

MRT Technology (Taiwan) Co., Ltd Phone: +886-3-3288388 Web: www.mrt-cert.com Report No.: 2502TW0104-U2 Report Version: 1.0 Issue Date: 2025-03-27

MEASUREMENT REPORT

FCC ID	:	2BH7FBE9700
Applicant	:	TP-Link Systems Inc.
Application Type	:	Certification
Product	:	BE9700 Tri-Band Wi-Fi 7 Router
Model No.	:	Archer BE9700
Serial Model No.	:	Archer BE600, Archer BE9500
Brand Name	:	tp-link
FCC Classification	:	Digital Transmission System (DTS)
FCC Rule Part(s)	:	Part15 Subpart C (Section 15.247)
Received Date	:	February 10, 2025
Test Date	:	February 20, 2025~March 6, 2025

Tested By	Owen Tsai
	(OWen Tsai)
Reviewed By	: Paddy Chen (Paddy Chen)
	(Paddy Chen)
Approved By	ang her
	(Chenz Ker)

The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013. Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Taiwan) Co., Ltd.

Revision History

Report No.	Version	Description	Issue Date	Note
2502TW0104-U2	1.0	Original Report	2025-03-27	

CONTENTS

Des	scriptio	n	Page
1.	INTRO	DDUCTION	6
	1.1.	Scope	6
	1.2.	MRT Test Location	6
2.	PROD	DUCT INFORMATION	7
	2.1.	Feature of Equipment under Test	7
	2.2.	Product Specification Subjective to this Report	
	2.3.	Working Frequencies for this report	9
	2.4.	Description of Available Antennas	10
	2.5.	Test Mode	11
	2.6.	Configuration of Test System	12
	2.7.	Test System Details	13
	2.8.	Description of Test Software	13
	2.9.	Applied Standards	13
	2.10.	Duty Cycle	14
	2.11.	Test Configuration	16
	2.12.	EMI Suppression Device(s)/Modifications	16
	2.13.	Labeling Requirements	16
3.	DESC	RIPTION of TEST	17
	3.1.	Evaluation Procedure	17
	3.2.	AC Line Conducted Emissions	17
	3.3.	Radiated Emissions	18
4.	ANTE	NNA REQUIREMENTS	19
5.	TEST	EQUIPMENT CALIBRATION DATE	20
6.	MEAS	SUREMENT UNCERTAINTY	22
7.	TEST	RESULT	23
	7.1.	Summary	23
	7.2.	6dB Bandwidth Measurement	
	7.2.1.	Test Limit	
	7.2.2.	Test Procedure used	
	7.2.3.	Test Setting	
	7.2.4.	Test Setup	
	7.2.5.	Test Result	
	7.3.	Output Power Measurement	34

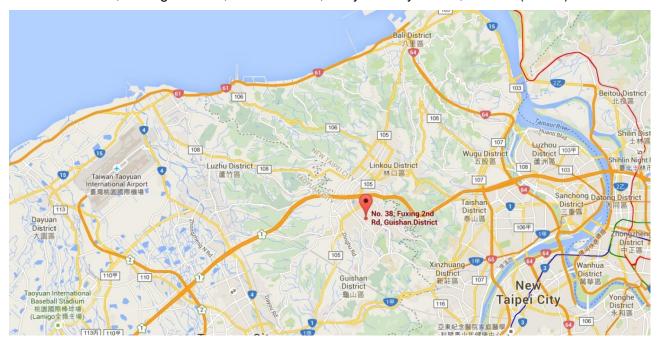
	7.3.1.	Test Limit	34
	7.3.2.	Test Procedure Used	34
	7.3.3.	Test Setting	34
	7.3.4.	Test Setup	34
	7.3.5.	Test Result	35
	7.4.	Power Spectral Density Measurement	36
	7.4.1.	Test Limit	36
	7.4.2.	Test Procedure Used	36
	7.4.3.	Test Setting	36
	7.4.4.	Test Setup	37
	7.4.5.	Test Result	38
	7.5.	Conducted Band Edge and Out-of-Band Emissions	39
	7.5.1.	Test Limit	63
	7.5.2.	Test Procedure Used	63
	7.5.3.	Test Setting	63
	7.5.4.	Test Setup	64
	7.5.5.	Test Result	65
	7.6.	Radiated Spurious Emission Measurement	90
	7.6.1.	Test Limit	90
	7.6.2.	Test Procedure Used	90
	7.6.3.	Test Setting	90
	7.6.4.	Test Setup	92
	7.6.5.	Test Result	93
	7.7.	Radiated Restricted Band Edge Measurement 1	45
	7.7.1.	Test Limit 1	45
	7.7.2.	Test Procedure Used 1	46
	7.7.3.	Test Setting 1	46
	7.7.4.	Test Setup 1	47
	7.7.5.	Test Result 1	48
	7.8.	AC Conducted Emissions Measurement	244
	7.8.1.	Test Limit 2	244
	7.8.2.	Test Setup 2	<u>244</u>
	7.8.3.	Test Result 2	245
8.	CONC	LUSION2	247
Арр	endix A	A : Test Setup Photograph2	248
Арр	endix E	3 : External Photograph2	248
Арр	endix (C : Internal Photograph2	248

General Information

Applicant	TP-Link Systems Inc.
Applicant Address	10 Mauchly, Irvine, CA 92618
Manufacturer	TP-Link Systems Inc.
Manufacturer Address	10 Mauchly, Irvine, CA 92618
Test Site	MRT Technology (Taiwan) Co., Ltd
Test Site Address	No. 38, Fuxing Second Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C)
MRT FCC Registration No.	291082
FCC Rule Part(s)	Part 15.247

Test Facility / Accreditations

- 1. MRT facility is a FCC registered (Reg. No. 291082) test facility with the site description report on file and is designated by the FCC as an Accredited Test Firm.
- 2. MRT facility is an IC registered (MRT Reg. No. 21723) test laboratory with the site description on file at Industry Canada.
- MRT Lab is accredited to ISO 17025 by the Taiwan Accreditation Foundation (TAF Cert. No. 3261) in EMC, Telecommunications and Radio testing for FCC (Designation Number: TW3261), Industry Canada, EU and TELEC Rules.


1. INTRODUCTION

1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada and Certification and Engineering Bureau.

1.2. MRT Test Location

The map below shows the location of the MRT LABORATORY, its proximity to the Taoyuan City. These measurement tests were conducted at the MRT Technology (Taiwan) Co., Ltd. Facility located at No.38, Fuxing 2nd Rd., Guishan Dist., Taoyuan City 33377, Taiwan (R.O.C).

2. PRODUCT INFORMATION

2.1. Feature of Equipment under Test

Product Name:	BE9700 Tri-Band Wi-Fi 7 Router				
Model No.:	Archer BE9700				
Serial Model No.:	Archer BE600, Archer BE9500				
Brand Name:	tp-link				
Wi-Fi Specification:	802.11a/b/g/n/ac/ax/be				
EUT Identification No.:	#1-1 (Conducted) #1-2 (Radiated)				
Accessory					
	Brand: tp-link				
Power Adapter	Model No: T120330-2B4 Input: AC 100-240V~ 50-60Hz 1A				
	Output: 12.0V=3.3A DC Cable Out: Non-Shielded, 1.5m				

Note:

Archer BE600 is a remodel of BE9700, only the model name is different.

The Archer BE9500 network port is claimed to have been changed from 2.5G to 1G, with no other changes. (So Archer BE9500 is only included in the RF report, and the EMC report only reflects BE9700 and Archer BE600) (declared by the manufacturer).

2.2. Product Specification Subjective to this Report

Fraguency Pango:	802.11b/g/n-HT20/ax-HE20/be-EHT20: 2412 ~ 2462MHz				
Frequency Range:	802.11n-HT40/ax-HE40/be-EHT40: 2422 ~ 2452MHz				
Channel Number:	802.11b/g/n-HT20/ax-HE20/be-EHT20: 11				
	802.11n-HT40/ax-HE40/be-EHT40: 7				
	802.11b: DSSS				
Type of Modulation:	802.11g/n: OFDM				
	802.11ax/be: OFDMA				
	802.11b: 1/2/5.5/11Mbps				
	802.11g: 6/9/12/18/24/36/48/54Mbps				
Data Rate:	802.11n: up to 450Mbps				
	802.11ax: up to 860Mbps				
	802.11be: up to 1032Mbps				

Note: For other features of this EUT, test report will be issued separately.

2.3. Working Frequencies for this report

802.11b/g/n-HT20/ax-HE20/be-EHT20

Channel	Frequency	Channel	Frequency	Channel	Frequency
01	2412 MHz	02	2417 MHz	03	2422 MHz
04	2427 MHz	05	2432 MHz	06	2437 MHz
07	2442 MHz	08	2447 MHz	09	2452 MHz
10	2457 MHz	11	2462 MHz		

802.11n-HT40/ax-HE40/be-EHT40

Channel	Frequency	Channel	Frequency	Channel	Frequency
03	2422 MHz	04	2427 MHz	05	2432 MHz
06	2437 MHz	07	2442 MHz	08	2447 MHz
09	2452 MHz				

2.4. Description of Available Antennas

Antenna	Frequency Band	Тx	Number	Antenna Gain		Beamforming	CDD Di	rectional	
Туре	(MHz)	Paths	of spatial	(dBi)		Directional	Gain (dBi)		
			streams	Anto	A mt 1	Anto	Gain	For	For PSD
				Ant 0	Ant 1	Ant 2	(dBi)	Power	
	2400 ~ 2483.5	3	1	4.12	5.57	3.58	9.07	4.32	9.07
	5150 ~ 5250	2	1	5.44	6.75		7.59	4.77	7.59
	5250 ~ 5350	2	1	5.73	7.38		8.39	5.39	8.39
	5470 ~ 5725	2	1	4.56	8.56		9.25	6.63	9.25
	5725 ~ 5850	2	1	5.10	7.68		8.60	5.90	8.60
	5005 0405	2	1	5.40	5.36		7.52	4.56	7.52
Dipole	5925 ~ 6425	2	2	5.40	5.36			4.56	4.56
6425 ~ 652	6425 6525	2	1	3.31	5.58		7.24	4.30	7.24
	6425 ~ 6525	2	2	3.31	5.58			4.30	4.30
	6525 ~ 6875	2	1	4.64	4.74		7.70	4.69	7.70
		2	2	4.64	4.74			4.69	4.69
		2	1	3.93	5.53		7.24	4.34	7.24
	6875 ~ 7125	2	2	3.93	5.53			4.34	4.34
1. The de	evice supports CDD	Mode an	d Beamform	ing mode	, details r	efer to the	e table as below.		

2. CDD signals are correlated, the directional gain as follows,

When N_{SS}=1, for power measurements: the max directional gain (each angle) = $10 \log[(10^{G1/10} + 10^{G2/10} + ... + 10^{GN/10})/N_{ANT}]$

For power spectral density (PSD) measurements: the max directional gain (each angle) = $10 \log[(10^{G1/20} + 10^{G2/20} + ... + 10^{GN/20})^2 / N_{ANT}]$

When N_{SS}=2, the max directional gain (each angle) = $10 \log[(10^{G1/10} + 10^{G2/10} + ... + 10^{GN/10}) / N_{ANT}]$

3. Beamforming signals are correlated, the directional gain as follows,

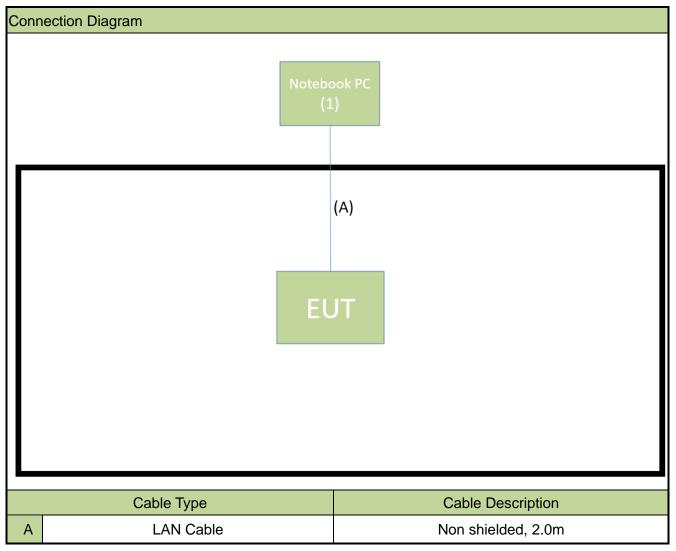
the max directional gain (each angle) = 10 log[(10^{G1/20} + 10^{G2/20} + ... + 10^{GN/20})² /N_{ANT}]

4. The information as above is from the antenna report.

Test Mode	T _x Paths	CDD Mode	Beamforming Mode
802.11b/g/n (DTS)	3	\checkmark	Х
802.11ax/be (DTS)	3	\checkmark	\checkmark
802.11a/n (NII)	2	\checkmark	Х
802.11ac/ax/be (NII)	2	\checkmark	\checkmark
802.11ax/be (6ID/6PP)	2	\checkmark	\checkmark

2.5. Test Mode

CDD Mode
Mode 1: Transmit by 802.11b_N _{SS} =1 (1Mbps)
Mode 2: Transmit by 802.11g_ N _{SS} =1 (6Mbps)
Mode 3: Transmit by 802.11n-HT20_N _{ss} =1 (MCS0)
Mode 4: Transmit by 802.11n-HT40_Nss=1 (MCS0)
Mode 5: Transmit by 802.11ax-HE20_ N _{SS} =1 (MCS0)
Mode 6: Transmit by 802.11ax-HE40_ N _{SS} =1 (MCS0)
Mode 7: Transmit by 802.11be-EHT20_Nss=1 (MCS0)
Mode 8: Transmit by 802.11be-EHT40_N _{SS} =1 (MCS0)
Remark:
1. For Radiated emission, the modulation and the data rate picked for testing are determined by the
Max. RF conducted power.
2. This device supports 3 N_{SS} and power level of 3 N_{SS} is less than or equal to the power of 1 N_{SS} .
The worst case is N _{ss} =1.
3. For beamforming operation, the manufacturer automatically reduces power based on a factor
calculated as the difference between the beamforming directional gain and the CDD directional
power gain. Thus, only the CDD mode was evaluated in this report.


- 4. EUT supports one configuration only in 802.11ax/be full RU mode.
- 5. As Designated by manufacturer, the lowest data rate was the worst condition, so all the tests were done with lowest data rate.

2.6. Configuration of Test System

The device was tested per the guidance ANSI C63.10: 2013 was used to reference the appropriate

EUT setup for radiated emissions testing and AC line conducted testing.

2.7. Test System Details

The types for all equipments, plus descriptions of all cables used in the tested system (including inserted cards) are:

Product Manufacturer		Model No.	Serial No.	Power Cord	
1	Notebook PC	Lenovo	21DH00A3TW	N/A	Non-Shielded, 0.8m

2.8. Description of Test Software

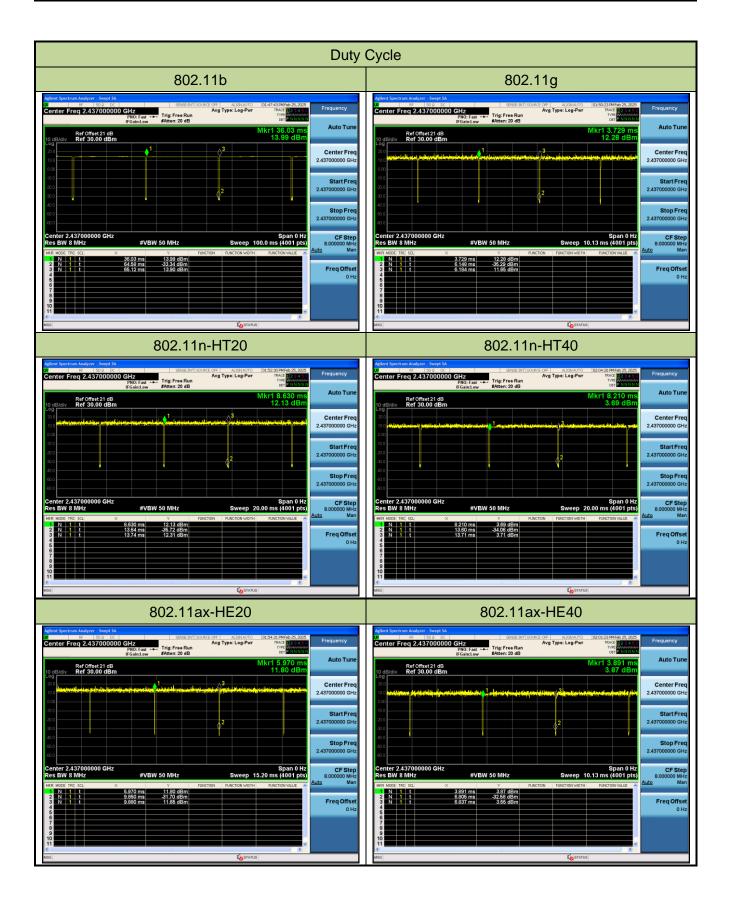
The test utility software used during testing was "accessMTool", the version is ver REL_3_3_0_8.

Note: Final power setting please refer to operational description.

2.9. Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15.247
- KDB 662911 D01v02r01
- ANSI C63.10-2013



2.10. Duty Cycle

2.4GHz WLAN (DTS) operation is possible in 20MHz and 40MHz channel bandwidths. The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

Test Mode	Duty Cycle
802.11b	98.14%
802.11g	98.53%
802.11n-HT20	98.04%
802.11n-HT40	98.00%
802.11ax-HE20	99.23%
802.11ax-HE40	98.91%
802.11be-EHT20	99.30%
802.11be-EHT40	98.97%

802.11be-EHT20	802.11be-EHT40		
Addent Spectrum Audiger - Swept SA 2 Center Freq 2.437000000 GHz Freq 0.437000000 GHz Freq 0.437000000 GHz Freq 0.437000000 GHz Center Freq 2.437000000 GHz Freq 0.437000000 GHz Center Freq 2.437000000 GHz	Ageint Spectrum Analyzer, Swept SA Spectrum Analyzer, Swept SA Spectrum Freq 2.437/000000 GHz Frequency Frequency Center Freq 2.437/000000 GHz Brock Ref Frequency Toda 62.5, 000 Frequency In dBiology Brock Ref Mix 1 3.934 mpc Toda 62.5, 000 Auto Tune In dBiology Ref Offset 21 dB Mix 1 3.934 mpc Auto Tune In dBiology Ref Offset 21 dB Mix 1 3.934 mpc 2.437000000 GHz 10 dBiology Ref Offset 21 dB Mix 1 3.934 mpc 2.43700000 GHz 200		
Center 2,337000000 GHz Span 0 Hz Span 0 Hz CF Step Sweep 15.20 ms (000 pts) Res BW 8 MHz #VEW 50 MHz Sweep 15.20 ms (000 pts) 8.0000 MHz 8.0000 MHz Imm wood, Tro, Sci. X Y Function Function worth Function worth 8.000 Pts) 3 N 1 5.158 ms 3359 dBm Function Function worth Function worth	Center 2.437000000 GHz Span 0 Hz Span 0 Hz Span 0 Hz Span 0 Hz Center 2.437000000 GHz Span 0 Hz Span 0 Hz <th< td=""></th<>		

2.11. Test Configuration

The device was tested per the guidance of ANSI C63.10-2013. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing.

2.12. EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

2.13. Labeling Requirements

Per 2.1074 & 15.19; Docket 95-19

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not practical, only the FCC ID must be displayed on the device per Section 15.19(a)(5). Please see attachment for FCC ID label and label location.

3. DESCRIPTION of TEST

3.1. Evaluation Procedure

The measurement procedures described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013), and the guidance was used in the measurement.

3.2. AC Line Conducted Emissions

The line-conducted facility is located inside an 8'x4'x4' shielded enclosure. A 1m x 2m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50$ uH Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference ground-plane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the receiver and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The receiver was scanned from 150kHz to 30MHz. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 9kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Each emission was also maximized by varying power lines, the mode of operation or data exchange speed, or support equipment whichever determined the worst-case emission. Once the worst-case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions are used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

An extension cord was used to connect to a single LISN which powered by EUT. The extension cord was calibrated with LISN, the impedance and insertion loss are compliance with the requirements as stated in ANSI C63.10-2013.

3.3. Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. A MF Model 210SS turntable is used for radiated measurement. It is a continuously rotatable, remote controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm high PVC support structure is placed on top of the turntable. For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up for frequencies below 1GHz was placed on top of the 0.8 meter high, 1 x 1.5 meter table; and test set-up for frequencies 1-40GHz was placed on top of the 1.5 meter high, 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, if applicable, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions. According to 3dB Beam-Width of horn antenna, the horn antenna should be always directed to the EUT when rising height.

4. ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antenna of the device is **permanently attached**.
- There are no provisions for connection to an external antenna.

Conclusion:

The unit complies with the requirement of §15.203.

5. TEST EQUIPMENT CALIBRATION DATE

Conducted Emissions

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
Two-Line V-Network	R&S	ENV216	MRTTWA00019	1 year	2026/3/5
Two-Line V-Network	R&S	ENV216	MRTTWA00020	1 year	2025/4/21
EMI Test Receiver	R&S	ESR3	MRTTWA00045	1 year	2025/5/14

Radiated Emissions

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
Active Loop Antenna	SCHWARZBECK	FMZB 1519B	MRTTWA00002	1 year	2025/5/7
Broadband TRILOG Antenna	SCHWARZBECK	VULB 9162	MRTTWA00086	1 year	2025/11/5
Broadband Hornantenna	SCHWARZBECK	BBHA 9120D	MRTTWA00003	1 year	2026/2/11
Broadband Preamplifier	SCHWARZBECK	BBV 9718	MRTTWA00005	1 year	2026/2/11
Breitband Hornantenna	SCHWARZBECK	BBHA 9170	MRTTWA00004	1 year	2025/3/26
Broadband Amplifier	SCHWARZBECK	BBV 9721	MRTTWA00006	1 year	2025/3/21
EMI Test Receiver	R&S	ESR3	MRTTWA00009	1 year	2026/3/4
Signal Analyzer	R&S	FSV40	MRTTWA00007	1 year	2025/3/14
Antenna Cable	HUBERSUHNER	SF106	MRTTWE00010	1 year	2025/6/14
Cabla	Deenel	K1K50-UP02		1 voor	2025/6/14
Cable	Rosnol	64-K1K50-4M	MRTTWE00012	1 year	2025/6/14
Temperature/Humidity Meter	TFA	35.1083	MRTTWA00050	1 year	2025/6/2

Conducted Test Equipment

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
X-Series USB Peak and	KEYSIGHT	U2021XA	MRTTWA00014	1 yoar	2025/4/16
Average Power Sensor	RETSIGHT	0202174	WIKT 1 WA00014	1 year	2025/4/16
EXA Signal Analyzer	KEYSIGHT	N9010A	MRTTWA00012	1 year	2025/9/24
EXA Signal Analyzer	KEYSIGHT	N9010B	MRTTWA00074	1 year	2025/8/12
Attenuator	WTI	218FS-20	MRTTWE00026	1 year	2025/10/31
Attenuator	WTI	218FS-10	MRTTWE00027	1 year	2025/6/13
Attenuator	WTI	218FS-06	MRTTWE00028	1 year	2025/6/13
Temperature & Humidity	TEN BILLION	TTH-B3UP	MRTTWA00036	1 yoor	2025/6/6
Chamber		III-D3UP		1 year	2025/6/6
DIVA PLUS	TFA	35.1083	MRTTWA00050	1 voor	2025/6/2
Funk-Wetterstation		30.1003		1 year	2025/6/2

Software	Version	Function
e3	9.160520a	EMI Test Software

6. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

AC Conducted Emission Measurement
Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):
150kHz~30MHz: ± 2.53dB
Radiated Emission Measurement
Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):
9kHz ~ 1GHz: ± 4.25dB
1GHz ~ 40GHz: ± 4.45dB
Conducted Power (Carrier Power / Power Density)
Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)): ± 0.84dB
Conducted Spurious Emission
Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)): ± 2.65 dB
Occupied Bandwidth
Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)): ± 3.3%
Temp. / Humidity
Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)): ±0.82°C/ ±3%

7. TEST RESULT

7.1. Summary

FCC	Test	Test	Test	Test	Reference
Section(s)	Description	Limit	Condition	Result	
15.247(a)(2)	6dB Bandwidth	≥ 500kHz		Pass	Section 7.2
15.247(b)(3)	Output Power	≤ 30dBm		Pass	Section 7.3
15.247(e)	Power Spectral Density	≤ 8dBm/3kHz	Conducted	Pass	Section 7.4
15.247(d)	Band Edge / Out-of-Band Emissions	≥ 30dBc (Average)		Pass	Section 7.5
15.205 15.209	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209	Radiated	Pass	Section 7.6 & 7.7
15.207	AC Conducted Emissions 150kHz - 30MHz	< FCC 15.207 limits	Line Conducted	Pass	Section 7.8

Notes:

 Determining compliance is based on the test results met the regulation limits or requirements declared by clients, and the test results don't take into account the value of measurement uncertainty.

2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.

3) For radiated emission test, every axis (X, Y, Z) was also verified. The test results shown in the following sections represent the worst-case emissions.

7.2. 6dB Bandwidth Measurement

7.2.1.Test Limit

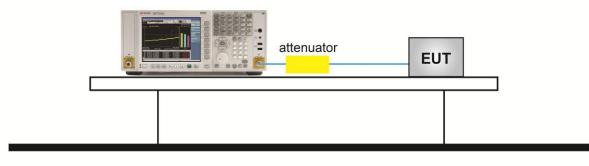
The minimum 6dB bandwidth shall be at least 500 kHz.

7.2.2.Test Procedure used

ANSI C63.10 - 2013 Section 11.8

7.2.3.Test Setting

1. The Spectrum's automatic bandwidth measurement capability was used to perform the 6dB

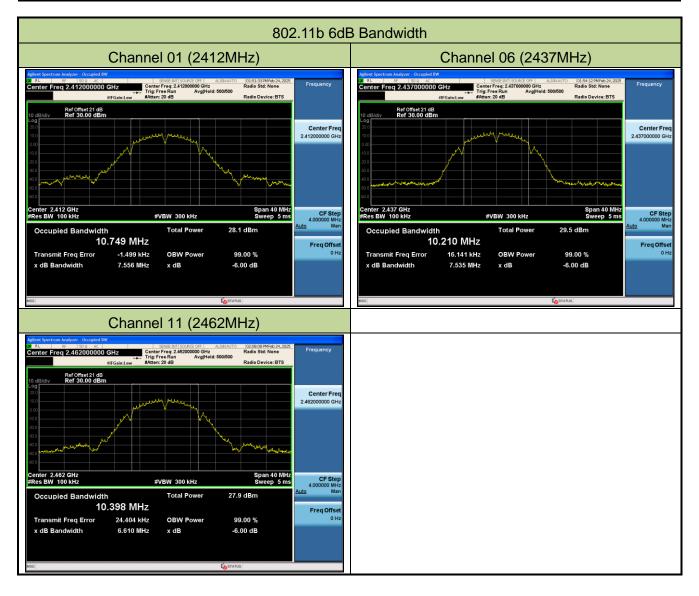

bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The bandwidth

measurement was not influenced by any intermediate power nulls in the fundamental emission.

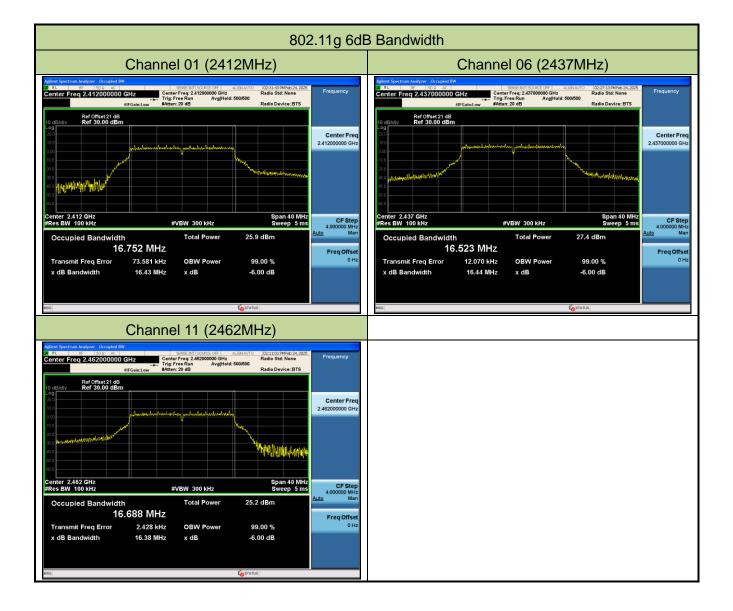
- 2. Set RBW = 100 kHz
- 3. VBW \ge 3 × RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. Allow the trace was allowed to stabilize

7.2.4.Test Setup

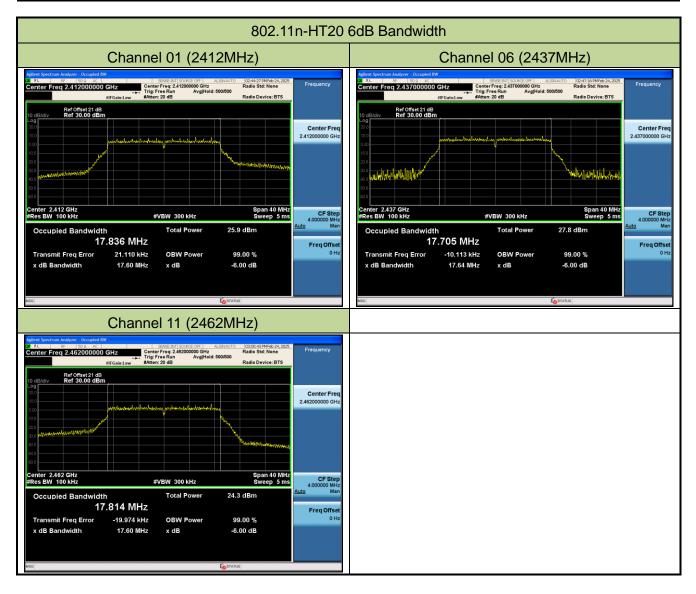
Spectrum Analyzer

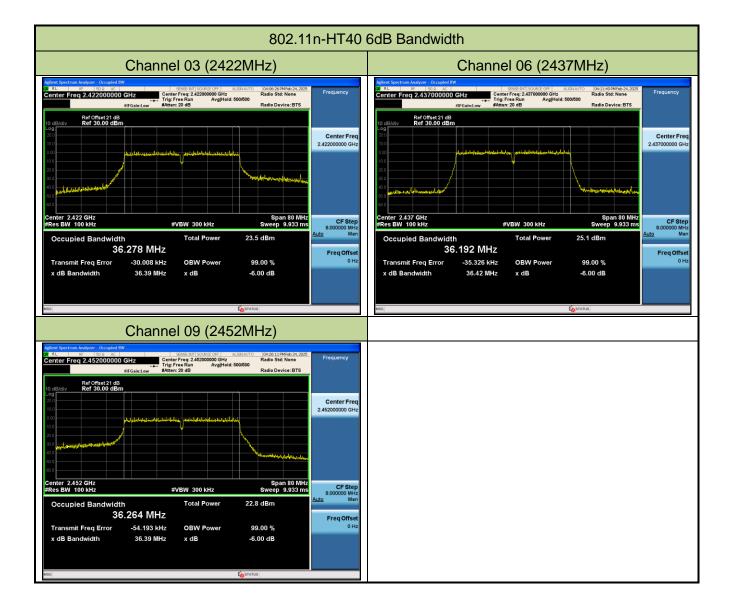


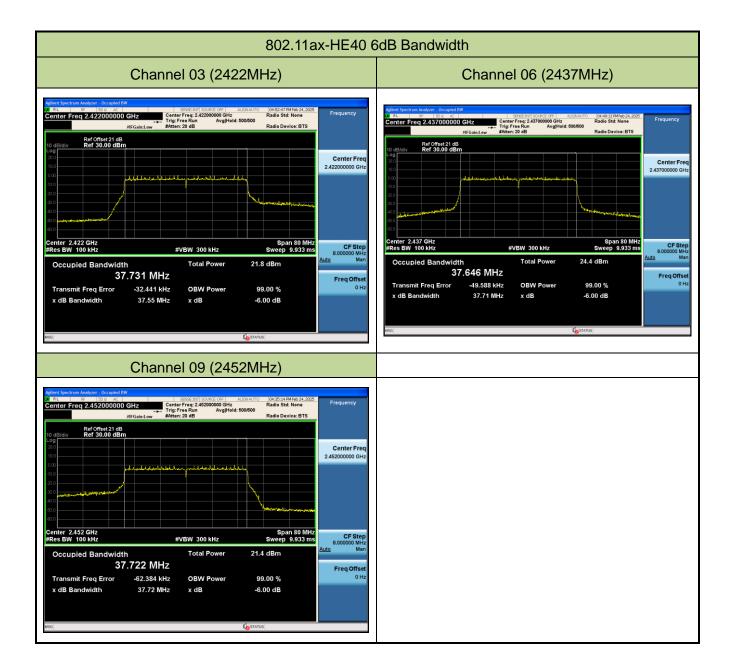
7.2.5.Test Result


Product	BE9700 Tri-Band Wi-Fi 7 Router	Temperature	25°C
Test Engineer	Wen	Relative Humidity	54%
Test Site	SR6	Test Date	2025/2/24

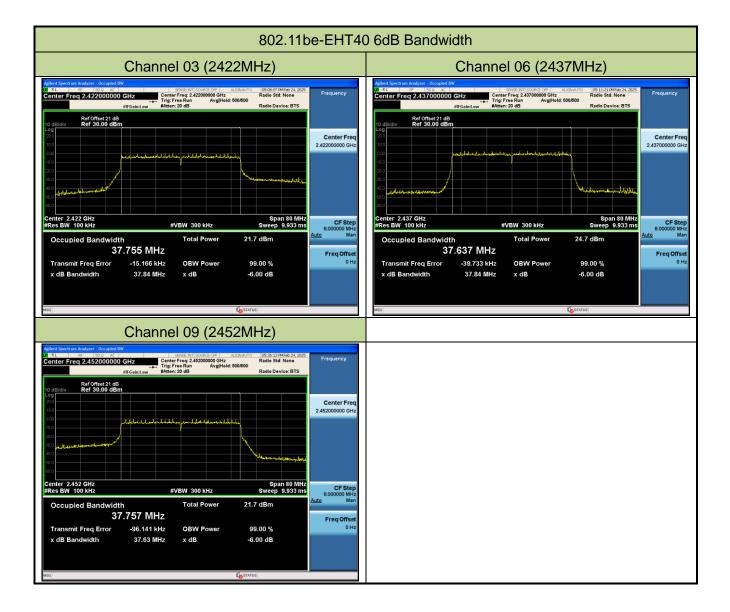
Test Mode	Data Rate / MCS	Channel No.	Frequency	6dB Bandwidth		Result
Ant 2	MCS		(MHz)	(MHz)	(MHz)	
802.11b	1Mbps	01	2412	7.556	≥ 0.5	Pass
802.11b	1Mbps	06	2437	7.535	≥ 0.5	Pass
802.11b	1Mbps	11	2462	6.610	≥ 0.5	Pass
802.11g	6Mbps	01	2412	16.43	≥ 0.5	Pass
802.11g	6Mbps	06	2437	16.44	≥ 0.5	Pass
802.11g	6Mbps	11	2462	16.38	≥ 0.5	Pass
802.11n-HT20	MCS0	01	2412	17.60	≥ 0.5	Pass
802.11n-HT20	MCS0	06	2437	17.64	≥ 0.5	Pass
802.11n-HT20	MCS0	11	2462	17.60	≥ 0.5	Pass
802.11n-HT40	MCS0	03	2422	36.39	≥ 0.5	Pass
802.11n-HT40	MCS0	06	2437	36.42	≥ 0.5	Pass
802.11n-HT40	MCS0	09	2452	36.39	≥ 0.5	Pass
802.11ax-HE20	MCS0	01	2412	18.92	≥ 0.5	Pass
802.11ax-HE20	MCS0	06	2437	19.05	≥ 0.5	Pass
802.11ax-HE20	MCS0	11	2462	18.83	≥ 0.5	Pass
802.11ax-HE40	MCS0	03	2422	37.55	≥ 0.5	Pass
802.11ax-HE40	MCS0	06	2437	37.71	≥ 0.5	Pass
802.11ax-HE40	MCS0	09	2452	37.72	≥ 0.5	Pass
802.11be-EHT20	MCS0	01	2412	18.89	≥ 0.5	Pass
802.11be-EHT20	MCS0	06	2437	19.03	≥ 0.5	Pass
802.11be-EHT20	MCS0	11	2462	18.70	≥ 0.5	Pass
802.11be-EHT40	MCS0	03	2422	37.84	≥ 0.5	Pass
802.11be-EHT40	MCS0	06	2437	37.84	≥ 0.5	Pass
802.11be-EHT40	MCS0	09	2452	37.63	≥ 0.5	Pass







802.11ax-HE20 6dB Bandwidth								
Channel 01 (2412MHz)	Channel 06 (2437MHz)							
Agtent Spectrum Analyzer Notagingt Spectrum Analyzer N	Adjent SoveCram Analyzer : Occupied BW Stream Frag 2.437000000 GHz Stream Frag 2.437000000 GHz Radio Stdt. None Frequency Center Frag 2.437000000 GHz Center Frag 2.437000000 GHz Center Frag 2.437000000 GHz Radio Stdt. None Radio Stdt. None If Contor Frag 2.437000000 GHz Frequency Frequency Radio Stdt. None Radio Stdt. None							
Decket Ref 30.00 dBm 10 dB/div Ref 30.00 dBm 200	Center Freq 2.412000000 GHz 2.412000000 GHz 2.412000000 GHz 2.412000000 GHz 2.412000000 GHz 2.412000000 GHz 2.412000000 GHz 2.412000000 GHz 2.412000000 GHz 2.41200000 GHz 2.412000000 GHz 2.41200000 GHz 2.412000000 GHz 2.41200000 GHZ 2.412000000 GHZ 2.412000000 GHZ 2.412000000							
Center 2.412 GHz Span 40 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 5 ms	CF Step 4.000000 MHz 4.000000 MHz 4.00000 MHz 4.000000 MHz 4.00000 MHz 4.00000 MHz 4.000000 MHz 4.000000 MHz 4.000000 MHz 4.000000 MHz 4.00000 MHz 4.000000 MHz 4.000000 MHz 4.000000 MHz 4.000000 MHz 4.00000 MHz 4.0000000 MHz 4.000000 MHz 4.0000000 MHz 4.000000 MHz 4.000000 MH							
Occupied Bandwidth Total Power 25.5 dBm 19.063 MHz Transmit Freq Error 17.652 kHz OBW Power 99.00 % x dB Bandwidth 18.92 MHz x dB -6.00 dB	Auto Man Occupied Bandwidth Total Power 27.9 dBm Auto Man Freq Offset 18.989 MHz Freq Offset Freq Offset Freq Offset Freq Offset 0 Hz 0 Hz Transmit Freq Error -10.830 kHz OBW Power 99.00 % 0 H x dB Bandwidth 19.05 MHz x dB -6.00 dB 0 H							
Channel 11 (2462MHz)	waj Costruta							
Addient Spectram Analyzer Discussion of Program Center Freq 2.462000000 GHz Genter Freq 2.482000000 GHz Radio Std: None Center Freq 2.462000000 GHz Genter Freq 2.482000000 GHz Radio Std: None If GainLaw Genter Freq 2.482000000 GHz Radio Std: None If GainLaw Genter Freq 2.482000000 GHz Radio Std: None If GainLaw Genter Freq 2.482000000 GHz Radio Std: None If GainLaw Matter: 20 dB Radio Device: BTS If gainLaw Matter: 20 dB Radio Std: None If gainLaw Genter Freq 2.4820000000 GHz Radio Device: BTS If gainLaw Matter: 20 dB Radio Device: BTS If gainLaw Genter Freq 2.462 GHz Span 40 MHz Genter 2.462 GHz Span 40 MHz Sveep 5 ms	Center Freq 2.452000000 GHz 4.0000000 Minz Freq Offset 0 Hz							



Channel 01 (2412MHz)				Channel 06 (2437MHz)					
Ref Offset 21 dB	GHZ #IFGain:Low SBISE:INT SOURCE OFF Center Freq: 2.412000000 GH Trig: Free Run #Atten: 20 dB	ALISNAUTO 03:28:28 M4Feb 24,2025 12 Radio Std: None old: 500/500 Radio Device: BTS	Frequency	Agitent Spectrum Analyzer - Occupied B 00 RL RF ISO 0 AC Center Freq 2.4370000000 Ref Offset 21 dB Ref 30.00 dBn	GHz #IFGain:Low #Atten: 20 dB	0FF ALIGNAUTO 03:45:40 FM Feb 2 20 GHz Radio Std: Non Avg Hold: 500/500 Radio Device: E	Frequency		
disidiv Ref 30.00 dBm	ال والعالمية العالمية من المعالمة العالمية المعالمية المعالمية المعالمية المعالمية المعالمية المعالمية المعالم المعالمة المعالمية المعالمة المعالمة المعالمة المعالمية المعالمية المعالمية المعالمية المعالمية المعالمية المعالم	Span 40 MHz	Center Freq 2.412000000 GHz	10 dB/div Ref 30.00 dBn		hudesteen	Center Fr 2.437000000 G		
es BW 100 kHz Occupied Bandwidth	#VBW 300 kHz Total Power .048 MHz	Sweep 5 ms 25.1 dBm	CF Step 4.000000 MHz <u>Auto</u> Man	#Res BW 100 kHz Occupied Bandwidt	#VBW 300 kH: h Total Pov 0.007 MHz	z Sweep	5 ms 4.000000 M Auto N		
Transmit Freq Error x dB Bandwidth	12.718 kHz OBW Power 18.89 MHz x dB	99.00 % -6.00 dB	Freq Offset 0 Hz	Transmit Freq Error x dB Bandwidth	-13.032 kHz OBW Pov 19.03 MHz x dB	ver 99.00 % -6.00 dB	Freq Off 0		
ent Spectrum Analyzer - Occupied BW	Channel 11 (24	62MHz)		ma		K STATUS			
ed Sextrem Andrew - Douged BR Inter Freq 2.462000000 dBIdly Ref Offset21 dB dBIdly Ref 30.00 dBm	GHz Center Freq: 2.48200000 GH Trig: Freq: Run Avgl #EGain:Low #Atten: 20 dB	62MHz)	Frequency Center Freq 2.46200000 GHz						
AL P 100 AC Inter Frag 2.46200000 BRf Offset 21 dB dBldiv Ref 30.00 dBm 0 0 0 0 0 0 0 0 0 0 0 0 0	GHZ GHZ GHZ GHZ GHZ Gaint or HFGaint or HFGA	62MHz)	Center Freq 2.46200000 GHz						

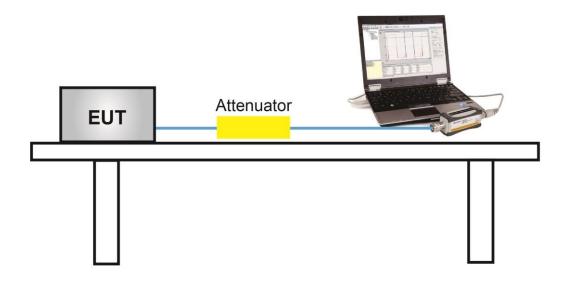
7.3. Output Power Measurement

7.3.1.Test Limit

The maximum output power shall be less 1 Watt (30dBm).

The conducted output power limit specified in paragraph FCC Part 15.247(b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs FCC Part 15.247(b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

7.3.2.Test Procedure Used


ANSI C63.10 - 2013 Section 11.9.2.3.2

7.3.3.Test Setting

Average Power Measurement

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter.

7.3.4.Test Setup

7.3.5.Test Result

Product	BE9700 Tri-Band Wi-Fi 7 Router	Temperature	25°C
Test Engineer	Wen	Relative Humidity	54%
Test Site	SR6	Test Date	2025/2/24

Test Mode	Data Rate/	Channel	Freq.	Ant 0	Ant 1	Ant 2	Total	Limit	Result
	MCS	No.	(MHz)	Average	Average	Average	Average	(dBm)	
				Power	Power	Power	Power		
				(dBm)	(dBm)	(dBm)	(dBm)		
CDD Mode									
802.11b	1Mbps	01	2412	21.77	21.43	21.81	26.44	≤ 30.00	Pass
802.11b	1Mbps	06	2437	23.08	22.67	23.26	27.78	≤ 30.00	Pass
802.11b	1Mbps	11	2462	21.67	21.30	21.75	26.35	≤ 30.00	Pass
802.11g	6Mbps	01	2412	19.92	19.36	20.12	24.58	≤ 30.00	Pass
802.11g	6Mbps	06	2437	21.77	21.26	21.88	26.42	≤ 30.00	Pass
802.11g	6Mbps	11	2462	19.34	18.72	19.34	23.91	≤ 30.00	Pass
802.11n-HT20	MCS0	01	2412	19.80	19.43	19.99	24.52	≤ 30.00	Pass
802.11n-HT20	MCS0	06	2437	22.08	21.50	21.96	26.62	≤ 30.00	Pass
802.11n-HT20	MCS0	11	2462	18.50	18.12	18.47	23.14	≤ 30.00	Pass
802.11n-HT40	MCS0	03	2422	17.56	17.60	17.82	22.43	≤ 30.00	Pass
802.11n-HT40	MCS0	06	2437	19.42	19.29	19.56	24.20	≤ 30.00	Pass
802.11n-HT40	MCS0	09	2452	17.08	17.06	17.22	21.89	≤ 30.00	Pass
802.11ax-HE20	MCS0	01	2412	19.53	19.04	19.51	24.14	≤ 30.00	Pass
802.11ax-HE20	MCS0	06	2437	22.21	21.62	22.24	26.80	≤ 30.00	Pass
802.11ax-HE20	MCS0	11	2462	17.97	17.72	18.09	22.70	≤ 30.00	Pass
802.11ax-HE40	MCS0	03	2422	16.51	16.75	16.77	21.45	≤ 30.00	Pass
802.11ax-HE40	MCS0	06	2437	19.18	19.13	19.34	23.99	≤ 30.00	Pass
802.11ax-HE40	MCS0	09	2452	16.22	16.19	16.48	21.07	≤ 30.00	Pass
802.11be-EHT20	MCS0	01	2412	18.85	18.55	19.12	23.62	≤ 30.00	Pass
802.11be-EHT20	MCS0	06	2437	22.33	21.85	22.38	26.96	≤ 30.00	Pass
802.11be-EHT20	MCS0	11	2462	18.27	18.06	18.35	23.00	≤ 30.00	Pass
802.11be-EHT40	MCS0	03	2422	16.50	16.61	16.71	21.38	≤ 30.00	Pass
802.11be-EHT40	MCS0	06	2437	19.55	19.31	19.60	24.26	≤ 30.00	Pass
802.11be-EHT40	MCS0	09	2452	16.46	16.65	16.65	21.36	≤ 30.00	Pass

Note: Total Average Power (dBm) = $10^{10} \{10^{(Ant \ 0 \ Average \ Power \ /10)} + 10^{(Ant \ 1 \ Average \ Power \ /10)} + 10^{(Ant \ 2 \ Average \ Power \ /10)}\}$.

7.4. Power Spectral Density Measurement

7.4.1.Test Limit

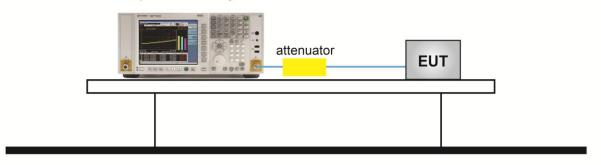
The maximum permissible power spectral density is 8dBm in any 3 kHz band.

The same method of determining the conducted output power shall be used to determine the power

spectral density.

7.4.2.Test Procedure Used

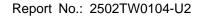
ANSI C63.10 - 2013 Section 11.10.5


7.4.3.Test Setting

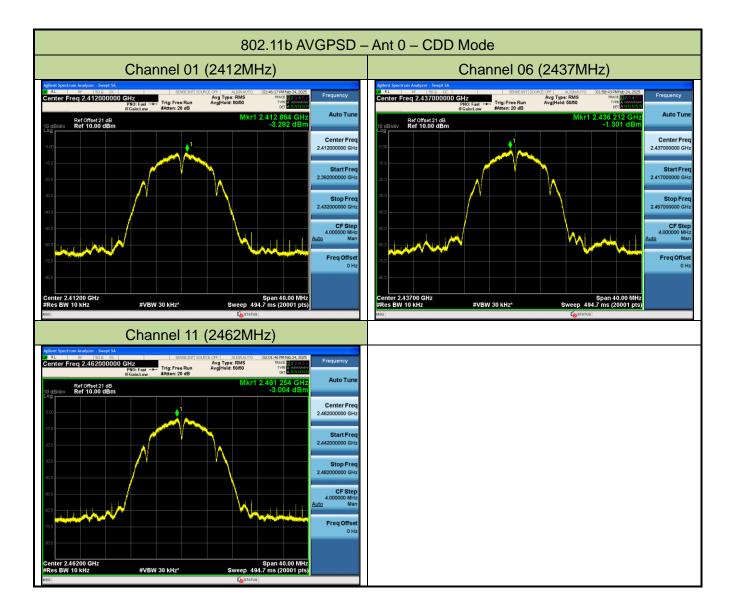
- 1. Measure the duty cycle (x) of the transmitter output signal.
- 2. Set instrument center frequency to DTS channel center frequency.
- 3. Set span to at least 1.5 times the OBW.
- 4. RBW = 10 kHz.
- 5. VBW = 30 kHz.
- 6. Detector = RMS.
- 7. Ensure that the number of measurement points in the sweep $\ge 2 \times \text{span/RBW}$.
- 8. Sweep time = auto couple.
- 9. Don't use sweep triggering. Allow sweep to "free run".
- 10. Employ trace averaging (RMS) mode over a minimum of 100 traces.
- 11. Use the peak marker function to determine the maximum amplitude level.
- 12. Add 10 log (1/x), where x is the duty cycle measured in step (a, to the measured PSD to compute the average PSD during the actual transmission time.

7.4.4.Test Setup

Spectrum Analyzer



7.4.5.Test Result


Product	BE9700 Tri-Band Wi-Fi 7 Router	Temperature	25°C
Test Engineer	Wen	Relative Humidity	54%
Test Site	SR6	Test Date	2025/2/24

Test Mode	Data Rate/ MCS	Channel No.	Freq. (MHz)	Ant 0	Ant 1 PSD 3m/ 10kł	Ant 2 Hz)	Duty Cycle (%)	Total PSD (dBm/ 10kHz)	Limit (dBm/ 3kHz)	Result
802.11b	1Mbps	01	2412	-3.292	-3.059	-3.068	98.14%	1.714	≤ 4.93	Pass
802.11b	1Mbps	06	2437	-1.301	-2.059	-1.581	98.14%	3.217	≤ 4.93	Pass
802.11b	1Mbps	11	2462	-3.004	-3.119	-3.736	98.14%	1.578	≤ 4.93	Pass
802.11g	6Mbps	01	2412	-8.554	-8.898	-8.012	98.53%	-3.637	≤ 4.93	Pass
802.11g	6Mbps	06	2437	-6.851	-7.045	-6.789	98.53%	-2.058	≤ 4.93	Pass
802.11g	6Mbps	11	2462	-9.117	-9.554	-9.558	98.53%	-4.569	≤ 4.93	Pass
802.11n-HT20	MCS0	01	2412	-8.989	-9.041	-8.823	98.04%	-4.093	≤ 4.93	Pass
802.11n-HT20	MCS0	06	2437	-6.898	-7.167	-6.859	98.04%	-2.115	≤ 4.93	Pass
802.11n-HT20	MCS0	11	2462	-10.557	-10.407	-10.429	98.04%	-5.607	≤ 4.93	Pass
802.11n-HT40	MCS0	03	2422	-14.210	-13.571	-14.424	98.00%	-9.194	≤ 4.93	Pass
802.11n-HT40	MCS0	06	2437	-12.237	-11.970	-12.536	98.00%	-7.383	≤ 4.93	Pass
802.11n-HT40	MCS0	09	2452	-14.612	-14.364	-15.005	98.00%	-9.793	≤ 4.93	Pass
802.11ax-HE20	MCS0	01	2412	-10.791	-10.604	-10.685	99.23%	-5.888	≤ 4.93	Pass
802.11ax-HE20	MCS0	06	2437	-7.651	-8.469	-7.797	99.23%	-3.153	≤ 4.93	Pass
802.11ax-HE20	MCS0	11	2462	-12.238	-12.157	-11.866	99.23%	-7.279	≤ 4.93	Pass
802.11ax-HE40	MCS0	03	2422	-15.850	-15.832	-16.601	98.91%	-11.261	≤ 4.93	Pass
802.11ax-HE40	MCS0	06	2437	-13.494	-13.414	-13.967	98.91%	-8.799	≤ 4.93	Pass
802.11ax-HE40	MCS0	09	2452	-16.671	-16.403	-16.411	98.91%	-11.674	≤ 4.93	Pass
802.11be-EHT20	MCS0	01	2412	-11.196	-10.937	-10.841	99.30%	-6.187	≤ 4.93	Pass
802.11be-EHT20	MCS0	06	2437	-7.514	-7.878	-7.825	99.30%	-2.934	≤ 4.93	Pass
802.11be-EHT20	MCS0	11	2462	-11.870	-11.692	-11.697	99.30%	-6.950	≤ 4.93	Pass
802.11be-EHT40	MCS0	03	2422	-16.215	-15.659	-16.729	98.97%	-11.363	≤ 4.93	Pass
802.11be-EHT40	MCS0	06	2437	-12.810	-13.228	-13.456	98.97%	-8.340	≤ 4.93	Pass
802.11be-EHT40	MCS0	09	2452	-16.410	-16.333	-16.289	98.97%	-11.528	≤ 4.93	Pass

Note 1: Total AVGPSD = $10^{\log \{10^{(Ant \ 0 \ AVGPSD/10)} + 10^{(Ant \ 1 \ AVGPSD/10)} + 10^{(Ant \ 2 \ AVGPSD/10)}\} + 10^{\log (1/Duty \ Cycle)}$ Note 2: PSD limit = $8.00 - (9.07 - 6) = 4.93(dBm/\ 3kHz)$.

