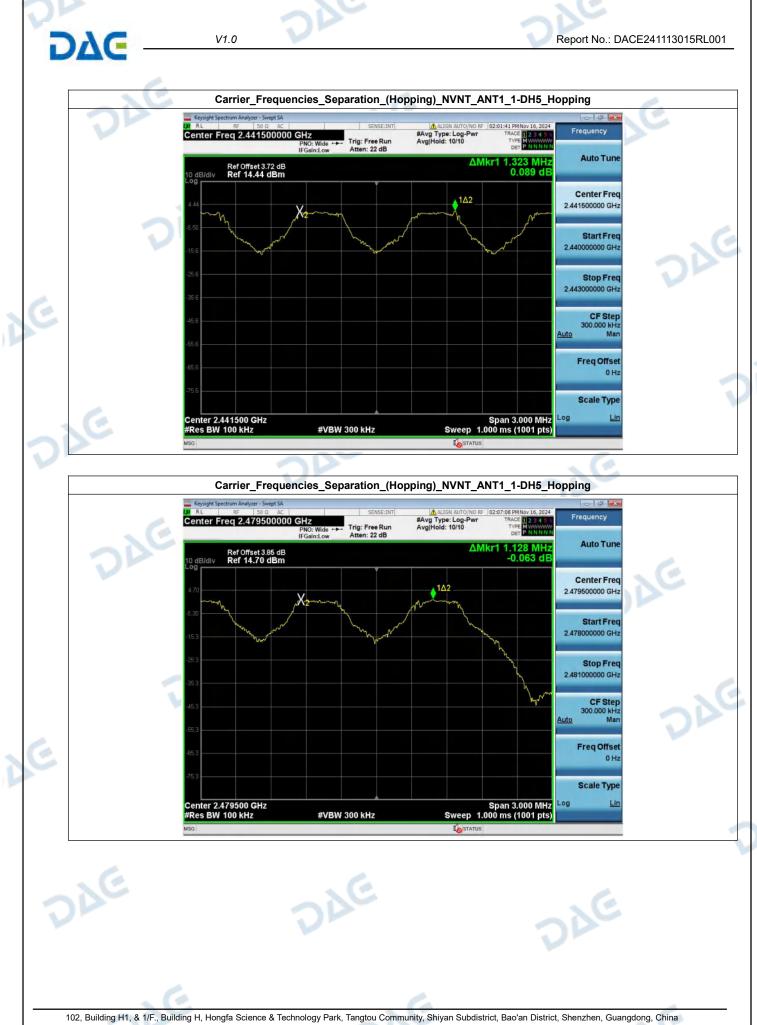
2479.983

Hopping NO.0 (MHz)

2401.987

2440.846

2478.855


7. Carrier Frequencies Separation (Hopping)

Modulation Frequency(MHz)

2402.00

2441.00

2480.00

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 90 of 102

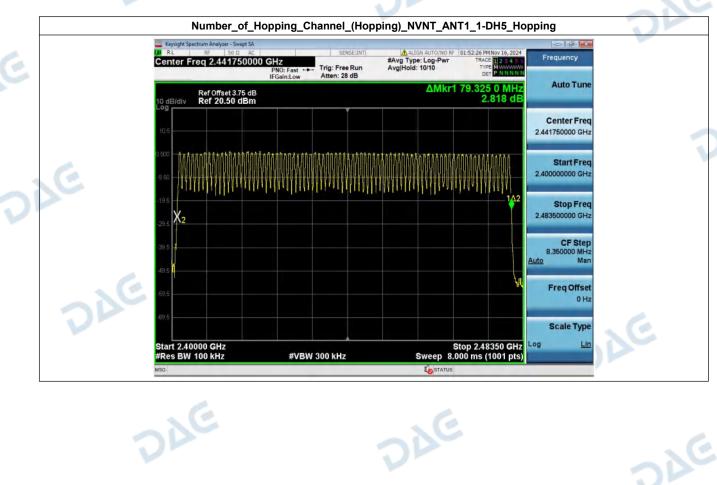
Web: http://www.dace-lab.com Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 91 of 102

	GHz	ALIGN AUTO/NO RF 02:26:31 PMM #Avg Type: Log-Pwr TRACE	123455 Frequency	
Ref Offset 3.85 dB 10 dB/div Ref 14.70 dBm 4.70	PNO: Wide - Trig: Free Run IFGain:Low Atten: 22 dB	Avg Hold: 10/10 ΔMkr1 1.12 0.3	P N N N N	
-25 3 -45 3 -45 3 			Stop Freq 2.481000000 GHz WW CF Step 300.000 kHz Auto Man Freq Offset 0 Hz Scale Type	
Center 2.479500 GHz #Res BW 100 kHz	#VBW 300 kHz	Span 3.0 Sweep 1.000 ms (1	000 MHz Log Lin	
	4 70 5 30 	Log 4.70 5.30 	Log of the second secon	Center Freq 2. Joseph and Andrew Andr

D


DAC

1

DAG

8. Number of Hopping Channel (Hopping)

Condition	Antenna	Modulation	Hopping Num	Limit	Result
NVNT	ANT1	1-DH5	79	15	Pass
NVNT	ANT1	1-DH5	79	15	Pass
NVNT	ANT1	1-DH5	79	15	Pass
NVNT	ANT1	2-DH5	79	15	Pass
NVNT	ANT1	2-DH5	79	15	Pass
NVNT	ANT1	2-DH5	79	15	Pass

2AC

DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAG

DAG

DAG V1.0 Report No.: DACE241113015RL001 Number_of_Hopping_Channel_(Hopping)_NVNT_ANT1_2-DH5_Hopping #Avg Type: Log-F AvgiHold: 10/10 Frequency Center Freq 2.441750000 GHz Trig: Free Run Atten: 28 dB PNO: Fast + IFGain:Low Auto Tune ΔMkr1 79.575 0 MHz -9.939 dB Ref Offset 3.75 dB Ref 20.50 dBm Center Freq 2.441750000 GHz tom when the for the second the second the second of the second Start Freq 2.40000000 GHz Stop Freq X₂ 2.483500000 GHz CF Step 8.350000 MHz Freq Offset 0 Hz Scale Type Stop 2.48350 GHz Sweep 8.000 ms (1001 pts) Start 2.40000 GHz #Res BW 100 kHz Log Li #VBW 300 kHz Number_of_Hopping_Channel_(Hopping)_NVNT_ANT1_2-DH5_Hopping
 Keysight Spectrum Analyzer - Swept SA

 RL
 RF
 50 Ω
 AC

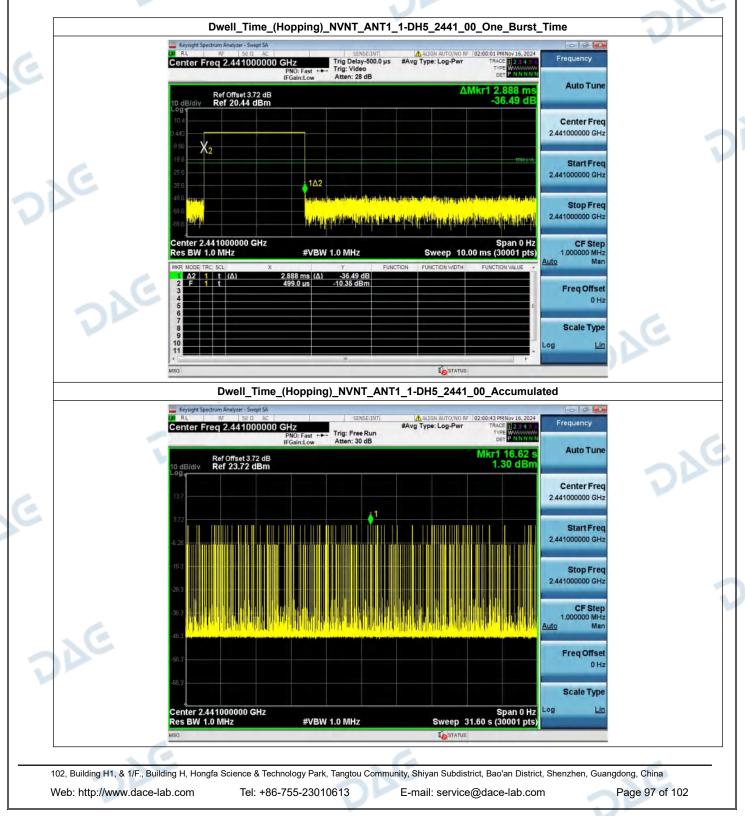
 Center Freq 2.441750000 GHz
 Current
 Current
 Current
 ALIGN AUTO/NO #Avg Type: Log-Pw Avg|Hold: 10/10 w 16, 2024 Frequency Ne Trig: Free Run Atten: 28 dB PNO: Fast H MWWWWWW Auto Tun ΔMkr1 79.575 0 MHz -6.680 dB Ref Offset 3.72 dB Ref 20.44 dBm **Center Freq** 2.441750000 GHz have not about the produce of the second of Start Freq 2.40000000 GHz Stop Freq X_2 2.483500000 GHz CF Step 8.350000 MHz Man Auto Freq Offset 4 0 Hz Scale Type Stop 2.48350 GHz Sweep 8.000 ms (1001 pts) Start 2.40000 GHz #Res BW 100 kHz Log Li #VBW 300 kHz

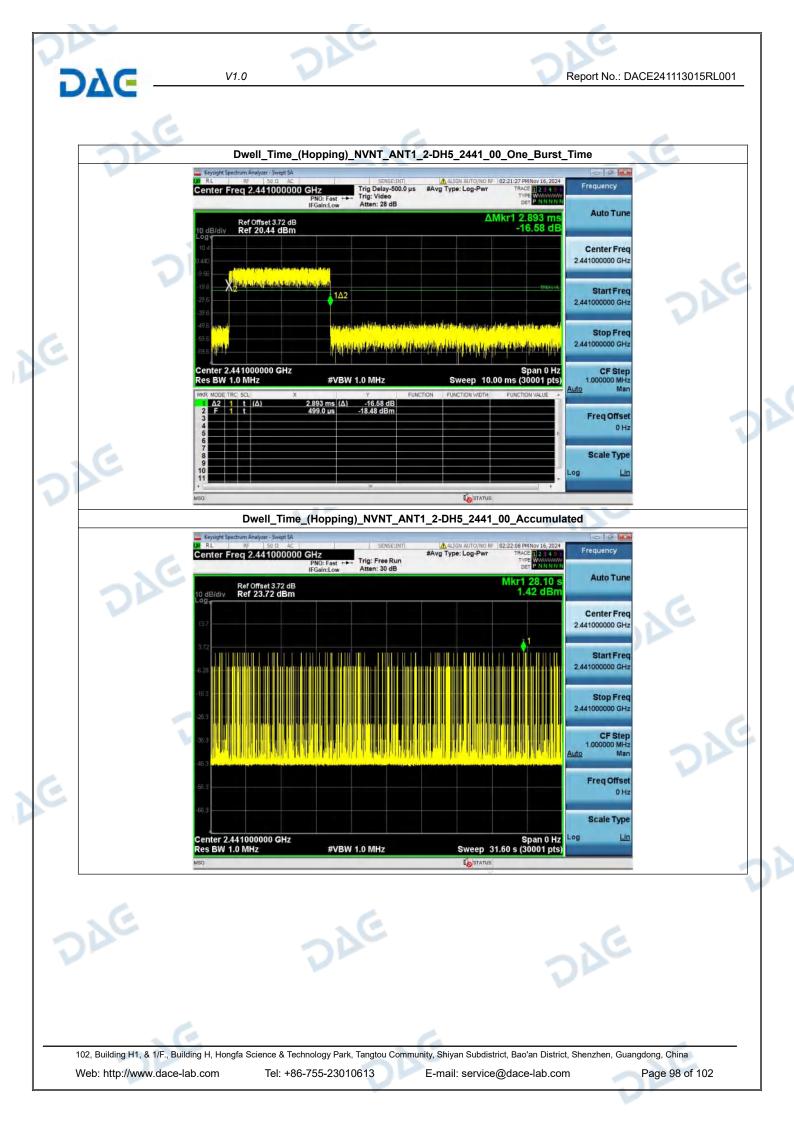
102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

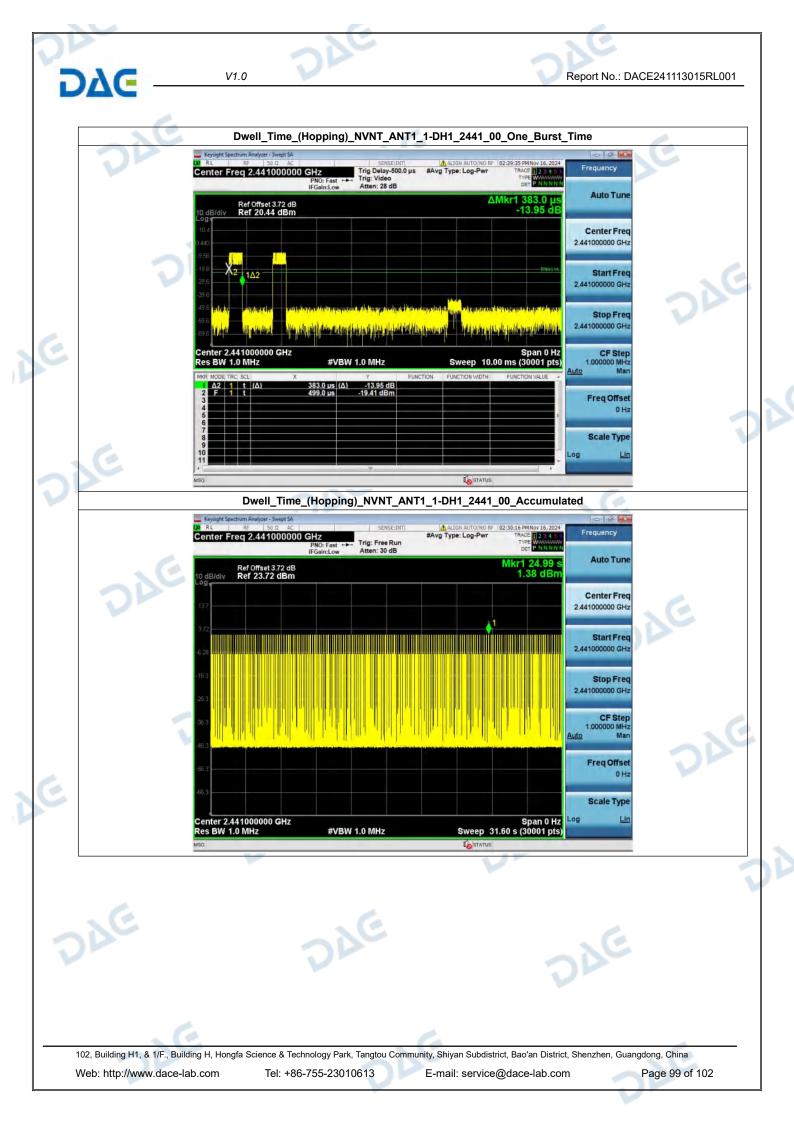
DAG

DAG

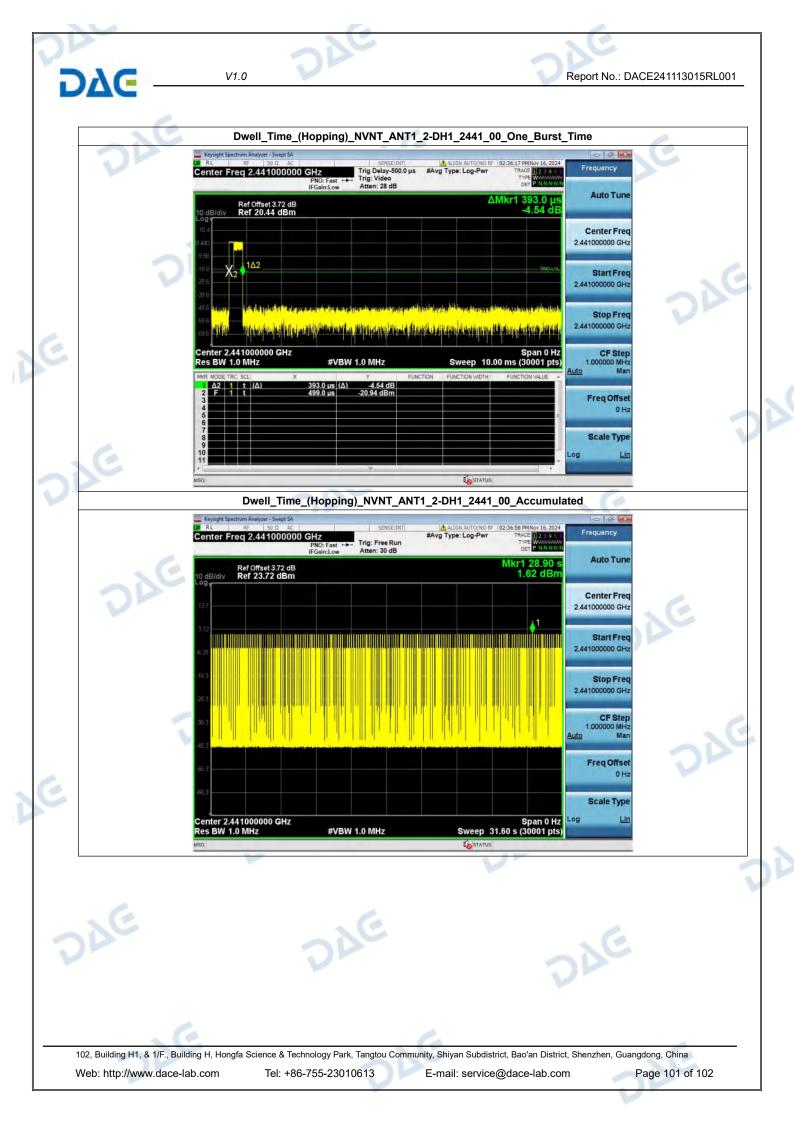
Page 95 of 102


DAG


DAG -	V1.0	Report No.: DAG	CE241113015RL001
240	Number_of_Hopping_Channel_(Hopp	ALIGN AUTO/NO RF 02:27:07 PM Nov 16, 2024 #Avg Type: Log-Pwr TRACE 12:34 TFrequency	E
	PNO: Fast →→ Trig: Free Run IFGain:Low Atten: 28 dB Ref Offset 3.85 dB Log	AvgiHoid: 10/10 DET PINNINN AMkr1 79.575 0 MHz -8.003 dB Center Freq	
2	0,700 -930 -933 -933 X2	2.441750000 GHz 3.441750000 GHz 2.40000000 GHz 3.40000000 GHz 3.40000000 GHz	DAG
È	-29.3 -29.3	CF Step 8.350000 MHz Auto Man	
LE	533 533 533 533 533 533 533 533	OHz Stop 2.48350 GHz Sweep 8.000 ms (1001 pts)	1
		6	


9. Dwell Time (Hopping)

DAC


Condition	Antenna	Packet Type	Pulse Time(ms)	Hops	Dwell Time(ms)	Limit(s)	Result
NVNT	ANT1	1-DH5	2.888	106.00	306.128	0.40	Pass
NVNT	ANT1	2-DH5	2.893	107.00	309.551	0.40	Pass
NVNT	ANT1	1-DH1	0.383	320.00	122.560	0.40	Pass
NVNT	ANT1	1-DH3	1.640	160.00	262.400	0.40	Pass
NVNT	ANT1	2-DH1	0.393	320.00	125.760	0.40	Pass
NVNT	ANT1	2-DH3	1.645	166.00	273.070	0.40	Pass

