

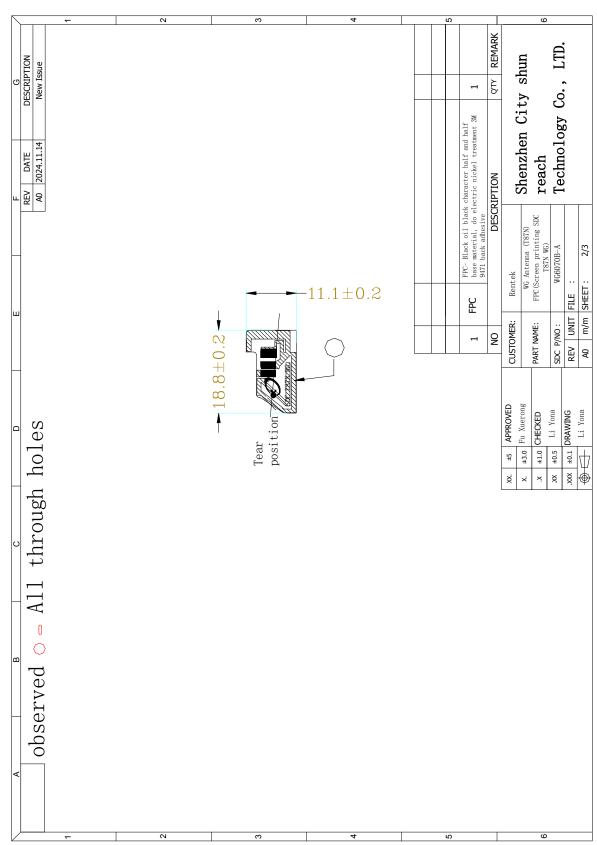
Acknowledgment Letter

SPECIFICATION FOR APPROVAL

Customer Name	mer Name Yu Ke										
Customer Project Name	T87N	Project Name	T87N								
Antenna type	Four in one antenna SDC P/N WG6070B-A										
Band	WiFi2. 4G/5. 8G/BT/GPS										
Version	A0	A0									
	Designer Inf	ormation									
RF Engineer	Yang YongHui	R&D Diretor	Fu Xuerong								
ME Engineer	Huang ZongBao										

	Appr	ustomer	Approval		
	Prepared By	Checked By	Approval By	Checked By	Approval By
Signature	Huang Zongbao	Fu Xuerong	Xia Chenglei		
Date	2024. 11. 14	2024. 11. 14	2024. 11. 14		

	hange Log												
Version	Change Description	Person in Charge	Approval By	Date									

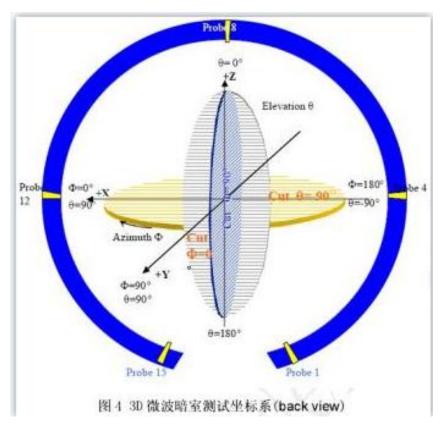


Catalogue

No.	Item	Page No.
1	Drawing or Product Image	3
2	Dimensions Test Report	4
3	RF Performance Test Report	5–7
4	Reliability Test Report1	8
5	Package Document	9
6	RoHS Control list for Sample	10
7	Install Wizard or Other	10

Drawing or Product Image

Sample Dimensions Test Report


Test Date	2024. 11. 14	Sample Qty.	3	Inspector	Yu Vanfana
Test Date	ZUZ 4 . 11. 14	затріе уту.	3	inspector	Xu Yanfang
Dimension No.	Standard	Sample 1	Sample 2	Sample 3	Pass/NG
①length	18.8±0.2mm	18. 8	18. 9	18. 8	Pass
②width	11.1±0.2mm	11.1	11. 2	11. 1	Pass
③ thickness	0.1±0.03mm	0. 1	0. 1	0. 1	Pass
	I	I		PASS	
Inspector & Date	Xu Yanfang 20	24. 11. 14	Approval &D ate		

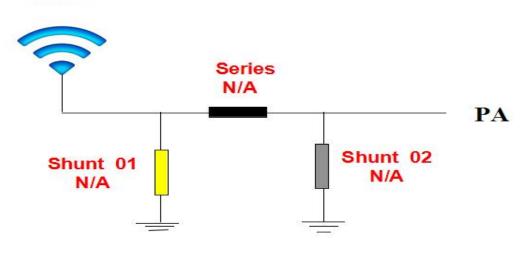
RF Performance Test Report

Antenna Test Equipment Introduction

Test of antenna input characteristics using **Agilent E5071C** and **Agilent 5062A** vector network analyzer; The radiation pattern of the antenna are tested using the guangping 3D near field Anechoic Chamber, and the instrument is used to agilent8960 E5515 and Agilent E4438C. The test coordinates of the darkroom are as follows:

1. S11 Parameter-VSWR

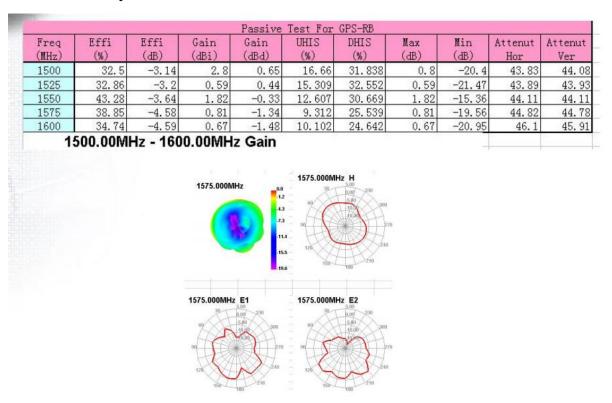
Measuring Method is a $50\,\Omega$ coaxial cable is connected to the antenna. Then this cable is connected to a network analyzer to measure the S11 parameter, Keeping this fixture away from metal at least 20cm.



S11 Param	S11 Parameter-VSWR												
Frequency(MHz)	1570	1575	1580	2400	2450	2500	5150	5720	5850				
VSWR	1.54	1.53	1.57	2.12	1.10	1.98	1.52	1.36	1.59				

2. Antenna Matching Network

Antenna



3. Electrical parameter:

Electrical parameter									
(Frequency range)	1575-5850Mhz								
Polarization mode	Horizontal and vertical polarization								
Measurement program	Wide screen								
Test equipment	Agilent(5071B) /Agilent (8960) /ROHDE&SCHWARZ(CMW500)								
Test Settings	Insert the testing white card, fix the entire machine on the testing turntable, open the testing software, and select the corresponding testing frequency band								
Testing location	OTA microwave anechoic chamber								
Antenna manufacturer	Shenzhen Shundacheng Technology Co., Ltd								
Debugging mode	PIFA								
Antenna material	FPC+coaxial line								

4. Gain & Efficiency

					unuac			ology				
							2 42					- 8
-	Dog:	Doo:				Test For						
Freq	Effi	Effi	Gain	Gain	UHIS	DHIS	Max		rectivitB	and the same of the same of	AttH	AttV
(MHz)	(%)	(dB)	(dBi)	(dBd)	(%)	(%)	(dB)	(dB)	(dBi)	(3dB)	(dB)	(dB)
2400	43. 54	-3. 61	1. 03	-1.12	20. 581	22. 962	1. 03	-15. 9	4. 64	15	48. 93	49. 09
2425	45. 48	-2.97	1.96	-0. 19	23. 926	26. 555	1. 96	-16. 48	4. 93	15	49.09	49. 22
2450	36. 53	-4. 37	0.87	-1. 28	17. 136	19. 397	0.87	-19. 74	5. 24	15	49. 25	49. 27
2475	35. 97	-4.44	0. 52	-1.63	17. 205	18. 763	0. 52	-23. 22	4. 96	75	49. 98	49. 91
2500	36. 94	-4. 32	0.32	-1.83	17. 676	19. 267	0. 32	-18. 36	4.64	75	49. 71	49.62
2400.000MHz	24	00 000111- 11					1 2000					
2-100.000mm		00.000MHz H	330	150.000MHz		00MHz H	2500.00	OMHz 0.3	2500.000MHz H	220		
	0.0	69 5.80	300		0.9 -0.1	5,90		-0.7	60	0 300		
	-1.5 -3.0	15.06			-1.6	10.50	300	-2.2		00)		
	-5.0 90		270		-3.1 90		270	5.7	90	270		
		120	240		-5.1		240	.1.1	120	240		
	-7.0	150	210		-7.1	150 210		.9.7	150 180	210		
2400.000MHz E	9,0 :1 24	00.000MHz E2	2/150).000MHz E1	9.1 2/150 00	OOMHz E2						
30 5.0]	30 5.00	330	30 5.00	1	5.00 30 0.00 330	2500.000N	1Hz E1 5.00	2500.000MHz E	2		
60 51	300	5.00	300 69	10.00	300 60	5,60	300 60	0.00 330	60 0.0	0 200		
A	00	15.06	24	15,00	A A	15:00		10.00	10	00		
90	270 90	5	270 90	(LAK)	270 90		270 90	270	90	270		
120	240	120	240 120	W	240 120	XXA	240 120	240	120	210		
150	210	150	210	150 150	0	150 210	150	210	150	210		
781		780				100		100	100			
						e Test Fo		T	T			
Freq	Effi	Effi	Gain	Gain	UHIS	DHIS	Max	Min	irectivit			AttV
(MHz)	(%)	(dB)	(dBi)	(dBd)	(%)	(%)	(dB)	(dB)	(dBi)	(3dB)	(dB)	(dB)
5150 5250	42. 13 36. 5	-3. 75 -4. 38		0. 21 -0. 78	16. 688 16. 245	25. 441 20. 256	2. 36 1. 37			30		90.000000000000000000000000000000000000
5350	33. 61	-4. 73		-1. 08	14. 487	19. 127	1. 07			60		
5450	38. 75	-4. 12	177 1177	-0. 12	14. 442	24. 308	2. 03	1000	100			1701765170
				-0. 01	15. 599	27. 564	2. 14				1997 57	58.8
5550	43. 16	-3.65	2.17		16. 711	28. 699	2. 1	-20. 47	5. 53	0	60. 31	59. 4
5550 5650	43. 16 45. 41	-3. 65 -3. 43		-0.05	10. 111						100000000000000000000000000000000000000	
111111111111111111111111111111111111111	0.001-0.001-0.001		2. 1	-0. 05 0. 02	17. 996	28. 581	2. 17	-18	5. 49	30		60. 2
5650	45. 41	-3. 43	2. 1 2. 17			F 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2. 17 2. 78		5. 49 6. 27	30 30	60.88	
5650 5750	45. 41 46. 58 44. 83	-3. 43 -3. 32	2. 1 2. 17	0. 02 0. 63	17. 996	28. 581 26. 336		-23. 77	6. 27	30	60. 88 61. 09	60. 4
5650 5750 5850	45. 41 46. 58 44. 83	-3. 43 -3. 32 -3. 48	2. 1 2. 17 2. 78	0. 02 0. 63	17. 996 18. 496	28. 581 26. 336	2. 78		6. 27		60.88	60. 4
5650 5750 5850	45. 41 46. 58 44. 83	-3. 43 -3. 32 -3. 48	2. 1 2. 17 2. 78	0. 02 0. 63	17. 996 18. 496	28. 581 26. 336	2. 78	-23. 77	6. 27	30	60. 88 61. 09	60. 4
5650 5750 5850	45. 41 46. 58 44. 83	-3. 43 -3. 32 -3. 48	2. 1 2. 17 2. 78	0. 02 0. 63	17. 996 18. 496	28. 581 26. 336	2. 78	-23. 77	6. 27	30	60. 88 61. 09	60. 4
5650 5750 5850	45. 41 46. 58 44. 83	-3. 43 -3. 32 -3. 48	2. 1 2. 17 2. 78	0. 02 0. 63	17. 996 18. 496	28. 581 26. 336	2. 78	-23. 77	6. 27	30	60. 88 61. 09	60. 4
5650 5750 5850	45. 41 46. 58 44. 83	-3. 43 -3. 32 -3. 48	2. 1 2. 17 2. 78	0. 02 0. 63	17. 996 18. 496	28. 581 26. 336	2. 78	-23. 77	6. 27	30	60. 88 61. 09	60. 4
5650 5750 5850 5150.000MHz	45. 41 46. 58 44. 83 5150.0	-3. 43 -3. 32 -3. 48 000MHz H 30 0.00 150 0.00 150 0.00 150 0.00 150 0.00	2. 1 2. 17 2. 78 5350.000M	0. 02 0. 63 NHz	17. 996 18. 496 5350.000MHz H	28. 581 26. 336 5550 5550	2. 78	-23. 77	6. 27	30	60. 88 61. 09	60. 4
5650 5750 5850 5150.000MHz	45. 41 46. 58 44. 83 5150.0	-3. 43 -3. 32 -3. 48	2. 1 2. 17 2. 78	0. 02 0. 63 NHz	17. 996 18. 496	28. 581 26. 336 5550 5550	2. 78	-23. 77	6. 27	30	60. 88 61. 09	60. 4
5650 5750 5850 5150.000MHz	45. 41 46. 58 44. 83 5150.0	-3. 43 -3. 32 -3. 48 000MHz H 30 0.00 150 0.00 150 0.00 150 0.00 150 0.00	2. 1 2. 17 2. 78 5350.000M	0. 02 0. 63 NHz	17. 996 18. 496 5350.000MHz H	28. 581 26. 336 5550 5550	2. 78	5550.000MH	6. 27	30 5850.000MHz	60. 88 61. 09 5850.000M	60. 4
5650 5750 5850 5150.000MHz	45. 41 46. 58 44. 83 5150.0	-3. 43 -3. 32 -3. 48 000MHz H 30 000 330 150 000 330 000MHz E2 30 000 330	2. 1 2. 17 2. 78 5350.000M	0. 02 0. 63 NHz	17. 996 18. 496 5350.000MHz H	28. 581 26. 336 5550 5550	2. 78	5550.000MH	6. 27	30 5850.000MHz	60. 88 61. 09 5850.000M	60. 4
5650 5750 5850 5150.000MHz	45. 41 46. 58 44. 83 5150.0	-3. 43 -3. 32 -3. 48 000MHz H 30 000 330 150 000 330 000MHz E2 30 000 330	2. 1 2. 17 2. 78 5350.000M	0. 02 0. 63 NHz	17. 996 18. 496 5350.000MHz H	28. 581 26. 336 5550 5550	2. 78	5550.000MH	6. 27	30 5850.000MHz	60. 88 61. 09 5850.000M	60. 4:
5650 5750 5850 5150.000MHz	45. 41 46. 58 44. 83 5150.0	-3. 43 -3. 32 -3. 48 000MHz H 30 000 330 150 000 330 000MHz E2 30 000 330	2. 1 2. 17 2. 78 5350.000M	0. 02 0. 63 NHz	17. 996 18. 496 5350.000MHz H	28. 581 26. 336 5550 5550	2. 78	5550.000MH	6. 27	30 5850.000MHz	60. 88 61. 09 5850.000M	60. 4:
5650 5750 5850	45. 41 46. 58 44. 83 5150.0	-3. 43 -3. 32 -3. 48 000MHz H 30 000 330 150 000 330 000MHz E2 30 000 330	2. 1 2. 17 2. 78 5350.000M	0. 02 0. 63 NHz	17. 996 18. 496 5350.000MHz H	28. 581 26. 336 5550 5550	2. 78	5550.000MH	6. 27	30 5850.000MHz	60. 88 61. 09 5850.000M	60. 4:
5650 5750 5850 5150.000MHz	45. 41 46. 58 44. 83 5150.0	-3. 43 -3. 32 -3. 48 000MHz H 30 000 330 150 000 330 000MHz E2 30 000 330	2. 1 2. 17 2. 78 5350.000M	0. 02 0. 63 NHz	17. 996 18. 496 5350.000MHz H	28. 581 26. 336 5550 5550	2. 78	5550.000MH	6. 27	30 5850.000MHz	60. 88 61. 09 5850.000M	60. 4:
5650 5750 5850 5150.000MHz	45. 41 46. 58 44. 83 5150.0	-3. 43 -3. 32 -3. 48 000MHz H 30 000 330 150 000 330 000MHz E2 30 000 330	2. 1 2. 17 2. 78 5350.000M	0. 02 0. 63 NHz	17. 996 18. 496 5350.000MHz H	28. 581 26. 336 5550 5550	2. 78	5550.000MH	6. 27	30 5850.000MHz	60. 88 61. 09 5850.000M	60. 4:
5650 5750 5850 5150.000MHz	45. 41 46. 58 44. 83 5150.0	-3. 43 -3. 32 -3. 48 000MHz H 30 000 330 150 000 330 000MHz E2 30 000 330	2. 1 2. 17 2. 78 5350.000M	0. 02 0. 63 NHz	17. 996 18. 496 5350.000MHz H	28. 581 26. 336 5550 5550	2. 78	5550.000MH	6. 27	30 5850.000MHz	60. 88 61. 09 5850.000M	60. 4:
5650 5750 5850 5150.000MHz	45. 41 46. 58 44. 83 5150.0	-3. 43 -3. 32 -3. 48 000MHz H 30 000 330 150 000 330 000MHz E2 30 000 330	2. 1 2. 17 2. 78 5350.000M	0. 02 0. 63 NHz	17. 996 18. 496 5350.000MHz H	28. 581 26. 336 5550 5550	2. 78	5550.000MH	6. 27	30 5850.000MHz	60. 88 61. 09 5850.000M	60. 4:
5650 5750 5850 5150.000MHz	45. 41 46. 58 44. 83 5150.0	-3. 43 -3. 32 -3. 48 000MHz H 30 000 330 150 000 330 000MHz E2 30 000 330	2. 1 2. 17 2. 78 5350.000M	0. 02 0. 63 NHz	17. 996 18. 496 5350.000MHz H	28. 581 26. 336 5550 5550	2. 78	5550.000MH	6. 27	30 5850.000MHz	60. 88 61. 09 5850.000M	60. 4:

5. OTA data

2. 4G	802.11b, (2.4G)11M							
Channe1	CH1	СН6	CH11					
TRP	13. 11	13. 57	13. 02					
TIS	-80. 92	-81. 04	-81. 39					
5. 8G	802.11a, (5.8G) 54M							
Channel	СН36	СН60	CH161					
TRP	11. 28	10. 42	10. 17					
TIS	-70. 24	-69. 86	-68. 78					

6. GPS measurement map

Reliability Test Report

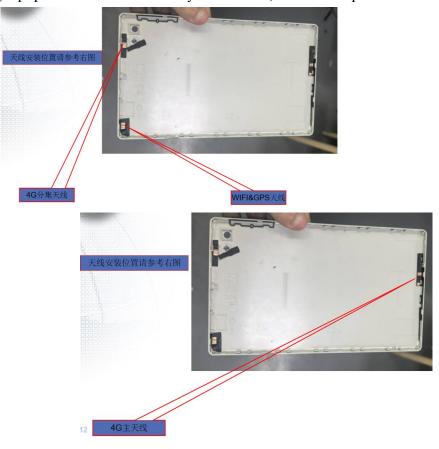
Test Date	2024. 11. 14	Sample Qty.	3	Inspector	Xu Ya	nfang	
Test Item	Requirement	testing Sample 1		Sample 2	Sample 3	PASS/NG	
high temperature storage	Expose to+85 °C for 24 hours, recover for 2 hours, and conduct testing	Constant temperature and humidity box	ОК	ОК	ок	Pass	
low temperature storage	Expose to -40 ° C for 24 hours, recover for 2 hours, and perform testing	Constant temperature and humidity box	ОК	OK	ОК	Pass	
High temperature operation	Powered on for 24 hours at+60 °C	Constant temperature and humidity box	ОК	OK	ОК	Pass	
Low temperature operation	Powered on for 24 hours at -20 °C	Constant temperature and humidity box	ок	ОК	ОК	Pass	
Salt spray test	(5 ± 0. 5)%sodium chloride、pHValue is6.5~7.2, Temperature of experimental chamber (35±2)°C □24H	Salt spray testing machine	OK	OK	ОК	Pass	
Connector riveting and pulling force	1.13Wire diameter≥ 10N 0.81Wire diameter≥ 8N RG174≥60N RG178≥50N	Push-pull force gauge	≥10N	≥10N	≥10N	Pass	
		Conclus	ion			Pass	
Inspector &	Xu Yanfang 2024.1	1. 14	Approval &D				

Packing rules Project name: T87N Product name: T87N FPC antenna (one) (two) Each PE bag contains 100pcs of products (subject to actual packaging) $\sqrt{ }$ (three) Then put the small antenna bag neatly into (Figure 3) and fill 10 small bags (the actual packaging shall prevail). Д (four) The packaged antenna can be put into a carton, which can hold 5 large bags, each box can hold 5000PCS (Figure 4). (Subject to actual packaging)

affixed (Figure 5).

(five) After the packaging is completed, the shipping label should be

Install Wizard or Other
setup script:


Take 1 PCS of product, tear off the release paper on the back of the FPC by hand, and then align the FPC positioning hole position with the shell positioning hole position (positioning rib position or positioning line), and attach it flat to the shell, as shown in the following figure:

Installation process precautions:

□Ensure	that	the	FPC	is	fully	attached	to	the	housing	after	pasting	the	antenna;
---------	------	-----	-----	----	-------	----------	----	-----	---------	-------	---------	-----	----------

- □Align the positioning hole with the position of the casing positioning column;
- □Align FPC edge with shell edge;
- ■When attaching the terminal to the PCBA end of the motherboard, please first align the terminals and then snap them vertically;
 - When disassembling antenna terminals, it is necessary to use a tool (such as a special pry bar) to vertically lift the terminals and not directly pull the wires for disassembly

Test equipment(The following equipment is calibrated every six months, inMarch/September of each year)

Certificate Number: UNIB23083106HC-01

Product: 5G/4G/WIFI/GPS/BT antenna

Applicant: ShenZhen ShunDaCheng Technology Co., Ltd.

4th Floor, Building B5, Xinfu Industrial Zone, Fuyong Chongqing Road,

Baoan District, Shenzhen

Manufacturer: N/A

Model No.: N/A
Trade Name: N/A

Test Methods: IEC 62321-2:2021, IEC 62321-3-1:2013, IEC 62321-4:2013 +A1:2017,

IEC 62321-5:2013, IEC 62321-6:2015, IEC 62321-7-1:2015

IEC 62321-7-2:2017, IEC 62321-8:2017

The laboratory tested the product provided by the applicant according to the above test methods. According to the test results, the product conforms to RoHS Directive [(2011/65/EU and Amendment (EU) 2015/863)] issued by the European Commission. It is possible to use CE marking to demonstrate the compliance with RoHS Directive.

The certificate applies to the tested sample above mentioned only and shall not imply an assessment of the whole production. It is only valid in connection with the test report number: UNIB23083106HR-01.

Note: According to the requirements of the applicant for testing, details are shown in the test report.

RoHS

Sep. 06, 2023

Lau CE

Shenzhen United Testing Technology

Shenzhen: D101&D401, No. 107, Kaicheng High-Tech Park, Taoyuan Community, Longhua District, Shenzhen, Guangdong, China/518109

Guangzhou:No.47-3, Industrial Road, Zhushan, Dalong Street, Panyu District, Guangzhou, Ol China/511450;

101/F, Building 2, Tongxin Industrial Park, Xinqiao Village, Dalong Street, Panyu District, Guangzhou, Guangdong China/511450

Tel:+86-755-86180996/+86-020-39277769 Fax:+86- 0755-86180156

Web.Site:www.uni-lab.hk/ E-mail:hofferlau@uni-lab.hk

Certificate of Compliance