CFR 47 FCC PART 15 SUBPART C ### **CERTIFICATION TEST REPORT** For WIFI+BT Module **MODEL NUMBER: DCT2EM2101** FCC ID: 2AC23-DCT2E REPORT NUMBER: 4790071769.2-2 ISSUE DATE: September 01, 2021 # Prepared for Hui Zhou Gaoshengda Technology Co.,LTD No.2,Jin-da Road,Huinan High-tech Industrial Park,Hui-ao Avenue,Huizhou City,Guangdong,China # Prepared by UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China > Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com REPORT NO.: 4790071769.2-2 Page 2 of 91 # **Revision History** | Rev. | Issue Date | Revisions | Revised By | |------|------------|---------------|------------| | V0 | 09/01/2021 | Initial Issue | | | Summary of Test Results | | | | | | |-------------------------|--|--------------------|--------------|--|--| | Clause | Test Items | FCC Rules | Test Results | | | | 1 | 20dB Bandwidth and 99% Occupied
Bandwidth | FCC 15.247 (a) (1) | Pass | | | | 2 | Conducted Output Power | FCC 15.247 (b) (1) | Pass | | | | 3 | Carrier Hopping Channel Separation | FCC 15.247 (a) (1) | Pass | | | | 4 | Number of Hopping Frequency | 15.247 (a) (1) III | Pass | | | | 5 | Time of Occupancy (Dwell Time) | 15.247 (a) (1) III | Pass | | | | 6 | Conducted Bandedge | FCC 15.247 (d) | Pass | | | | 7 | Radiated Bandedge and Spurious FCC 15.247 (d) FCC 15.209 FCC 15.205 | | Pass | | | | 8 | Conducted Emission Test for AC
Power Port | FCC 15.207 | Pass | | | | 9 | Antenna Requirement | FCC 15.203 | Pass | | | # Note: ^{1.} This test report is only published to and used by the applicant, and it is not for evidence purpose in China. ^{2.} The measurement result for the sample received is <Pass> according to < CFR 47 FCC PART 15 SUBPART C > when <Accuracy Method> decision rule is applied. # **TABLE OF CONTENTS** | 1. | AT | TESTATION OF TEST RESULTS | 6 | |----|--------------|---|----| | 2. | TES | ST METHODOLOGY | 7 | | 3. | FA | CILITIES AND ACCREDITATION | 7 | | 4. | CA | LIBRATION AND UNCERTAINTY | 8 | | | 4.1. | MEASURING INSTRUMENT CALIBRATION | 8 | | | 4.2. | MEASUREMENT UNCERTAINTY | 8 | | 5. | EQ | UIPMENT UNDER TEST | 9 | | | 5.1. | DESCRIPTION OF EUT | 9 | | | 5.2. | MAXIMUM PEAK OUTPUT POWER | 9 | | | 5.3. | PACKET TYPE CONFIGURATION | 9 | | | 5.4. | CHANNEL LIST | 10 | | | 5.5. | TEST CHANNEL CONFIGURATION | 10 | | | 5.6. | WORST-CASE CONFIGURATIONS | 10 | | | 5.7. | THE WORSE CASE POWER SETTING PARAMETER | 11 | | | 5.8. | DESCRIPTION OF AVAILABLE ANTENNAS | 11 | | | 5.9. | DESCRIPTION OF TEST SETUP | 12 | | 6. | ME | ASURING INSTRUMENT AND SOFTWARE USED | 13 | | 7. | ΑN | TENNA PORT TEST RESULTS | 15 | | | 7.1. | ON TIME AND DUTY CYCLE | 15 | | | 7.2. | 20 dB BANDWIDTH AND 99 % OCCUPIED BANDWIDTH | 16 | | | 7.3. | CONDUCTED OUTPUT POWER | 18 | | | 7.4. | CARRIER FREQUENCY SEPARATION | 19 | | | 7.5. | NUMBER OF HOPPING FREQUENCIES | 21 | | | 7.6. | TIME OF OCCUPANCY (DWELL TIME) | 23 | | | 7.7. | CONDUCTED BANDEDGE AND SPURIOUS EMISSION | 25 | | 8. | RA | DIATED TEST RESULTS | 27 | | | 8.1. | RESTRICTED BANDEDGE | | | | 8.1.
8.1. | | | | | 8.2. | | | | | 8.2 | | | | | 8.3. | SPURIOUS EMISSIONS (3 GHz ~ 18 GHz) | 42 | | | 8.3 | .1. GFSK MODE | 42 | | | 8.3.2. | 8DPSK MODE | 48 | |----|---------------------------------|--|----| | • | | JRIOUS EMISSIONS (18 GHz ~ 26 GHz)
8DPSK MODE | | | • | | JRIOUS EMISSIONS (30 MHz ~ 1 GHz)
8DPSK MODE | | | • | | JRIOUS EMISSIONS BELOW 30 MHz8DPSK MODE | | | 9. | AC POW | /ER LINE CONDUCTED EMISSIONS | 61 | | | 9.1. 8DF | PSK MODE | 62 | | 10 | . ANTE | NNA REQUIREMENTS | 64 | | 11 | . Apper | ndix | 65 | | | 11.1. A _l | opendix A: 20dB Emission Bandwidth | 65 | | | 11.1.1. | | | | | 11.1.2. | · | | | | 11.2. A _l
11.2.1. | ppendix B: Occupied Channel Bandwidth
Test Result | | | | 11.2.1. | Test Graphs | | | | 11.3. AI | ppendix C: Maximum conducted output power | | | | 11.3.1. | Test Result | | | | 11.4. A | opendix D: Carrier frequency separation | 72 | | | 11.4.1. | Test Result | 72 | | | 11.4.2. | Test Graphs | 73 | | | | ppendix E: Time of occupancy | | | | 11.5.1.
11.5.2. | Test Graphs | | | | 11.5.2.
11.5.3. | Test Result Test Graphs | | | | | ppendix F: Number of hopping channels | | | | | Test Result | | | | | ppendix G: Band edge measurements | | | | 11.7.1. | Test Result | | | | 11.7.2. | Test Graphs | 80 | | | 11.8. A | ppendix H: Conducted Spurious Emission | 83 | | | 11.8.1. | Test Result | 83 | | | 11.8.2. | Test Graphs | 84 | | | 11.9. A _l | opendix I: Duty Cycle | 90 | | | 11.9.1. | Test Result | | | | 11.9.2. | Test Graphs | 91 | REPORT NO.: 4790071769.2-2 Page 6 of 91 # 1. ATTESTATION OF TEST RESULTS **Applicant Information** Company Name: Hui Zhou Gaoshengda Technology Co.,LTD Address: No.2, Jin-da Road, Huinan High-tech Industrial Park, Hui-ao Avenue, Huizhou City, Guangdong, China **Manufacturer Information** Company Name: Hui Zhou Gaoshengda Technology Co.,LTD Address: No.2, Jin-da Road, Huinan High-tech Industrial Park, Hui-ao Avenue, Huizhou City, Guangdong, China **EUT Information** EUT Name: WIFI+BT Module Model: DCT2EM2101 Brand: GSD Sample Received Date: August 19, 2021 Sample Status: Normal Sample ID: 4158685 Date of Tested: August 20, 2021 ~ August 31, 2021 | APPLICABLE STANDARDS | | | | |------------------------------|------|--|--| | STANDARD TEST RESULTS | | | | | CFR 47 FCC PART 15 SUBPART C | PASS | | | Shemy les Prepared By: Checked By: Mick Zhang Shawn Wen Project Engineer Laboratory Leader Approved By: Mick Zhang Stephen Guo Laboratory Manager REPORT NO.: 4790071769.2-2 Page 7 of 91 ### 2. TEST METHODOLOGY The tests documented in this report were performed in accordance with KDB 558074 D01 15.247 Meas Guidance v05r02, 414788 D01 Radiated Test Site v01r01, CFR 47 FCC Part 2, CFR 47 FCC Part 15, ANSI C63.10-2013. # 3. FACILITIES AND ACCREDITATION | | A2LA (Certificate No.: 4102.01) | |---------------|---| | | UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. | | | has been assessed and proved to be in compliance with A2LA. | | | FCC (FCC Designation No.: CN1187) | | | UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. | | | Has been recognized to perform compliance testing on equipment subject | | | to the Commission's Delcaration of Conformity (DoC) and Certification rules | | | ISED (Company No.: 21320) | | | | | Accreditation | UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. | | Certificate | has been registered and fully described in a report filed with ISED. | | Certificate | The Company Number is 21320 and the test lab Conformity Assessment | | | Body Identifier (CABID) is CN0046. | | | VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011) | | | UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. | | | has been assessed and proved to be in compliance with VCCI, the | | | Membership No. is 3793. | | | Facility Name: | | | Chamber D, the VCCI registration No. is G-20019 and R-20004 | | | Shielding Room B, the VCCI registration No. is C-20012 and T-20011 | | | Chicang Room B, the Voor registration No. is 0-20012 and 1-20011 | Note 1: All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China Note 2: The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site. Note 3: For below 30 MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30 MHz had been correlated to measurements performed on an OFS. # 4. CALIBRATION AND UNCERTAINTY # 4.1. MEASURING INSTRUMENT CALIBRATION The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards. # 4.2. MEASUREMENT UNCERTAINTY Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus: | Test Item | Uncertainty | |---|---------------------------| | Conduction emission | 3.62 dB | | Radiated Emission
(Included Fundamental Emission) (9 kHz ~ 30 MHz) | 2.2 dB | | Radiated Emission
(Included Fundamental Emission) (30 MHz ~ 1 GHz) | 4.00 dB | | Radiated Emission | 5.78 dB (1 GHz ~ 18 GHz) | | (Included Fundamental Emission) (1 GHz to 26 GHz) | 5.23 dB (18 GHz ~ 26 GHz) | Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level using a coverage factor of k=2. 5. EQUIPMENT UNDER TEST # 5.1. DESCRIPTION OF EUT | EUT Name | WIFI+BT Module | | | |---------------------------------|---------------------------|---------------------|--| | Model | DCT2EM2101 | | | | | Operation Frequency | 2402 MHz ~ 2480 MHz | | | | Modulation Type Data Rate | | | | Product Description (Bluetooth) | GFSK | 1Mbps | | | (Bidetootii) | ∏/4-DQPSK | 2Mbps | | | | 8DPSK 3Mbps | | | | Supply Voltage | 5V DC | | | # 5.2. MAXIMUM PEAK OUTPUT POWER | Test Mode | Frequency
(MHz) | Channel Number | Maximum Peak Output
Power (dBm) | Maximum EIRP
(dBm) | |-----------|--------------------|----------------|------------------------------------|-----------------------| | GFSK | 2402 ~ 2480 | 0-78[79] | 7.67 | 9.39 | | 8DPSK | 2402 ~ 2480 | 0-78[79] | 10.37
| 12.09 | # 5.3. PACKET TYPE CONFIGURATION | Test Mode | Packet Type Setting (Packet Length | | |-----------|------------------------------------|------| | | DH1 | 27 | | GFSK | DH3 | 183 | | | DH5 | 339 | | | 2-DH1 | 54 | | ∏/4-DQPSK | 2-DH3 | 367 | | | 2-DH5 | 679 | | | 3-DH1 | 83 | | 8DPSK | 3-DH3 | 552 | | | 3-DH5 | 1021 | # 5.4. CHANNEL LIST | Channel | Frequency
(MHz) | Channel | Frequency
(MHz) | Channel | Frequency
(MHz) | Channel | Frequency
(MHz) | |---------|--------------------|---------|--------------------|---------|--------------------|---------|--------------------| | 00 | 2402 | 20 | 2422 | 40 | 2442 | 60 | 2462 | | 01 | 2403 | 21 | 2423 | 41 | 2443 | 61 | 2463 | | 02 | 2404 | 22 | 2424 | 42 | 2444 | 62 | 2464 | | 03 | 2405 | 23 | 2425 | 43 | 2445 | 63 | 2465 | | 04 | 2406 | 24 | 2426 | 44 | 2446 | 64 | 2466 | | 05 | 2407 | 25 | 2427 | 45 | 2447 | 65 | 2467 | | 06 | 2408 | 26 | 2428 | 46 | 2448 | 66 | 2468 | | 07 | 2409 | 27 | 2429 | 47 | 2449 | 67 | 2469 | | 08 | 2410 | 28 | 2430 | 48 | 2450 | 68 | 2470 | | 09 | 2411 | 29 | 2431 | 49 | 2451 | 69 | 2471 | | 10 | 2412 | 30 | 2432 | 50 | 2452 | 70 | 2472 | | 11 | 2413 | 31 | 2433 | 51 | 2453 | 71 | 2473 | | 12 | 2414 | 32 | 2434 | 52 | 2454 | 72 | 2474 | | 13 | 2415 | 33 | 2435 | 53 | 2455 | 73 | 2475 | | 14 | 2416 | 34 | 2436 | 54 | 2456 | 74 | 2476 | | 15 | 2417 | 35 | 2437 | 55 | 2457 | 75 | 2477 | | 16 | 2418 | 36 | 2438 | 56 | 2458 | 76 | 2478 | | 17 | 2419 | 37 | 2439 | 57 | 2459 | 77 | 2479 | | 18 | 2420 | 38 | 2440 | 58 | 2460 | 78 | 2480 | | 19 | 2421 | 39 | 2441 | 59 | 2461 | 1 | / | # 5.5. TEST CHANNEL CONFIGURATION | Test Mode | Test Channel | Frequency | |-----------|---|---------------------------------| | GFSK | CH 0(Low Channel), CH 39(MID Channel),
CH 78(High Channel) | 2402 MHz, 2441 MHz, 2480
MHz | | 8DPSK | CH 0(Low Channel), CH 39(MID Channel),
CH 78(High Channel) | 2402 MHz, 2441 MHz, 2480
MHz | Note: The hop is hopping mode. # 5.6. WORST-CASE CONFIGURATIONS | Bluetooth Mode | Modulation
Technology | Modulation Type | Data Rate
(Mbps) | |----------------|--------------------------|-----------------|---------------------| | BR | FHSS | GFSK | 1Mbit/s | | EDR | FHSS | 8DPSK | 3Mbit/s | Note: Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates. REPORT NO.: 4790071769.2-2 Page 11 of 91 # 5.7. THE WORSE CASE POWER SETTING PARAMETER | The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band | | | | | |--|---------|----------------------------|--------|--------| | Test So | oftware | WCN_Combo_Tool | | | | Modulation Type Transmit Antenna | | Test Channel Power Setting | | | | Woddiation Type | Number | CH 00 | CH 39 | CH 78 | | GFSK | 1 | Defult | Defult | Defult | | 8DPSK | 1 | Defult | Defult | Defult | # 5.8. DESCRIPTION OF AVAILABLE ANTENNAS | Antenna | Frequency (MHz) | Antenna Type | MAX Antenna Gain (dBi) | |---------|-----------------|--------------|------------------------| | 1 | 2402-2480 | PIFA antenna | 1.72 | | Test Mode | Transmit and Receive Mode | Description | |-----------|---------------------------|--| | GFSK | ⊠1TX, 1RX | Antenna 1 can be used as transmitting/receiving antenna. | | 8DPSK | ⊠1TX, 1RX | Antenna 1 can be used as transmitting/receiving antenna. | ### Note: ^{1.}BT&WLAN 2.4G, BT & WLAN 5G, WLAN 2.4G & WLAN 5G can't transmit simultaneously. (declared by client) REPORT NO.: 4790071769.2-2 Page 12 of 91 # 5.9. DESCRIPTION OF TEST SETUP # **SUPPORT EQUIPMENT** | Item | Equipment | Brand Name | Model Name | Remarks | |------|-------------|------------|-------------|-----------------------------------| | 1 | Laptop | ThinkPad | X230i | 1 | | 2 | Adaptor | Lenovo | ADLX65YCC3D | Input:AC100-240V ~1.8A
50-60Hz | | 3 | USB TO UART | / | 1 | 1 | ### **I/O CABLES** | | ble
lo | Port | Connector Type | Cable Type | Cable Length(m) | Remarks | |---|-----------|------|----------------|------------|-----------------|---------| | • | 1 | USB | / | / | 1.0 | 1 | # **ACCESSORIES** | Item | Accessory | Brand Name | Model Name | Description | |------|-----------|------------|------------|-------------| | 1 | / | / | / | / | # **TEST SETUP** The EUT can work in engineering mode with a software through a Laptop. # **SETUP DIAGRAM FOR TESTS** # 6. MEASURING INSTRUMENT AND SOFTWARE USED | | Conducted Emissions | | | | | |------------------------------|---------------------|-----------|--------------|---------------|---------------| | Equipment | Manufacturer | Model No. | Serial No. | Last Cal. | Due Date | | EMI Test
Receiver | R&S | ESR3 | 101961 | Nov. 12, 2020 | Nov. 11, 2021 | | Two-Line V-
Network | R&S | ENV216 | 101983 | Nov. 12, 2020 | Nov. 11, 2021 | | Artificial Mains
Networks | Schwarzbeck | NSLK 8126 | 8126465 | Nov. 12, 2020 | Nov. 11, 2021 | | Software | | | | | | | Description | | | Manufacturer | Name | Version | | Test Software | for Conducted | Emissions | Farad | EZ-EMC | Ver. UL-3A1 | | | Radiated Emissions | | | | | | |--------------------------------|--------------------|---|-------------------|----------------|----------------|--| | Equipment | Manufacturer | Model No. | Serial No. | Last Cal. | Due Date | | | MXE EMI
Receiver | KESIGHT | N9038A | MY56400036 | Nov. 12, 2020 | Nov. 11, 2021 | | | Hybrid Log
Periodic Antenna | TDK | HLP-3003C | 130959 | April 24, 2020 | April 23, 2023 | | | Preamplifier | HP | 8447D | 2944A09099 | Nov. 12, 2020 | Nov. 11, 2021 | | | EMI
Measurement
Receiver | R&S | ESR26 | 101377 | Nov. 12, 2020 | Nov. 11, 2021 | | | Horn Antenna | TDK | HRN-0118 | 130939 | Sept. 17, 2018 | Sept. 17, 2021 | | | Preamplifier | TDK | PA-02-0118 | TRS-305-
00067 | Nov. 20, 2020 | Nov. 19, 2021 | | | Horn Antenna | Schwarzbeck | BBHA9170 | #697 | July 20, 2021 | July 19, 2024 | | | Preamplifier | TDK | PA-02-2 | TRS-307-
00003 | Nov. 12, 2020 | Nov. 11, 2021 | | | Preamplifier | TDK | PA-02-3 | TRS-308-
00002 | Nov. 12, 2020 | Nov. 11, 2021 | | | Loop antenna | Schwarzbeck | 1519B | 80000 | Jan.17, 2019 | Jan.17,2022 | | | Preamplifier | TDK | PA-02-001-
3000 | TRS-302-
00050 | Nov. 12, 2020 | Nov. 11, 2021 | | | Preamplifier | Mini-Circuits | ZX60-83LN-
S+ | SUP01201941 | Nov. 20, 2020 | Nov. 19, 2021 | | | Band Reject
Filter | Wainwright | WRCJV8-
2350-2400-
2483.5-
2533.5-40SS | 4 | Nov. 12, 2020 | Nov. 11, 2021 | | | High Pass Filter | Wi | WHKX10-
2700-3000-
18000-40SS | 23 | Nov. 12, 2020 | Nov. 11, 2021 | | REPORT NO.: 4790071769.2-2 Page 14 of 91 | Software | | | | | |--------------------------------------|--------------|--------|-------------|--| | Description | Manufacturer | Name | Version | | | Test Software for Radiated Emissions | Farad | EZ-EMC | Ver. UL-3A1 | | | Other instruments | | | | | | |---|----------|------------------------------------|------------|---------------|---------------| | Equipment Manufacturer Model No. Serial No. Last Cal. | | | | | Next Cal. | | Spectrum Analyzer | Keysight | N9030A | MY55410512 | Nov. 20, 2020 | Nov. 19, 2021 | | Dual Channel
Power Meter | Keysight | N1912A | MY55416024 | Nov. 20, 2020 | Nov. 19, 2021 | | Power Sensor | Keysight | USB
Wideband
Power
Sensor | MY5100022 | Nov. 20, 2020 | Nov. 19, 2021 | # 7. ANTENNA PORT TEST RESULTS # 7.1. ON TIME AND DUTY CYCLE # **LIMITS** None; for reporting purposes only. # **PROCEDURE** Refer to ANSI C63.10-2013 Zero – Span Spectrum Analyzer method. # **TEST SETUP** # **TEST ENVIRONMENT** | Temperature | 26.6 °C | Relative Humidity | 56.8 % | |---------------------|---------|-------------------|--------| | Atmosphere Pressure | 101 kPa | Test Voltage | DC 5 V | # **RESULTS** Please refer to appendix I. REPORT NO.: 4790071769.2-2 Page 16 of 91 # 7.2. 20 dB BANDWIDTH AND 99 % OCCUPIED BANDWIDTH # **LIMITS** | CFR 47FCC Part15 (15.247) Subpart C | | | | |--|----------------------------|------------------------------------|--------------------------| | Section Test Item Limit Frequency Rang (MHz) | | | Frequency Range
(MHz) | | CFR 47 FCC 15.247 (a) (1) | 20 dB Bandwidth | None; for reporting purposes only. | 2400-2483.5 | | ISED RSS-Gen Clause 6.7 | 99 % Occupied
Bandwidth | None; for reporting purposes only. | 2400-2483.5 | ### **TEST PROCEDURE** Refer to ANSI C63.10-2013 clause 6.9.2. Connect the EUT to the spectrum analyser and use the following settings: | Center Frequency | The center frequency of the channel under test | |------------------|--| | Detector | Peak | | RBW | For 20 dB Bandwidth: 1 % to 5 % of the 20 dB bandwidth For 99 % Occupied Bandwidth: 1 % to 5 % of the occupied bandwidth | | VBW | For 20 dB Bandwidth: approximately 3×RBW For 99 % Occupied Bandwidth: ≥ 3×RBW | | Span | Approximately 2 to 3 times the 20dB bandwidth | | Trace | Max hold | | Sweep | Auto couple | a) Use the occupied bandwidth function of the instrument, allow the trace to stabilize and report the measured $99\ \%$ occupied bandwidth and $20\ dB$ Bandwidth. # **TEST SETUP** REPORT NO.: 4790071769.2-2 Page 17 of 91 # **TEST ENVIRONMENT** | Temperature | 26.6 °C | Relative Humidity | 56.8 % | |---------------------|---------|-------------------|--------| | Atmosphere Pressure | 101 kPa | Test Voltage | DC 5 V | # **RESULTS** Please refer to appendix A and B. REPORT NO.: 4790071769.2-2 Page 18 of 91 # 7.3. CONDUCTED OUTPUT POWER ### **LIMITS** | CFR 47 FCC Part15 (15.247), Subpart C | | | | |---------------------------------------|--------------------------------
--|--------------------------| | Section | Test Item | Limit | Frequency Range
(MHz) | | CFR 47 FCC
15.247 (b) (1) | Peak Conducted
Output Power | Hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel: 1 watt or 30 dBm; Hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel: 125 mW or 21 dBm | 2400-2483.5 | # **TEST PROCEDURE** Connect the EUT to a low loss RF cable from the antenna port to the power sensor (video bandwidth is greater than the occupied bandwidth). Measure peak emission level, the indicated level is the peak output power, after any corrections for external attenuators and cables. ### **TEST SETUP** # **TEST ENVIRONMENT** | Temperature | 26.6 °C | Relative Humidity | 56.8 % | |---------------------|---------|-------------------|--------| | Atmosphere Pressure | 101 kPa | Test Voltage | DC 5 V | # **RESULTS** Please refer to appendix C. REPORT NO.: 4790071769.2-2 Page 19 of 91 # 7.4. CARRIER FREQUENCY SEPARATION # **LIMITS** | CFR 47 FCC Part15 (15.247), Subpart C | | | | |---------------------------------------|------------------------------------|---|--------------------------| | Section | Test Item | Limit | Frequency Range
(MHz) | | CFR 47 FCC
15.247 (a) (1) | Carrier
Frequency
Separation | Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel. | 2400-2483.5 | #### **TEST PROCEDURE** Refer to ANSI C63.10-2013 clause 7.8.2. Connect the EUT to the spectrum analyzer and use the following settings: | Center Frequency | The center frequency of the channel under test | |------------------|--| | Span | wide enough to capture the peaks of two adjacent channels | | Detector | Peak | | RBW | Start with the RBW set to approximately 30 % of the channel spacing; adjust as necessary to best identify the center of each individual channel. | | VBW | ≥RBW | | Trace | Max hold | | Sweep time | Auto couple | Allow the trace to stabilize and use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. # **TEST SETUP** REPORT NO.: 4790071769.2-2 Page 20 of 91 # **TEST ENVIRONMENT** | Temperature | 26.6 °C | Relative Humidity | 56.8 % | |---------------------|---------|-------------------|--------| | Atmosphere Pressure | 101 kPa | Test Voltage | DC 5 V | # **RESULTS** Please refer to Appendix D. REPORT NO.: 4790071769.2-2 Page 21 of 91 # 7.5. NUMBER OF HOPPING FREQUENCIES ### **LIMITS** | CFR 47 FCC Part15 (15.247), Subpart C | | | |--|--|--| | Section Test Item Limit | | | | CFR 47 15.247 (a) (1) III Number of Hopping at least 15 hopping channels | | | #### **TEST PROCEDURE** Refer to ANSI C63.10-2013 clause 7.8.3. Connect the EUT to the spectrum Analyzer and use the following settings: | Detector | Peak | |------------|--| | RBW | To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. | | VBW | ≥RBW | | Span | The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen. | | Trace | Max hold | | Sweep time | Auto couple | Set EUT to transmit maximum output power and switch on frequency hopping function. then set enough count time (larger than 5000 times) to get all the hopping frequency channel displayed on the screen of spectrum analyzer, count the quantity of peaks to get the number of hopping channels. # **TEST SETUP** REPORT NO.: 4790071769.2-2 Page 22 of 91 # **TEST ENVIRONMENT** | Temperature | 26.6 °C | Relative Humidity | 56.8 % | |---------------------|---------|-------------------|--------| | Atmosphere Pressure | 101 kPa | Test Voltage | DC 5 V | # **RESULTS** Please refer to appendix F. 7.6. TIME OF OCCUPANCY (DWELL TIME) #### **LIMITS** | CFR 47 FCC Part15 (15.247), Subpart C | | | |---------------------------------------|-----------------------------------|---| | Section Test Item Limit | | | | CFR 47 15.247 (a) (1) III | Time of Occupancy
(Dwell Time) | The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed. | ### **TEST PROCEDURE** Refer to ANSI C63.10-2013 clause 7.8.4. Connect the EUT to the spectrum Analyzer and use the following settings: | Center Frequency | The center frequency of the channel under test | |------------------|--| | Detector | Peak | | RBW | 1 MHz | | VBW | ≥RBW | | Span | Zero span, centered on a hopping channel | | Trace | Max hold | | Sweep time | As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel | Use the marker-delta function to determine the transmit time per hop (Burst Width). If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time. For FHSS Mode (79 Channel): DH1/3DH1 Dwell Time: Burst Width * (1600/2) * 31.6 / (channel number) DH3/3DH3 Dwell Time: Burst Width * (1600/4) * 31.6 / (channel number) DH5/3DH5 Dwell Time: Burst Width * (1600/6) * 31.6 / (channel number) For AFHSS Mode (20 Channel): DH1/3DH1 Dwell Time: Burst Width * (800/2) * 8 / (channel number) DH3/3DH3 Dwell Time: Burst Width * (800/4) * 8 / (channel number) DH5/3DH5 Dwell Time: Burst Width * (800/6) * 8 / (channel number) # **TEST SETUP** # **TEST ENVIRONMENT** | Temperature | 26.6 °C | Relative Humidity | 56.8 % | |---------------------|---------|-------------------|--------| | Atmosphere Pressure | 101 kPa | Test Voltage | DC 5 V | # **RESULTS** Please refer to appendix E. REPORT NO.: 4790071769.2-2 Page 25 of 91 # 7.7. CONDUCTED BANDEDGE AND SPURIOUS EMISSION #### **LIMITS** | CFR 47 FCC Part15 (15.247), Subpart C | | | |---------------------------------------|--------------------------------|---| | Section Test Item Limit | | | | CFR 47 FCC §15.247 (d) | Conducted
Spurious Emission | at least 20 dB below that in the 100 kHz
bandwidth within the band that contains the
highest level of the desired power | ### **TEST PROCEDURE** Refer to ANSI C63.10-2013 clause 7.8.6 and 7.8.8. Connect the EUT to the spectrum analyser and use the following settings for reference level measurement: | Center Frequency | The center frequency of the channel under test | |------------------|--| | Detector | Peak | | RBW | 100 kHz | | VBW | ≥3 × RBW | | Span | 1.5 x DTS bandwidth | | Trace | Max hold | | Sweep time | Auto couple. | Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Change the settings for emission level measurement: | lonan | Set the center frequency and span to encompass frequency range to be measured | |--------------------|---| | Detector | Peak | | RBW | 100 kHz | | VBW | ≥3 × RBW | | measurement points | ≥span/RBW | | Trace | Max hold | | Sweep time | Auto couple. | Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements. # **TEST SETUP** # **TEST ENVIRONMENT** | Temperature | 26.6 °C | Relative Humidity | 56.8 % | |---------------------|---------|-------------------
--------| | Atmosphere Pressure | 101 kPa | Test Voltage | DC 5 V | # **RESULTS** Please refer to appendix G & H. # 8. RADIATED TEST RESULTS #### **LIMITS** Please refer to CFR 47 FCC §15.205 and §15.209. Radiation Disturbance Test Limit for FCC (Class B) (9 kHz-1 GHz) | Emissions radiated outside of the specified frequency bands above 30 MHz | | | | |--|---------------------------------------|----------------------------------|---------------| | Frequency Range
(MHz) | Field Strength Limit
(uV/m) at 3 m | Field Strer
(dBuV/m
Quasi- |) at 3 m | | 30 - 88 | 100 | 4(| | | 88 - 216 | 150 | 43.5 | | | 216 - 960 | 200 | 46 | | | Above 960 | 500 | 54 | | | Above 1000 | 500 | Peak
74 | Average
54 | | FCC Emissions radiated outside of the specified frequency bands below 30 MHz | | | |--|-----------------------------------|-------------------------------| | Frequency (MHz) | Field strength (microvolts/meter) | Measurement distance (meters) | | 0.009-0.490 | 2400/F(kHz) | 300 | | 0.490-1.705 | 24000/F(kHz) | 30 | | 1.705-30.0 | 30 | 30 | FCC Restricted bands of operation refer to FCC §15.205 (a): | MHz | MHz | MHz | GHz | |--------------------------|---------------------|---------------|------------------| | 0.090-0.110 | 16.42-16.423 | 399.9-410 | 4.5-5.15 | | ¹ 0.495-0.505 | 16.69475-16.69525 | 608-614 | 5.35-5.46 | | 2.1735-2.1905 | 16.80425-16.80475 | 960-1240 | 7.25-7.75 | | 4.125-4.128 | 25.5-25.67 | 1300-1427 | 8.025-8.5 | | 4.17725-4.17775 | 37.5-38.25 | 1435-1626.5 | 9.0-9.2 | | 4.20725-4.20775 | 73-74.6 | 1645.5-1646.5 | 9.3-9.5 | | 6.215-6.218 | 74.8-75.2 | 1660-1710 | 10.6-12.7 | | 6.26775-6.26825 | 108-121.94 | 1718.8-1722.2 | 13.25-13.4 | | 6.31175-6.31225 | 123-138 | 2200-2300 | 14.47-14.5 | | 8.291-8.294 | 149.9-150.05 | 2310-2390 | 15.35-16.2 | | 8.362-8.366 | 156.52475-156.52525 | 2483.5-2500 | 17.7-21.4 | | 8.37625-8.38675 | 156.7-156.9 | 2690-2900 | 22.01-23.12 | | 8.41425-8.41475 | 162.0125-167.17 | 3260-3267 | 23.6-24.0 | | 12.29-12.293 | 167.72-173.2 | 3332-3339 | 31.2-31.8 | | 12.51975-12.52025 | 240-285 | 3345.8-3358 | 36.43-36.5 | | 12.57675-12.57725 | 322-335.4 | 3600-4400 | (²) | | 13.36-13.41 | | | | Note: 1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c #### **TEST SETUP AND PROCEDURE** Below 30 MHz # The setting of the spectrum analyser | RBW | 200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz) | |-------|--| | VBW | 200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz) | | Sweep | Auto | | Trace | Max hold | - 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4. - 2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement. - 3. The EUT was placed on a turntable with 80 cm above ground. - 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower. - 5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. - 6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported. - 7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788. Below 1 GHz and above 30 MHz The setting of the spectrum analyser | RBW | 120 kHz | |----------|----------| | VBW | 300 kHz | | Sweep | Auto | | Detector | Peak/QP | | Trace | Max hold | - 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5. - 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - 3. The EUT was placed on a turntable with 80 cm above ground. - 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower. - 5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. #### Above 1 GHz The setting of the spectrum analyser | RBW | 1 MHz | |----------|--------------------------------| | IV/R/W | PEAK: 3 MHz
AVG: see note 6 | | Sweep | Auto | | Detector | Peak | | Trace | Max hold | - 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6. - 2. The EUT was arranged to its worst case and then tune the antenna tower (1.5 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - 3. The EUT was placed on a turntable with 1.5 m above ground. - 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower. - 5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209. - 6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.1.ON TIME AND DUTY CYCLE. X axis, Y axis, Z axis positions: Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report. Note 2: The EUT was fully exercised with external accessories during the test. In the case of multiple accessory external ports, an external accessory shall be connected to one of each type of port. # **TEST ENVIRONMENT** | Temperature | 23.5 °C | Relative Humidity | 60 % | |---------------------|---------|-------------------|--------| | Atmosphere Pressure | 101 kPa | Test Voltage | DC 5 V | ### **RESULTS** # 8.1. RESTRICTED BANDEDGE ### **8.1.1. GFSK MODE** ### RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL) #### **PEAK** | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 2390.000 | 13.97 | 33.35 | 47.32 | 74.00 | -26.68 | peak | Note: 1. Measurement = Reading Level + Correct Factor. - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit. ### RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL) ### <u>PEAK</u> | l | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |---|-----|-----------|---------|---------|----------|----------|--------|--------| | | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | Ī | 1 | 2483.500 | 15.13 | 33.71 | 48.84 | 74.00 | -25.16 | peak | Note: 1. Measurement = Reading Level + Correct Factor. - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit. Note: All the polarities (Vertical & Horizontal) had been tested, only the worst data was recorded in the report. # 8.1.2. 8DPSK MODE ### RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL) #### **PEAK** | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 2390.000 | 13.54 | 33.35 | 46.89 | 74.00 | -27.11 | peak | Note: 1. Measurement = Reading Level + Correct Factor. - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit. ### RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL) # <u>PEAK</u> | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------
---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 2483.500 | 15.25 | 33.71 | 48.96 | 74.00 | -25.04 | peak | Note: 1. Measurement = Reading Level + Correct Factor. - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit. Note: All the polarities (Vertical & Horizontal) had been tested, only the worst data was recorded in the report. # 8.2. SPURIOUS EMISSIONS (1 GHz ~ 3 GHz) # 8.2.1. **GFSK MODE** ### HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL) | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 1240.000 | 49.75 | -12.94 | 36.81 | 74.00 | -37.19 | peak | | 2 | 1542.000 | 50.06 | -11.94 | 38.12 | 74.00 | -35.88 | peak | | 3 | 1744.000 | 47.13 | -10.47 | 36.66 | 74.00 | -37.34 | peak | | 4 | 1924.000 | 46.81 | -10.13 | 36.68 | 74.00 | -37.32 | peak | | 5 | 2592.000 | 44.48 | -7.89 | 36.59 | 74.00 | -37.41 | peak | | 6 | 2922.000 | 43.57 | -5.96 | 37.61 | 74.00 | -36.39 | peak | Note: 1. Peak Result = Reading Level + Correct Factor. - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses. - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain. #### **HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)** | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 1116.000 | 49.80 | -13.40 | 36.40 | 74.00 | -37.60 | peak | | 2 | 1204.000 | 50.26 | -12.98 | 37.28 | 74.00 | -36.72 | peak | | 3 | 1554.000 | 52.59 | -11.86 | 40.73 | 74.00 | -33.27 | peak | | 4 | 1672.000 | 51.46 | -11.02 | 40.44 | 74.00 | -33.56 | peak | | 5 | 1962.000 | 51.37 | -10.16 | 41.21 | 74.00 | -32.79 | peak | | 6 | 2786.000 | 45.55 | -6.65 | 38.90 | 74.00 | -35.10 | peak | - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses. - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain. #### HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL) | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 1122.000 | 49.61 | -13.38 | 36.23 | 74.00 | -37.77 | peak | | 2 | 1214.000 | 50.92 | -12.96 | 37.96 | 74.00 | -36.04 | peak | | 3 | 1542.000 | 48.94 | -11.94 | 37.00 | 74.00 | -37.00 | peak | | 4 | 1700.000 | 46.94 | -10.80 | 36.14 | 74.00 | -37.86 | peak | | 5 | 1960.000 | 46.23 | -10.16 | 36.07 | 74.00 | -37.93 | peak | | 6 | 2442.000 | 53.06 | -8.32 | 44.74 | 74.00 | -29.26 | peak | - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses. - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain. #### **HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)** | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 1120.000 | 50.37 | -13.39 | 36.98 | 74.00 | -37.02 | peak | | 2 | 1222.000 | 51.10 | -12.96 | 38.14 | 74.00 | -35.86 | peak | | 3 | 1526.000 | 52.71 | -12.05 | 40.66 | 74.00 | -33.34 | peak | | 4 | 1572.000 | 52.59 | -11.75 | 40.84 | 74.00 | -33.16 | peak | | 5 | 1960.000 | 53.11 | -10.16 | 42.95 | 74.00 | -31.05 | peak | | 6 | 2442.000 | 53.85 | -8.32 | 45.53 | 74.00 | -28.47 | peak | - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses. - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain. # **HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)** | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 1206.000 | 50.69 | -12.98 | 37.71 | 74.00 | -36.29 | peak | | 2 | 1594.000 | 48.36 | -11.59 | 36.77 | 74.00 | -37.23 | peak | | 3 | 1838.000 | 47.09 | -10.08 | 37.01 | 74.00 | -36.99 | peak | | 4 | 1956.000 | 46.65 | -10.16 | 36.49 | 74.00 | -37.51 | peak | | 5 | 2664.000 | 44.49 | -7.44 | 37.05 | 74.00 | -36.95 | peak | | 6 | 2786.000 | 44.35 | -6.65 | 37.70 | 74.00 | -36.30 | peak | - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses. - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain. #### HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL) | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 1160.000 | 49.58 | -13.18 | 36.40 | 74.00 | -37.60 | peak | | 2 | 1554.000 | 52.23 | -11.86 | 40.37 | 74.00 | -33.63 | peak | | 3 | 1594.000 | 51.91 | -11.59 | 40.32 | 74.00 | -33.68 | peak | | 4 | 1956.000 | 51.58 | -10.16 | 41.42 | 74.00 | -32.58 | peak | | 5 | 2650.000 | 46.10 | -7.54 | 38.56 | 74.00 | -35.44 | peak | | 6 | 2798.000 | 44.64 | -6.56 | 38.08 | 74.00 | -35.92 | peak | Note: 1. Peak Result = Reading Level + Correct Factor. - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses. - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain. Note: All the modes and channels had been tested, but only the worst data was recorded in the report. # 8.3. SPURIOUS EMISSIONS (3 GHz ~ 18 GHz) ### **8.3.1. GFSK MODE** ### HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL) | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 4755.000 | 41.21 | 0.33 | 41.54 | 74.00 | -32.46 | peak | | 2 | 6375.000 | 39.28 | 4.23 | 43.51 | 74.00 | -30.49 | peak | | 3 | 7710.000 | 38.22 | 7.90 | 46.12 | 74.00 | -27.88 | peak | | 4 | 8250.000 | 37.96 | 9.17 | 47.13 | 74.00 | -26.87 | peak | | 5 | 11370.000 | 36.07 | 14.14 | 50.21 | 74.00 | -23.79 | peak | | 6 | 17100.000 | 29.72 | 20.64 | 50.36 | 74.00 | -23.64 | peak | - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses. - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain. ## HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL) | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 6375.000 | 45.99 | 4.23 | 50.22 | 74.00 | -23.78 | peak | | 2 | 8340.000 | 37.73 | 8.82 | 46.55 | 74.00 | -27.45 | peak | | 3 | 9060.000 | 36.75 | 10.23 | 46.98 | 74.00 | -27.02 | peak | | 4 | 11745.000 | 35.45 | 15.31 | 50.76 | 74.00 | -23.24 | peak | | 5 | 14805.000 | 33.48 | 16.80 | 50.28 | 74.00 | -23.72 | peak | | 6 | 16410.000 | 32.14 | 18.75 | 50.89 | 74.00 | -23.11 | peak | - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses. - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain. # HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL) | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 3660.000 | 47.48 | -3.91 | 43.57 | 74.00 | -30.43 | peak | | 2 | 4875.000 | 41.90 | 0.71 | 42.61 | 74.00 | -31.39 | peak | | 3 | 8250.000 | 37.16 | 9.17 | 46.33 | 74.00 | -27.67 | peak | | 4 | 9060.000 | 37.60 | 10.23 | 47.83 | 74.00 | -26.17 | peak | | 5 | 11430.000 | 35.38 | 14.26 | 49.64 | 74.00 | -24.36 | peak | | 6 | 14235.000 | 34.32 | 16.73 | 51.05 | 74.00 | -22.95 | peak | - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. Filter losses were only considered in the spurious frequency bands and
the authorized band was not corrected for High Pass Filter losses. - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain. #### HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL) | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 3180.000 | 52.34 | -5.29 | 47.05 | 74.00 | -26.95 | peak | | 2 | 6390.000 | 41.51 | 4.32 | 45.83 | 74.00 | -28.17 | peak | | 3 | 8235.000 | 37.14 | 9.22 | 46.36 | 74.00 | -27.64 | peak | | 4 | 8940.000 | 37.10 | 9.99 | 47.09 | 74.00 | -26.91 | peak | | 5 | 11835.000 | 34.24 | 15.56 | 49.80 | 74.00 | -24.20 | peak | | 6 | 17085.000 | 30.77 | 20.58 | 51.35 | 74.00 | -22.65 | peak | - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses. - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain. #### HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL) | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 4875.000 | 41.68 | 0.71 | 42.39 | 74.00 | -31.61 | peak | | 2 | 5880.000 | 39.45 | 2.83 | 42.28 | 74.00 | -31.72 | peak | | 3 | 8130.000 | 37.77 | 8.76 | 46.53 | 74.00 | -27.47 | peak | | 4 | 9060.000 | 37.30 | 10.23 | 47.53 | 74.00 | -26.47 | peak | | 5 | 11820.000 | 35.15 | 15.58 | 50.73 | 74.00 | -23.27 | peak | | 6 | 17400.000 | 30.20 | 20.73 | 50.93 | 74.00 | -23.07 | peak | - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses. - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain. #### HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL) | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 3195.000 | 52.03 | -5.25 | 46.78 | 74.00 | -27.22 | peak | | 2 | 8145.000 | 37.63 | 8.89 | 46.52 | 74.00 | -27.48 | peak | | 3 | 8940.000 | 37.13 | 9.99 | 47.12 | 74.00 | -26.88 | peak | | 4 | 11835.000 | 35.27 | 15.56 | 50.83 | 74.00 | -23.17 | peak | | 5 | 15210.000 | 34.03 | 16.19 | 50.22 | 74.00 | -23.78 | peak | | 6 | 17235.000 | 29.38 | 20.99 | 50.37 | 74.00 | -23.63 | peak | - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses. - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain. ### 8.3.2. 8DPSK MODE # HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL) | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 3600.000 | 48.39 | -4.19 | 44.20 | 74.00 | -29.80 | peak | | 2 | 4800.000 | 47.19 | 0.59 | 47.78 | 74.00 | -26.22 | peak | | 3 | 6375.000 | 40.49 | 4.23 | 44.72 | 74.00 | -29.28 | peak | | 4 | 8235.000 | 37.50 | 9.22 | 46.72 | 74.00 | -27.28 | peak | | 5 | 11835.000 | 35.24 | 15.56 | 50.80 | 74.00 | -23.20 | peak | | 6 | 16455.000 | 31.31 | 18.93 | 50.24 | 74.00 | -23.76 | peak | - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses. - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain. #### HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL) | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 3600.000 | 50.68 | -4.19 | 46.49 | 74.00 | -27.51 | peak | | 2 | 4800.000 | 46.91 | 0.59 | 47.50 | 74.00 | -26.50 | peak | | 3 | 8115.000 | 38.04 | 8.64 | 46.68 | 74.00 | -27.32 | peak | | 4 | 8955.000 | 37.50 | 10.15 | 47.65 | 74.00 | -26.35 | peak | | 5 | 11850.000 | 35.68 | 15.53 | 51.21 | 74.00 | -22.79 | peak | | 6 | 17100.000 | 30.22 | 20.64 | 50.86 | 74.00 | -23.14 | peak | - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses. - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain. # **HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)** | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 7890.000 | 38.37 | 7.99 | 46.36 | 74.00 | -27.64 | peak | | 2 | 8970.000 | 37.26 | 10.32 | 47.58 | 74.00 | -26.42 | peak | | 3 | 11760.000 | 35.77 | 15.40 | 51.17 | 74.00 | -22.83 | peak | | 4 | 12720.000 | 36.25 | 15.51 | 51.76 | 74.00 | -22.24 | peak | | 5 | 13920.000 | 33.68 | 16.89 | 50.57 | 74.00 | -23.43 | peak | | 6 | 16515.000 | 31.22 | 19.19 | 50.41 | 74.00 | -23.59 | peak | - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses. - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain. #### HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL) | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 3195.000 | 56.64 | -5.25 | 51.39 | 74.00 | -22.61 | peak | | 2 | 6390.000 | 44.59 | 4.32 | 48.91 | 74.00 | -25.09 | peak | | 3 | 8940.000 | 37.65 | 9.99 | 47.64 | 74.00 | -26.36 | peak | | 4 | 11880.000 | 34.89 | 15.49 | 50.38 | 74.00 | -23.62 | peak | | 5 | 13920.000 | 33.85 | 16.89 | 50.74 | 74.00 | -23.26 | peak | | 6 | 17610.000 | 29.33 | 21.24 | 50.57 | 74.00 | -23.43 | peak | - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses. - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain. #### HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL) | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 4800.000 | 47.04 | 0.59 | 47.63 | 74.00 | -26.37 | peak | | 2 | 8265.000 | 37.50 | 9.11 | 46.61 | 74.00 | -27.39 | peak | | 3 | 9360.000 | 36.91 | 10.11 | 47.02 | 74.00 | -26.98 | peak | | 4 | 11835.000 | 35.19 | 15.56 | 50.75 | 74.00 | -23.25 | peak | | 5 | 14805.000 | 33.62 | 16.80 | 50.42 | 74.00 | -23.58 | peak | | 6 | 17235.000 | 30.24 | 20.99 | 51.23 | 74.00 | -22.77 | peak | - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses. - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain. #### **HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)** | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 3600.000 | 50.28 | -4.19 | 46.09 | 74.00 | -27.91 | peak | | 2 | 4800.000 | 45.05 | 0.59 | 45.64 | 74.00 | -28.36 | peak | | 3 | 6375.000 | 41.81 | 4.23 | 46.04 | 74.00 | -27.96 | peak | | 4 | 8940.000 | 37.76 | 9.99 | 47.75 | 74.00 | -26.25 | peak | | 5 | 11775.000 | 34.91 | 15.47 | 50.38 | 74.00 | -23.62 | peak | | 6 | 16860.000 | 31.10 | 19.88 | 50.98 | 74.00 | -23.02 | peak | - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses. - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain. # 8.4. SPURIOUS EMISSIONS (18 GHz ~ 26 GHz) # 8.4.1. 8DPSK MODE # SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL) | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 18144.000 | 50.77 | -5.48 | 45.29 | 74.00 | -28.71 | peak | | 2 | 20000.000 | 51.31 | -5.45 | 45.86 | 74.00 | -28.14 | peak | | 3 | 21600.000 | 50.02 | -4.54 | 45.48 | 74.00 | -28.52 | peak | | 4 | 22072.000 | 49.77 | -4.41 | 45.36 | 74.00 | -28.64 | peak | | 5
| 24248.000 | 48.32 | -2.83 | 45.49 | 74.00 | -28.51 | peak | | 6 | 24664.000 | 47.90 | -2.33 | 45.57 | 74.00 | -28.43 | peak | - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. # SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, VERTICAL) | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 18224.000 | 50.58 | -5.53 | 45.05 | 74.00 | -28.95 | peak | | 2 | 18528.000 | 50.61 | -5.26 | 45.35 | 74.00 | -28.65 | peak | | 3 | 20240.000 | 50.82 | -5.61 | 45.21 | 74.00 | -28.79 | peak | | 4 | 21544.000 | 49.76 | -4.63 | 45.13 | 74.00 | -28.87 | peak | | 5 | 22976.000 | 48.76 | -3.46 | 45.30 | 74.00 | -28.70 | peak | | 6 | 24568.000 | 48.10 | -2.33 | 45.77 | 74.00 | -28.23 | peak | Note: 1. Peak Result = Reading Level + Correct Factor. - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. Note: All the modes and channels have been tested, only the worst data was recorded in the report. # 8.5. SPURIOUS EMISSIONS (30 MHz ~ 1 GHz) 8.5.1. 8DPSK MODE SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL) | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 141.5500 | 55.79 | -18.76 | 37.03 | 43.50 | -6.47 | QP | | 2 | 203.6300 | 50.40 | -16.70 | 33.70 | 43.50 | -9.80 | QP | | 3 | 259.8900 | 58.50 | -18.55 | 39.95 | 46.00 | -6.05 | QP | | 4 | 284.1400 | 54.30 | -16.36 | 37.94 | 46.00 | -8.06 | QP | | 5 | 425.7600 | 46.02 | -12.83 | 33.19 | 46.00 | -12.81 | QP | | 6 | 838.0100 | 33.71 | -6.52 | 27.19 | 46.00 | -18.81 | QP | Note: 1. Result Level = Read Level + Antenna Factor + Cable loss. - 2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit. - 3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto. # SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, VERTICAL) | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 62.0100 | 49.94 | -20.51 | 29.43 | 40.00 | -10.57 | QP | | 2 | 87.2300 | 51.09 | -21.80 | 29.29 | 40.00 | -10.71 | QP | | 3 | 201.6900 | 43.63 | -16.53 | 27.10 | 43.50 | -16.40 | QP | | 4 | 288.0200 | 47.23 | -16.06 | 31.17 | 46.00 | -14.83 | QP | | 5 | 302.5700 | 46.30 | -15.25 | 31.05 | 46.00 | -14.95 | QP | | 6 | 412.1800 | 38.95 | -13.10 | 25.85 | 46.00 | -20.15 | QP | Note: 1. Result Level = Read Level + Antenna Factor + Cable loss. - 2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit. - 3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto Note: All the modes and channels have been tested, only the worst data was recorded in the report. # 8.6. SPURIOUS EMISSIONS BELOW 30 MHz # 8.6.1. 8DPSK MODE # (MID CHANNEL, LOOP ANTENNA FACE ON TO THE EUT, WORST-CASE CONFIGURATION) ## 9 kHz~ 150 kHz | No. | Frequency | Reading | Correct | FCC Result | FCC Limit | Margin | Remark | |-----|-----------|---------|---------|------------|-----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 0.0100 | 75.22 | -101.40 | -26.18 | 47.60 | -73.78 | peak | | 2 | 0.0170 | 69.29 | -101.36 | -32.07 | 42.99 | -75.06 | peak | | 3 | 0.0279 | 66.67 | -101.38 | -34.71 | 38.69 | -73.40 | peak | | 4 | 0.0427 | 62.14 | -101.45 | -39.31 | 34.99 | -74.30 | peak | | 5 | 0.0636 | 60.31 | -101.54 | -41.23 | 31.53 | -72.76 | peak | | 6 | 0.0981 | 57.77 | -101.78 | -44.01 | 27.77 | -71.78 | peak | Note: 1. Measurement = Reading Level + Correct Factor. - 2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit. - 3. All 3 polarizations(Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report. ### 150 kHz ~ 490 kHz | No. | Frequency | Reading | Correct | FCC Result | FCC Limit | Margin | Remark | |-----|-----------|---------|---------|------------|-----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 0.1554 | 75.27 | -101.65 | -26.38 | 23.77 | -50.15 | peak | | 2 | 0.1595 | 74.36 | -101.65 | -27.29 | 23.55 | -50.84 | peak | | 3 | 0.1917 | 67.54 | -101.70 | -34.16 | 21.95 | -56.11 | peak | | 4 | 0.2190 | 66.27 | -101.75 | -35.48 | 20.79 | -56.27 | peak | | 5 | 0.3163 | 62.20 | -101.87 | -39.67 | 17.6 | -57.27 | peak | | 6 | 0.3662 | 59.58 | -101.93 | -42.35 | 16.33 | -58.68 | peak | Note: 1. Measurement = Reading Level + Correct Factor. - 2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit. - 3. All 3 polarizations(Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report. ## 490 kHz ~ 30 MHz | No. | Frequency | Reading | Correct | FCC Result | FCC Limit | Margin | Remark | |-----|-----------|---------|---------|------------|-----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 0.5039 | 64.44 | -62.07 | 2.37 | 33.56 | -31.19 | peak | | 2 | 0.8296 | 63.44 | -62.17 | 1.27 | 29.23 | -27.96 | peak | | 3 | 1.2459 | 57.75 | -62.16 | -4.41 | 25.7 | -30.11 | peak | | 4 | 5.2705 | 54.54 | -61.45 | -6.91 | 29.54 | -36.45 | peak | | 5 | 10.7299 | 53.48 | -60.83 | -7.35 | 29.54 | -36.89 | peak | | 6 | 15.7759 | 53.75 | -60.99 | -7.24 | 29.54 | -36.78 | peak | Note: 1. Measurement = Reading Level + Correct Factor. - 2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit. - 3. All 3 polarizations(Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report. Note: All the modes and channels have been tested, only the worst data was recorded in the report. # 9. AC POWER LINE CONDUCTED EMISSIONS #### **LIMITS** Please refer to CFR 47 FCC §15.207 (a) | FREQUENCY (MHz) | Quasi-peak | Average | |-----------------|------------|-----------| | 0.15 -0.5 | 66 - 56 * | 56 - 46 * | | 0.50 -5.0 | 56.00 | 46.00 | | 5.0 -30.0 | 60.00 | 50.00 | ## **TEST SETUP AND PROCEDURE** Refer to ANSI C63.10-2013 clause 6.2. The EUT is put on a table of non-conducting material that is 80 cm high. The vertical conducting wall of shielding is located 40 cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9 kHz. The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application. #### **TEST ENVIRONMENT** | Temperature | 22 °C | Relative Humidity | 58 % | |---------------------|---------|-------------------|--------| | Atmosphere Pressure | 101 kPa | Test Voltage | DC 5 V | #### **TEST RESULTS** # **9.1. 8DPSK MODE** ### LINE L RESULTS (MID CHANNEL, WORST-CASE CONFIGURATION) | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|--------|--------|--------|--------| | | (MHz) | (dBuV) | (dB) | (dBuV) | (dBuV) | (dB) | | | 1 | 0.1898 | 43.13 | 9.59 | 52.72 | 64.05 | -11.33 | QP | | 2 | 0.1898 | 31.37 | 9.59 | 40.96 | 54.05 | -13.09 | AVG | | 3 | 0.2428 | 37.42 | 9.59 | 47.01 | 62.00 | -14.99 | QP | | 4 | 0.2428 | 26.91 | 9.59 | 36.50 | 52.00 | -15.50 | AVG | | 5 | 0.3550 | 33.62 | 9.59 | 43.21 | 58.84 | -15.63 | QP | | 6 | 0.3550 | 20.82 | 9.59 | 30.41 | 48.84 | -18.43 | AVG | | 7 | 0.4968 | 28.79 | 9.60 | 38.39 | 56.05 | -17.66 | QP | | 8 | 0.4968 | 13.86 | 9.60 | 23.46 | 46.05 | -22.59 | AVG | | 9 | 3.1546 | 16.92 | 9.61 | 26.53 | 56.00 | -29.47 | QP | | 10 | 3.1546 | 8.79 | 9.61 | 18.40 | 46.00 | -27.60 | AVG | | 11 | 13.9504 | 20.77 | 9.66 | 30.43 | 60.00 | -29.57 | QP | | 12 | 13.9504 | 12.25 | 9.66 | 21.91 | 50.00 | -28.09 | AVG | Note: 1. Result = Reading + Correct Factor. - 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz). - 4. Step size: 80 Hz (0.009 MHz \sim 0.15 MHz), 4 kHz (0.15 MHz \sim 30 MHz), Scan time: auto. # **LINE N RESULTS (MID CHANNEL, WORST-CASE CONFIGURATION)** | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|--------|--------|--------|--------| | | (MHz) | (dBuV) | (dB) | (dBuV) | (dBuV) | (dB) | | | 1 | 0.1810 | 44.43 | 9.59 | 54.02 | 64.44 | -10.42 | QP | | 2 | 0.1810 | 34.52 | 9.59 | 44.11 | 54.44 | -10.33 | AVG | | 3 | 0.2501 | 35.14 | 9.59 | 44.73 | 61.75 | -17.02 | QP | | 4 | 0.2501 | 21.35 | 9.59 | 30.94 | 51.75 | -20.81 | AVG | | 5 | 0.3082 | 36.14 | 9.59 | 45.73 | 60.02 | -14.29 | QP | | 6 | 0.3082 | 23.93 | 9.59 | 33.52 | 50.02 | -16.50 | AVG | | 7 | 0.4992 | 30.59 | 9.60 | 40.19 | 56.01 | -15.82 | QP | | 8 | 0.4992 | 15.45 | 9.60 | 25.05 | 46.01 | -20.96 | AVG | | 9 | 0.8050 | 27.31 | 9.60 | 36.91 | 56.00 | -19.09 | QP | | 10 | 0.8050 | 12.52 | 9.60 | 22.12 | 46.00 | -23.88 | AVG | | 11 | 1.2546 | 24.83 | 9.61 | 34.44 | 56.00 | -21.56 | QP | | 12 | 1.2546 | 13.61 | 9.61 | 23.22 | 46.00 | -22.78 | AVG | Note: 1. Result = Reading + Correct Factor. - 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV
limit. - 3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz). - 4. Step size: 80 Hz (0.009 MHz ~ 0.15 MHz), 4 kHz (0.15 MHz ~ 30 MHz), Scan time: auto. Note: All the modes and channels have been tested, only the worst data was recorded in the report. REPORT NO.: 4790071769.2-2 Page 64 of 91 # 10. ANTENNA REQUIREMENTS #### APPLICABLE REQUIREMENTS Please refer to FCC §15.203 An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. # Please refer to FCC §15.247(b)(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi. # **RESULTS** Complies REPORT NO.: 4790071769.2-2 Page 65 of 91 # 11. Appendix # 11.1. Appendix A: 20dB Emission Bandwidth 11.1.1. Test Result | Test Packet
Type | Antenna | Channel | 20db EBW[MHz] | FL[MHz] | FH[MHz] | Verdict | |---------------------|-----------|---------|---------------|----------|----------|---------| | | | 2402 | 0.804 | 2401.598 | 2402.402 | PASS | | DH5 | Ant1 | 2441 | 0.798 | 2440.598 | 2441.396 | PASS | | | | 2480 | 0.852 | 2479.547 | 2480.399 | PASS | | | 3DH5 Ant1 | 2402 | 1.290 | 2401.352 | 2402.642 | PASS | | 3DH5 | | 2441 | 1.329 | 2440.325 | 2441.654 | PASS | | | | 2480 | 1.293 | 2479.349 | 2480.642 | PASS | # 11.1.2. Test Graphs # 11.2. Appendix B: Occupied Channel Bandwidth 11.2.1. Test Result | Test Packet
Type | Antenna | Channel | OCB [MHz] | FL[MHz] | FH[MHz] | Verdict | |---------------------|----------|---------|-----------|----------|----------|---------| | | DH5 Ant1 | 2402 | 0.76136 | 2401.620 | 2402.381 | PASS | | DH5 | | 2441 | 0.75676 | 2440.622 | 2441.379 | PASS | | | 2480 | 0.76133 | 2479.619 | 2480.380 | PASS | | | | | 2402 | 1.1893 | 2401.400 | 2402.589 | PASS | | 3DH5 Ant1 | | 2441 | 1.1820 | 2440.406 | 2441.588 | PASS | | | | 2480 | 1.1853 | 2479.401 | 2480.587 | PASS | # 11.2.2. Test Graphs # 11.3. Appendix C: Maximum conducted output power 11.3.1. Test Result | Test Packet
Type | Antenna | Channel | Result[dBm] | Limit[dBm] | Verdict | |---------------------|---------|---------|-------------|------------|---------| | | | 2402 | 7.60 | <=30 | PASS | | DH5 | Ant1 | 2441 | 7.67 | <=30 | PASS | | | | 2480 | 7.45 | <=30 | PASS | | 3DH5 | H5 Ant1 | 2402 | 10.24 | <=20.97 | PASS | | | | 2441 | 10.37 | <=20.97 | PASS | | | | 2480 | 10.31 | <=20.97 | PASS | 11.4. Appendix D: Carrier frequency separation 11.4.1. Test Result | Test Packet
Type | Antenna | Channel | Result[MHz] | Limit[MHz] | Verdict | |---------------------|---------|---------|-------------|------------|---------| | DH5 | Ant1 | Нор | 1.012 | >=0.852 | PASS | | 3DH5 | Ant1 | Нор | 1 | >=0.886 | PASS | ## 11.4.2. Test Graphs # 11.5. Appendix E: Time of occupancy 11.5.1. Test Graphs ## 11.5.2. Test Result | FHSS Mode | | | | | | | | | | |---------------------|---------|---------|-------------------------------------|-------|----------|---------|--|--|--| | Test Packet
Type | Antenna | Channel | hannel BurstWidth Result[s] Limit[s | | Limit[s] | Verdict | | | | | DH1 | Ant1 | Нор | 0.37 | 0.118 | <=0.4 | PASS | | | | | DH3 | Ant1 | Нор | 1.63 | 0.261 | <=0.4 | PASS | | | | | DH5 | Ant1 | Нор | 2.87 | 0.306 | <=0.4 | PASS | | | | | 3DH1 | Ant1 | Нор | 0.38 | 0.122 | <=0.4 | PASS | | | | | 3DH3 | Ant1 | Нор | 1.63 | 0.261 | <=0.4 | PASS | | | | | 3DH5 | Ant1 | Нор | 2.88 | 0.307 | <=0.4 | PASS | | | | | AFHSS Mode | | | | | | | | | | |-------------|---------|---------|------------|-----------|-----------|---------|--|--|--| | Test Packet | | Channel | BurstWidth | D #[-1 | 1 : :45-1 | \ | | | | | Туре | Antenna | | [ms] | Result[s] | Limit[s] | Verdict | | | | | DH1 | Ant1 | Нор | 0.37 | 0.059 | <=0.4 | PASS | | | | | DH3 | Ant1 | Нор | 1.63 | 0.130 | <=0.4 | PASS | | | | | DH5 | Ant1 | Нор | 2.87 | 0.153 | <=0.4 | PASS | | | | | 3DH1 | Ant1 | Нор | 0.38 | 0.061 | <=0.4 | PASS | | | | | 3DH3 | Ant1 | Нор | 1.63 | 0.130 | <=0.4 | PASS | | | | | 3DH5 | Ant1 | Нор | 2.88 | 0.154 | <=0.4 | PASS | | | | ## 11.5.3. Test Graphs # 11.6. Appendix F: Number of hopping channels 11.6.1. Test Result | Test Packet
Type | Antenna | Channel | Result[Num] | Limit[Num] | Verdict | |---------------------|---------|---------|-------------|------------|---------| | DH5 | Ant1 | Нор | 79 | >=15 | PASS | | 3DH5 | Ant1 | Нор | 79 | >=15 | PASS | 11.7. Appendix G: Band edge measurements 11.7.1. Test Result | Test
Packet
Type | Antenna | ChName | Channel | RefLevel
[dBm] | Result
[dBm] | Limit
[dBm] | Verdict | |------------------------|----------|--------|----------|-------------------|-----------------|----------------|---------| | | DH5 Ant1 | Low | 2402 | 7.54 | -50 | <=-12.46 | PASS | | DUE | | High | 2480 | 7.50 | -50.34 | <=-12.5 | PASS | | DHO | | Low | Hop_2402 | 11.91 | -50.12 | <=-8.1 | PASS | | | | High | Hop_2480 | 9.16 | -50.13 | <=-10.84 | PASS | | | | Low | 2402 | 7.72 | -47.31 | <=-12.28 | PASS | | 3DH5 | Ant1 | High | 2480 | 6.46 | -50.08 | <=-13.55 | PASS | | | | Low | Hop_2402 | 5.95 | -50.19 | <=-14.05 | PASS | | | | High | Hop_2480 | 9.32 | -49.32 | <=-10.68 | PASS | ### 11.7.2. Test Graphs # 11.8. Appendix H: Conducted Spurious Emission 11.8.1. Test Result | Test Packet
Type | Antenna | Channel | FreqRange
[MHz] | Result
[dBm] | Limit
[dBm] | Verdict | |---------------------|---------|--------------|--------------------|-----------------|----------------|----------| | | | 2402 | Reference | 7.30 | | PASS | | | | | 30~1000 | -62.62 | <=-12.7 | PASS | | | | | 1000~26500 | -53.93 | <=-12.7 | PASS | | | | 2441 | Reference | 7.58 | | PASS | | DH5 | Ant1 | | 30~1000 | -62.83 | <=-12.42 | PASS | | | | | 1000~26500 | -53.16 | <=-12.42 | PASS | | | | 2480 | Reference | 7.59 | | PASS | | | | | 30~1000 | -60.88 | <=-12.41 | PASS | | | | | 1000~26500 | -52.9 | <=-12.41 | PASS | | | | 2402 | Reference | 7.89 | | PASS | | | | | 30~1000 | -62.11 | <=-12.11 | PASS | | | | | 1000~26500 | -54.32 | <=-12.11 | PASS | | | | 2441
2480 | Reference | 7.98 | | PASS | | 3DH5 | Ant1 | | 30~1000 | -62.76 | <=-12.02 | PASS | | | | | 1000~26500 | -54.45 | <=-12.02 | PASS | | | | | Reference | 7.81 | | PASS | | | | | 30~1000 | -61.13 | <=-12.19 | PASS | | | | | | 1000~26500 | -53.88 | <=-12.19 | ### 11.8.2. Test Graphs REPORT NO.: 4790071769.2-2 Page 90 of 91 11.9. Appendix I: Duty Cycle 11.9.1. Test Result | Test Packet
Type | On Time
(msec) | Period
(msec) | Duty
Cycle
x
(Linear) | Duty
Cycle
(%) | Duty Cycle
Correction
Factor
(dB) | 1/T
Minimum
VBW
(kHz) | Final
setting
For VBW
(kHz) | |---------------------|-------------------|------------------|--------------------------------|----------------------|--|--------------------------------|--------------------------------------| | DH5 | 2.88 | 5.00 | 0.5760 | 57.60 | 2.40 | 0.35 | 0.5 | | 3DH5 | 2.89 | 5.00 | 0.5780 | 57.80 | 2.38 | 0.35 | 0.5 | Note: Duty Cycle Correction Factor=10log (1/x). Where: x is Duty Cycle (Linear) Where: T is On Time If that calculated VBW is not available on the analyzer then the next higher value should be used. ## 11.9.2. Test Graphs **END OF REPORT**