

FIBOCOM LTE Module (SC138-NA Series) Hardware Guide

Version: V1.0.1 Date: 2021-04-18

PDF

Applicability Type

No.	Product Model	Description
1	SC138-NA	

Copyright

Copyright ©2020 Fibocom Wireless Inc. All rights reserved.

Without the prior written permission of the copyright holder, any company or individual is prohibited to excerpt, copy any part of or the entire document, or transmit the document in any form.

Note

The document is subject to update from time to time owing to the product version upgrade or other reasons. Unless otherwise specified, the document only serves as the user guide. All the statements, information and suggestions contained in the document do not constitute any explicit or implicit guarantee.

Trademark

The trademark is registered and owned by Fibocom Wireless Inc.

Revision History

Version	Author	Reviewer	Approver	Date	Description	
V1.0.0	Tan Qiuye	Tu Min	Chen	2020-12-29	Initial version	
1.0.0			Guojiang			
	Ye Xincai	T. Min	Chan		First revision, Adding W-20	
V1.0.1	Huang	Tu Min	Chen	2021-04-18	version; Updating some RF	
	Feng	Li Xiyi	Guojiang		parameters.	

Contents

1	Abou	ut This Document	8
	1.1	Description	8
	1.2	References	8
	1.3	Related Documents	10
2	Prod	duct Overview	11
	2.1	Product Introduction	11
	2.2	Performance	11
	2.3	Pin Definition	19
	2	2.3.1 Pin Distribution	19
	2	2.3.2 Pin Description	19
3	Appl	lication Interface	35
	3.1	Power	35
	3	3.1.1 Power Input	35
	3	3.1.2 VRTC	37
<	3	3.1.3 Power Output	38
	3.2	Control Signal	38
	3	3.2.1 Startup and Shutdown	38
	3	3.2.2 Volume Control	41
	3.3	SPMI Interface	41
	3.4	USB Interface	41
	3.5	UART	45
	3.6	SPL	46
	3.7	(U) SIM	46
	3.8	SDIO Interface	48
	3.9	GPIO	49
	3.10	I ² C	50
	3.11	ADC	51
	3.12	I2S Interface	51

Fibccon

	3.13	Batter	ry Power Supply Interface	52
	3.14	Motor	Drive Interface	52
	3.15	LCM.		52
	3.16	TP		54
	3.17	Came	era	55
	3	6.17.1	Camera 1	57
	3	6.17.2	Camera 2	57
	3	6.17.3	Camera 3	58
	3	6.17.4	Camera 4	59
	3	6.17.5	Design Considerations	60
	3.18	Senso	or	61
	3.19	Audio		62
	3	6.19.1	Audio Interface Definition	62
	3	.19.2	Microphone Circuit Design) 63
	3	.19.3	Handset Circuit Design	64
	3	.19.4	Earphone Interface Circuit Design	64
	3	.19.5	Speaker Circuit Design	
	3.20	Force	d Downloading Interface Design	65
	-	6.20.1	Circuit Reference Design	66
	3.21	WIFI/	BT Antenna	66
	3	.21.1	WIFI/BT Band	66
	3	.21.2	Circuit Reference Design	67
	3.22	GNSS	S Antenna	67
		.22.1	GNSS Band	
	3	5.22.2	Circuit Reference Design	68
	3.23	Anten	na Requirements	69
4	RF P	CB La	ayout Design Guide	71
5			Bluetooth	
	5.1	WIFI	Overview	74
	5.2		Performance Indicators	
			duction forbidden without Fibocom Wireless Inc. written authorization - All rights	

Fibccom

	5.3	Bluetooth Overview	76
	5.4	Bluetooth Performance Indicators	77
6	GNS	S	78
	6.1	Overview	78
	6.2	Performance Index	78
7	Elect	trical, ALT and RF Performance	79
	7.1	Recommended Parameters	79
	7.2	Operating Current	79
	7.3	Electrostatic Protection	80
8	Strue	ctural Specification	81
	8.1	Product Appearance	81
	8.2	Structure Size	81
	8.3	Reference PCB Bonding Pad Design	81
9	Prod	uction and Storage	82
	9.1	SMT Patch	82
	9.2	Packaging and Storage	82
Ар	pendi	x A Abbreviations	83
Ар	pendi	x B GPRS Coding Scheme	B6
	1		87
•	-		88
-	-	CO^{2}	

1 About This Document

1.1 Description

The document describes information on electrical characteristics, RF performance, structural dimension, application environment, etc. of SC138-NA series modules. With the help of this document and other related documents, the application developer can quickly understand the hardware functions of SC138-NA series modules and develop the hardware of the product.

1.2 References

This product is designed with reference to the following standards:

- 3GPP TS 51.010-1 V10.5.0: Mobile Station (MS) conformance specification; Part 1: Conformance specification
- 3GPP TS 34.121-1 V10.8.0: User Equipment (UE) conformance specification; Radio transmission and reception (FDD); Part 1: Conformance specification
- 3GPP TS 36.521-1 V12.9.0: User Equipment (UE) conformance specification; Radio transmission and reception; Part 1: Conformance testing
- 3GPP TS 21.111 V10.0.0: U(U)SIM and IC card requirements
- 3GPP TS 51.011 V4.15.0: Specification of the Subscriber Identity Module -Mobile Equipment ((U)SIM-ME) interface
- 3GPP TS 31.102 V10.11.0: Characteristics of the Universal Subscriber Identity Module (U(U)SIM) application
- 3GPP TS 31.11 V10.16.0: Universal Subscriber Identity Module (U(U)SIM) Application Toolkit (USAT)
- 3GPP TS 36.124V10.3.0: Electro Magnetic Compatibility (EMC) requirements for mobile terminals and ancillary equipment
- 3GPP TS 27.007 V10.0.8: AT command set for User Equipment (UE)
- 3GPPTS27.005 V10.0.1: Use of Data Terminal Equipment Data Circuit terminating Equipment
- IEEE 802.11n WLAN MAC and PHY, October 2009 + IEEE 802.11-2007 WLAN MAC and PHY, June

2007

- IEEE Std 802.11b, IEEE Std 802.11n, IEEE Std 802.11a, IEEE Std 802.11g, IEEE Std 802.11ac
- IEEE 802.11-2007 WLAN MAC and PHY, June 2007
- Bluetooth Radio Frequency TSS and TP Specification 1.2/2.0/2.0 + EDR/2.1/2.1+ EDR/3.0/3.0+
- HS, August 6, 2009
- Bluetooth Low Energy RF PHY Test Specification, RF-PHY.TS/4.0.0, December 15, 2009
- Bluetooth Low Energy RF PHY Test Specification, RF-PHY.TS/5.0.2, December 07,2017

1.3 Related Documents

FIBOCOM SC138 Series SMT Design Guide

2 Product Overview

2.1 Product Introduction

SC138 series intelligent modules integrate core devices such as Baseband, eMCP, PMU, Transceiver and PA, and support remote communication modes of FDD/TDD-LTE, WCDMA, and multiple types, WIFI/BT short-range wireless transmission technology and GNSS wireless positioning technology(SC138-W support WiFi/BT only). SC138-NA series modules are embedded in the open Android operating system and support multiple interfaces such as MIPI/USB/UART/SPI/I2C, so they are the preferred schemes for the core system of wireless intelligent products. The corresponding network type and the band of SC138 modules are shown in the following table:

(
Mode	Band
WCDMA	Band 2/4/5
FDD-LTE	Band 2/4/5/7/12/13/14/17/25/26/66/71
TDD	Band 41/48
WIFI 802.11a/b/g/n/ac	2402-2482 MHz; 5170-5835MHz
BT5.0	2402-2480 MHz
GNSS	GPS +GLONASS +BeiDou

Table 2-1 Available band of SC138-NA

2.2 Performance

SC138-NA modules are packaged with LCC+LGA and have a total of 276 pins, including 148 LCC pins and 128 LGA pins, with the dimensions of 41 mm × 41 mm × 2.8 mm. They can be embedded in various M2M product applications, and are applicable to the development of intelligent POS, cash register, robot, unmanned aerial vehicle, home automation, security monitoring, multimedia terminal and other intelligent devices. The following table describes the detailed performance parameters of SC138 series modules.

Table 2-2 Performance and specification

Performance	Description
Deuropeurophi	DC 3.5 V–4.2 V
Power supply	Typical voltage: 3.8 V
Application processor	Kyro™260 8 core architecture 64-bit processor; the main frequency
Application processor	is up to 2 GHz
Storage	16 Gb LPDDR4X+32 GB eMMC Flash (optional)
	Class 3 (24dBm+1/-3dB) for WCDMA bands
Power level	Class 3 (23dBm±2dB) for LTE FDD bands
	Class 3 (23dBm±2dB) for LTE TDD bands
	Support 3GPP R9 DC-HSPA+
WCDMA characteristics	Support 16-QAM, 64-QAM and QPSK modulation
WCDIMA characteristics	CAT8 HSUPA: maximum uplink rate: 11.4 Mbps
	CAT24 DC-HSPA+: maximum downlink rate; 42 Mbps
> ())	Support FDD/TDD R12 CAT4 (UL CAT5 DL CAT4)
LTE characteristics	Support 1.4 M-20 M RF bandwidth
	Downlink supports multi-user MIMO
	Maximum uplink rate: 75 Mbps; maximum downlink rate: 150 Mbps
	Support 2.4 G and 5 G WLAN wireless communication, and 802.11
VLAN characteristics	a, 802.11 b, 802.11 g, 802.11 n, 802.11 ac and other types, with the
\sim	maximum rate up to 433 Mbps
Bluetooth characteristics	BT5.0
Satellite positioning	GPS +GLONASS +BeiDou
	Text and PDU mode
SMS	Point-to-point MO and MT
	SMS cell broadcast
	SMS storage: It is stored in the module by default.
LCD interface	1 set of 4-Lane MIPI_DSI interfaces, with the maximum support of
	2,520 × 1,080

Reproduction forbidden without Fibocom Wireless Inc. written authorization - All rights

Performance	Description
	1 set of DP over type-C interface with developing functions
Ormana interferer	3 sets of 4-Lane MIPI_CSI interfaces, with the maximum rate up to
Camera interface	2.5 Gbps per Lane, which supports the maximum 25 MP pixel.
	Audio input:
	3 sets of analog MIC inputs
	Internal integration bias
Audio interface	Audio output:
	Class AB stereo earphone output
	Class AB differential handset output
	Class D differential speaker power amplifier output
	USB 2.0 high speed (HS) interface, with the maximum data
C	transmission rate of 480 Mbps
USB interface	USB 3.1 super speed (SS) interface, with the maximum data
	transmission rate of 5 Gbps
	Support USB OTG.
	2 sets of (U)SIM interfaces, supporting (U)SIM: 1.8 V/3 V self-
(U)SIM interface	adaption
	Support dual-SIM dual standby and hot plug functions (off by
	default).
	3 sets of UART serial ports, with the maximum rate up to 4 Mbps,
	wherein:
UART interface	1 set of four-wire serial port supporting RTS and CTS hardware
	flow control
	1 set of two-wire serial port
	1 set of two-wire debugging serial port
SDIO interface	Support SD 3.0 and 4 bits SDIO; SD supports hot plug.
I2C interface	6 sets of I2C interfaces, which can be used for TP, Camera, Sensor
	and other peripherals

Performance	Description
ADC interface	Universal 15-bit precise ADC
RTC	Supported
	TRX antenna, DRX antenna, GNSS antenna and WIFI/BT antenna
Antenna interface	interfaces
	Dimensions: 41mm × 41mm × 2.8mm
Physical characteristics	Package: 148 LCC + 128 LGA
	Weight: 9.6±1g
	Operating temperature: –30°C to 75°C ¹⁾
Temperature range	Expansion temperature: –40°C~85°C ²
	Storage temperature: -40°C to 85°C
Software upgrade	USB/OTA/SD
RoHS	Conform to RoHS standard.

- 1) When the modules work in this temperature range, their functions are normal, and relevant performance meets the requirements of 3GPP standard.
- When the modules work in this temperature range, their functions are normal, but relevant performance may not meet the requirements of 3GPP standard. And the temperature return to Operating temperature, the performance meets the requirements of 3GPP standard.

FCC Warning

Important Notice to OEM integrators

- 1. This module is limited to OEM installation ONLY.
- 2. This module is limited to installation in mobile or fixed applications, according to Part 2.1091(b).
- 3. The separate approval is required for all other operating configurations, including portable

configurations with respect to Part 2.1093 and different antenna configurations

4. For FCC Part 15.31 (h) and (k): The host manufacturer is responsible for additional testing to verify

compliance as a composite system. When testing the host device for compliance with Part

15 Subpart B, the host manufacturer is required to show compliance with Part 15 Subpart B while the transmitter module(s) are installed and operating. The modules should be transmitting and the evaluation should confirm that the module's intentional emissions are compliant (i.e. fundamental and out of band emissions). The host manufacturer must verify that there are no additional unintentional emissions other than what is permitted in Part 15 Subpart B or emissions are complaint with the transmitter(s) rule(s). The Grantee will provide guidance to the host manufacturer for Part 15 B requirements if needed.

Important Note

notice that any deviation(s) from the defined parameters of the antenna trace, as described by the instructions, require that the host product manufacturer must notify to Fibocom wires Inc. that they wish to change

the antenna trace design. In this case, a Class II permissive change application is required to be filed by the USI, or the host manufacturer can take responsibility through the change in FCC ID (new application) procedure followed by a Class II permissive change application.

End Product Labeling

When the module is installed in the host device, the FCC/IC ID label must be visible through a window on the final device or it must be visible when an access panel, door or cover is easily re-moved. If not, a second label must be placed on the outside of the final device that contains the following text: "Contains FCC ID: ZMOSC138NA"

"Contains IC: 21374-SC138NA "

The FCC ID/IC ID can be used only when all FCC/IC compliance requirements are met.

Antenna Installation

(1) The antenna must be installed such that 20 cm is maintained between the antenna and users,

(2) The transmitter module may not be co-located with any other transmitter or antenna.

(3) Only antennas of the same type and with equal or less gains as shown below may be used with this

module. Other types of antennas and/or higher gain antennas may require additional authorization for operation.

Technical	WCDMA/LTE	WCDMA/LTE	LTE	Bluetooth	WiFi	WiFi
	B2/4/7/25/41/66	B5/12/13/14/17/26/71	B48		2.4G	5G
Antenna	1dBi	0.5dBi	-0.13dBi	1dBi	1dBi	2dBi
Gain						
Antenna	Dipole					
type						

In the event that these conditions cannot be met (for example certain laptop configurations or co-location with another transmitter), then the FCC/IC authorization is no longer considered valid and the FCC ID/IC ID cannot be used on the final product. In these circumstances, the OEM integrator will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate FCC/IC authorization.

Manual Information to the End User

The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module in the user's manual of the end product which integrates this module. The end user manual shall include all required regulatory information/warning as show in this manual.

Federal Communication Commission Interference Statement

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause barmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the

interference by one of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate this equipment. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

List of applicable FCC rules

This module has been tested and found to comply with part 22, part 24, part 27, part 90, 15.247 and 15.407 requirements for Modular Approval.

The modular transmitter is only FCC authorized for the specific rule parts (i.e., FCC transmitter rules) listed on the grant, and that the host product manufacturer is responsible for compliance to any other FCC rules that apply to the host not covered by the modular transmitter grant of certification. If the grantee markets their product as being Part 15 Subpart B compliant (when it also contains unintentional-radiator digital circuity); then the grantee shall provide a notice stating that the final host product still requires Part 15 Subpart B compliance testing with the modular transmitter installed.

This device is intended only for OEM integrators under the following conditions: (For module device use)

The antenna must be installed such that 20 cm is maintained between the antenna and users, and
The transmitter module may not be co-located with any other transmitter or antenna.
As long as 2 conditions above are met, further transmitter test will not be required. However, the
OEM integrator is still responsible for testing their end-product for any additional compliance
requirements required with this module installed.

Radiation Exposure Statement

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20 cm between the radiator & your body.

Déclarationd'expositionauxradiations Cetéquipement est conforme Canada limites d'exposition aux radiations dans un environnementnon contrôlé. Cet équipement doit être installé et utilisé à distance minimumde 20cmentreleradiateuretvotrecorps.

This device complies with license-exempt transmitter(s)/receiver(s) that comply with Innovation, Science and Economic Development Canada's licence-exempt RSS standard(s).

Operation is subject to the following two conditions:

(1) this device may not cause harmful interference, and

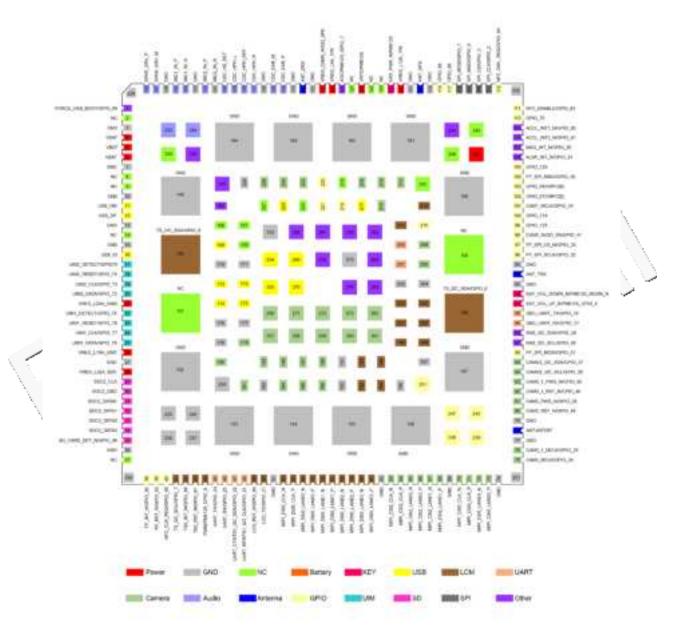
(2) this device must accept any interference received, including interference that may cause undesired operation.

L'émetteur/récepteur exempt de licence contenu dans le présent appareil est conforme aux CNR d'Innovation, Sciences et Développement économique Canada applicables aux appareils radio exempts de licence.

L'exploitation est autorisée aux deux conditions suivantes:

(1) l'appareil ne doit pas produire de brouillage, et

(2) l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.


This radio transmitter (IC: 21374-SC138NA) has been approved by Industry Canada to operate with the antenna types listed below with the maximum permissible gain indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Le présent émetteur radio (21374-SC138NA) a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés ci-dessous et ayant un gain admissible maximal. Les types d'antenne non inclus dans cette liste, et dont le gain est supérieur au gain maximal indiqué, sont strictement interdits

pour l'exploitation de l'émetteur.

2.3 Pin Definition

2.3.1 Pin Distribution

Note:

"NC" stands for No Connect. The pin at this position is reserved, and no connection is required.

2.3.2 Pin Description

Table 2-3 Description of I/O parameters

Туре	Description
10	Input/output
DI	Digital input
DO	Digital output
PI	Power input
PO	Power output
AI	Analog input
AO	Analog output
OD	Open drain

The pins of SC138 modules are described in the following table:

Pin Name	Pin No.	I/O	Pin Description	Remarks			
Power	Power						
VBAT	4,5,6	PI	Main power supply input	2			
VRTC	126	PI/PO	RTC power supply pin	-			
VREG_CAM0_ DVDD_1P104	226	PO	1.1 V voltage output	-			
VREG_L9A_1P 8	129	PO	1.8 V voltage output	-			
VREG_L12A_1 P8	122	PO	1.8 V voltage output	-			
VREG_CAM_A - F_2P8	224	PO	2.8 V voltage output	-			
VREG_L22A_2 P96	28	PO	SD power supply	-			
VREG_L19A_1 P8	26	PO	(U)SIM 1 power supply	1.8 V/3 V self- adaption			
VREG_L20A_1	21	PO	(U)SIM 2 power supply	1.8 V/3 V self-			

Reproduction forbidden without Fibocom Wireless Inc. written authorization - All rights

Pin Name	Pin No.	I/O	Pin Description	Remarks
P8				adaption
VREG_CAM0_	100	20		
AVDD_2P8	130	PO	2.8 V voltage output	-
VREG_CAM1_	222	PO	2.8 V voltage output	
2_AVDD_2P8	222	FU		-
VREG_CAM1_	264	PO	1.2 V voltage output, camera	_
2_DVDD_1P2	201		power supply	
VREG_ALS_VL	265	PO	3.0 V voltage output, light sensor	_
ED_3P0			power supply	
VREG_3P0	266	PO	3.0 V voltage output	-
VREG_L15A_3P1		PO		
28	241		3.1 V voltage output	52
3,7,10,13,1	5,27,36,51,62,69	,74,77,79,93,95	5,119,121,131,133,136,	
GN 143,146,14	9,152,153,154,1	55,156,157,160,	,161,162,163,164,170,171,	58 Ground
	8,182,190,191,19 6,250,253,275	96,197,204,205	,228,229,230,231,232,235,	pcs
Special Function	n Interface			I I I
CBL_PWR_N	165	DI J	Trigger startup signal	-
Key	,		L	
				Active low; do
KPD_PWR_N	123	DI	Startup and shutdown key	not pull up
				externally.
KEY_VOL_UP_	91	DI	Volume up key	Active low
Ν				
KEY_VOL_DO				Active low;
WN_N	92	DI	Volume down key	volume down
				key by default,

Pin Name	Pin No.	I/O	Pin Description	Remarks
				which can be
				configured for
				low level
				shutdown and
				restart; do not
				pull up
				externally.
(U)SIM Interface	[
UIM1_DATA	25	I/O	(U)SIM 1 data signal	-
UIM1_CLK	24	DO	(U)SIM 1 clock signal	-
UIM1_RESET	23	DO	(U)SIM 1 reset signal	-
UIM1_DETECT	22	DI	(U)SIM 1 plug detection	Off by default
UIM2_DATA	20	1/0	(U)SIM 2 data signal	Y CPY
UIM2_CLK	19	-DO	(U)SIM 2 clock signal	\sim
UIM2_RESET	18	DO	(U)SIM 2 reset signal	-
UIM2_DETECT	17	DI	(U)SIM 2 plug detection	Off by default
VREG_L19A_1		12		1.8 V/3 V self-
P8	26	PO	(U)SIM 1 power supply	adaption
VREG_L20A_1		$\mathcal{T}\mathcal{D}$	-	1.8 V/3 V self-
P8	21	PO	(U)SIM 2 power supply	adaption
SD Interface				
SDC2_DATA3	34	I/O	SD data interface	-
SDC2_DATA2	33	I/O	SD data interface	-
SDC2_DATA1	32	I/O	SD data interface	-
SDC2_DATA0	31	I/O	SD data interface	-
SDC2_CLK	29	DO	SD clock	-
SDC2_CMD	30	I/O	SD command interface	-
SD_CARD_DE	35	DI	SD detection	Active low by

Pin Name	Pin No.	I/O	Pin Description	Remarks
T_N				default
VREG_L22A_2	28	PO	SD power supply	
P96	20	FU		-
I2C Interface				
				Being used for
SNS_I2C_SCL	87	OD	I2C clock	sensor by
				default
			11 Anna	Being used for
SNS_I2C_SDA	88	OD	I2C data line	sensor by
		0		default
			I2C clock	Being used for
TS_I2C_SCL	41	OD	IZC CIOCK	TP by default
TS_I2C_SDA	150,158	OD	I2C data line	Being used for
13_120_3DA	150,156			TP by default
CAMO 12C SC	84	OD	I2C clock	Being used for
CAM0_I2C_SC				camera by
L				default
				Being used for
CAM0_I2C_SD	85	OD	I2C data line	camera by
A				default
				Being used for
CAM2_SCL	206	OD	I2C clock	camera by
				default
				Being used for
CAM2_SDA	208	OD	I2C data line	camera by
				default
APPS_I2C_SC	269		12C alack	Need be
L	268	OD	I2C clock	Pulled-up too,

Fiboo	ON			
Pin Name	Pin No.	I/O	Pin Description	Remarks
APPS_I2C_SD A	267	OD	I2C data line	when unused
USB Interface				
USB_IN_DET	168	PI	VBUS input Detection	-
USB_DP	12	I/O	USB 2.0 differential data signal+	-
USB_DM	11	I/O	USB 2.0 differential data signal-	-
USB_ID	16	DI	USB ID pin	
USB_SS_RX1_ P	269	DI	USB 3.1 differential data reception+	-
USB_SS_RX1_ M	254	Ы	USB 3.1 differential data reception-	-
USB_SS_TX1_ P	270	DO	USB 3.1 differential data sending+	
USB_SS_TX1_ M	255	DO	USB 3.1 differential data sending-	
USB_8S_RX0 P	173	Ы	USB 3.1 differential data reception+	-
USB_SS_RX0_ M	175	ē	USB 3.1 differential data reception-	-
USB_SS_TX0_ P	172	DO	USB 3.1 differential data sending+	-
USB_SS_TX0_ M	174	DO	USB 3.1 differential data sending-	-
DP_AUX_N	263	I/O	DisplayPort auxiliary transmission channel-	-
DP_AUX_P	274	I/O	DisplayPort auxiliary transmission channel+	-
USB_PHY_PS	276	DI	USB front and back plug logo	-

Fiboo	ON			
Pin Name	Pin No.	I/O	Pin Description	Remarks
UART Interface				
DBG_UART_T X	90	DO	UART data sending (QUP0 SE4)	Debug serial
DBG_UART_R X	89	DI	UART data reception (QUP0 SE4)	port by default
UART_TX	45	DO	UART data sending (QUP1 SE0)	-
UART_RX	46	DI	UART data reception (QUP1 SE0)	-
UART_CTS/TS 1_I2C_SDA	47	DI	UART clear to send (QUP1 SE0)	Can be configured to I3C
UART_RFR/IS1 _I2C_CLK	48	DO	UART request to send (QUP1 SE0)	Can be configured to I3C
UART_TX/GPI O_8	209	DO	UART data sending (QUP0 SE2)	-
UART_RX/GPI O_9	207	Ы	UART data reception (QUP0 SE2)	-
SPI Interface				
	113	DO	SPI clock	-
SPI_CS	114	DO	SPI chip selection	-
SPI_MISO	115	DI	SPI MISO	-
SPI_MOSI	116	DO	SPI MOSI	-
I2S Interface				
GPIO_125/I2S1 _SCK	247	DO	I2S serial clock	-
GPIO_126/I2S1 _WS	238	DO	I2S frame clock	-

Pin Name	Pin No.	I/O	Pin Description	Remarks
		10		Kennarka
GPIO_127/I2S1	239	DO	I2S data 0	-
_DATA0				
GPIO_128/I2S1	240	DO	I2S data 1	_
_DATA1				
GPIO_118/MCL				Boot Config,
K2	251	DO	I2S system clock	Flash Memory
				type configure
Display Screen I	nterface			
MIPI_DSI0_CL			CUNY	
K_P	53	AO	Main TP MIPI clock+	-
MIPI_DSI0_CL	50			
K_N	52	AO	Main TP MIPI clock-	
MIPI_DSI0_LA	55	AI/AØ	Main TP MIPI Lane0+	(C)
NE0_P	55	AIAO		\sim
MIPI_DSI0_LA			Main TP MIPLLane0-	
NEO_N	54	AI/AO		-
MIPI_DSI0_LA			Main TP MIPILane1+	
NE1_P	57	AI/AO		-
MIPI_DSI0_LA		\mathcal{TD}	Main TP MIPI Lane1-	
NE1_N	56	AI/AO		-
MIPI_DSI0_LA			Main TP MIPI Lane2+	
NE2_P	59	AI/AO		-
MIPI_DSI0_LA	58	AI/AO	Main TP MIPI Lane2-	
NE2_N	50	AI/AO		-
MIPI_DSI0_LA	61		Main TP MIPI Lane3+	
NE3_P	61	AI/AO		-
MIPI_DSI0_LA			Main TP MIPI Lane3-	
NE3_N	60	AI/AO		-

Pin Name	Pin No.	I/O	Pin Description	Remarks
LCD0_RST_N	49	DO	Main TP reset signal	-
PWM	44	DO	LCD backlight PWM control	-
LCD_BL_EN	211	DO	LCD backlight enabling control	-
LCD_TE	50	DI	LCD refreshing synchronization signal	NC when it is not in use.
TP interface				
TS0_INT_N	42	DI	Main TP interrupt signal	-
TS0_RST_N	43	DO	Main TP reset signal	-
Camera Interfac	9			
MIPI_CSI2_CL K_P	64	AO	Camera 2 MIPI clock+	-
MIPI_CSI2_CL K_N	63	AO	Camera 2 MIPI clock-	-0)-
MIPI_CSI2_LA NE0_P	66	Al/AO	Camera 2 MIPI Lane 0+	
MIPI_CSI2_LA NE0_N	65	AI/AO	Camera 2 MIPI Lane 0-	-
MIPI_CSI2_LA NE1_P	68	AI/AO	Camera 2 MIPI Lane 1+	-
MIPI_CSI2_LA NE1_N	67	AI/AO	Camera 2 MIPI Lane 1-	-
MIPI_CSI2_LA NE2_P	181	AI/AO	Camera 2 MIPI Lane 2+	-
MIPI_CSI2_LA NE2_N	183	AI/AO	Camera 2 MIPI Lane 2-	-
MIPI_CSI2_LA NE3_P	180	AI/AO	Camera 2 MIPI Lane 3+	-
MIPI_CSI2_LA	179	AI/AO	Camera 2 MIPI Lane 3-	-

Pin Name	Pin No.	I/O	Pin Description	Remarks
NE3_N				
CAM0_MCLK	75	DO	Camera 0 MCLK signal	-
CAM0_RST_N	80	DO	Camera 0 reset signal	-
CAM0_PWD_N	81	DO	Camera 0 PWD signal	-
MIPI_CSI0_CL	71	AO	Camera 3 MIPI clock+	
K_P	71	AU		-
MIPI_CSI0_CL	70	AO	Camera 3 MIPI clock-	
K_N	10			-
MIPI_CSI0_LA	73	AI/AO	Camera 3 MIPI Lane 0+	_
NE0_P				
MIPI_CSI0_LA	72	AI/AO	Camera 3 MIPI Lane 0-	
NE0_N				\mathcal{O}
MIPI_CSI0_LA	184	AI/AO	Camera 3 MIPI Lane 1+	N OP
NE1_P				
MIPI_CSI0_LA	185	AI/AO	Camera 3 MIPI Lane 1-	_
NE1_N			a Cr	
MIPI_CSI0_LA	186	AI/AO	Camera 4 MIPI Lane 2+	_
NE2_P				
MIPI_CSI0_LA	187	AI/AO	Camera 4 MIPI Lane 2-	-
NE2_N	-			
MIPI_CSI0_LA	188	AI/AO	Camera 4 MIPI Lane 3+	-
NE3_P				
MIPI_CSI0_LA	189	AI/AO	Camera 4 MIPI Lane 3-	-
NE3_N				
CAM1_MCLK	76	DO	Camera 1 MCLK signal	-
CAM1_RST_N	82	DO	Camera 1 reset signal	-
CAM1_PWD_N	83	DO	Camera 1 PWD signal	-
MIPI_CSI1_CL	257	AO	Camera 1 MIPI clock+	

Pin Name	Pin No.	I/O	Pin Description	Remarks
K_P				
MIPI_CSI1_CL	050			
K_N	256	AO	Camera 1 MIPI clock-	
MIPI_CSI1_LA	271	AI/AO	Camera 1 MIPI Lane 0+	
NE0_P	271	AI/AO		
MIPI_CSI1_LA	258	AI/AO	Camera 1 MIPI Lane 0- 🛝	
NE0_N	200		Camera 1 wiii 1 Lane 0-	
MIPI_CSI1_LA	272	AI/AO	Camera_1 MIPI Lane 1+	
NE1_P	212		Camera Tivin T Lane T	
MIPI_CSI1_LA	259	AI/AO	Camera 1 MIPI/Lane 1-	A
NE1_N	200			
MIPI_CSI1_LA	273	AI/AO	Camera 1 MIPI Lane 2+	\mathcal{L}
NE2_P)		NTOP"
MIPI_CSI1_LA	260	_A#AO	Camera 1 MIPI Lane 2-	\sim
NE2_N				r
MIPI_CSI1_LA	262	AI/AO	Camera 1 MIPI Lane 3+	
NE3_P		12		
MIPI_CSI1_LA	261	AI/AO	Camera 1 MIPI Lane 3-	
NE3_N		N.D.		
CAM2_MCLK	213	DO	Camera 2 MCLK signal	-
CAM2_RST_N	214	DO	Camera 2 reset signal	-
CAM2_PWD_N	215	DO	Camera 2 PWD signal	-
IOVDD_1.8V_E	210	DO	IOVDD power enabling signal	_
Ν				
GPIO_44	101	DO	Camera 3 MCLK signal	
Audio Interface				
SPKR_DRV_P	148	AO	Loudspeaker drive output+	-
SPKR_DRV_N	147	AO	Loudspeaker drive output-	-

		1/0	Din Description	Demerke
Pin Name	Pin No.	I/O	Pin Description	Remarks
CDC_EAR_P	134	AO	Handset output+	-
CDC_EAR_N	135	AO	Handset output-	-
CDC_HPH_L	139	AO	Earphone left channel output	-
CDC_HPH_RE	138	/	Earphone reference ground	-
CDC_HPH_R	137	AO	Earphone right channel output	-
CDC_HS_DET	140	AI	Earphone plug detection	-
MIC2_IN_P	142	AI	Earphone MIC input+	-
MIC2_IN_N	141	AI	Earphone MIC input-	-
MIC1_N	144	AI	Main MIC differential input-	-
MIC1_P	145	AI	Main MIC differential input+	-
MIC3_IN_N	233	A	Auxiliary MIC differential input-	\mathcal{O}
MIC3_IN_P	244	AI	Auxiliary MIC differential input+	∇O^{2}
Antenna Interfac	e			
ANT_TRX	94	I/O	2G/3G/4G main antenna	-
ANT_DRX	132	AI	Diversity receiving antenna	-
ANT-WIFI/BT	78	1/0 5	WIFI/BT antenna	-
ANT_GPS	120	AI	GNSS antenna	-
Interrupt Interfac	ce			
ALSP_INT_N	106	٦I	Ambient light sensor interrupt	-
MAG_INT_N	107	DI	Interruption of geomagnetic sensor	-
ACCL_INT2_N	108	DI	Interruption 2 of acceleration sensor	-
ACCL_INT1_N	109	DI	Interruption 1 of acceleration sensor	-

-ibccon					
Pin Name	Pin No.	I/O	Pin Description	Remarks	
ADC Interface	ADC Interface				
				It can be	
ADC	128	AI	ADC detection	configured as	
				0.3 V-VBAT.	
Forced Downlo	ading Script				
				The high level	
				(1.8 V) is	
				effective, and	
FORCE_USB_ BOOT	1	DI	Forced downloading	the module	
воот				cannot be	
				pulled up	
	C		1	before starting.	
GPIO Interface					
GPIO 32	96	1/0		B-PD:nppukp	
	30	1/0		Boot Config	
GPIO_95	40	I/O		B-PD:nppukp	
GPIO_5	16	I/O		B-PD:nppukp	
GPIO_21	50	I/O		B-PD:nppukp	
GPIO_98	35	I/O		B-PD:nppukp	
GPIO_30	104	I/O	General GPIO, 1.8 V power	B-PD:nppukp	
GPIO_89	118	I/O		B-PD:nppukp	
GPIO_90	49	I/O	- domain	B-PD:nppukp	
	405	1/0		B-PD:nppukp	
GPIO_129	105	I/O		Boot Config	
GPIO_70	110	I/O		B-PD:nppukp	
	447	1/0		B-PD:nppukp	
GPIO_86	117	I/O		Boot Config	
GPIO_87	43	I/O		B-PD:nppukp	

Pin Name	Pin No.	I/O	Pin Description	Remarks
				Boot Config
GPIO_88	42	I/O		B-PD:nppukp
GPIO_84	112	I/O		B-PD:nppukp
GPIO_33	97	I/O		B-PD:nppukp
GPIO_83	111	I/O		B-PD:nppukp
GPIO_124	100	I/O		B-PD:nppukp
GPIO_58	103	I/O		B-PD:nppukp
GPIO_57	102	I/O	1 A Car	B-PD:nppukp
GPIO_130	220	I/O	CUN'	B-PD:nppukp
GPIO_132	221	I/O		B-PD:nppukp
GPIO_92	38	I/O		B-PD:nppukp
GPIO_93	39	I/O		B-PD:nppukp
GPIO_95	40	I/O	153	B-PD:nppukp
GPIO_123	99	I/O		B-PD:nppukp
GPI0_31	86	I/O	NONY	B-PD:nppukp
GPIO_41	98	1/0	a cor	B-PD:nppukp
GPIO_116	217	1/0		B-PD:nppukp
GPIO_115	216	Vo l		B-PD:nppukp
GPIO_113	212	1/0		B-PD:nppukp
GPIO_117	218	40		B-PD:nppukp
GPIO_119	219	I/O		B-PD:nppukp
PM6125_GRIO	240	I/O		B-PD:nppukp
_1	249		PMIC GPIO	unused first
PM6125_GPIO	245	I/O		B-PD:nppukp
_2	245		PMIC GPIO	unused first
PM6125_GPIO	242	I/O		B-PD:nppukp
_4	243		PMIC GPIO	unused first
NC Pin				

Pin Name	Pin No.	I/O	Pin Description		Remarks
NC			59,166,167,169,192,193,194, 223,225,227,234,242,248,25	Z C	Hanging in the air

Note:

Pins marked with "Boot configuration" do not allow hardware pull-up.

Use CPU GPIO first, not PM6125_GPIO until there is no CPU GPIO.

The configuration of SC138 module QUP interface is described in the following table:

Pin		QUP				-	
Number	GPIO	Configura	tion	Function 1	Function 2	Function 3	Function 4
115	GPIO_0		LO	UART_CTS	SPI_MISO	I2C_SDA	\mathcal{O}/\mathcal{O}
116	GPIO_1	QUP0	Ч	UART_RFR	SPI_MOSI	I2C_SCL	. Or
113	GPIO_2	SE0	L2	UART_TX	SPI_SCLK		
114	GPIO_3		L3	UART_RX	SPI_CS_N		-
267	GPIO_4	QUP0	L0			I2C_SDA	-
268	GPIO_5	SE1	ਮੁੰਨ			I2C_SCL	-
150/158	GPIO_6	\sim	L0	UART_CTS	SPI_MISO	I2C_SDA	-
41	GPIO_7	QUP0	Ę,	UART_RFR	SPI_MOSI	I2C_SCL	-
209	GPIO_8	SE2	L2	UART_TX	SPI_SCLK	-	-
207	GPIO_9		L3	UART_RX	SPI_CS_N	-	-
90	GPI0_16	QUP0	L0/2	UART_TX	I2C_SDA	-	-
89	GPIO_17	SE4	L1/3	UART_RX	I2C_SCL	-	-
47	GPIO_22		L0	UART_CTS	SPI_MISO	I2C_SDA	I3C_SDA
48	GPIO_23		L1	UART_RFR	SPI_MOSI	I2C_SCL	I3C_SCL
45	GPIO_24	QUP1 SE0	L2	UART_TX	SPI_SCLK	-	-
46	GPIO_25	SEU	L3	UART_RX	SPI_CS_N	-	-
81	GPIO_26		L4	-	SPI_CS1	-	-

Reproduction forbidden without Fibocom Wireless Inc. written authorization - All rights

210	GPIO_27		L5	-	SPI_CS2	-	-
88	GPIO_28	QUP1	L0	-	I2C_SDA	-	-
87	GPIO_29	SE2	L1	-	I2C_SCL	-	-
104	GPIO_30		L0	UART_CTS	SPI_MISO	I2C_SDA	-
86	GPIO_31	QUP1	L1	UART_RFR	SPI_MOSI	I2C_SCL	-
96	GPIO_32	SE1	L2	UART_TX	SPI_SCLK	-	-
97	GPIO_33		L3	UART_RX	SPI_CS_N	-	-

Only one protocol can be selected in one QUP engine at a time. For example, simultaneous UART and I2C functionality are no longer supported.

3 Application Interface

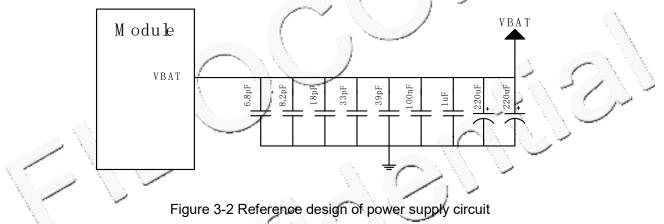
3.1 Power

SC138 provides 3 VBAT pins for connecting external power supply to the module. The range of power input voltage is 3.5 V-4.2 V, and the recommended value is 3.8 V. The performance of module power supply, such as load capacity and ripple size, will directly affect the performance and stability of the module during normal operation. The peak current of the module can reach 3 A under limiting cases. If the power supply capacity is insufficient and the power supply voltage falls to below 3 V, the module may power off or restart. The power supply voltage drop is shown in the following figure:

3.1.1 Power Input-

The external power supply supplies power to SC138 series modules through VBAT pins. In order to ensure that the power supply voltage is no less than 3 V, it is recommended to parallel two 220 uF tantalum capacitors with low ESR and filter capacitors of 1 uF, 100 nF, 39 pF 33 pF, etc. near the VBAT input terminal, and the PCB routing of VBAT be as short and wide as possible (no less than 3 mm). The ground plane of the power supply part should be as complete as possible to reduce the equivalent impedance of VBAT routing, and ensure that there will not be too large falling of voltage under high-current at the maximum transmitting power.

Table 3-1 Power supply


Parameters	Minimum Value	Recommended Value	Maximum Value	Unit
VBAT (DC)	3.5	3.8	4.2	V

Note:

The supply voltage of VBAT must be in the range of 3.5 V-4.2 V. If the supply voltage is lower than 3.5V, the system may be unstable. If the supply voltage is higher than 4.2 V, the hardware may be damaged or even destroyed.

The reference design of power supply circuit is shown in the following figure:

The filter capacitor design of power supply is shown in the following table:

Recommended Capacitance	Application	Description
		Low ESR capacitance is required to reduce the
		power fluctuation of the module during operation.
	Stabilized	LDO or DCDC power supply requirements are not
220uF x 2	capacitance	less than 440 uF capacitance.
		Battery power supply can be reduced to 100 uF-
		220 uF capacitance.

Table 3-2 Filter capacitor design of power supply

Recommended	Application	Description
Capacitance	Application	Description
1.1.5 100=5	Filter conseitance	Filter out the interference caused by clock and
1uF, 100nF	Filter capacitance	digital signal.
39pF, 33pF, 18pF, 8.2pF,	Decoupling	
6.8pF	capacitance	Filter out high-frequency interference.

3.1.2 VRTC

VRTC supplies power for the RTC clock inside the module. When the VBAT power supply of the module is powered on, VRTC will output voltage; otherwise, it is powered by external power supply (for example, button battery) if the real-time clock needs to be maintained. VRTC parameters are shown in the following table:

Table 3-3 VRTC parameters

Parameters	Minimum Value	Typical Value	Maximum Value	Unit
VRTC output voltage	2.5	3.1	3.2	V
VRTC input voltage (normal clock)	2.0	3.0	3.25	V
VRTC input current (normal clock)	-	8	-	uA

If VRTC power supply is powered by external battery, the reference circuit is shown in the following figure:

Module VRTC

Figure 3-3 Reference circuit of VRTC power

3.1.3 Power Output

SC138 module has multiple power output channels, for peripheral circuit power supply. During application, capacitors of 33 pF and 10 pF can be paralleled to eliminate high-frequency interference.

Pin Name	Programmable	Default Voltage (V)	Drive Current
	Range (V)	0 ()	(mA)
VREG_CAM0_DVDD_1P104	0.312–1.304		-600
VREG_L9A_1P8	1.504–2.000	1.8	600
VREG_L12A_1P8	1.504–2.000	1.8	300
VREG_CAM_AF_2P8	1.5-3.4	2.8	400
VREG_L22A_2P96	1.504–3.544	2.96	600 - ()
VREG_L20A_1P8	1.504-3.544	1.8	150
VREG_L19A_1P8	1.504–3.544	1.8	150
VREG_CAM0_AVDD_2P8	1.5–3.4	2.8	400
VREG_CAM1_2_AVDD_2P8	1.5–3.4	2.8	400
VREG_CAM1_2_DVDD_1P2	0.528-1:504	1.2	1000
VREG_ALS_VLED_3P0	1.5-3.4	3.0	400
VREG_3P0	1.5–3.4	3.1	400
VREG_L15A_3P104	1.504–3.544	3.104	150

3.2 Control Signal

3.2.1 Startup and Shutdown

SC138 module has 1-channel on/off control signal to operate the startup/shutdown, restart,

sleep/wakeup for the module.

Table 3-5 On/off control signals

Pin Name	Pin No.	I/O	Description	Remarks
KEY PWR N	123	DI	Active low, can be used as on/off, restart,	
	123		sleep/wakeup control.	-

3.2.1.1 Startup

After the VBAT is powered on, the trigger module starts up through pulling down the KEY_PWR_N pin for 2s to 8s. The design of key startup circuit and OC drive startup reference circuit is shown in the following figure:

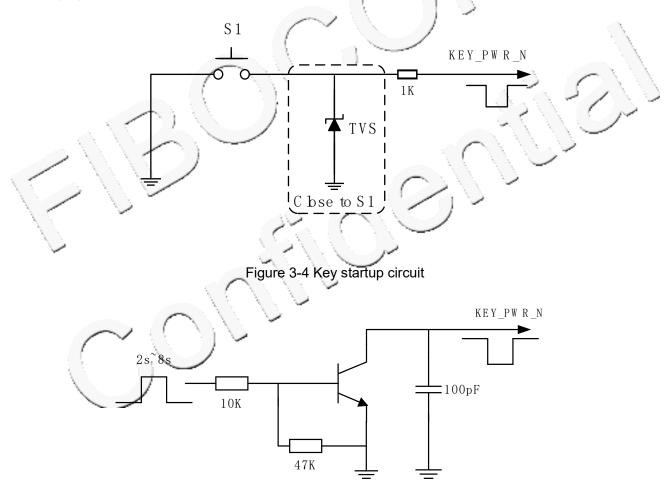


Figure 3-5 OC drive startup circuit

The startup timing sequence is shown in the following figure:

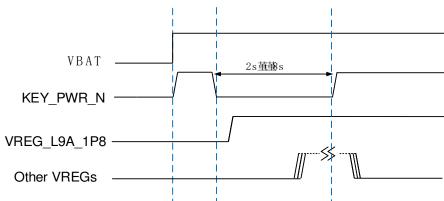
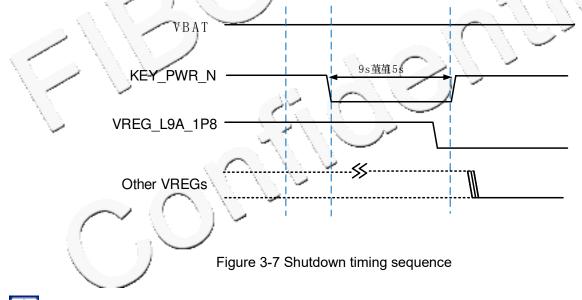



Figure 3-6 Startup timing sequence

3.2.1.2 Startup

Normal shutdown: When the machine is turned on, pull down KEY_PWR_N pin for more than 0.5s, and then a checkbox will pop up in the display interface (choose shutdown or restart).

Forced shutdown: Pull down KEY_PWR_N for 9s-15s, and then the system will be forced to shut down. The forced shutdown timing sequence is shown in the following figure:

Note:

In case of system abnormality or crash, the modules can be forced to shut down. Generally, use the normal shutdown mode; otherwise, data loss and other abnormalities may occur.

3.2.1.3 Sleep/Wakeup

Modules are in the standby mode, pull down KEY_PWR_N pin for 0.1s, and then the modules will enter the sleeping status. The system supports automatic sleeping, and the time from the standby status to the

sleeping status can be configured by software.

When the modules are in the sleeping status, pull down KEY_PWR_N pins for 0.1s, and then the modules can be waked up.

3.2.2 Volume Control

KEY_VOL_UP_N/KEY_VOL_DOWN_N pin is the volume increase/decrease key; for the circuit design of volume key, refer to the startup circuit design.

The parallel capacitance of volume key should not exceed 100 pF.

3.3 SPMI Interface

None

3.4 USB Interface

SC138 series modules support 1-channel USB 3.0 interfaces, being downward compatible with USB 2.0 interfaces; USB 2.0 interfaces support HS (480 Mbps) mode, being downward compatible with USB 1.1 FS (12 Mbps), USB 3.0 ports support SS (5G bps) mode, USB interfaces support OTG functions and HUB expansion interfaces. USB 2.0 interfaces support software downloading, but USB 3.0 interfaces do not support software downloading. The following table defines pins of USB interfaces:

Table 3-6 Definition of pins of USB 2.0 interfaces

Pin name	Pin No.	I/O	Description	Remarks
USB_IN_DET	168	PI	VBUS input Detection	-
USB_DP	12	I/O	USB differential signal +	-
USB_DM	11	I/O	USB differential signal -	-
USB_ID	16	DI	USB ID pin	-

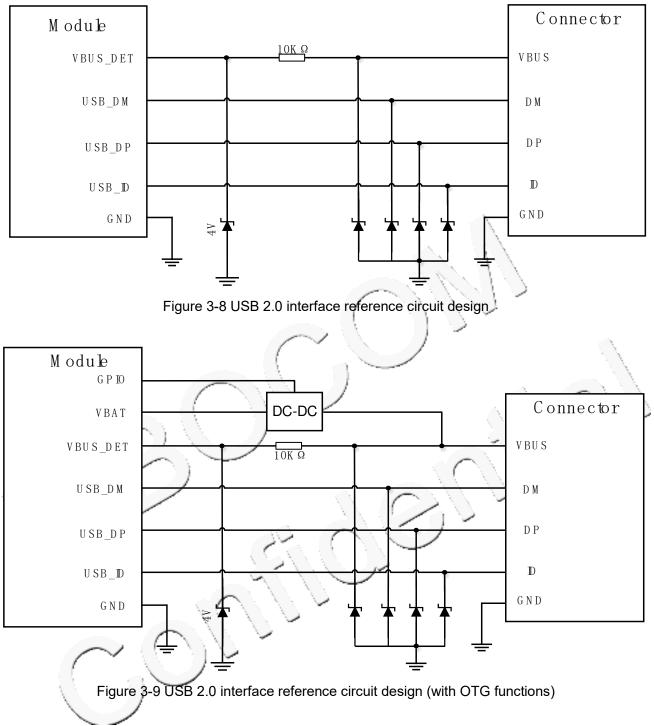


Table 3-7 Definition of pins of USB 3.0 interfaces

Pin Name	Pin No.	I/O	Description	Remarks
USB SS RX1 P	269	DI	USB 3.1 differential data	
	209	וט	reception+	-
USB SS RX1 M	254	DI	USB 3.1 differential data	
030_33_10(1_10)	204	וט	reception-	-
USB_SS_TX1_P	270	DO	USB 3.1 differential data sending+	-
USB_SS_TX1_M	255	DO	USB 3.1 differential data sending-	-
USB_SS_RX0_P	173	DI	USB 3.1 differential data reception+	-
USB_SS_RX0_M	175	DI	USB 3.1 differential data reception-	-
USB_SS_TX0_P	172	DO	USB 3.1 differential data sending+	2
USB_SS_TX0_M	174	DO	USB 3.1 differential data sending-	-
	262	I/O	DisplayPort auxiliary transmission	
DP_AUX_N	263		channel-	-
	274		DisplayPort auxiliary transmission	
DP_AUX_P	274	1/0	channel+	-
USB_PHY_PS	276	ЪС)	USB front and back plug logo	-

The reference design of USB 2.0 interface circuit is shown in the following figure:

The reference circuit design of USB 3.0 (Type-C) interfaces is shown in the following figure:

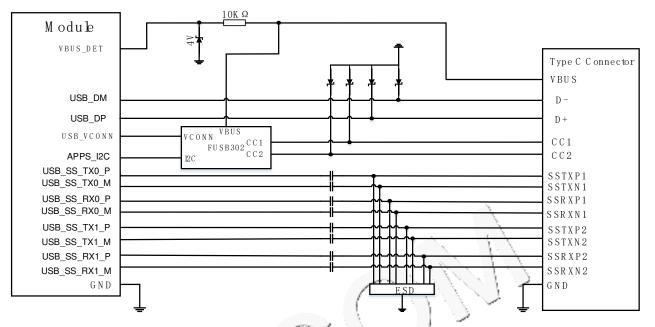


Figure 3-10 USB 3,0 interface reference circuit design

Note:

2 pF.

- 1) The ESD protection device of USB_DP/DM requires the junction capacitance to be less than
- 2) USB_DP and USB_DM are high-speed differential signal lines with a maximum transmission rate of 480 Mbps. PCB Layout must observe the following requirements:
 - USB_DP and USB_DM signal lines are required to be of equal length, and the length difference of the differential lines is within 2 mm and parallel. The right-angle routing is avoided and the differential 90 Ω impedance control is made properly.
 - USB 2.0 interface differential signal lines are laid in the signal layer nearest to the ground, and grounding lines are made properly.
- For the reference circuit design DC-DC supporting OTG functions, select the specification output 5 V.
- The Module is NO-PMI version default, so VBUS needs to be connected to VBUS_ Det pin, and with a 1KΩ Series Resistance.

USB 3.1 interface design considerations:

1) USB 3.1 interface is a high-speed signal line, which needs to be shielded properly (differential lines are surrounded by grounding lines in a three-dimensional manner), and follow the principle of high-

speed differential routing.

- 2) The differential impedance control is made properly, 90 Ω + 10%, and the length difference of differential line is controlled within 0.7 mm.
- 3) The stray capacitance of ESD device must be less than 0.5 pF.

3.5 UART

SC138 module has three UART interfaces, which are all in voltage domain of 1.8 V. The pin definition is as follows:

Pin Name	Pin No.	I/O	Description	Remarks
DBG_UART_TX	90	DO	UART data transmission	Debug interfect
DBG_UART_RX	89	p	WART data receiving	Debug interface
UART_TX	45	bo	UART data transmission	-
UART_RX	46	DI	UART data receiving	5
UART_CTS/TS1_12C_SDA	47	DI	UART clear-to-send	Can be configured
UART_015/131_120_5DA	47		OART clear-to-serio	to I3C
UART_RFR/IS1_I2C_CLK	48	DO	UART request-to-send	Can be configured
UART_RENIST_IZC_CER	40		OANT request-to-seria	to I3C
UART_TX/GPIO_8	209	DO	UART data transmission	-
UART_RX/GPIO_9	207	DI	UART data receiving	-

Table 3-8 Definition of pins of UART interfaces

The voltage domain of each serial port is 1.8 V; when communicating with other voltage domain serial ports, it is necessary to add level conversion chips. The reference circuit design is shown in the following figure:

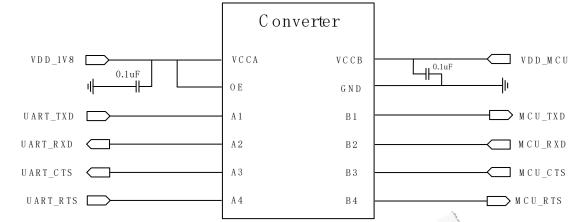


Figure 3-11 Reference circuit of level conversion

3.6 SPI

SC138 series modules provide a set of SPI interfaces and only support the main device mode. The pin definition is shown in the following figure:

Table 3-9	Defin	ition of	pins of	f SPI int	erfaces
	\sim	$\Delta \lambda_{\rm c}$	-		

Pin Name	Pin No.	I/O	Description	Remarks
SPI_CLK	113	DO	SPI clock	-
SPI_CS	114	DO	SPI device selection	-
SPI_MISO	115	DI	SPI MISO	-
SPI_MOSI	116	PO	SPI MOSI	-

SC138 series modules support 2-channel (U)SIMs, dual-SIM dual standby and single-pass functions, as well as hot plug (off by default).

Table 3-10 (U)SIM pin definition

Pin Name	Pin No.	I/O	Description	Remarks
UIM1_DATA	25	I/O	(U)SIM 1 data	-
UIM1_CLK	24	DO	(U)SIM 1 clock	-

Reproduction forbidden without Fibocom Wireless Inc. written authorization - All rights reserved. FIBOCOM SC138-NA Series Hardware Guide

Pin Name	Pin No.	I/O	Description	Remarks
UIM1_RESET	23	DO	(U)SIM 1 reset	-
UIM1_DETECT	22	DI	(U)SIM 1 plug detection	Off by default
UIM2_DATA	20	I/O	(U)SIM 2 data	-
UIM2_CLK	19	DO	(U)SIM 2 clock	-
UIM2_RESET	18	DO	(U)SIM 2 reset	-
UIM2_DETECT	17	DI	(U)SIM 2 plug detection	Off by default
VREG_L19A_1P8	26	PO	(U)SIM 1 power supply	-
VREG_L20A_1P8	21	PO	(U)SIM 2 power supply	-

The reference circuit of (U)SIM interface is shown in the following figure:

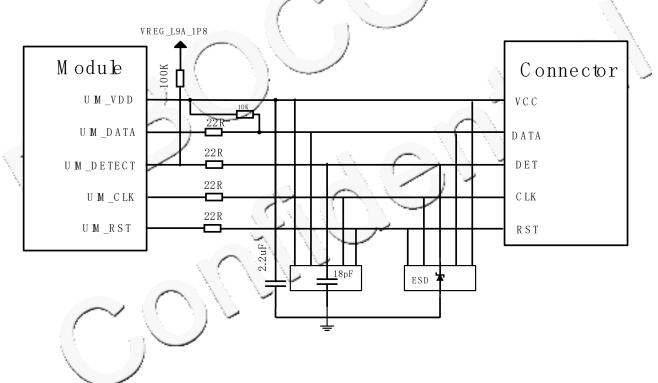
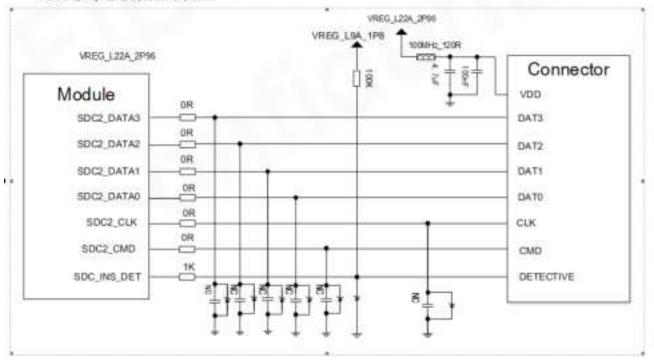


Figure 3-12 (U)SIM reference circuit

(U)SIM design considerations:

- 1) The length of route from the (U)SIM card slot to the module should be less than 100 mm.
- The layout and routing of (U)SIM must be away from EMI interference sources, such as RF antenna and digital switching power supply.
- 3) The filter capacitor and ESD device of (U)SIM signal should be placed close to the card slot.

Fibccon 3.8 SDIO Interface


SC138 supports 1-channel SDIO interfaces, and the pin definition is shown in the following table:

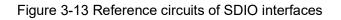

Pin No.	Pin Name	I/O	Description	Remarks
SDC2_DATA3	34	I/O	SD data interface	-
SDC2_DATA2	33	I/O	SD data interface	-
SDC2_DATA1	32	I/O	SD data interface	-
SDC2_DATA0	31	I/O	SD data interface	5-
SDC2_CLK	29	DO	SD clock	-
SDC2_CMD	30	1/9~~	SD command interface	-
SD_CARD_DET_N	35	DI	SD detection	-
VREG_L22A_2P96	28	PO	SD power supply	

Table 3-11 Definition of pins of SDIO interfaces

The reference circuit design of SDIQ interfaces is shown in the following figure:

SDIO 参考电路设计如下图: -

SDIO interface design considerations:

- 1) VREG_L22A_2P96 is an external drive power supply for SD card, which can provide about 600 mA current with the line width of 1 mm.
- 2) The SD_CARD_DET_N pull-up resistor is connected to VREG_L9A_1P8 power supply.
- 3) SDIO is a high-speed digital signal line and needs to be shielded.
- 4) SDIO data lines are processed to be of equal length.

3.9 GPIO

SC138 series modules have abundant GPIO resources, the interface level is 1.8 V, and the pin definition is shown in the following table:

Table 3-12 GPIO list

	^ *		
Pin Name	Pin No.	Reset State	Interrupt Function
GPIO_129	105	B-PD:nppukp	NO-
GPIO_70	110	B-PD:nppukp	NO
GPIO_86	117	B-PD:nppukp	NO
GPIO_84	112	B-PD:nppukp	NO
GPIO_33	97	B-RD:nppukp	YES
GPIO_83	111	B-PD:nppukp	NO
GPIO_124	100	B-PD:nppukp	YES
GPIO_58	103	B-PD:nppukp	YES
GPIO_57	102	B-PD:nppukp	YES
GPIO_130	220	B-PD:nppukp	YES
GPIO_132	221	B-PD:nppukp	YES
GPIO_93	39	B-PD:nppukp	NO
GPIO_123	99	B-PD:nppukp	YES
GPIO_31	86	B-PD:nppukp	NO
GPIO_41	98	B-PD:nppukp	NO
GPIO_116	217	B-PD:nppukp	NO
GPIO_115	216	B-PD:nppukp	NO

Reproduction forbidden without Fibocom Wireless Inc. written authorization - All rights

Pin Name	Pin No.	Reset State	Interrupt Function
GPIO_113	212	B-PD:nppukp	NO
GPIO_117	218	B-PD:nppukp	YES
GPIO_119	219	B-PD:nppukp	NO
PM6125_GPIO_1	249	B-PD:nppukp	YES
PM6125_GPIO_2	245	B-PD:nppukp	YES
PM6125_GPIO_4	243	B-PD:nppukp	YES

Note:

B: Bidirectional digits with CMOS input.

H: High voltage resistance.

NP: pdpukp = no pull by default, with programmable options after the colon (:).

PD: nppukp = pull-down by default, with programmable options after the color (:)

PU: nppdkp = pull-up by default, with programmable options after the colon (:).

KP: nppdpu = floating by default, with programmable options after the colon (:).

3.10⁻¹²C

SC138 series modules have 5 sets of I2C interfaces, which can be used for TP, camera, sensor and others respectively. The 5 sets of I2C interfaces are all open-drain outputs, and a pull-up resistor must be added to the 1.8V power domain when in use. The I2C interface pin definition is shown in the following table:

Pin Name	Pin No.	I/O	Description	Remarks
SNS_I2C_SCL	87	OD	Sensor I2C clock	-
SNS_I2C_SDA	88	OD	Sensor I2C data	-
TS_I2C_SCL	41	OD	Touch screen I2C clock	-
TS_I2C_SDA	150,158	OD	Touch screen I2C data	-

Table 3-13 I²C interface pin definition

Pin Name	Pin No.	I/O	Description	Remarks
CAM0_I2C_SCL	84	OD	Camera I2C clock	They are special
CAM0_I2C_SDA	85	OD	Camera I2C data	for the camera and
CAM2_SCL	206	OD	Camera I2C clock	cannot be used on
CAM2_SDA	208	OD	Camera I2C data	other devices.
APPS_I2C_SCL	268	OD	I2C clock	Need be Pulled-up
APPS_I2C_SDA	267	OD	I2C data line	too, when unused

Note:

When mounting multiple peripherals on the I2C channel, please ensure the uniqueness of each peripheral address. When mounting peripherals with high real-time performance requirements, do not share I2C with other peripherals.

APPS_I2C must be configured Pull-up outside the module, even if the I2C unused.

3.11 ADC

The SC138 series modules have an ADC interface with a precision of 15 bits. The pin definition is shown in the following table:

Table 3-14 ADC pin definition

Pin Name	Pin No.	I/O	Description	Remarks
	100	2	ADC detection	Configurable voltage is 0.3
ADC	128	AI	ADC detection	V-VBAT

3.12 I2S Interface

The SC138 series modules have special audio I2S interfaces. Details are as follows:

Table 3-15 I2S interface definition

I2S Interface				
GPIO_125/I2S1_SCK	247	DO	I2S serial clock	-
GPIO_126/I2S1_WS	238	DO	I2S frame clock	-
GPIO_127/I2S1_DATA0	239	DO	I2S data 0	-
GPIO_128/I2S1_DATA1	240	DO	I2S data 1	-
				Boot Config, Flash
GPIO_118/MCLK2	251	DO	I2S system clock	Memory type
			1.141	configure

3.13 Battery Power Supply Interface

None

3.14 Motor Drive Interface

None

3.15 LCM

SC138 series module screen interfaces are based on MIPI_DSI standard, supporting transmission of 4 sets of high-speed differential data; each set has a maximum speed of 2.5 Gbps, and supports the maximum display of 1080*2520.

Table 3-16 LCM pin definition

Pin Name	Pin No.	I/O	Description	Remarks
MIPI_DSI0_CLK_P	53	AO	Main TP MIPI clock+	-
MIPI_DSI0_CLK_N	52	AO	Main TP MIPI clock-	-
MIPI_DSI0_LANE0_P	55	AI/AO	Main TP MIPI Lane0+	-
MIPI_DSI0_LANE0_N	54	AI/AO	Main TP MIPI Lane0-	-

Reproduction forbidden without Fibocom Wireless Inc. written authorization - All rights reserved. FIBOCOM SC138-NA Series Hardware Guide

Pin Name	Pin No.	I/O	Description	Remarks
MIPI_DSI0_LANE1_P	57	AI/AO	Main TP MIPI Lane1+	-
MIPI_DSI0_LANE1_N	56	AI/AO	Main TP MIPI Lane1-	-
MIPI_DSI0_LANE2_P	59	AI/AO	Main TP MIPI Lane2+	-
MIPI_DSI0_LANE2_N	58	AI/AO	Main TP MIPI Lane2-	-
MIPI_DSI0_LANE3_P	61	AI/AO	Main TP MIPI Lane3+	-
MIPI_DSI0_LANE3_N	60	AI/AO	Main TP MIPI Lane3-	-
LCD0_RST_N	49	DO	Main TP reset signal	-
PWM	44	DO	LCD backlight PWM	2
LCD1_BL_EN	211	DO	LCD backlight enabling control	-
LCD_TE	50	DI	LCD refreshing synchronization signal	NC when it is not in use.

The reference circuit of LCM interface is shown in the following figure:

|--|

VREG_L9A_1P8

ε

VREG_3P0

Ŕ

Reproduction forbidden without Fibocom Wireless Inc. written authorization - All rights reserved. FIBOCOM SC138-NA Series Hardware Guide

Figure 3-14 LCM reference circuit

LCM design considerations:

- 1) MIPI is a high-speed signal line. It is recommended to connect a common mode choke in series near the LCD connector to improve the electromagnetic radiation interference of the circuit.
- 2) MIPI route is recommended to be placed on the inner layer, and be surrounded by grounding lines in a three-dimensional manner.
- The MIPI signal line needs to be controlled by a differential impedance of 100 Ω, with an error of ±10%.
- 4) The total length of the route does not exceed 300 mm.
- 5) The length difference of the differential lines in the set is controlled within 0.7 mm.
- 6) The length difference between sets is controlled within 1.4 mm.
- 7) It is recommended that the spacing between differential lines in the group should be 1.5 times the line width, and the spacing between differential lines and other routes should be 3 times the line width.
- 8) The total stray capacitance of devices on MIPI differential signal line should not exceed 1pF.

3.16 TP

SC138 series modules provide a set of I2C interfaces that can be used to connect to the touch screen. They also provide the power, interrupt and reset pins required by the TP. The pin definition is shown in the following table:

Din Nome	Din No	1/0	Decerintian	Demerike
Pin Name	Pin No.	I/O	Description	Remarks
TS0_INT_N	42	DI	TP interrupt signal	-
TS0_RST_N	43	DO	TP reset signal	-
VREG_L9A_1P8	129	PO	TP IO power supply	-
VREG_3P0	266	PO	TP VDD power supply	-
TS_I2C_SCL	41	OD	Main TP I2C clock	-
TS_I2C_SDA	150, 158	OD	Main TP I2C data	-

Table 3-17 TP pin definition

Reproduction forbidden without Fibocom Wireless Inc. written authorization - All rights

The TP reference circuit is shown in the following figure:

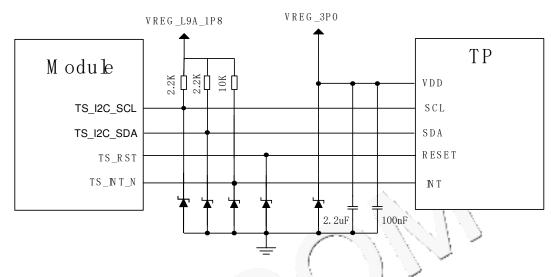


Figure 3-15 TP reference circuit

3.17 Camera

The video input interface of the SC138 series module is based on the MIPL CSI standard, and can support 3 (4+4+4-Lane) or 4 (4+4+2+1-Lane) cameras. It is equipped with 3 cameras by default. Support 21 MP pixel camera at maximum. The camera interface pin definition is shown in the following table:

Table 3-18 Camera interface pin definition

Pin Name	Pin No.	I/O	4-Lane+4-Lane+4-Lane (Default	
		"0	Configuration) (Configurable)	
MIPI_CSI2_CLK_P	64	AO	Camera 2 MIPI clock+	-
MIPI_CSI2_CLK_N	63	AO	Camera 2 MIPI clock-	-
MIPI_CSI2_LANE0_P	66	AI/AO	Camera 2 MIPI Lane 0+	-
MIPI_CSI2_LANE0_N	65	AI/AO	Camera 2 MIPI Lane 0-	-
MIPI_CSI2_LANE1_P	68	AI/AO	Camera 2 MIPI Lane 1+	-
MIPI_CSI2_LANE1_N	67	AI/AO	Camera 2 MIPI Lane 1-	-
MIPI_CSI2_LANE2_P	181	AI/AO	Camera 2 MIPI Lane 2+	-
MIPI_CSI2_LANE2_N	183	AI/AO	Camera 2 MIPI Lane 2-	-

Pin Name	Pin No.	I/O	4-Lane+4-Lane+4-Lane (Default	
			Configuration) (Configurable)	
MIPI_CSI2_LANE3_P	180	AI/AO	Camera 2 MIPI Lane 3+	-
MIPI_CSI2_LANE3_N	179	AI/AO	Camera 2 MIPI Lane 3-	-
CAM0_MCLK	75	DO	Camera 0 MCLK signal	-
CAM0_RST_N	80	DO	Camera 0 reset signal	-
CAM0_PWD_N	81	DO	Camera 0 PWD signal	-
MIPI_CSI0_CLK_P	71	AO	Camera 3 MIPI clock+	-
MIPI_CSI0_CLK_N	70	AO	Camera 3 MIPI clock-	-
MIPI_CSI0_LANE0_P	73	AI/AO	Camera 3 MIPI Lane0+	-
MIPI_CSI0_LANE0_N	72	AI/AO	Camera 3 MIPI Lane0-	-
MIPI_CSI0_LANE1_P	184	AI/AO	Camera-3 MIPI Lane1+	-
MIPI_CSI0_LANE1_N	185	AI/AO	Camera 3 MIPI Lane1-	·0///
MIPI_CSI0_LANE2_P	186	AI/AO	Camera 4 MIPI Lane2+	- (p)
MIPI_CSI0_LANE2_N	187	AI/AO	Camera 4 MIPI Lane2-	$\mathbf{\hat{\mathbf{y}}}$
MIPI_CSI0_LANE3_P	188	AI/AO	Camera 4 MIPI Lane3+	-
MIPI_CSI0_LANE3_N	189	AI/AO	Camera 4 MIPI Lane3-	-
CAM1_MCLK	76	DO	Camera 1 MCLK signal	-
CAM1_RST_N	82	DO	Camera 1 reset signal	-
CAM1_PWD_N	83	DO	Camera 1 PWD signal	-
MIPI_CSI1_CEK_P	257	AO	Camera 1 MIPI clock+	
MIPI_CSI1_CLK_N	256	AO	Camera 1 MIPI clock-	
MIPI_CSI1_LANE0_P	271	AI/AO	Camera 1 MIPI Lane0+	
MIPI_CSI1_LANE0_N	258	AI/AO	Camera 1 MIPI Lane0-	
MIPI_CSI1_LANE1_P	272	AI/AO	Camera 1 MIPI Lane1+	
MIPI_CSI1_LANE1_N	259	AI/AO	Camera 1 MIPI Lane1-	
MIPI_CSI1_LANE2_P	273	AI/AO	Camera 1 MIPI Lane2+	
MIPI_CSI1_LANE2_N	260	AI/AO	Camera 1 MIPI Lane2-	
MIPI_CSI1_LANE3_P	262	AI/AO	Camera 1 MIPI Lane3+	

Reproduction forbidden without Fibocom Wireless Inc. written authorization - All rights reserved. FIBOCOM SC138-NA Series Hardware Guide

Din Nome	Din No	1/0	4-Lane+4-Lane+4-Lane (Default	
Pin Name	Pin No.	1/0	Configuration) (Configurable)	
MIPI_CSI1_LANE3_N	261	AI/AO	Camera 1 MIPI Lane3-	
CAM2_MCLK	213	DO	Camera 2 MCLK signal	-
CAM2_RST_N	214	DO	Camera 2 reset signal	-
CAM2_PWD_N	215	DO	Camera 2 PWD signal	-
IOVDD_1.8V_EN	210	DO	IOVDD power enabling signal	-
CAM1_MCLK/GPIO_44	101	DO	Camera 3 MCLK signal	

3.17.1 Camera 1

The reference circuit design of camera 1 is shown in the following figure:

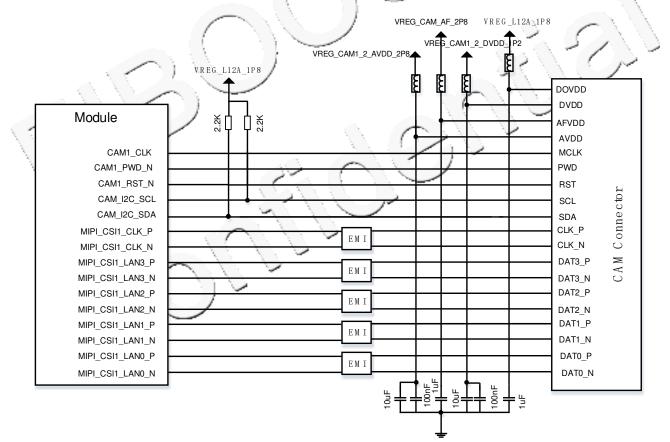
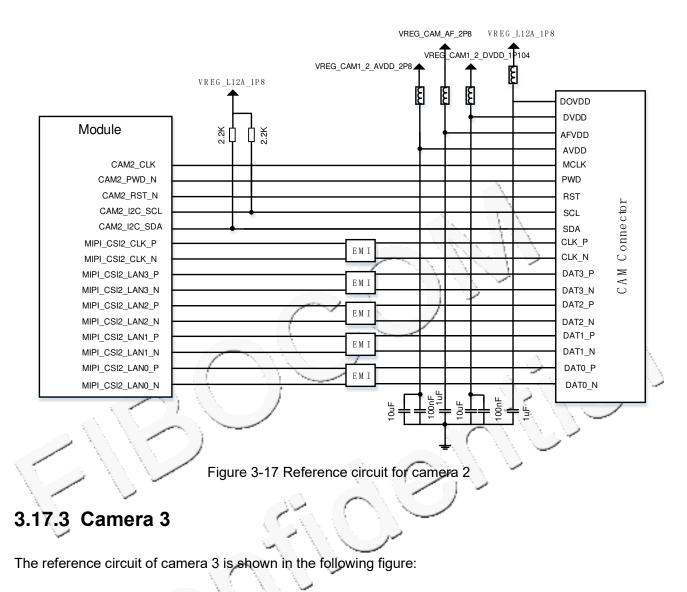
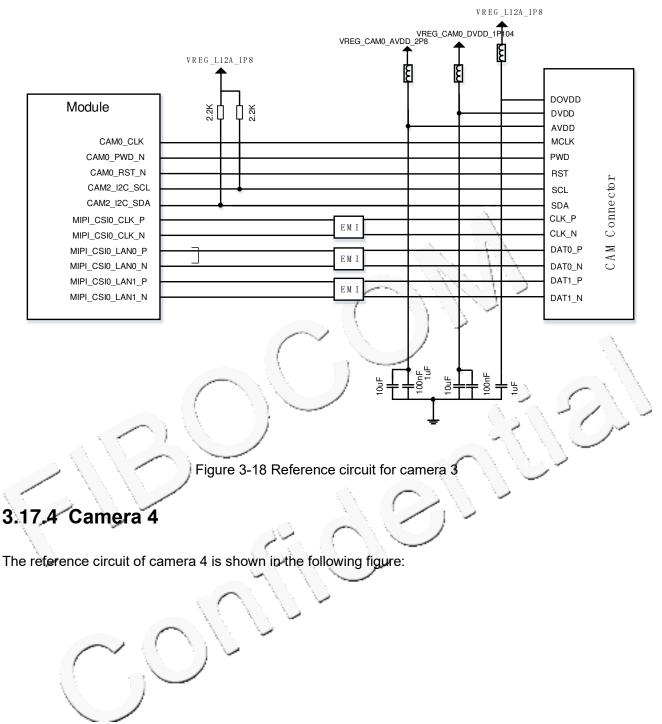
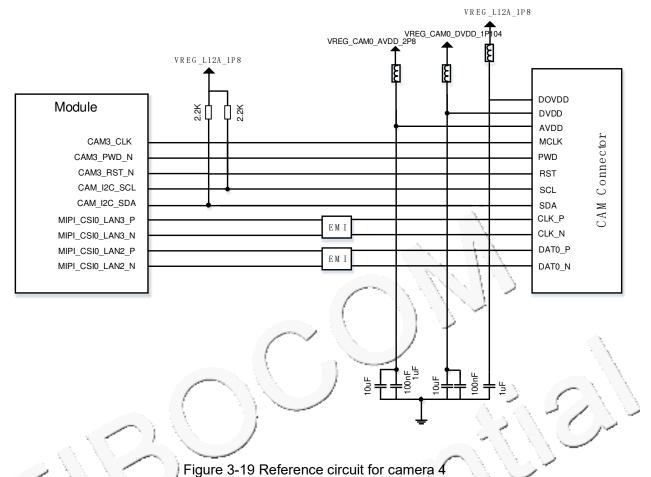



Figure 3-16 Reference circuit for camera 1

3.17.2 Camera 2


The reference circuit design of 4-Lane front camera is shown in the following figure:

Reproduction forbidden without Fibocom Wireless Inc. written authorization - All rights reserved. FIBOCOM SC138-NA Series Hardware Guide



3.17.5 Design Considerations

MIPI_CSI is a high-speed data line. PCB layout must observe the following requirements:

- MIPI is a high-speed signal line. It is recommended to connect a common mode choke in series near the camera connector to reduce EMI.
- 2) MIPI route is recommended to be placed on the inner layer, and be surrounded by grounding lines in a three-dimensional manner.
- 3) The MIPI signal line needs to be controlled by a differential impedance of 100 Ω , with an error of ±10%.
- 4) The total length of the route does not exceed 300 mm.
- 5) The length difference of the differential lines in the set is controlled within 0.7 mm.
- 6) The length difference between sets is controlled within 1.4 m.
- 7) It is recommended that the spacing between differential lines in the group should be 1.5 times the line width, and the spacing between differential lines and other routes should be 3 times the line

width.

8) The total stray capacitance of devices on MIPI differential signal line should not exceed 1pF.

Other signal line design considerations:

- 1) CAM_CLK is a high-speed clock signal and needs to be surrounded by grounding lines in a threedimensional manner.
- 2) If the front and rear cameras share I2C, the I2C addresses of the two cameras should be confirmed that there is no conflict.
- The analog voltage AVDD route should be away from the interference source to avoid the power noise.
- It is recommended to place an LDO with high power supply rejection ratio close to the camera AVDD.

3.18 Sensor

SC138 supports I2C communication with various sensors, including accelerometers, distance and ambient light sensors, geomagnetic sensors, gyroscopes, etc.

Pin Name	Pin No.	I/O	Description	Remarks
SNS_I2C_SCL	87	D	I2C clock	-
SNS_I2C_SDA	88	OD	I2C data line	-
ALSP_INT_N	106	DI	Interrupt signal of ambient light	
ALOF_INT_N		ום	sensor	-
MAG INT N	107	DI	Interrupt signal of geomagnetic	
	107	ום	sensor	
ACCL_INT2_N	108	DI	G-Sensor interrupt signal 2	-
ACCL_INT1_N	109	DI	G-Sensor interrupt signal 1	-

Table 3-19 Sensor interface pin definition

Fibccon 3.19 Audio

3.19.1 Audio Interface Definition

SC138 series modules support analog audio interfaces with 3 inputs and 3 outputs, and the pin definition is shown in the following table:

Table 3-20 Audio interface definition

Pin Name	Pin No.	I/O	Description	Remarks
SPKR_DRV_P	148	AO	Loudspeaker drive output+	Load of 8 Ω and power of
SPKR_DRV_N	147	AO	Loudspeaker drive output-	800 mW
CDC_EAR_P	134	AO	Handset output+	Load of 32 Ω and power of
CDC_EAR_N	135	AO	Handset output-	123 mW
CDC_HPH_L	139	AO	Earphone left channel output	-27-22
CDC_HPH_REF	138	-	Earphone reference ground	
	137	AO	Earphone right channel output	<u>}-</u>
CDC_HS_DET	140	AI	Earphone plug detection	-
MIC2_IN_P	142	A	Earphone MIC input+	-
MIC2_IN_N	_141	AI	Earphone MIC input-	-
MIC1_N	144	AI	Main MIC differential input-	-
MIC1_P	145	AI	Main MIC differential input+	-
MIC3_IN_N	233	AI	Auxiliary MIC differential input-	-
MIC3_IN_P	244	AI	Auxiliary MIC differential	-
MIC4_IN_N	252	AI	Auxiliary MIC differential input-	Unavailable function by default, and grounding
MIC4_IN_P	248	AI	Auxiliary MIC differential	Unavailable function by

Reproduction forbidden without Fibocom Wireless Inc. written authorization - All rights

Pin Name	Pin No.	I/O	Description	Remarks
			input+	default, and grounding

Audio interface design considerations:

-

- 1) There is a MIC bias circuit in the SC138 module, so no external addition is required.
- 2) SPK is equipped with Class-D power amplifier, so no external power amplifier is allowed. It is recommended to connect an 8 Ω loudspeaker. The route width should meet the requirements of rated power. If an external audio power amplifier is required, select the earphone output as the input source of the external power amplifier. For double-ended input, use two channels. For single-ended input, the channel can be configured by software.
- 3) The earphone reference ground has already been grounded in the module. It is recommended that the external circuit does not need to be grounded, and a resistor can be reserved.
- 4) It is recommended to use a 32 Ω impedance device for the handset.
- 5) To reduce noise and improve audio quality, the suggestions are shown in the following:
 - The audio PCB route should be as far away as possible from antennas and high-frequency digital signals.
 - The LC filter circuit is reserved in the audio circuit to reduce EMI.
 - Audio route needs to be shielded.

3.19.2 Microphone Circuit Design

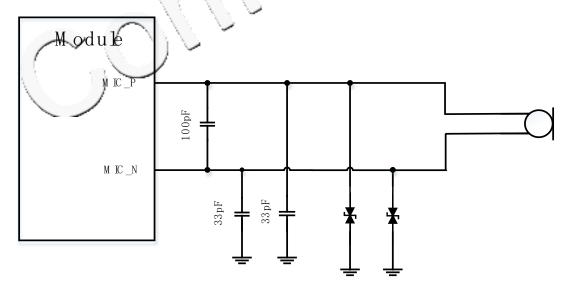


Figure 3-20 Microphone circuit design

3.19.3 Handset Circuit Design

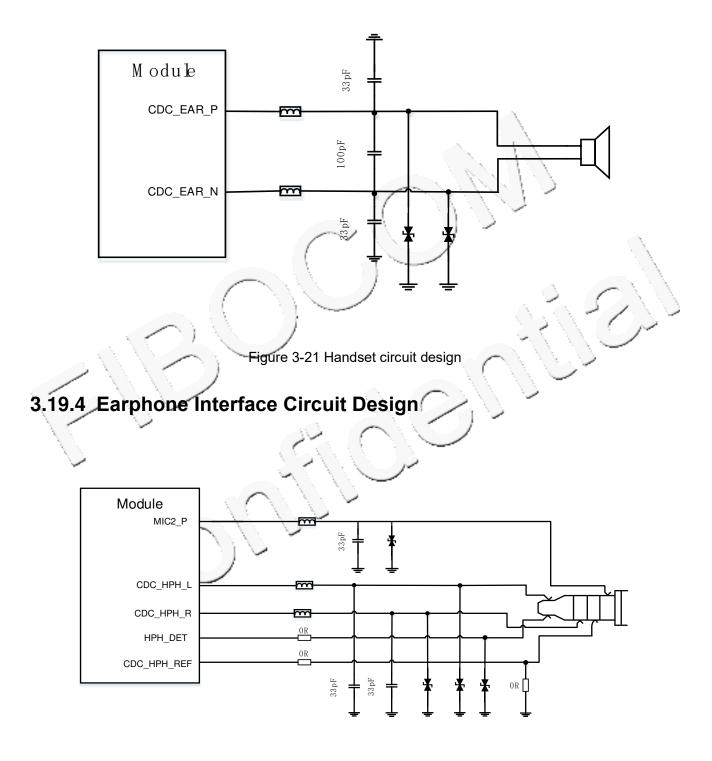


Figure 3-22 Earphone interface circuit design

Reproduction forbidden without Fibocom Wireless Inc. written authorization - All rights reserved. FIBOCOM SC138-NA Series Hardware Guide

For the ESD protection device of the earphone interface, use the bidirectional TVS tubes.

3.19.5 Speaker Circuit Design

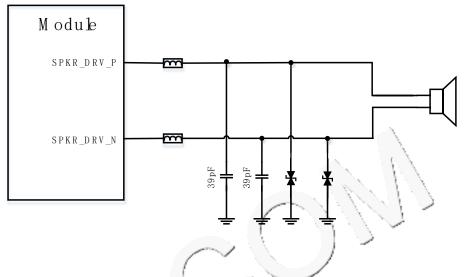


Figure 3-23 Speaker circuit design

3.20 Forced Downloading Interface Design

SC138 series modules provide FORCE_USB_BOOT pins as emergency downloading interfaces. Shortcircuit the USB_FORCE_BOOT and VREG_L9_1P8 pins when starting up, and the module can enter the emergency downloading mode. It is the final processing method when the product cannot start up or run normally due to faults. Reserve this pin to facilitate the subsequent software upgrade and commissioning of the product. The reference circuit is shown in the following figure:

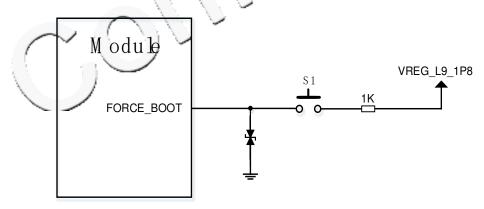
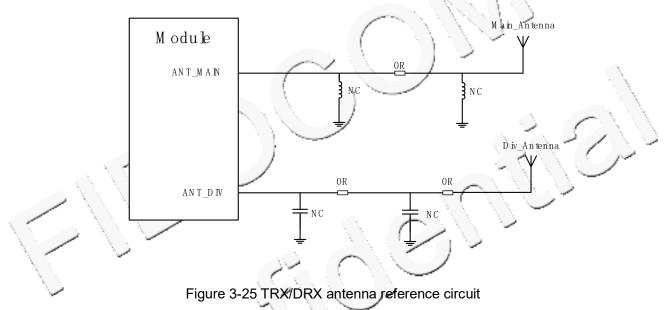



Figure 3-24 Forced downloading interface design

3.20.1 Circuit Reference Design

When using SC138 series modules, it is necessary to connect the antenna pins and the RF connector or antenna feedpoint on the main board through the RF route. Microstrip line is recommended for the RF route, the insertion loss is controlled within 0.2 dB, and the impedance is controlled within 50 Ω . A π -type circuit is reserved between the module and the antenna connector (or feedpoint) for antenna commissioning. Two parallel devices are directly jumped and connected to the RF route without branch. The reference circuit is shown in the following figure:

3.21 WIFI/BT Antenna

Microstrip line is recommended for the RF routing of WIFI/BT antenna, the insertion loss is controlled within 0.2 dB, and the impedance is controlled within 50 Ω .

Table 3-21 Definition of WIFI/BT antenna interface

Pin Name	Pin No.	I/O	Description	Remarks
ANT-WIFI/BT	78	I/O	WIFI/BT antenna interface	-

3.21.1WIFI/BT Band

Table 3-22 WIFI/BT band

Mode	Frequency	Unit
WIFI	2402–2482	MHz
	5170–5835	MHz
BT5.0	2402–2480	MHz

3.21.2Circuit Reference Design

WIFI/BT antenna connection reference circuit is shown in the following figure.

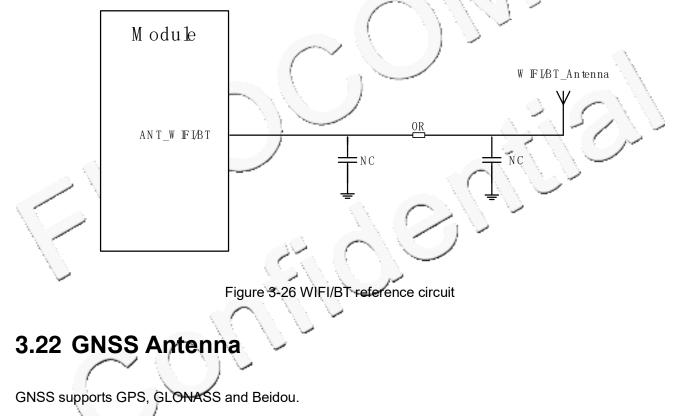


Table 3-23 Definition of GNSS antenna interface

Pin Name	Pin No.	I/O	Description	Remarks
ANT_GPS	120	AI	GNSS antenna interface	-

3.22.1GNSS Band

Table 3-24 GNSS band

Mode	Frequency Band	Unit
GPS	1575.42±1.023	MHz
GLONASS	1597.42-1605.8	MHz
BeiDou	1561.098±2.046	MHz

3.22.2Circuit Reference Design

The LNA is built into the SC138 series module, and the passive antenna is selected in the whole machine design. Microstrip line is recommended for the GNSS RF routing, the insertion loss is controlled within 0.2 dB, and the impedance is controlled within 50 Ω . The connection reference circuit is shown in the following figure:

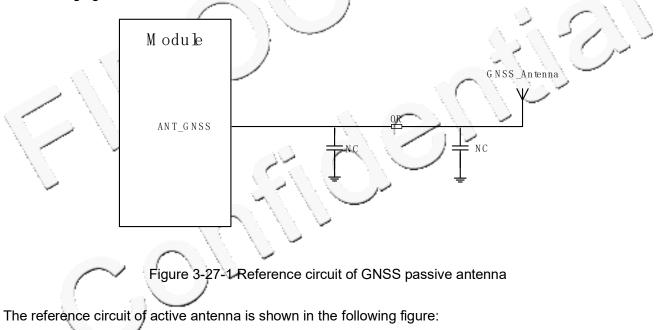


Figure 3-28-2 Reference circuit of GNSS active antenna

The power supply of the active antenna is fed by 56 nH inductance from the signal line of the antenna. The common active antenna supplies power for 3.3 V–5.0 V.

The power consumption of active antenna is very small, but the power supply is required to be stable and clean. It is recommended to use LDO with high performance to power the antenna. The gain of active antenna is required to be < 17 dB. If the gain is > 17 dB, it is necessary to use the reserved π type matching to increase the attenuation network.

3.23 Antenna Requirements

SC138 series modules provide four antenna interfaces: master set, diversity, WIFI/BT and GNSS. The antenna requirements are shown in the following table:

Table 3-25 Antenna requireme

SC138SC138 Series Modules Antenna Requirements	
System	Antenna Requirements
	Standing wave ratio: ≤ 2
WCDMA/LTE	Gain (dBi): 1
	Maximum input power (W): 5

Reproduction forbidden without Fibocom Wireless Inc. written authorization - All

rights reserved. FIBOCOM SC138-NA Series Hardware Guide

SC138SC138 Series Modules Antenna Requirements		
	Input impedance (Ω): 50	
	Polarization type: vertical direction	
	Insertion loss: < 1 dB (0.7-1GHz)	
	Insertion loss: < 1.5 dB (1.4-2.2GHz)	
	Insertion loss: < 2 dB (2.3-2.7GHz)	
	Standing wave ratio: ≤ 2	
	Gain (dBi): 1	
	Maximum input power (W): 5	
WIFI/BT	Input impedance (Ω): 50	
	Polarization type: vertical direction	
	Insertion loss: < 1dB	
	Frequency range: 1559 MHz–1607 MHz	
	Polarization type: right hand circularly polarized (RHCP) or	
	linearly polarized	
GNSS	Standing-wave ratio: < 2 (typical value)	
GN33	Passive antenna gain: > 0 dBi	
	Active antenna noise coefficient: < 1.5 dB (typical value)	
0	Active antenna gain: > –2 dBi	
	LNA gain in active antenna: < 17 dB (typical value)	
GPS- MAIN Antenna Isolation	>20dB	
WiFi-cellular Antenna Isolation	>20dB	

4 RF PCB Layout Design Guide

For user PCB, the characteristic impedance of all RF signal lines shall be controlled at 50 Ω . In general, the impedance of the RF signal line is determined by the dielectric constant of the material, the routing width (W), the ground clearance (S), and the height of the reference ground plane (H). The characteristic impedance of PCB is usually controlled by microstrip line and coplanar waveguide. In order to reflect the design principle, the following figure displays the structure design of microstrip line and coplanar waveguide when the impedance line is controlled at 50 Ω .

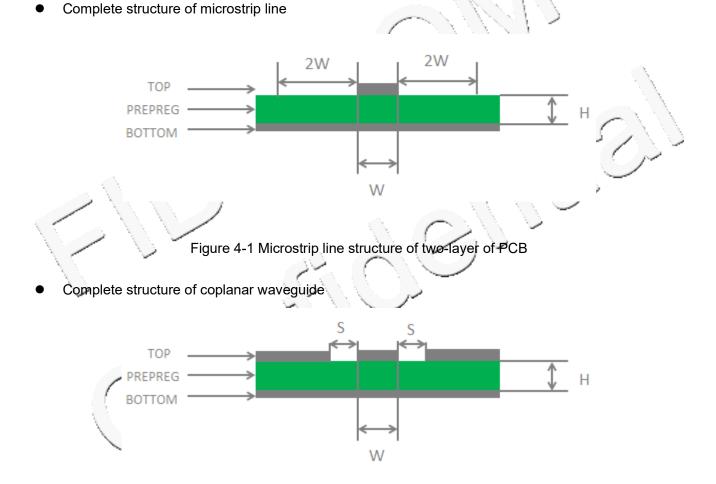


Figure 4-2 Coplanar waveguide structure of two-layer PCB

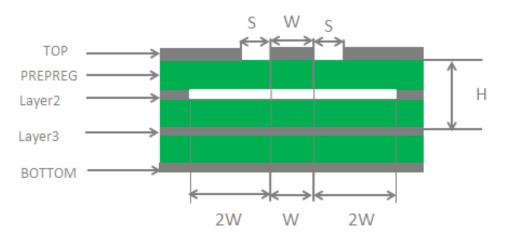


Figure 4-3 Coplanar waveguide structure of four-layer PCB (reference ground layer 3)

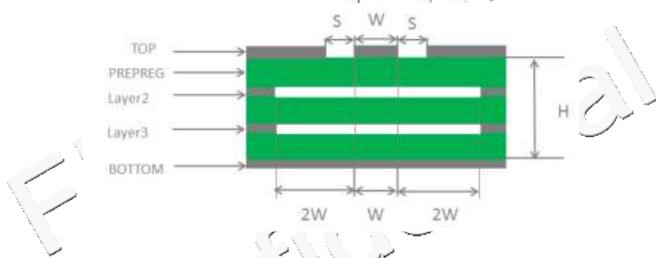


Figure 4-4 Coplanar waveguide structure of four-layer PCB (reference ground layer 4)

In the circuit design of RF antenna interface, in order to ensure the good performance and ALT of RF signal, the following design principles are recommended in the circuit design:

- The impedance simulation calculation tools shall be used to accurately control the 50 Ω impedance of the RF signal line.
- GND pins adjacent to RF pins shall not be hot bonding pads and shall be fully contacted with the ground.
- The distance between RF pin and RF connector shall be as short as possible; in order to avoid rightangle routing, the recommended routing angle is 135°.
- When connecting the device package, it shall be noted that the signal pin shall be kept at a certain distance from the ground.

The reference ground plane of RF signal line shall be complete; adding a certain amount of ground holes around the signal line and the reference ground can help improve the RF performance; the distance between the ground hole and the signal line shall be at least twice the line width (2 * W).

5 WIFI and Bluetooth

5.1 WIFI Overview

SC138SC138 series modules support 2.4G and 5G WLAN wireless communication, and support the

types of 802.11a, 802.11b, 802.11g, 802.11n and 802.11ac, with the highest rate of 433 Mbps.

Characteristics are described as follows:

- Support Wake-on-WLAN (WoWLAN)
- Support ad hoc mode
- Support WAPI
- Support AP mode
- Support Wi-Fi Direct
- Support MCS 0-7 for HT20 and HT40 (if the 2.4G WIFI 40M needs to be opened, the ini file shall be configured, but it is not recommended)
- Support MCS 0-8 for VHT20
- > Support MCS 0-9 for VHT40 and VHT80

5.2 WIFI Performance Indicators

Test conditions: supply voltage 3.8 V, ambient temperature 25°C.

Frequency	Mode	Date Rate	Bandwidth (MHz)	TX Power (dBm)	
	000 115	1Mbps	20	17.0±3	
	802.11b	11Mbps	20	17.0±3	
	000.44	6Mbps	20	16.0±3	
2.4G	802.11g	54Mbps	20	13.0±3	
	802.11n	MCS0	20	15.0±3	
		MCS7	20	12.0±3	
		MCS0	40	15.0±3	

Table 5-1 WIFI transmission power

Reproduction forbidden without Fibocom Wireless Inc. written authorization - All

rights reserved. FIBOCOM SC138-NA Series Hardware Guide

Frequency	Mode	Date Rate	Bandwidth (MHz)	TX Power (dBm)
		MCS7	40	12.0±3
	802.11a	6Mbs	20	19.0±3
	002.11a	54Mbps	20	16.0±3
		MCS0	20	18.0±3
	902 11n	MCS7	20	15.0±3
	802.11n	MCS0	40	17.0±3
5G		MCS7	40	14.0±3
56	802.11ac	MCS0	20	17.0±3
		MCS8	20	14.0±3
		MCSO	40	16.0±3
		MCS9	40	13.0±3
		MCSO	80	15:0±3
		MCS9	80	12.0±3
Table 5-2 WIFI receivin	g sensitivity		C>	2

Table 5-2 WIFI receiving sensitivity

Frequency	Mode	Date Rate	Bandwidth (MHz)	Sensitivity(dBm) ^{2³}
~	000 115	1Mbps	20	-94.0
	802.11b	11Mbps	20	-88.0
\sim	000 11 -	6Mbps	20	-89.0
0.40	802.11g	54Mbps	20	-73.0
2.4G		MCS0	20	-88.0
		MCS7	20	-69.0
	802.11n	MCS0	40	-84.0
		MCS7	40	-66.0
	000.11-	6Mbps	20	-90.0
5G	802.11a	54Mbps	20	-76.0

Reproduction forbidden without Fibocom Wireless Inc. written authorization - All

rights reserved. FIBOCOM SC138-NA Series Hardware Guide

Frequency	Mode	Date Rate	Bandwidth (MHz)	Sensitivity(dBm) ^{2³}
	000.11-	MCS0	20	-90.0
	802.11n	MCS7	20	-71.0
		MCS0	40	-88.0
	802.11n	MCS7	40	-68.0
		MCS0	20	-90.0
		MCS8	20	-69.0
	000 11-5	MCS0	40	-87.0
	802.11ac	MCS9	40	-65.0
		MCS0	80	-85.0
		MCS9	80	-62.0

Note:

2) The sensitivity here is typical.

5.3 Bluetooth Overview

SC138SC138 series modules support BT5.0 (BR/EDR+BLE) specifications, and the modulation mode supports GFSK; the channel bandwidth of 8-DPSK and π /4-DQPSK.BR/EDR is 1 MHz, which can accommodate 79 channels; BLE channel bandwidth is 2 MHz, which can accommodate 40 channels. Its main characteristics are as follows:

- ➢ BT 5.0+BR/EDR+BLE
- Support for ANT protocol
- > Support for BT-WLAN coexistence operation, including optional concurrent receive
- > Up to 3.5 piconets (master, slave, and page scanning)

Table 5-3 BT rate and version information

Version	Date Rate	Throughput	Note
BT1.2	1Mbit/s	> 80Kbit/s	-
BT2.0+EDR	3Mbit/s	> 80Kbit/s	-
BT3.0+HS	24Mbit/s	For details, see 3.0+HS	-
BT5.0 LE	24Mbit/s	For details, see 5.0 LE	-

5.4 Bluetooth Performance Indicators

Test conditions: supply voltage 3.8 V, ambient temperature 25°C.

Table 5-4 BT performance indicators

Туре	DH-5	2-DH5	3-DH5	BLE	Unit
Transmitter	11±2.5	9±2.5	8±2.5	6±2.5	dBm
Sensitivity	-86	-85	-83	-93	dBm

Fibocon

6 GNSS

6.1 Overview

SC138SC138 series intelligent modules support GPS, GLONASS and Beidou and other positioning systems. LNA is embedded in the module, which can effectively improve the sensitivity of GNSS.

6.2 Performance Index

Test conditions: supply voltage 3.8 V, ambient temperature 25°C.

Parameter	Description	Type Result	Unit
Consitivity	Acquisition	-145	dBm
Sensitivity	Tracking	-158	dBm
C/N	130dBm	39	dB-Hz
K Č	Cold Start	45	S
TTFF	Warm Start	42/-	S
	Hot Start	3	S
CEP	Static accuracy (95% @-	5	m
	130d6m)		

Table 6-1 GNSS positioning performance

Fibocon

7 Electrical, ALT and RF Performance

7.1 Recommended Parameters

Parameter	Min	Normal	Мах	Unit
VBAT	3.5	3.8	4.2	V
USB_IN_DET	4.75	5	5.25	V
VRTC	2.0	3.0	3.25	≥v
Operating	-30	25	75	°C
Temperature	-50	25	15	0
Storage Temperature	-40	25	85	°C

111

Table 7-1 recommended parameters

7.2 Operating Current

Test conditions: supply voltage 3.8 V, ambient temperature 25°C.

Table 7-2 SC138-NA operating current

Parameter	Description	Condition	Туре	Unit	
I off	Power Off	Power Off	50	uA	
(WCDMA	DRX=8	4.5		
		DPC (Default Paging Cycle) =#256	4.5	m 4	
sleep	FDD/LTE	DPC (Default Paging Cycle) =#256	4.5	mA	
,	Radio Off	AT+CFUN=4 Flight Mode	4		
	WCDMA RMS Current	Band2@ max power	580		
WCDMA-RMS		Band4@ max power	580	mA	
		Band5@ max power	620		
	FDD data	Band2@max power(10MHz,1RB)	580		
LTE-RMS	RMS Current	Band4@max power(10MHz,1RB)	680	mA	
		Band5@max power(10MHz,1RB)	610		

Reproduction forbidden without Fibocom Wireless Inc. written authorization - All rights reserved. FIBOCOM SC138-NA Series Hardware Guide

Parameter	Description	Condition	Туре	Unit
		Band7@max power(10MHz,1RB)	720	
		Band12@max power(10MHz,1RB)	650	
		Band13@max power(10MHz,1RB)	560	
		Band17@max power(10MHz,1RB)	680	
		Band25@max power(10MHz,1RB)	680	
	TDD data	Band41@max power(10MHz,1RB)	430	
	RMS Current	Band48@max power(10MHz,1RB)	340	

7.3 Electrostatic Protection

In the application of modules, due to the static electricity generated by human body static electricity and charged friction between microelectronics, it may cause damage to the module through various ways, so ESD protection shall be paid attention to. ESD protection measures shall be taken in the process of R&D, production assembly and testing, especially in product design. For example, at the interface of circuit design and the points easily damaged or affected by electrostatic discharge, anti-static protection shall be added; anti-static gloves shall be worn in production.

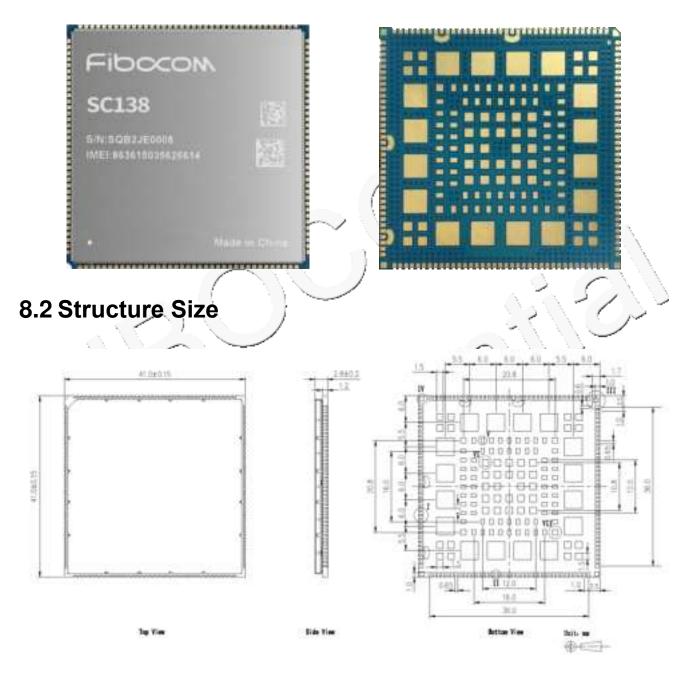

List of ESD Performance Parameters 1-6 (temperature: 25°C, humidity: 45%-60%).

Table 7-3 ESD performance

Test Point	Contact Discharge	Air Discharge	Unit
VBAT, GND	±5	±10	KV
Antenna interface	±4	±8	KV
Other interfaces	±0.5	±1	KV

8 Structural Specification

8.1 Product Appearance

8.3 Reference PCB Bonding Pad Design

For details of recommended design of PCB bonding pad and corresponding steel mesh, see *FIBOCOM SC138 Series SMT Design Guide*.

9 Production and Storage

9.1 SMT Patch

For details of SMT production process parameters and related requirements, see *FIBOCOM SC138 Series SMT Design Guide*.

9.2 Packaging and Storage

For details of packing and storage, see FIBOCOM SC138 Series SMT Design Guide.

Fibocon

Appendix A Abbreviations

Table A-1 Abbreviations

Abbreviation	Meaning
AMR	Adaptive Multi-rate
bps	Bits Per Second
CS	Coding Scheme
DRX	Discontinuous Reception
FDD	Frequency Division Duplexing
GMSK	Gaussian Minimum Shift Keying
HSDPA	High Speed Down Link Packet Access
IMEI	International Mobile Equipment Identity
Imax	Maximum Load Current
LED	Light Emitting Diode
LSB	Least Significant Bit
LTE	Long Term Evolution
CA	Carrier Aggregation
DLCA	Downlink Carrier Aggregation
SCell	Secondary Cell for CA
ME	Mobile Equipment
MS	Mobile Station
мт	Mobile Terminated
РСВ	Printed Circuit Board
PDU	Protocol Data Unit
PSK	Phase Shift Keying
QAM	Quadrature Amplitude Modulation
QPSK	Quadrature Phase Shift Keying
RF	Radio Frequency

Reproduction forbidden without Fibocom Wireless Inc. written authorization - All

Fibccon

Abbreviation	Meaning
RHCP	Right Hand Circularly PolarizedRMS
RMS	Root Mean Square
RTC	Real Time Clock
Rx	Receive
SMS	Short Message Service
TDMA	Time Division Multiple Access
TE	Terminal Equipment
ТХ	Transmitting Direction
TDD	Time Division Duplexing
UART	Universal Asynchronous Receiver & Transmitter
UMTS	Universal Mobile Telecommunications System
URC	Unsolicited Result Code
(U)SIM	(Universal) Subscriber Identity Module
USSD	Unstructured Supplementary Service Data
Vmax	Maximum Voltage Value
Vnorm	Normal Voltage Value
Vmin	Minimum Voltage Value
VIHmax	Maximum Input High Level Voltage Value
VIHmin	Minimum Input High Level Voltage Value
VILmax	Maximum Input Low Level Voltage Value
VILmin	Minimum Input Low Level Voltage Value
VImax	Absolute Maximum Input Voltage Value
VImin	Absolute Minimum Input Voltage Value
VOHmax	Maximum Output High Level Voltage Value
VOHmin	Minimum Output High Level Voltage Value
VOLmax	Maximum Output Low Level Voltage Value
VOLmin	Minimum Output Low Level Voltage Value
VSWR	Voltage Standing Wave Ratio

Reproduction forbidden without Fibocom Wireless Inc. written authorization - All

Abbreviation	Meaning
WCDMA	Wideband Code Division Multiple Access

Appendix B GPRS Coding Scheme

Table B-1 GPRS coding scheme

Coding Mode	CS-1	CS-2	CS-3	CS-4
Code Rate	1/2	2/3	3/4	1
USF	3	3	3	3
Pre-coded USF	3	6	6	12
Radio Block excl.USF and BCS	181	268	312	428
BCS	40	16	16	16
Tail	4	4	4	-
Coded Bits	456	588	676	456
Punctured Bits	0	132	220	
Data Rate Kb/s	9.05	13.4	15.6	21.4

Appendix C GPRS Multi-slot

In the GPRS specification, 29 kinds of GPRS multi-slot modes are defined for mobile stations. The multislot class defines the maximum rate of uplink and downlink. Expressed as 3 + 1 or 2 + 2, the first number represents the number of downlink slots, and the second number represents the number of uplink slots. Active slot represents the total number of slots that can be used simultaneously for uplink and downlink communication of GPRS devices

Table C-1 Multi-slot allocation	with different levels	$M \sim 1$	
Multi-slot Class	Downlink Slots	Uplink Slots	Active Slots
1	1	1) > [2
2	2	1	3
3	2	2	3
4	3	1	4
5	2	2	4
6	3	2	4
7 / \ /	3	3	4
8	4	\rightarrow	5
9	3	2	5
10	4	2	5
11	4	3	5
12	4	4	5

Table C-1 Multi-slot allocation with different levels

Appendix D EDGE Modulation and Coding Mode

Coding Scheme	Modulation	Coding Family	1 Timeslot	2 Timeslot	4 Timeslot
CS-1	GMSK	1	9.05kbps	18.1kbps	36.2kbps
CS-2	GMSK	1	13.4kbps	26.8kbps	53.6kbps
CS-3	GMSK	/	15.6kbps	31.2kbps	62.4kbps
CS-4	GMSK	1	21.4kbps	42.8kbps	85.6kbps
MCS-1	GMSK	c	8.80kbps	17.6kbps	35.2kbps
MCS-2	GMSK	в	11.2kbps	22.4kbps	44.8kbps
MCS-3	GMSK	A	14.8kbps	29.6kbps	59.2kbps
MCS-4	GMSK	c	17.6kbps	35.2kbps	70.4kbps
MCS-5	8-PSK	В	22.4kbps	44.8kbps	89.6kbps
MCS-6	8-PSK	А	29.6kbps	59.2kbps	118.4kbps
MCS-7	8-PSK	В	44.8kbps	89.6kbps	179.2kbps
MCS-8	8-PSK	A	54.4kbps	108.8kbps	217.6kbps
MCS-9	8-PSK	A	59.2kbps	118.4kbps	236.8kbps
\sim					

Table D-1 EDGE modulation and coding mode