

TEST REPORT

Report Number: C21T00142-SAR01-V00

Applicant Shanghai Sunmi Technology Co.,Ltd.

Product Name Data Processing Terminal

Model Name L3561

Brand Name SUNMI

FCC ID 2AH25D2SKDS

IC 22621-D2SKDS

Industrial Internet Innovation Center (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in FCC 47 CFR Part 2 2.1091, RSS 102.

Prepared by Reviewed by

Approved by Issue Date 2022-01-18

Industrial Internet Innovation Center (Shanghai) Co., Ltd.

Page Number: 2 of 17

Report No.: C21T00142-SAR01-V00

NOTE

- 1. This report is invalid without the signature of the writer, reviewer and authorizer.
- 2. This report is invalid if altered.
- 3. For the benefit of clients, if you have any objection to the report, please inform the testing laboratory within 15 days from the date of receiving this report.
- 4. Samples in the test report are provided by the client. The test results are only applicable to the samples received by the laboratory. The source information of samples (such as sample sender, manufacturer, etc.) in the test report is provided by the client, and the laboratory is not responsible for its authenticity and the measurement accuracy.
- 5. The test report does not represent the identification of a product by a certification body or an authorized body.
- 6. This report is only valid as a whole, and no part of the report can be reproduced without the written approval of Industrial Internet Innovation Center (Shanghai) Co., Ltd.
- 7. Without the written permission of testing institutions and accreditation bodies, this report cannot be used in part or in whole for publicity or product introduction.
- 8. "N/A" is used in this report to indicate that it is not applicable or available.
- 9. Industrial Internet Innovation Center (Shanghai) Co., Ltd. assumes the legal responsibility for the report.
- 10. The measurement uncertainty is not taken into account when deciding conformity, and the results of measurement (or the average of measurement results) are directly used as the criterion for the stating conformity.
- 11. After confirmation with the customer, the Max power and antenna gain information provided by the customer may affect the validity of the measurement results in this report, and the customer shall bear the impact and consequences.

Test Laboratory:

Industrial Internet Innovation Center (Shanghai) Co., Ltd.

Add: Building 4, No. 766 Jingang Rd, Pudong, Shanghai, China

Tel: +86 21 68866880

Page Number: 3 of 17 Report No.: C21T00142-SAR01-V00

Revision Version

Report Number	Revision	Date	Memo
C21T00142-SAR01-V00	00	2022-01-18	Initial creation of test report

Page Number: 4 of 17 Report No.: C21T00142-SAR01-V00

CONTENTS

1.	TES1	LABORATORY	6
	1.1.	TESTING LOCATION	6
	1.2.	TESTING ENVIRONMENT	6
	1.3.	PROJECT INFORMATION	6
2.	CLIE	NT INFORMATION	7
	2.1.	APPLICANT INFORMATION	7
	2.2.	MANUFACTURER INFORMATION	7
3.	EQU	PMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	8
	3.1.	ABOUT EUT	8
	3.2.	INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	8
	3.3.	INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	8
4.	REFE	ERENCE DOCUMENTS FOR FCC	9
	4.1.	REFERENCE DOCUMENTS FOR TESTING	9
	4.2.	CRITERIA	9
	4.3.	REFERENCE INFORMATION FROM CLIENT	. 10
	4.4.	CALCULATION METHOD	. 10
5.	TES1	SUMMARY FOR FCC	11
	5.1.	RF POWER OUTPUT	. 11
	5.2.	DUTY CYCLE	. 11
	5.3.	SUMMARY OF EVALUATION RESULTS	. 12
	5.4.	SIMULTANEOUS SAR EVALUATION	. 13
	5.5.	STATEMENTS	. 13
6.	REFE	ERENCE DOCUMENTS FOR IC	. 14
	6.1.	REFERENCE DOCUMENTS FOR EVALUATION	. 14

Page Number: 5 of 17 Report No.: C21T00142-SAR01-V00

	6.2.	CRITERIA	14
	6.3.	REFERENCE INFORMATION FROM CLIENT	14
	6.4.	CALCULATION METHOD	14
7.	TEST	SUMMARY FOR IC	. 15
	7.1.	RF POWER OUTPUT	15
	7.2.	DUTY CYCLE	15
	7.3.	SUMMARY OF EVALUATION RESULTS	16
	7.4.	SIMULTANEOUS SAR EVALUATION	16
8.	STAT	EMENTS	17

Page Number: 6 of 17

Report No.: C21T00142-SAR01-V00

1. Test Laboratory

1.1. Testing Location

Primary Lab:

Company Name	Industrial Internet Innovation Center (Shanghai) Co., Ltd.	
Address	Building 4, No. 766 Jingang Rd, Pudong, Shanghai, China	
FCC Registration No.	958356	
FCC Designation No.	CN1177	
IC Designation No.	10766A	

1.2. Testing Environment

Normal Temperature	18℃~25℃
Relative Humidity	25%RH~75%RH

1.3. Project Information

Project Leader Wang	g Wenwen
---------------------	----------

Page Number: 7 of 17 Report No.: C21T00142-SAR01-V00

2. Client Information

2.1. Applicant Information

Company Name Shanghai Sunmi Technology Co.,Ltd. Room 505, KIC Plaza, No.388 Song Hu Road, Yang Pu District, Sha China	

2.2. Manufacturer Information

Company Name	Shanghai Sunmi Technology Co.,Ltd.
Address	Room 505, KIC Plaza, No.388 Song Hu Road, Yang Pu District, Shanghai, China
Telephone	+86 18501703215

Page Number: 8 of 17

Report No.: C21T00142-SAR01-V00

3. Equipment under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Product Name	Data Processing Terminal
Model name	L3561
Supported Radio Technology and Bands	BT4.2, BLE WLAN 802.11a/b/g/n/ac
Hardware Version	Athens_MB_V1.1
Software Version	d2-userdebug 11 RQ1D.210105.003 97 release-keys
FCC ID	2AH25D2SKDS
IC	22621-D2SKDS

Note: Photographs of EUT are shown in ANNEX A of this test report.

3.2. Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version	Date of Receipt
N/A	N/A	N/A	N/A	N/A

^{*}EUT ID: is internally used to identify the test sample in the lab.

3.3. Internal Identification of AE used during the test

AE ID*	Description	Model	SN/Remark
N/A	N/A	N/A	N/A

^{*}AE ID: is internally used to identify the test sample in the lab.

Page Number: 9 of 17

Report No.: C21T00142-SAR01-V00

4. Reference Documents for FCC

4.1. Reference Documents for testing

The following documents listed in this section are referred for testing.

	<u> </u>	
Reference	Title	
	FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL	
FCC 47 CFR Part 2	RULES AND REGULATIONS.	
2.1091	Section 2.1091 Radiofrequency radiation exposure evaluation: mobile	
	devices	

4.2. Criteria

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess limit for maximum permissible exposure. In accordance with the reference this device has been defined as a mobile device whereby a distance of 0.2m normally can be maintained between the user and the device.

.2m normally can be maintained between the user and the device.							
	Limits for Occupational / Controlled Exposure						
Frequency	Electric Field	Magnetic Field	agnetic Field Power Density Averagin				
(MHz)	Strength (E)	Strength (H)	(S)	H 2 or S			
	(V/m)	(A/m)	(mW/cm2)	(minitues)			
0.3 - 3.0	614	1.63	(100)*	6			
3.0 - 30	1824/f	4.89/f	(900/f)*	6			
30 – 300	61.4	0.163	1	6			
300 – 1500			F/300	6			
1500 - 100000			5	6			
	Limits for Ge	eneral Population / Unco	ntrolled Exposure				
Frequency	Electric Field	Magnetic Field	Power Density	Averaging Times E 2,			
(MHz)	Strength (E)	Strength (H)	(S)	H 2 or S			
	(V/m)	(A/m)	(mW/cm2)	(minitues)			
0.3 – 1.34	614	1.63	(100)*	30			
1.34 – 30	824/f	2.19/f	(180/f)*	30			
30 – 300	27.5	0.073	0.2	30			
300 – 1500			F/1500	30			
1500 - 100000			1	30			

Note:

f = frequency in MHz; * Plane-wave equivalent power density.

For the DUT, the limits for General Population / Uncontrolled Exposure are applicable.

Page Number: 10 of 17

Report No.: C21T00142-SAR01-V00

4.3. Reference Information from client

All technical documents are supplied by the client or manufacturer, which is the basis of testing. (such as antenna gain, etc.)

4.4. Calculation Method

For conservative evaluation consideration, only maximum power of each frequency band based on the tighter limits respectively are used to calculate the boundary power density.

Based on the FCC KDB 447498 D01 and 47 CFR §2.1091, the DUT is evaluated as a mobile device.

$$S = \frac{P \times G}{4\pi d^2}$$

Where

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power density in milliwatts / square centimeter

Page Number: 11 of 17

Report No.: C21T00142-SAR01-V00

5. Test Summary for FCC

5.1. RF Power Output

Band	Max power(dBm)	Highest Output Power (dBm)	Antenna Gain(dBi)
ВТ	8	8	1.58
BLE	7.5	7.5	1.58
WI-FI 2.4G 802.11b	16.5	16.5	1.58
WI-FI 2.4G 802.11g	16.5	16.5	1.58
WI-FI 2.4G 802.11n	16.5	16.5	1.58
WI-FI5G U-NII-1 802.11a	14.5	14.5	0.36
WI-FI5G U-NII-1 802.11n	14.5	14.5	0.36
WI-FI5G U-NII-1 802.11ac	14.5	14.5	0.36
WI-FI5G U-NII-3 802.11a	14.5	14.5	1.02
WI-FI5G U-NII-3 802.11n	14.5	14.5	1.02
WI-FI5G U-NII-3 802.11ac	14.5	14.5	1.02

5.2. Duty Cycle

Mode	Duty Cycle
ВТ	1:1
BLE	1:1
Wi-Fi	1:1

Page Number: 12 of 17 Report No.: C21T00142-SAR01-V00

5.3. Summary of Evaluation Results

Band	Frequency	Highest Output Power (dBm)	Highest Output Power (mW)	Antenna Gain(dBi)	Numeric antenna gain	Power density at 20cm	Limit W/cm²
BT4.2	2402	8	8	1.58	1.439	0.002	1.000
BLE	2402	7.5	7.5	1.58	1.439	0.002	1.000
WI-FI2.4G 802.11b	2412	16.5	16.5	1.58	1.439	0.005	1.000
WI-FI2.4G 802.11g	2412	16.5	16.5	1.58	1.439	0.005	1.000
WI-FI2.4G 802.11n	2412	16.5	16.5	1.58	1.439	0.005	1.000
WI-FI5G U-NII-1 802.11a	5180	14.5	14.5	0.36	1.086	0.003	1.000
WI-FI5G U-NII-1 802.11n	5180	14.5	14.5	0.36	1.086	0.003	1.000
WI-FI5G U-NII-1 802.11ac	5180	14.5	14.5	0.36	1.086	0.003	1.000
WI-FI5G U-NII-3 802.11a	5745	14.5	14.5	1.02	1.265	0.004	1.000
WI-FI5G U-NII-3 802.11n	5745	14.5	14.5	1.02	1.265	0.004	1.000
WI-FI5G U-NII-3 802.11ac	5745	14.5	14.5	1.02	1.265	0.004	1.000

The product is under the MPE limits. All is pass.

Page Number: 13 of 17

Report No.: C21T00142-SAR01-V00

5.4. Simultaneous SAR Evaluation

Power density /Limit		\(\sum_{\text{Downer density // imit) of}}\)	
1	2	Σ (Power density /Limit) of	
ВТ	WI-FI	1+2	
0.002	0.005	0.007	
Power density /Limit		\(\sum_{\text{Dower density /l. imit) of}}\)	
3	4	Σ (Power density /Limit) of	
BLE	WI-FI	3+4	
0.002	0.005	0.007	

Note:

- 1. Σ (Power density /Limit): This is a summation of [(Power density for each transmitter/antenna included in the simultaneous transmission)/ (corresponding MPE limit)], for Wi-Fi+BT.
- 2. Considering the BT collocation with the Wi-Fi transmitter of the Highest output power performance listed in the table above, the aggregated (Power density /Limit) is smaller than1, and MPE collocated transmitters is compliant.

5.5. Statements

The L3561, manufactured by Shanghai Sunmi Technology Co.,Ltd. is a new product for evaluation.

Industrial Internet Innovation Center (Shanghai) Co., Ltd. only performed test cases which identified with Pass/Fail/Inc result in section 5.1.

Industrial Internet Innovation Center (Shanghai) Co., Ltd. has verified that the compliance of the tested device specified in section 3 of this test report is successfully evaluated according to the procedure and test methods as defined in type certification requirement listed in section 4 of this test report.

Page Number: 14 of 17

Report No.: C21T00142-SAR01-V00

6. Reference Documents for IC

6.1. Reference Documents for evaluation

The following documents listed in this section are referred for evaluation.

Reference	Title	Version
RSS 102	Radio Frequency (RF) Exposure Compliance of Radio communication Apparatus (All Frequency Bands)	2015

6.2. Criteria

RF exposure evaluation is required if the separation distance between the user and/or bystander and the device's radiating element is greater than 20 cm, except when the device operates as follows:

	•	•
Frequency (MHz)	Base	Maximum e.i.r.p (w)
< 20	Source	1
20 – 48	Source	22.48/f0.5
48 – 300	Source	0.6
300 – 6000	Source	1.31*10 ^{-2*} f ^{0.6834}
> 6000	Source	5

Note:

In these cases, the information contained in the RF exposure technical brief may be limited to information that demonstrates how the e.i.r.p. was derived.

6.3. Reference Information from client

All technical documents are supplied by the client or manufacturer, which is the basis of testing. (such as antenna gain, etc.)

6.4. Calculation Method

At or above 300 MHz and below 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 1.31 x 10-2 f0.6834 W (adjusted for tune-up tolerance), where f is in MHz.

f = frequency in MHz;

The result should be adjusted for tune-up tolerance.

Page Number: 15 of 17

Report No.: C21T00142-SAR01-V00

7. Test Summary for IC

7.1. RF Power Output

Band	Max power(dBm)	Highest Output Power (dBm)	Antenna Gain(dBi)
BT	8	8	1.58
BLE	7.5	7.5	1.58
WI-FI 2.4G 802.11b	16.5	16.5	1.58
WI-FI 2.4G 802.11g	16.5	16.5	1.58
WI-FI 2.4G 802.11n	16.5	16.5	1.58
WI-FI5G U-NII-1 802.11a	14.5	14.5	0.36
WI-FI5G U-NII-1 802.11n	14.5	14.5	0.36
WI-FI5G U-NII-1 802.11ac	14.5	14.5	0.36
WI-FI5G U-NII-3 802.11a	14.5	14.5	1.02
WI-FI5G U-NII-3 802.11n	14.5	14.5	1.02
WI-FI5G U-NII-3 802.11ac	14.5	14.5	1.02

7.2. Duty Cycle

Mode	Duty Cycle
ВТ	1:1
BLE	1:1
Wi-Fi	1:1

Page Number: 16 of 17

Report No.: C21T00142-SAR01-V00

7.3. Summary of Evaluation Results

Band	Frequency	Highest Output Power (dBm)	Highest Output Power (mW)	Antenna Gain(dBi)	Numeric antenna gain	e.i.r.p(W)	Limit W/cm²
BT 4.2	2402	8	8	1.58	1.439	0.009	2.676
BLE	2402	7.5	7.5	1.58	1.439	0.009	2.676
WI-FI2.4G 802.11b	2412	16.5	16.5	1.58	1.439	0.018	2.684
WI-FI2.4G 802.11g	2412	16.5	16.5	1.58	1.439	0.018	2.684
WI-FI2.4G 802.11n	2412	16.5	16.5	1.58	1.439	0.018	2.684
WI-FI5G U-NII-1 802.11a	5180	14.5	14.5	0.36	1.086	0.016	4.525
WI-FI5G U-NII-1 802.11n	5180	14.5	14.5	0.36	1.086	0.016	4.525
WI-FI5G U-NII-1 802.11ac	5180	14.5	14.5	0.36	1.086	0.016	4.525
WI-FI5G U-NII-3 802.11a	5745	14.5	14.5	1.02	1.265	0.016	4.857
WI-FI5G U-NII-3 802.11n	5745	14.5	14.5	1.02	1.265	0.016	4.857
WI-FI5G U-NII-3 802.11ac	5745	14.5	14.5	1.02	1.265	0.016	4.857

The product is under the MPE limits. All is pass.

7.4. Simultaneous SAR Evaluation

e.i.	r.p /Limit	\(\sigma \) (\sigma \) (\sigma \) (\sigma \)
1	2	Σ (e.i.r.p /Limit) of
BT	Wi-Fi	1+2
0.009	0.018	0.027
e.i.	r.p /Limit	
3	4	Σ (e.i.r.p /Limit) of
BLE	Wi-Fi	3+4
0.009	0.018	0.027

Note:

- 1. Σ (Power density /Limit) : This is a summation of [(Power density for each transmitter/antenna included in the simultaneous transmission)/ (corresponding MPE limit)], for Wi-Fi+BT.
- 2. Considering the BT collocation with the Wi-Fi transmitter of the Highest output power performance listed in the table above, the aggregated (Power density /Limit) is smaller than1, and MPE collocated transmitters is compliant.

Page Number: 17 of 17

Report No.: C21T00142-SAR01-V00

8. Statements

The L3561, manufactured by Shanghai Sunmi Technology Co.,Ltd. is a new product for evaluation.

Industrial Internet Innovation Center (Shanghai) Co., Ltd. has verified that the compliance of the evaluated device specified in section 3 of this evaluation report is successfully evaluated according to the procedure and evaluation methods as defined in type certification requirement listed in section 4 of this evaluation report.

*********END OF REPORT*******