

Inter**Lab**

FCC Measurement/Technical Report on

WLAN transceiver Harman/Becker Audi MIB 2

FCC ID: T8GA270

IC: 6434A-A270

Report Reference: MDE_HARMAN_1403_FCCb

Test Laboratory:

Borsigstrasse 11 Germany 7Layers AG 40880 Ratingen

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7 layers AG Borsigstrasse 11 40880 Ratingen, Germany Phone: +49 (0) 2102 749 0 Fax: +49 (0) 2102 749 350 www.7Layers.com Aufsichtsratsvorsitzender • Chairman of the Supervisory Board: Peter Mertel Vorstand • Board: Dr. H.-J. Meckelburg Dr. H. Ansorge

Registergericht • registered in: Düsseldorf, HRB 44096 USt-IdNr • VAT No.: DE 203159652 TAX No. 147/5869/0385

Table of Contents

Applied Standards and Test Summary	3
0.1 Technical Report Summary	3
0.2 FCC and IC Correlation Table	4
0.3 Measurement Summary	5
L Administrative Data	7
1.1 Testing Laboratory	7
1.2 Project Data	7
1.3 Applicant Data	7
1.4 Manufacturer Data	7
2 Test object Data	8
2.1 General EUT Description	8
2.2 EUT Main components	9
2.3 Ancillary Equipment	9
2.4 Auxiliary Equipment	10
2.5 EUT Setups	10
2.6 Operating Modes	11
2.7 Special software used for testing	11
2.8 Product labelling	11
3 Test Results	12
3.1 Occupied bandwidth	12
3.2 Peak power output	15
3.3 Spurious RF conducted emissions	18
3.4 Spurious radiated emissions	21
3.5 Band edge compliance	26
3.6 Power density	33
1 Test Equipment	36
Photo Report	42
5 Setup Drawings	42

0 Applied Standards and Test Summary

0.1 Technical Report Summary

Type of Authorization

Certification for an Intentional Radiator (Digital Device / Spread Spectrum).

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 (10-1-13 Edition) and 15 (10-1-13 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

Part 15, Subpart C - Intentional Radiators

- § 15.201 Equipment authorization requirement
- § 15.207 Conducted limits
- § 15.209 Radiated emission limits; general requirements
- § 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz

Note:

The tests were selected and performed with reference to the FCC measurement guide line "Measurement of Digital Transmission Systems Operating under Section 15.247 March 23, 2005"

Instead of applying ANSI C63.4–1992 which is referenced in the FCC Public Note, the newer ANSI C63.4–2009 is applied.

Summary Test Results:

The EUT complied with all performed tests as listed in 0.3 Measurement Summary.

0.2 FCC and IC Correlation Table

Correlation of measurement requirements for DTS devices (e.g. WLAN 2.5/5 GHz) equipment

The following tables show the correlation of measurement requirements for DTS (e.g. WLAN) equipment and Information Technology Equipment (ITE) from FCC and IC standards.

DTS equipment

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.207	RSS-Gen Issue 3: 7.2.4
Occupied bandwidth	§ 15.247 (a) (2)	RSS-210 Issue 8: A8.2 (a)
Peak power output	§ 15.247 (b) (3), (4)	RSS-210 Issue 8: A8.4 (4)
Spurious RF conducted emissions	§ 15.247 (d)	RSS-Gen Issue 3: 6; RSS-210 Issue 8: A8.5
Spurious radiated emissions	§ 15.247 (d); § 15.209 (a)	RSS-Gen Issue 3: 6; RSS-210 Issue 8: A8.5
Band edge compliance	§ 15.247 (d)	RSS-210 Issue 8: A8.5
Power density	§ 15.247 (e)	RSS-210 Issue 8: A8.2 (b)
Antenna requirement	§ 15.203 / 15.204	RSS-Gen Issue 3: 7.1.2
Receiver spurious emissions	_	RSS-210 Issue 8: 2.3 RSS Gen Issue 3: 6 *)

^{*)} Receivers which are part of Transceivers are exempted with respect to Notice 2012-DRS0126.

Information Technology Equipment (ITE)

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.107	ICES-003 Issue 5: 6.1
Spurious Radiated Emissions	§ 15.109	ICES-003 Issue 5: 6.2

0.3 Measurement Summary

FCC Part 15, Subpart C §	15.207
--------------------------	--------

Conducted emissions (AC power line)

The measurement was performed according to ANSI C63.4 2009

OP-ModeSetupPortFinal Resultop-mode 2aSetup_03AC portN/A

FCC Part 15, Subpart C § 15.247 (a) (1)

Occupied bandwidth

The measuremen	10-1-13 Edition		
OP-Mode	Setup	Port	Final Result
op-mode 1b	Setup_01	Temp.ant.connector	Passed
op-mode 1g	Setup_01	Temp.ant.connector	Passed
op-mode 1n	Setup_01	Temp.ant.connector	Passed
op-mode 2b	Setup_01	Temp.ant.connector	Passed
op-mode 2g	Setup_01	Temp.ant.connector	Passed
op-mode 2n	Setup_01	Temp.ant.connector	Passed
op-mode 3b	Setup_01	Temp.ant.connector	Passed
op-mode 3g	Setup_01	Temp.ant.connector	Passed
op-mode 3n	Setup_01	Temp.ant.connector	Passed

FCC Part 15, Subpart C § 15.247 (b) (1)

Setup_01

Peak power output

op-mode 3g

10-1-13 Edition The measurement was performed according to FCC § 15.31 Final Result **OP-Mode** Setup Port op-mode 1b Setup_01 Temp.ant.connector Passed Setup_01 Passed op-mode 1g Temp.ant.connector op-mode 1n Setup_01 Temp.ant.connector Passed op-mode 2b Setup_01 Temp.ant.connector Passed Setup 01 Passed op-mode 2g Temp.ant.connector Passed op-mode 2n Setup 01 Temp.ant.connector Passed op-mode 3b Setup_01 Temp.ant.connector

Temp.ant.connector

Passed

§ 15.247 (d), § 15.35 (b), § 15.207

op-mode 3n Setup_01 Temp.ant.connector Passed

Spurious conducted emissions

FCC Part 15, Subpart C

The measurement was performed according to ANSI C63.4 2009

OP-Mode	Setup	Port	Final Result
op-mode 1b	Setup_01	Temp.ant.connector	Passed
op-mode 1g	Setup_01	Temp.ant.connector	Passed
op-mode 1n	Setup_01	Temp.ant.connector	Passed
op-mode 2b	Setup_01	Temp.ant.connector	Passed
op-mode 2g	Setup_01	Temp.ant.connector	Passed
op-mode 2n	Setup_01	Temp.ant.connector	Passed
op-mode 3b	Setup_01	Temp.ant.connector	Passed
op-mode 3g	Setup_01	Temp.ant.connector	Passed
op-mode 3n	Setup_01	Temp.ant.connector	Passed

ECC Doub 1E Corb	mark C	C 1E 247 (4) C 1E 3	DE (L) S 1E 200		
		§ 15.247 (u), § 15.3	§ 15.247 (d), § 15.35 (b), § 15.209		
	Spurious radiated emissions The measurement was performed according		2000		
			2009		
OP-Mode	Setup	Port	Final Result		
op-mode 1b	Setup_02	Enclosure	Passed		
op-mode 2b	Setup_02	Enclosure	Passed		
op-mode 3b	Setup_02	Enclosure	Passed		
op-mode 1g	Setup_02	Enclosure	Passed		
op-mode 2g	Setup_02	Enclosure	Passed		
op-mode 3g	Setup_02	Enclosure	Passed		
op-mode 1n	Setup_02	Enclosure	Passed		
op-mode 2n	Setup_02	Enclosure	Passed		
op-mode 3n	Setup_02	Enclosure	Passed		
op mode sir	Scrap_02	Enclosure	1 43364		
FCC Part 15, Sub		§ 15.247 (d)			
Band edge complia			40 4 40 = 1111		
The measurement ANSI C63.4	was performed accor	ding to FCC § 15.31 /	10-1-13 Edition / 2009		
OP-Mode	Setup	Port	Final Result		
op-mode 1b	Setup_01	Temp.ant.connector	Passed		
op-mode 1g	Setup_01	Temp.ant.connector	Passed		
op-mode 1n	Setup_01	Temp.ant.connector	Passed		
op-mode 3b	Setup_01	Temp.ant.connector	Passed		
op-mode 3g	Setup_01	Temp.ant.connector	Passed		
op-mode 3n	Setup_01	Temp.ant.connector	Passed		
		Enclosure			
op-mode 3b	Setup_01		Passed		
op-mode 3g	Setup_01	Enclosure	Passed		
op-mode 3n	Setup_01	Enclosure	Passed		
FCC Part 15, Sub	part C	§ 15.247 (e)			
Power density					
	was performed accor		10-1-13 Edition		
OP-Mode	Setup	Port	Final Result		
op-mode 1b	Setup_01	Temp.ant.connector	Passed		
op-mode 1g	Setup_01	Temp.ant.connector	Passed		
op-mode 1n	Setup_01	Temp.ant.connector	Passed		
op-mode 2b	Setup_01	Temp.ant.connector	Passed		
op-mode 2g	Setup_01	Temp.ant.connector	Passed		
op-mode 2n	Setup_01	Temp.ant.connector	Passed		
op-mode 3b	Setup_01	Temp.ant.connector	Passed		
op-mode 3g	Setup_01	Temp.ant.connector	Passed		
op-mode 3n	Setup_01	Temp.ant.connector	Passed		
N/A not applicabl	. – le (the EUT is powere		1 43364		
N/P not performe	ea				
		layers			
		**			
		7 layers AG, Borsigstr. 11			
		TUUQUU KAHAMAN ICARAA			
	0 011	Memo +49 (0)2192 749 0	. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
Responsible for Accreditation Scope:	13. Veth	Responsible for Test Report:	1. Jullia		

1 Administrative Data

1.1 Testing Laboratory

Company Name: 7 Layers AG

Address Borsigstr. 11

40880 Ratingen

Germany

This facility has been fully described in a report submitted to the FCC and accepted under the registration number 96716 .

The test facility is also accredited by the following accreditation organisation:

Laboratory accreditation no.: DAkkS D-PL-12140-01-01

Responsible for Accreditation Scope: Dipl.-Ing. Bernhard Retka

Dipl.-Ing. Robert Machulec Dipl.-Ing. Thomas Hoell Dipl.-Ing. Andreas Petz Dipl.-Ing. Marco Kullik

Report Template Version: 2014-04-10

1.2 Project Data

Responsible for testing and report: Dipl.-Ing. Marco Kullik

Date of Test(s): 2014-05-09 to 2014-07-21

Date of Report: 2014-07-24

1.3 Applicant Data

Company Name: Harman Becker Automotive Systems

GmbH

Address: Becker-Göring-Str. 16

76307 Karlsbad

Germany

Contact Person: Mr. Stefan Blaschek

1.4 Manufacturer Data

Company Name: Please see applicant data

Address:

Contact Person:

2 Test object Data

2.1 General EUT Description

Equipment under Test: IEEE 802.11b/g/n WLAN transceiver

Type Designation: Harman/Becker Audi MIB 2

Kind of Device: Main Unit of Modular Infotainment Kit

(optional)

Voltage Type: DC **Voltage Level:** 12.0 V

Tested Modulation Type: DBPSK; OFDM:BPSK; OFDM:64-QAM

Product description for the EUT:

The EUT is a main unit of a modular infotainment kit for cars with a GSM/UMTS module as well as a WLAN (802.11 b/g/n, 2.4 GHz) and Bluetooth module with separate integral antennas for WLAN and Bluetooth. In IEEE 802.11n mode it supports 20 MHz bandwidth channels (MCS7), providing 72.2 Mbit/s transfer data rate.

The object of this test report is the WLAN transceiver, consequently switched on the IEEE 802.11 b/g/n modes, working in the 2.4 GHz bands.

The EUT provides the following ports:

Ports

Temporary antenna connector Enclosure DC Port Cable Harness Antenna phone Antenna DAB Antenna GPS Antenna FM (diversity dual port) LVDS Input LVDS Output Most Bus USB

The main components of the EUT are listed and described in Chapter 2.2

2.2 EUT Main components

Type, S/N, Short Descriptions etc. used in this Test Report

Short Description	Equipment under Test	Type Designation	Serial No.	HW Status	SW Status	Date of Receipt
EUT A (Code: DE1009001aa01)	WLAN transceiver	Harman/Becker Audi MIB 2	A278BV0 E750250 3	H34; EC:008	R0512	-
·	Remark: EUT	A is equipped with	a temporary	antenna con	nector	
EUT B (Code: DE1009001ae02)	WLAN transceiver	Harman/Becker Audi MIB 2	A263GS0 EB00001 8	H40; EC:995	R0512	-

NOTE: The short description used to simplify the identification of the EUT in this test report.

2.3 Ancillary Equipment

For the purposes of this test report, ancillary equipment is defined as equipment, which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	HW Status	SW Status	Serial no.	FCC ID
ANC1	Control Unit	Bedienteil MMI ALS	_	-	AL125.05.1 300010096	-

2.4 Auxiliary Equipment

For the purposes of this test report, auxiliary equipment is defined as equipment, which is used temporarily to enable operational and control features especially used for the tests of the EUT, which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Short	Equipment under	Type	Serial no.	HW	SW	FCC
Description	Test	Designation		Status	Status	ID
AUX1	LVDS to DVI converter	LVDS2DVI/Conver ter	B100787	-	-	-

2.5 EUT Setups

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup No.	Combination of EUTs	Description and Rationale
Setup_01	EUT A	setup for conducted measurements
Setup 02	EUT B + AUX1 + ANC1	setup for radiated measurements

2.6 Operating Modes

This chapter describes the operating modes of the EUTs used for testing.

2.6.1 Test Channels

2.4 GHz ISM 2400 - 2483.5 MHz				
Bottom Middle Top				
1	6	11		
2412	2437	2462		

2.6.2 Datarates

SISO:

WLAN b-Mode; 2	20 MHz; 1 Mbit/s
WLAN g-Mode; 2	20 MHz; 6 Mbit/s
	20 MHz; 72.2 Mbit/s

2.7 Special software used for testing

For testing purposes a special "BIOS Mode" of the software was used to directly control the WLAN module.

2.8 Product labelling

Please refer to the documentation of the applicant.

2.8.1 FCC ID label

Please refer to the documentation of the applicant.

2.8.2 Location of the label on the EUT

Please refer to the documentation of the applicant.

3 Test Results

3.1 Occupied bandwidth

Standard FCC Part 15, Subpart C

The test was performed according to: FCC §15.31

3.1.1 Test Description

The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The results recorded were measured with the modulation which produce the worst-case (widest) occupied bandwidth.

The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

- Resolution Bandwidth (RBW): 100 kHz
- Video Bandwidth (VBW): 300 kHz
- Span: 30 MHz

3.1.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (a) (2)

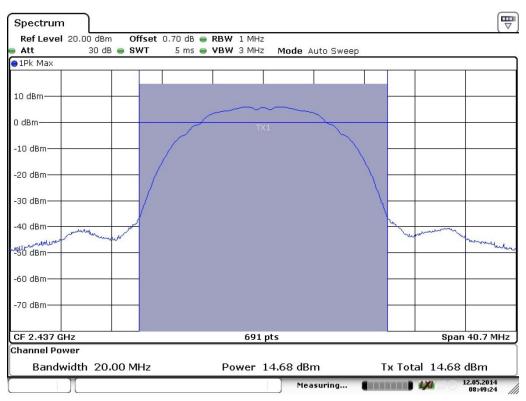
Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Used conversion factor: Output power (dBm) = 10 log (Output power (W) / 1mW)

Test report Reference: MDE HARMAN 1403 FCCb

3.1.3 Test Protocol

Temperature: 23.5 °C
Air Pressure: 1010 hPa
Humidity: 38.5 %


WLAN b-Mo Mbit/s	de; 20 Mi				
Band	Limit [MHz]	Margin to Limit [MHz]			
2.4 GHz					
ISM	1	2412	8.357	0.5	7.9
	6	2437	8.297	0.5	7.8
	11	2462	8.297	0.5	7.8

WLAN g-Mo	de; 20 MI				
Band	Channel No.	Frequency [MHz]	6 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz					
ISM	1	2412	16.473	0.5	16.0
	6	2437	16.293	0.5	15.8
	11	2462	16.473	0.5	16.0

WLAN n-M	lode; 20 MI				
Band	Channel No.	Limit [MHz]	Margin to Limit [MHz]		
2.4 GHz					
ISM	1	2412	16.473	0.5	16.0
	6	2437	16.293	0.5	15.8
	11	2462	16.293	0.5	15.8

3.1.4 Measurement Plot (showing the highest value, "worst case")

Date: 12.MAY.2014 08:49:24

WLAN b-Mode; 20 MHz; 6 Mbit/s, Ch. 6

3.2 Peak power output

Standard FCC Part 15, Subpart C

The test was performed according to: FCC §15.31

3.2.1 Test Description

The Equipment Under Test (EUT) was set up to perform the output power measurements. The results recorded were measured with the modulation which produces the worst-case (highest) output power. The reference level of the spectrum analyzer was set higher than the output power of the EUT. The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:
- Detector: RMS

3.2.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (b) (3)

For systems using digital modulation techniques in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands: 1 watt.

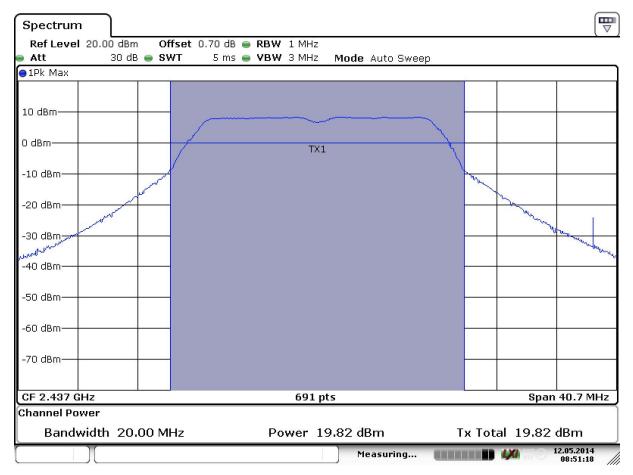
==> Maximum conducted peak output power: 30 dBm (excluding antenna gain, if antennas with directional gains that do not exceed 6 dBi are used).

Used conversion factor: Limit (dBm) = $10 \log (Limit (W)/1mW)$

3.2.3 Test Protocol

Temperature: 23.5 °C
Air Pressure: 1010 hPa
Humidity: 38.5 %

The antenna gain is excluded in the table.


WLAN b-Mo	de; 20 MH				
Band	Channel No.	Frequency [MHz]	Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]
2.4 GHz	1	2412	13.9	30.0	16.1
ISM 6		2437	14.7	30.0	15.3
	11	2462	14.5	30.0	15.5

WLAN g-Mo	de; 20 MH					
Band	Channel No.	Frequency [MHz]	Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]	
2.4 GHz			19.6	30.0	10.4	
ISM 6		2437	19.8	30.0	10.2	
	11	2462	19.6	30.0	10.4	

WLAN n-Mo	de; 20 MH				
Band	Channel No.	Frequency [MHz]	Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]
2.4 GHz	1	2412	19.5	30.0	10.5
ISM	6	2437	19.7	30.0	10.3
	11	2462	19.6	30.0	10.5

3.2.4 Measurement Plot (showing the highest value, "worst case")

Date: 12.MAY.2014 08:51:18

3.3 Spurious RF conducted emissions

Standard FCC Part 15, Subpart C

The test was performed according to: FCC §15.31

3.3.1 Test Description

The Equipment Under Test (EUT) was set up to perform the spurious emissions measurements.

The EUT was connected to spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:

Detector: Peak-MaxholdFrequency range: 30 - 40000 MHz

Resolution Bandwidth (RBW): 100 kHz
Video Bandwidth (VBW): 300 kHz
Sweep Time: 330 s

The reference value for the measurement of the spurious RF conducted emissions is determined during the test "band edge compliance" (cf. chapter 3.4). This value is used to calculate the 20 dBc limit.

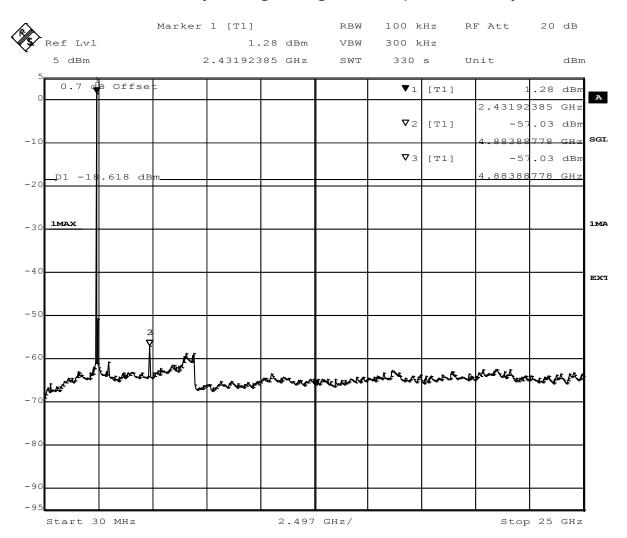
3.3.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (c)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

3.3.3 Test Protocol

Temperature: 23.5 °C Air Pressure: 1010 hPa Humidity: 38.5 %


WLAN Mbit/	l b-Mode; 20 s	MHz; 6						
Ch. No	Channel Center Frequency [MHz]	Frequency [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
1	2412	-	-	PEAK	100	0.4	-19.7	-
6	2437	-	-	PEAK	100	0.9	-19.1	-
11	2462	-	-	PEAK	100	1.4	-18.7	-

WLAN Mbit/	l g-Mode; 20 s) MHz; 11						
Ch. No	Channel Center Frequency [MHz]	Frequency [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
1	2412	-	-	PEAK	100	0.5	-19.6	-
6	2437	-	-	PEAK	100	0.3	-19.7	-
11	2462	-	_	PEAK	100	0.7	-19.5	-

WLAN Mbit/	l n-Mode; 20 s) MHz; 72.2						
Ch. No	Channel Center Frequency [MHz]	Frequency [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
1	2412	-	-	PEAK	100	-0.1	-20.4	-
6	2437	-	-	PEAK	100	-1.2	-21.1	-
11	2462	-	-	PEAK	100	-0.1	-20.5	-

3.3.4 Measurement Plot (showing the highest value, "worst case")

Title: spurious emissions
Comment A: CH T: 2462 MHz
Date: 9.MAY.2014 14:54:02

3.4 Spurious radiated emissions

Standard FCC Part 15, Subpart C

The test was performed according to: ANSI C63.4

3.4.1 Test Description

The test set-up was made in accordance to the general provisions of ANSI C63.4 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30--1000 MHz was evaluated.

The measurement procedure is implemented into the EMI test software ES-K1 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is performed at 2 axes. A pre-check is performed while the EUT is powered from a DC power sourse.

1. Measurement up to 30 MHz

The Loop antenna HFH2-Z2 is used.

Step 1: pre measurement

- Anechoic chamber

Antenna distance: 10 mDetector: Peak-Maxhold

- Frequency range: 0.009 - 0.15 MHz and 0.15 - 30 MHz

- Frequency steps: 0.1 kHz and 5 kHz - IF-Bandwidth: 0.2 kHz and 10 kHz

- Measuring time / Frequency step: 100 ms

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

- Open area test side

- Antenna distance: according to the Standard

- Detector: Quasi-Peak

- Frequency range: 0.009 - 30 MHz

- Frequency steps: measurement at frequencies detected in step 1

- IF-Bandwidth: 0.2 - 10 kHz

- Measuring time / Frequency step: 100 ms

2. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit.

Settings for step 1:
- Antenna distance: 3 m
- Detector: Peak-Maxhold

- Frequency range: 30 – 1000 MHz

Frequency steps: 60 kHzIF-Bandwidth: 120 kHz

- Measuring time / Frequency step: 100 μ s - Turntable angle range: -180° to 180°

- Turntable step size: 90°

Height variation range: 1 – 3 m
Height variation step size: 2 m
Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: second measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is, to find out the approximate turntable angle and antenna height for each frequency.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

- IF - Bandwidth: 120 kHz - Measuring time: 100 ms

- Turntable angle range: -180° to 180°

- Turntable step size: 45°

Height variation range: 1 – 4 m
Height variation step size: 0.5 m
Polarisation: horizontal + vertical

After this step, the EMI test system has determined the following values for each frequency (of step 1):

- Frequency

- Azimuth value (of turntable)

- Antenna height

The last two values have now the following accuracy:

- Azimuth value (of turntable): 45°

- Antenna height: 0.5 m

Step 3: final measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by \pm 22.5° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by \pm 25 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 120 kHzMeasuring time: 100 ms

- Turntable angle range: ± 22.5 ° around the determined value - Height variation range: ± 25 cm around the determined value

Step 4: final measurement with QP detector

With the settings determined in step 3, the final measurement will be performed: EMI receiver settings for step 4:

- Detector: Quasi-Peak (< 1 GHz)

- Measured frequencies: in step 1 determined frequencies

IF - Bandwidth: 120 kHzMeasuring time: 1 s

3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

The Equipment Under Test (EUT) was set up on a non-conductive support at 1.4 m height in the fully-anechoic chamber. The measurement distance was reduced to 1 m. The results were extrapolated by the extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements, inverse linear-distance squared for the power reference level measurements). Due to the fact, that in this frequency range a double-ridged wave guided horn antenna (up to 18 GHz) and a horn antenna (18–25 GHz) are used, the steps 2-4 are omitted. Step 1 was performed with one height of the receiving antenna only.

EMI receiver settings:

- Detector: Peak, Average

- IF Bandwidth = 1 MHz

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

For the data rate in mode n the test is performed as worst-case-check in order to verify that emissions have a comparable level as found at modes b and g. Typically, the measurement is performed in the frequency range 1 to 8 GHz but it depends on the emissions found during the test for the modes b and g. Please refer to the results for the used frequency range.

3.4.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (e)

For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

...

The same method of determining the conducted output power shall be used to determine the power spectral density.

3.4.3 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (d)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (µV/m)		surement ance (m)	Calculated Limits(dBµV/m @10m)	Limits(dBµV/m @10m)
0.009 - 0.49	2400/F(kHz)	300	59.1 dB	(48.5 - 13.8) + 30 dB	78.5 - 43.8
0.49 - 1.705	24000/F(kHz)	30	19.1 dB	(48.9 - 23.0) + 10 dB	58.9 - 33.0
1.705 - 30	30	30	19.1 dB	29.5 + 10 dB	39.5

Frequency in MHz	Limit (μV/m)	Measurement distance (m)	Limit (dBµV/m)
30 - 88	100	3	40.0
88 - 216	150	3	43.5
216 - 960	200	3	46.0
above 960	500	3	54.0

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

Test report Reference: MDE_HARMAN_1403_FCCb

3.4.4 Test Protocol

Temperature: 23 °C Air Pressure: 1019 hPa Humidity: 42 %

WLAN	l b-Mode; 20	MHz; 6 Mbi	t/s					
Ch. No	Channel Center Frequency [MHz]	Frequency [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
1	2412	7440.0	47.5	PEAK	1000	74.0	26.5	RB
		7440.0	34.9	AV	1000	54.0	19.1	RB
		12401.0	50.0	PEAK	1000	74.0	24.0	RB
		12401.0	35.9	AV	1000	54.0	18.2	RB

WLAN	g-Mode; 20	MHz; 11 M	oit/s					
Ch. No	Channel Center Frequency [MHz]	Frequency [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
1	2412	7440.0	47.7	PEAK	1000	74.0	26.3	RB
		7440.0	34.8	AV	1000	54.0	19.2	RB

Note: No (further) spurious emissions in the range 20 dB below the limit found. The measurement for g-Mode was performed from 1 GHz up to 8 GHz because at premeasurements no significant spurious emissions have been found outside this frequency range.

3.5 Band edge compliance

Standard FCC Part 15, Subpart C

The test was performed according to: ANSI C63.4-2009, FCC §15.31

3.5.1 Test Description

The procedure to show compliance with the band edge requirement is divided into two measurements:

1. Show compliance of the lower and higher band edge by a conducted measurement . For the conducted measurement, the Equipment Under Test (EUT) is placed in a shielded room.

For the lower band edge the EUT is set to transmit as follows:

For WLAN transmitter working in 2.4 GHz band:

- lowest channel - ch. 1 = 2412 MHz with channel bandwidth of 20 MHz.

For WLAN transmitter working in 5 GHz band:

- lowest U-NII-3 sub-band channel ch. 149 = 5745 MHz with channel bandwidth of 20 MHz,
- lowest U-NII-3 sub-band channel ch. 151 5755 MHz with channel bandwidth of 40 MHz.

The lower band edge is 2400 MHz for 2.4 GH band transmitter and 5725 MHz for 5 GHz band transmitter.

For the higher band edge the EUT is set to transmit as follows:

For the WLAN transmitter working in 2.4 GHz band:

- highest channel - ch. 11 = 2462 MHz with channel bandwidth of 20 MHz.

For the WLAN transmitter working in 5 GHz,

- highest U-NII-3 sub-band channel ch. 165 = 5825 MHz with channel bandwidth of 20 MHz,
- highest U-NII-3 sub-band channel ch. 159 = 5795 MHz with channel bandwidth of 40 MHz.

The higher band edge is 2483.5 MHz for 2.4 GH band transmitter and 5850 MHz for 5 GHz band transmitter.

Analyzer settings for conducted measurement:

- Detector: Peak
- RBW / VBW = 100 / 300 kHz
- 2. Showing compliance of the higher band edge falls in to restricted bands by a radiated measurement.

The radiated emissions measurements are performed in a typical installation configuration inside the fully anechoic chamber using a horn antenna at 1 m distance. EMI receiver settings for radiated measurement:

- Detector: Peak, Average
- IF Bandwidth = 1 MHz

3.5.2 Test Requirements / Limits

FCC Part 15.247 (d)

"In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. ...

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c))."

For the conducted measurement the RF power at the band edge shall be "at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power..."

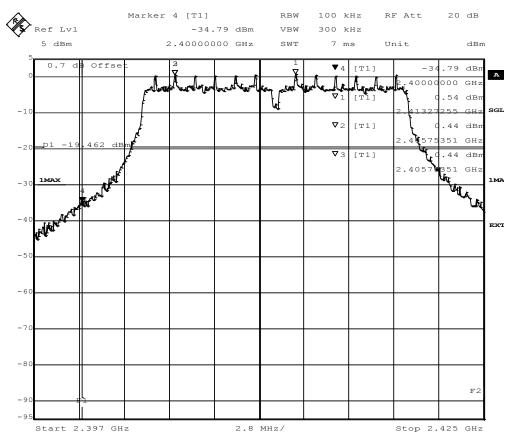
For the radiated measurement of the higher band edge connected to a restricted band the limit is "specified in Section 15.209(a)".

3.5.3 Test Protocol

3.5.3.1 Lower band edge

Conducted measurement

Temperature: 23.5 °C Air Pressure: 1010 hPa Humidity: 38.5 %


W	/LAN b-	Mode; 20 M							
CI	hannel No	Channel Center Frequency [MHz]	Frequency [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBµV/m]	Margin to Limit [dB]
	1	2412	2400.0	-56.3	PEAK	100	0.4	-19.6	36.7

WL	AN g-	Mode; 20 M	Hz; 6 Mbit/s	3					
	innel No	Channel Center Frequency [MHz]	Frequency [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBµV/m]	Margin to Limit [dB]
	1	2412	2400.0	-34.8	PEAK	100	0.5	-19.5	15.3

WLAN n	-Mode; 20 M	it/s						
Channel No	Channel Center Frequency [MHz]	Frequency [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBµV/m]	Margin to Limit [dB]
1	2412	2400.0	-36.6	PEAK	100	-0.1	-20.1	16.5

3.5.3.2 Measurement Plot (showing the highest value, "worst case")

Title: Band Edge Compliance
Comment A: CH B: 2412 MHz
Date: 9.MAY.2014 15:07:56

WLAN g-Mode; 20 MHz; 6 Mbit/s, Ch. 1

3.5.3.3 Higher band edge

Conducted measurement

Temperature: 23.5 °C
Air Pressure: 1010 hPa
Humidity: 38.5 %

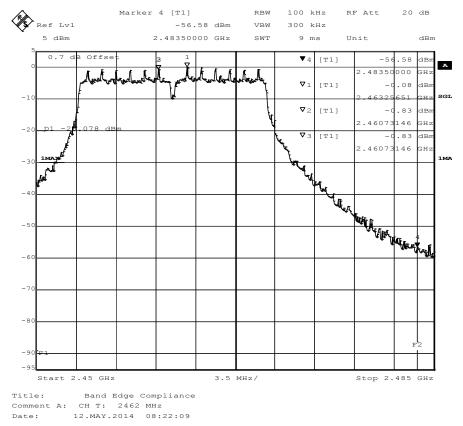
WLAN b-	Mode; 20 M			1		T		
Channel No	Channel Center Frequency [MHz]	Frequency [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBµV/m]	Margin to Limit [dB]
11	2462	2483.5	-62.2	PEAK	100	1.4	-18.6	43.6

WLAN g	-Mode; 20 M	Hz; 6 Mbit/s	5					
Channe No	Channel Center I Frequency [MHz]	Frequency [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBµV/m]	Margin to Limit [dB]
11	2462	2483.5	-57.04	PEAK	100	0.7	-19.3	37.7

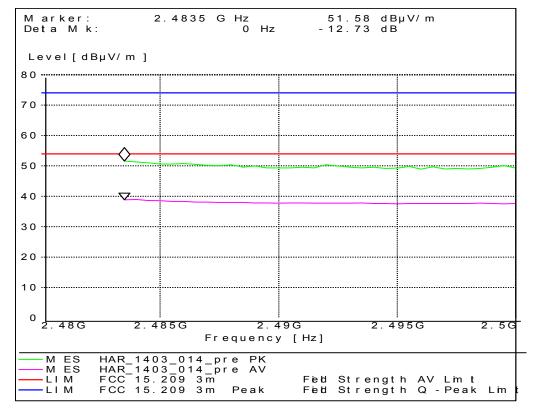
WLAN n-	Mode; 20 M	Hz; 72.2 Mb	it/s					
Channel No	Channel Center Frequency [MHz]	Frequency [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
11	2462	2483.5	-56.6	PEAK	100	-0.1	-20.1	36.5

Radiated measurement

Temperature: 23 °C Air Pressure: 1019 hPa Humidity: 42 %


WLAN b-	Mode; 20 MI	Hz; 1 Mbit/s					
Channel No	Channel Center Frequency [MHz]	Frequency [MHz]	Spurious Level [dBµV/m]	Detector	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]
11	2462	2483.5	49.8	PEAK	1000	74.0	24.2
11	2462	2483.5	37.1	AV	1000	54.0	16.9

WLAN g-	Mode; 20 MI	Hz; 6 Mbit/s					
Channel No	Channel Center Frequency [MHz]	Frequency [MHz]	Spurious Level [dBµV/m]	Detector	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]
11	2462	2483.5	50.5	PEAK	1000	74.0	23.5
11	2462	2483.5	39.1	AV	1000	54.0	15.0


WLAN n-	Mode; 20 MI	Hz; 72 Mbit/	s				
Channel No	Channel Center Frequency [MHz]	Frequency [MHz]	Spurious Level [dBµV/m]	Detector	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]
11	2462	2483.5	51.6	PEAK	1000	74.0	22.4
11	2462	2483.5	39.3	AV	1000	54.0	14.8

3.5.4 Measurement Plot (showing the highest value, "worst case")

WLAN n-Mode; 20 MHz; 72.2 Mbit/s, Ch. 11 (conducted)

WLAN n-Mode; 20 MHz; 72.2 Mbit/s, Ch. 11 (radiated)

Test report Reference: MDE HARMAN 1403 FCCb

3.6 Power density

Standard FCC Part 15, Subpart C

The test was performed according to: FCC §15.31

3.6.1 Test Description

The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

- Detector: Peak-Maxhold

Resolution Bandwidth (RBW): 3 kHzVideo Bandwidth (VBW): 30 kHz

- Sweep Time: Coupled

3.6.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (e)

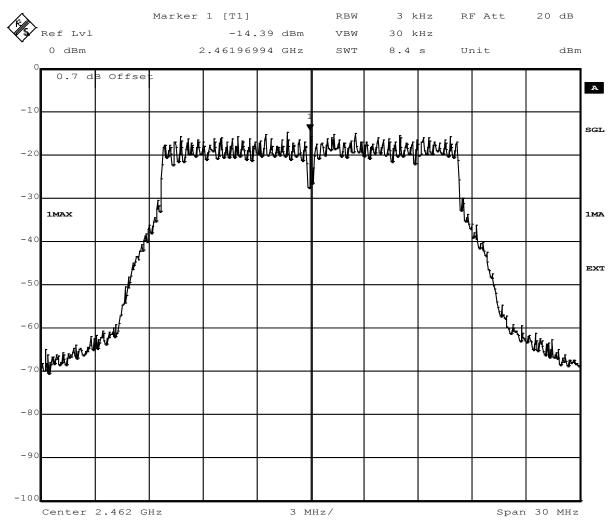
For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

...

The same method of determining the conducted output power shall be used to determine the power spectral density.

Test Protocol

Temperature: 23.5 °C Air Pressure: 1010 hPa Humidity: 38.5 %


WLAN b-Mo	de; 20 MH	z; 6 Mbit/s			
	Channel	Frequency	Power Density	Limit	Margin to Limit
Band	No.	[MHz]	[dBm/3kHz]	[dBm/3kHz]	[dB]
2.4 GHz ISM	1	2412	-17.9	8.0	25.9
	6	2437	-17.5	8.0	25.5
	11	2462	-17.0	8.0	25.0

WLAN g-Mod Mbit/s	de; 20 MH	z; 11			
Band	Channel No.	Frequency [MHz]	Power Density [dBm/3kHz]	Limit [dBm/3kHz]	Margin to Limit [dB]
2.4 GHz ISM	1	2412	-14.7	8.0	22.7
	6	2437	-14.6	8.0	22.6
	11	2462	-14.4	8.0	22.4

WLAN n-Mode; 20 MHz; 72.2 Mbit/s					
	Channel	Frequency	Power Density	Limit	Margin to Limit
Band	No.	[MHz]	[dBm/3kHz]	[dBm/3kHz]	[dB]
2.4 GHz ISM	1	2412	-14.8	8.0	22.8
	6	2437	-14.8	8.0	22.8
	11	2462	-15.0	8.0	23.0

3.6.3 Measurement Plot (showing the highest value, "worst case")

Title: Power Density
Comment A: CH B: 2412 MHz;
Date: 9.MAY.2014 13:40:02

WLAN g-Mode; 20 MHz; 11 Mbit/s, Ch. 11

4 Test Equipment

The calibration, hardware and software states are shown for the testing period.

Test Equipment Anechoic Chamber

Lab ID:Lab 3Manufacturer:Frankonia

Description: Anechoic Chamber for radiated testing

Type: 10.58x6.38x6.00 m³

Calibration Details Last Execution

NSA (FCC) 2014/01/09

Single Devices for Anechoic Chamber

Single Device Name	Туре	Serial Number	Manufacturer
Air compressor	none	-	Atlas Copco
Anechoic Chamber	10.58 x 6.38 x 6.00 m ³ Calibration Details	none	Frankonia <i>Last Execution</i>
	FCC listing 96716 3m Part15/18		2014/01/09
Controller Maturo	MCU	961208	Maturo GmbH
EMC camera	CE-CAM/1	-	CE-SYS
EMC camera Nr.2	CCD-400E	0005033	Mitsubishi
Filter ISDN	B84312-C110-E1		Siemens&Matsushita
Filter Universal 1A	BB4312-C30-H3	-	Siemens&Matsushita

Test report Reference: MDE_HARMAN_1403_FCCb Page 36 of 42

Test Equipment Auxiliary Equipment for Radiated emissions

Lab ID: Lab 3

Description: Equipment for emission measurements

Serial Number: see single devices

Single Devices for Auxiliary Equipment for Radiated emissions

Single Device Name	Туре	Serial Number	Manufacturer
Antenna mast	AM 4.0	AM4.0/180/1192051	3 Maturo GmbH
Biconical Broadband Antenna	SBA 9119	9119-005	Schwarzbeck
Airceinia	Calibration Details		Last Execution
	Standard Calibration		2009/06/04
Biconical dipole	VUBA 9117 Calibration Details	9117-108	Schwarzbeck <i>Last Execution</i>
	Standard Calibration		2012/01/18
Broadband Amplifier 18MHz-26GHz	JS4-18002600-32-5P	849785	Miteq
Broadband Amplifier 1GHz-4GHz	AFS4-01000400-1Q-10P-4	-	Miteq
Broadband Amplifier BOMHz-18GHz	JS4-00101800-35-5P	896037	Miteq
Cable "ESI to EMI Antenna"	EcoFlex10	W18.01-2+W38.01-	2 Kabel Kusch
Cable "ESI to Horn Antenna"	UFB311A+UFB293C	W18.02-2+W38.02-	2 Rosenberger Micro-Coax
Double-ridged horn	HF 906	357357/001	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution
	Standard Calibration		2012/05/18
Double-ridged horn	HF 906	357357/002	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution
	Standard Calibration		2012/06/26
High Pass Filter	4HC1600/12750-1.5-KK	9942011	Trilithic
High Pass Filter	5HC2700/12750-1.5-KK	9942012	Trilithic
High Pass Filter	5HC3500/12750-1.2-KK	200035008	Trilithic
High Pass Filter	WHKX 7.0/18G-8SS	09	Wainwright
Horn Antenna Schwarzbeck 15-26 GHz BBHA 9170	ввна 9170		
Logper. Antenna	HL 562 Ultralog	100609	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution
	Standard Calibration		2012/12/18
Logper. Antenna	HL 562 Ultralog	830547/003	Rohde & Schwarz GmbH & Co. KG
Loop Antenna	HFH2-Z2	829324/006	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution
Pyramidal Horn Antenna	Standard calibration	00000000	2011/10/27
26,5 GHz	3160-09	00083069	

Test report Reference: MDE_HARMAN_1403_FCCb

Single Devices for Auxiliary Equipment for Radiated emissions (continued)

Single Device Name	Туре	Serial Number	Manufacturer
Pyramidal Horn Antenna 40 GHz	3160-10	00086675	EMCO Elektronik GmbH
Tilt device Maturo (Rohacell)	Antrieb TD1.5-10kg	TD1.5- 10kg/024/3790709	Maturo GmbH

Test Equipment Auxiliary Test Equipment

Lab ID:Lab 3, Lab 4Manufacturer:see single devices

Description: Single Devices for various Test Equipment

Type: various Serial Number: none

Single Devices for Auxiliary Test Equipment

Single Device Name	Туре	Serial Number	Manufacturer
Broadband Power Divide N (Aux)	er1506A / 93459	LM390	Weinschel Associates
Broadband Power Divide SMA	erWA1515	A855	Weinschel Associates
Digital Multimeter 03 (Multimeter)	Fluke 177	86670383	Fluke Europe B.V.
(Calibration Details		Last Execution
	Customized calibration		2013/12/04
Fibre optic link Satellite (Aux)	FO RS232 Link	181-018	Pontis
Fibre optic link Transceiver (Aux)	FO RS232 Link	182-018	Pontis
Isolating Transformer	LTS 604	1888	Thalheimer Transformatorenwerke GmbH
Notch Filter Ultra Stable (Aux)	WRCA800/960-6EEK	24	Wainwright
Signal Analyzer	FSV30	103005	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution
	Standard		2014/02/10
Spectrum Analyser	FSP3	836722/011	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution
	Standard		2012/06/13
Spectrum Analyser	FSU26	200418	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution
	Standard calibration		2013/07/29
Vector Signal Generator	SMIQ 03B	832492/061	Rohde & Schwarz GmbH & Co.KG

Test report Reference: MDE_HARMAN_1403_FCCb Page 38 of 42

Rohde & Schwarz GmbH & Co. KG

Test Equipment Digital Signalling Devices

Lab 1, Lab 3, Lab 4

Vector Signal Generator SMU200A

Description: Signalling equipment for various wireless technologies.

Single Devices for Digital Signalling Devices

CMW500 CMV Calil Star Digital Radio Communication Tester Universal Radio Communication Tester Calil Star Universal Radio Communication Tester		Serial Number 100589 107500 831050/020	Rohde & Schwich Co. KG Last Execution 2011/11/24 Rohde & Schwich Co.KG Last Execution 2014/01/27 Rohde & Schwich Co.KG	arz GmbH &
CBT Calil Star CMW500 CMW Calil Star Digital Radio Communication Tester Universal Radio Communication Tester HW/	Alibration Details andard calibration MW500 Alibration Details andard calibration MD 55 Alibration Details	107500	Co. KG Last Execution 2011/11/24 Rohde & Schwich Co.KG Last Execution 2014/01/27	arz GmbH &
CMW500 CMV Calili Star Digital Radio Communication Tester Calili Star Universal Radio Communication Tester HW/	andard calibration MW500 Mibration Details andard calibration MD 55 Mibration Details		2011/11/24 Rohde & Schwich Co.KG Last Execution 2014/01/27	arz GmbH &
CMW500 CMV Calil Star Digital Radio Communication Tester Calil Star Universal Radio Communication Tester HW/	MW500 Ilibration Details andard calibration MD 55 Ilibration Details		Rohde & Schwa Co.KG Last Execution 2014/01/27	
Calil Star Digital Radio Communication Tester Calil Star Universal Radio Communication Tester HW/	nlibration Details andard calibration MD 55 alibration Details		Co.KG Last Execution 2014/01/27	
Digital Radio CMC Communication Tester Calil Star Universal Radio CMU Communication Tester HW/	andard calibration MD 55 Ilibration Details	831050/020	2014/01/27	
Digital Radio CMD Communication Tester Calil Star Universal Radio CMU Communication Tester HW/	MD 55	831050/020		
Communication Tester Calil Star Universal Radio CMU Communication Tester HW/	libration Details	831050/020	Rohde & Schwa	
Universal Radio CMU Communication Tester			Co. KG	arz GmbH &
Universal Radio CMU Communication Tester	andard calibration		Last Execution	
Communication Tester HW/			2011/11/28	
	1U 200	102366	Rohde & Schwa Co. KG	arz GmbH &
Hard	V/SW Status		Date of Start	Date of End
Soft K21 K43 K59 K65 Firm	i3-2, B56V14, B68 3v04, PCMCIA, U65 iftware: 11 4v21, K22 4v21, K23 4v21, K24 4v2 13 4v21, K53 4v21, K56 4v22, K57 4v2 19 4v22, K61 4v22, K62 4v22, K63 4v2 15 4v22, K66 4v22, K67 4v22, K68 4v2 11 8v50 02.05.06	21, K42 4v21, 22, K58 4v22, 22, K64 4v22,		
Universal Radio CMU Communication Tester	1U 200	837983/052	Rohde & Schwa Co. KG	arz GmbH &
Calib	libration Details		Last Execution	
Star	andard calibration		2011/12/07	
HW/	V/SW Status		Date of Start	Date of End
B11 B54 SW K21 K28 K66 Firm	V options: 1, B21V14, B21-2, B41, B52V14, B52- i4V14, B56V14, B68 3v04, B95, PCMCI V options: 1 4v11, K22 4v11, K23 4v11, K24 4v1 8 4v10, K42 4v11, K43 4v11, K53 4v1 i6 4v10, K68 4v10, mware: 1 8v40 01.12.05	11, K27 4v10,	2007/01/02	
K62			2008/11/03	

Test report Reference: MDE_HARMAN_1403_FCCb Page 39 of 42

100912

Test Equipment Emission measurement devices

Lab ID: Lab 1, Lab 3

Description: Equipment for emission measurements

Serial Number: see single devices

Single Devices for Emission measurement devices

Single Device Name	Туре	Serial Number	Manufacturer
Personal Computer	Dell	30304832059	Dell
Power Meter	NRVD	828110/016	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution
	Standard calibration		2013/05/03
	Standard calibration		2014/05/13
Sensor Head A	NRV-Z1	827753/005	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution
	Standard calibration		2013/04/30
	Standard calibration		2014/05/13
Signal Generator	SMR 20	846834/008	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution
	standard calibration		2011/05/12
Spectrum Analyzer	ESIB 26	830482/004	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution
	Standard Calibration		2014/01/07
	HW/SW Status		Date of Start Date of End
	Firmware-Update 4.34.4 from 3.45 du	uring calibration	2009/12/03

Test Equipment Multimeter 12

Lab ID:Lab 5, Lab 6Description:Ex-Tech 520Serial Number:05157876

Single Devices for Multimeter 12

Single Device Name	Туре	Serial Number	Manufacturer
Digital Multimeter 12 (Multimeter)	EX520	05157876	Extech Instruments Corp.
	Calibration Details		Last Execution
	Customized calibration		2013/12/04

Test report Reference: MDE_HARMAN_1403_FCCb Page 40 of 42

Test Equipment Radio Lab Test Equipment

Lab ID: Lab 4

Description: Radio Lab Test Equipment

Single Devices for Radio Lab Test Equipment

Single Device Name	Туре	Serial Number	Manufacturer
Broadband Power Divide SMA	erWA1515	A856	Weinschel Associates
Coax Attenuator 10dB SMA 2W	4T-10	F9401	Weinschel Associates
Coax Attenuator 10dB SMA 2W	56-10	W3702	Weinschel Associates
Coax Attenuator 10dB SMA 2W	56-10	W3711	Weinschel Associates
Coax Cable Huber&Suhner	Sucotest 2,0m		Huber&Suhner
Coax Cable Rosenberger Micro Coax FA210A0010003030 SMA/SMA 1,0m	r FA210A0010003030	54491-2	Rosenberger Micro-Coax
Power Meter	NRVD	828110/016	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution
	Standard calibration Standard calibration		2013/05/03 2014/05/13
RF Step Attenuator RSP	RSP	833695/001	Rohde & Schwarz GmbH & Co.KG
Rubidium Frequency Standard	Datum, Model: MFS	5489/001	Datum-Beverly
	Calibration Details		Last Execution
	Standard calibration		2013/06/24
	Standard calibration		2014/07/03
Sensor Head A	NRV-Z1	827753/005	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution
	Standard calibration Standard calibration		2013/04/30 2014/05/13
Signal Generator SME	SME03	827460/016	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution
	Standard calibration		2011/11/25
Signal Generator SMP	SMP02	836402/008	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution
	Standard calibration		2013/05/06
Spectrum Analyser	FSIQ26	840061/005	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution
	Standard Calibration		2013/02/12

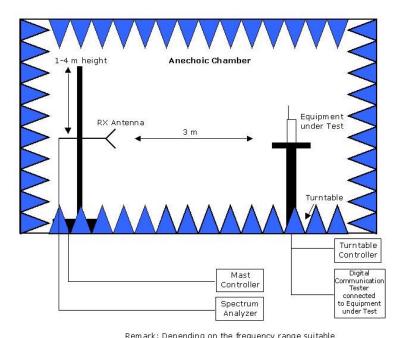

Test report Reference: MDE_HARMAN_1403_FCCb Page 41 of 42

Photo Report

Please refer to external report.

5 Setup Drawings

 $\frac{\textit{Remark:}}{\textit{Depending on the frequency range suitable}} \\ \text{antenna types, attenuators or preamplifiers are used.}$

Drawing 1: Setup in the Anechoic chamber. For measurements below 1 GHz the ground was replaced by a conducting groundplane.