

FCC PART 15.247

TEST REPORT

For

Sengled Co.,Ltd.

Room 103/02-B, Floor 1, Building 1, No. 498, Guoshoujing Road, Pilot Free Trade Zone, Shanghai, China

FCC ID: 2AGN8-BT006

Report Type:		Product Name:	
Original Report Seng		Sengled Bluetoo	th Module
Report Number:	RSHA241206004-0	0A	
Report Date:	2025-01-22		
Reviewed By:	Bard Liu		ford lin
Approved By:	Oscar Ye		Oscar Yo
Prepared By:	Bay Area Compliar	4268	

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Kunshan). This report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, or any agency of the U.S.Government.

TABLE OF CONTENTS

REPORT REVISION HISTORY	4
GENERAL INFORMATION	5
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT) Objective	
Test Methodology	
Measurement Uncertainty Test Facility	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	7
EUT EXERCISE SOFTWARE	
Special Accessories Equipment Modifications	
SUPPORT EQUIPMENT LIST AND DETAILS	9
External I/O Cable Block Diagram of Test Setup	
TEST EQUIPMENT LIST	
SUMMARY OF TEST RESULTS	
FCC §1.1310 & §2.1091 - MAXIMUM PERMISSIBLE EXPOSURE (MPE)	
Applicable Standard Calculated Formulary:	
FCC \$15.203 – ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	15
APPLICABLE STANDARD	
TEST SYSTEM SETUP EMI TEST RECEIVER SETUP	
Test Procedure	16
Test Results Summary Test Data: See Appendix	
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS	
APPLICABLE STANDARD	
TEST SYSTEM SETUP	17
EMI Test Receiver Setup Test Procedure	
TEST RESULTS SUMMARY	
TEST DATA: SEE APPENDIX	19
FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH	
Applicable Standard Test Procedure	
TEST FROCEDURE	
FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER	21
Applicable Standard	21
Test Procedure Test Data: See Appendix	
FCC §15.247(d) – BAND EDGE	
FCC §15.247(d) – BAND EDGE	

FCC Part 15.247

Bay Area Compliance Laboratories Corp. (Kunshan)	Report No.: RSHA241206004-00A
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA: SEE APPENDIX	
FCC §15.247(e) - POWER SPECTRAL DENSITY	
APPLICABLE STANDARD	
Test Procedure	
TEST DATA: SEE APPENDIX	
EUT PHOTOGRAPHS	
TEST SETUP PHOTOGRAPHS	
APPENDIX - TEST DATA	
ENVIRONMENTAL CONDITIONS & TEST INFORMATION	
AC LINE CONDUCTED EMISSIONS	
SPURIOUS EMISSIONS	
6 DB EMISSION BANDWIDTH	
MAXIMUM CONDUCTED OUTPUT POWER	
BAND EDGE	
POWER SPECTRAL DENSITY	

REPORT REVISION HISTORY

Number of Revisions	Report No.	Version	Issue Date	Description
0	RSHA241206004-00A	R1V1	2025-01-22	Initial Release

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Applicant:	Sengled Co.,Ltd.
Tested Model:	BT006
Product Name:	Sengled Bluetooth Module
Power Supply:	DC 3.3V
RF Function:	BLE
Operating Band/Frequency:	2402-2480MHz
Maximum Peak Output Power:	BLE (1 Mbps): 5.33 dBm
Channel Number:	40
Channel Separation:	2 MHz
Modulation Type	GFSK
Antenna Type:	PCB Antenna
★Maximum Antenna Gain:	2.0 dBi

Note: The maximum antenna gain was provided by the applicant.

All measurement and tested data in this report was gathered from production sample serial number: RSHA241206004-1 (Assigned by BACL (Kunshan). The EUT supplied by the applicant was received on 2024-12-06.)

Objective

This report is prepared for *Sengled Co.,Ltd.* in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communications Commission rules.

The tests were performed in order to determine Compliant with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices and FCC KDB 558074 D01 15.247 Meas Guidance v05r02.

Measurement Uncertainty

	Item	Uncertainty
AC Power Line	es Conducted Emissions	3.19 dB
RF conducte	ed test with spectrum	0.9 dB
RF Output Po	wer with Power meter	0.5 dB
	9 kHz~150 kHz	3.8 dB
	150 kHz~30 MHz	3.4 dB
	30MHz~1GHz	6.11 dB
Radiated emissions	1GHz~6GHz	4.45 dB
	6GHz~18GHz	5.23 dB
	18GHz~40GHz	5.65 dB
Occup	ied Bandwidth	0.5 kHz
Τe	emperature	1.0 °C
I	Humidity	6 %

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Kunshan) to collect test data is located on the No.248 Chenghu Road, Kunshan, Jiangsu Province, China.

Bay Area Compliance Laboratories Corp. (Kunshan) is accredited in accordance with ISO/IEC 17025:2017 by NVLAP (Lab code: 600338-0), and the lab has been recognized as the FCC accredited lab under the KDB 974614 D01, the FCC Designation No.: CN5055.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

Channel List for BLE mode:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	14	2430	28	2458
1	2404	15	2432	29	2460
2	2406	16	2434	30	2462
3	2408	17	2436	31	2464
4	2410	18	2438	32	2466
5	2412	19	2440	33	2468
6	2414	20	2442	34	2470
7	2416	21	2444	35	2472
8	2418	22	2446	36	2474
9	2420	23	2448	37	2476
10	2422	24	2450	38	2478
11	2424	25	2452	39	2480
12	2426	26	2454	/	/
13	2428	27	2456	/	/

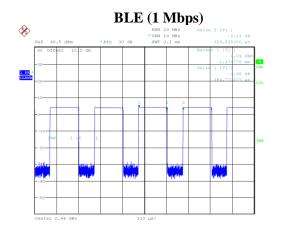
EUT was tested with channel 0, 19 and 39.

EUT Exercise Software

RF Test Tool: Sockit

★Power level: 3E

Note: The power level was declared by the applicant.


Special Accessories

No special accessory.

Equipment Modifications

No modification was made to the EUT tested.

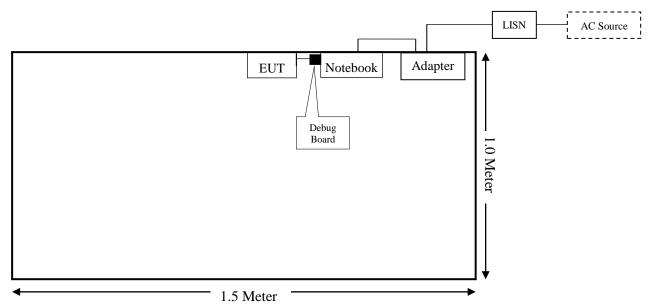
Duty Cycle:

ProjectNo.:RSHA241206004 Tester:Neil Zhou Date: 7.JAN.2025 14:20:47

Mode	Duty Cycle (%)	T _{on} (ms)	T _{on+off} (ms)	1/Ton(Hz)
BLE (1 Mbps)	63.00	0.395	0.627	2532

Note: Offset (10.5dB) = Attenuator (10dB) + Cable loss (0.5dB)

Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
SHENZHEN TIANYIN ELECTRONICS CO.,LTD	Adapter	TPA-23A050200UU01	/
DELL	Notebook	015K3N	00190-098-766-241
/	Debug board	/	/

External I/O Cable

Cable Description	Length (m)	From Port	To Port
Power Cable 1	1.5	Notebook	Adapter
Power Cable 2	1.0	Adapter	LISN/AC source
Data cable	0.1	EUT	Debug board

Block Diagram of Test Setup

For Conducted Emissions:

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Radiated Emission Test (Chamber #1)					
Rohde & Schwarz	EMI Test Receiver	ESCI	100195	2024-04-23	2025-04-22
Sunol Sciences	Broadband Antenna	JB3	A090314-1	2024-11-08	2027-11-07
ETS-LINDGREN	Loop Antenna	6512	108100	2024-11-03	2027-11-02
Narda	6 dB Attenuator	773-6	10690812-2-1	2024-10-29	2027-10-28
Sonoma Instrument	Pre-amplifier	310N	171205	2024-04-23	2025-04-22
Rohde & Schwarz	Auto Test Software	EMC32	100361	N/A	N/A
MICRO-COAX	Coaxial Cable	Cable-8	008	2024-04-23	2025-04-22
MICRO-COAX	Coaxial Cable	Cable-9	009	2024-04-23	2025-04-22
	Radiated	Emission Test (Cha	mber #2)		
Rohde & Schwarz	EMI Test Receiver	ESU40	100207/040	2024-04-25	2025-04-24
ETS-LINDGREN	Horn Antenna	3115	9311-4159	2024-04-23	2025-04-22
ETS-LINDGREN	Horn Antenna	3116	2516	2024-12-12	2027-12-11
A.H.Systems,inc	Amplifier	PAM-0118P	512	2024-04-25	2025-04-24
MICRO-TRONICS	Band Reject Filter	BRM50702	G024	2024-04-23	2025-04-22
Narda	Attenuator	10dB	010	2024-04-23	2025-04-22
SELECTOR	Amplifier	EM18G40G	60726	2024-04-25	2025-04-24
Rohde & Schwarz	Auto test Software	EMC32	100361	N/A	N/A
MICRO-COAX	Coaxial Cable	Cable-6	006	2024-04-25	2025-04-24
MICRO-COAX	Coaxial Cable	Cable-11	011	2024-04-25	2025-04-24
MICRO-COAX	Coaxial Cable	Cable-12	012	2024-04-25	2025-04-24
		RF Conducted Test			
Rohde & Schwarz	Spectrum Analyzer	FSV40-N	103298	2024-04-24	2025-04-23
Narda	Attenuator	10dB	010	2024-04-23	2025-04-22
XHFDZ	RG178 Coaxial Cable	SMA-178	XHF-1102	Each time	N/A
	Co	nducted Emission T	est	Γ	
Rohde & Schwarz	EMI Test Receiver	ESR	101746	2024-04-23	2025-04-22
Rohde & Schwarz	LISN	ENV216	101115	2024-04-23	2025-04-22
Audix	Test Software	e3	V9	N/A	N/A
Rohde & Schwarz	Pulse Limiter	ESH3-Z2	0357.8810.54	2024-04-23	2025-04-22
MICRO-COAX	Coaxial Cable	Cable-15	015	2024-04-23	2025-04-22

Statement of Traceability: Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§1.1310 & §2.1091	Maximum Permissible Exposure (MPE)	Compliant
§15.203	Antenna Requirement	Compliant
§15.207 (a)	AC Line Conducted Emissions	Compliant
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliant
§15.247 (a)(2)	6 dB Emission Bandwidth	Compliant
§15.247(b)(3)	Maximum Conducted Output Power	Compliant
§15.247(d)	Band Edge	Compliant
§15.247(e)	Power Spectral Density	Compliant

FCC §1.1310 & §2.1091 - MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.247 (i) and subpart 1.1310, 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

Limits for General Population/Uncontrolled Exposure								
Frequency Range (MHz)								
0.3-1.34	614	1.63	*(100)	30				
1.34-30	824/f	2.19/f	*(180/f ²)	30				
30-300	27.5	0.073	0.2	30				
300-1500	/	/	f/1500	30				
1500-100,000	/	/	1.0	30				

f = frequency in MHz; * = Plane-wave equivalent power density

Calculated Formulary:

Predication of MPE limit at a given distance

- $S = PG/4 \pi R^2 = power density (in appropriate units, e.g. mW/cm^2);$
- P = power input to the antenna (in appropriate units, e.g., mW);
- G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;
- R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

Calculated Data

Mode	Frequency Range	Anto	enna Gain		p Output ver★	Evaluation Distance	Power Density	MPE Limit
	(MHz)	(dBi)	(numeric)	(dBm)	(mW)	(cm)	(mW/cm ²)	(mW/cm ²)
BLE	2402-2480	2.00	1.58	5.50	3.55	20	0.001	1.0

Note:

1. For the above tune-up output power were all declared by the manufacturer.

Result: The device meet FCC MPE at 20 cm distance.

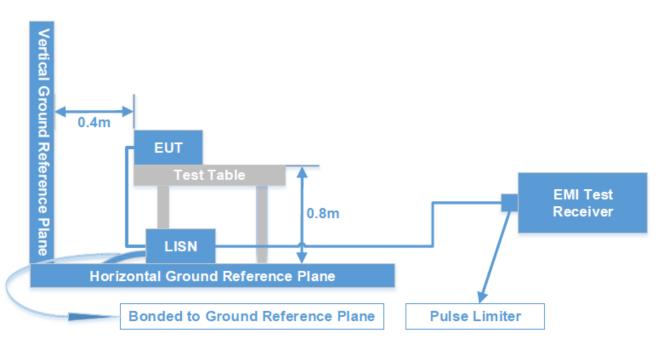
FCC §15.203 – ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Antenna Connector Construction

The EUT has a PCB antenna for BLE, and the antenna gain is 2.0 dBi, which is permanently attached to the unit, fulfill the requirement of this section. Please refer to the EUT photos.


Result: Compliant.

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a)

Test System Setup

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	RBW	VBW
150 kHz – 30 MHz	9 kHz	30 kHz

Test Procedure

ANSI C63.10-2013 clause 6.2

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

If the maximum peak value of the emissions is below the average limit, the QP value and average value measurement will not need to be performed and only record the maximum peak measured value to meet the requirements.

Level & Over Limit Calculation

The Level is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation from the Meter Reading. The basic equation is as follows:

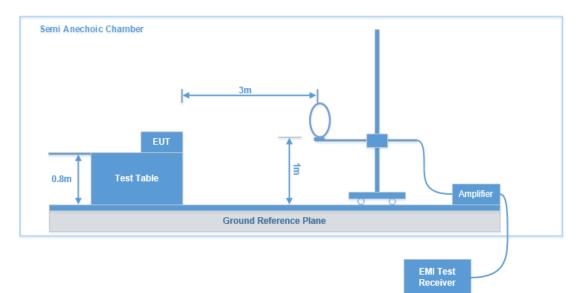
Factor (dB) = LISN VDF (dB) + Cable Loss (dB) + Transient Limiter Attenuation (dB) Level (dB μ V) = Read level (dB μ V) + Factor (dB)

The "**Over Limit**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit of 7 dB means the emission is 7 dB above the limit. The equation for Over Limit calculation is as follows:

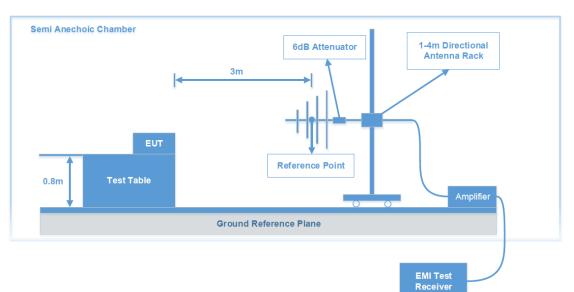
Over Limit (dB) = Level (dB μ V) - Limit (dB μ V)

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Part 15.207.

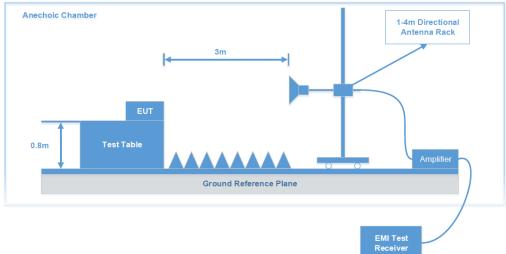

FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard


FCC §15.247 (d); §15.209; §15.205;

Test System Setup

9 kHz - 30 MHz:


30 MHz - 1 GHz:

FCC Part 15.247

Bay Area Compliance Laboratories Corp. (Kunshan)

Above 1 GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

EMI Test Receiver Setup

The system was investigated from 9 kHz to 25 GHz.

During the radiated emission test, the EMI test receiver Setup was set with the following configurations:

Frequency Range	RBW	VBW	IF B/W	Measurement
9 kHz – 150 kHz	200 Hz	1 kHz	200 Hz	QP/Average
150 kHz - 30 MHz	9 kHz	30 kHz	9 kHz	QP/ Average
30 MHz - 1000 MHz	100 kHz	300 kHz	/	Peak
50 MHZ 1000 MHZ	/	/	120 kHz	QP
Above 1CHz	1MHz	3 MHz	/	Peak
Above 1GHz	1MHz	3 MHz	/	Average

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

If the measured peak level of the emissions that the measuring receiver reading level plus corrected factor is at least 6 dB below the QP emission limit, there's no need to record the measured QP level of the emissions in the report.

For 9 kHz-30MHz test, the lowest height of the magnetic antenna shall be 1 m above the ground and three antenna orientations (parallel, perpendicular, and ground-parallel) shall be measured.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude ($dB\mu V/m$) = Meter Reading ($dB\mu V$) + Antenna Factor (dB/m) + Cable Loss (dB) - Amplifier Gain (dB)

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

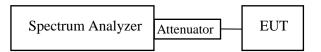
Margin (dB) = Limit (dB μ V/m) - Corrected Amplitude (dB μ V/m)

Note: The QuasiPeak ($dB\mu V/m$), MaxPeak ($dB\mu V/m$), Average ($dB\mu V/m$) which shown in the data table are all Corrected Amplitude.

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Title 47, Part 15, Subpart C, section 15.205, 15.209 and 15.247.

FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH


Applicable Standard

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

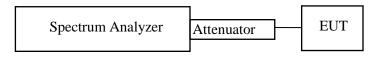
Test Procedure

According to ANSI C63.10-2013 sub-clause 11.8.1

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \geq 3 * RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Note: Offset (10.5 dB) = Attenuator (10 dB) + Cable loss (0.5 dB)

FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER


Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

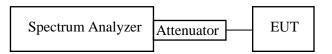
Test Procedure

According to ANSI C63.10-2013 sub-clause 11.9.1.1

- 1. Set the RBW \geq DTS bandwidth.
- 2. Set VBW \geq 3 * RBW.
- 3. Set span \geq 3 * RBW
- 4. Sweep time = auto couple.
- 5. Detector = peak.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8. Use peak marker function to determine the peak amplitude level.

Note: Offset (10.5 dB) = Attenuator (10 dB) + Cable loss (0.5 dB)

FCC §15.247(d) – BAND EDGE


Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

Test Procedure

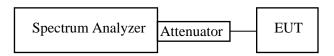
According to ANSI C63.10-2013 sub-clause 6.10.

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Note: Offset (10.5dB) = Attenuator (10dB) + Cable loss (0.5dB)

FCC §15.247(e) - POWER SPECTRAL DENSITY

Applicable Standard


For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Test Procedure

According to ANSI C63.10-2013 sub-clause 11.10.2

The following procedure shall be used if maximum peak conducted output power was used to determine compliance, and it is optional if the maximum conducted (average) output power was used to determine compliance:

- 1. Set the RBW to: $3kHz \le RBW \le 100 kHz$.
- 2. Set the VBW \geq 3*RBW.
- 3. Set the span to 1.5 times the DTS bandwidth.
- 4. Detector = peak.
- 5. Sweep time = auto couple.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 9. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Note: Offset (10.5dB) = Attenuator (10dB) + Cable loss (0.5dB)

EUT PHOTOGRAPHS

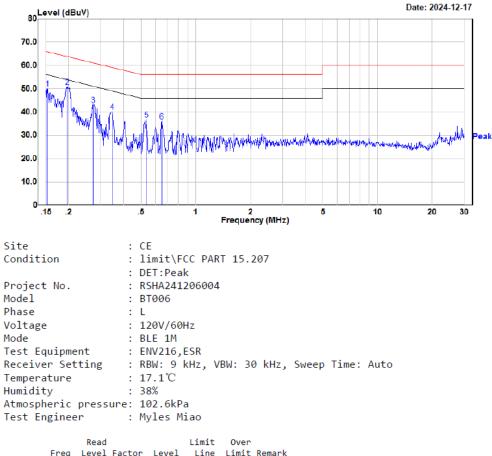
Please refer to the attachment EXHIBIT A - EUT EXTERNAL PHOTOGRAPHS and EXHIBIT B - EUT INTERNAL PHOTOGRAPHS.

TEST SETUP PHOTOGRAPHS

Please refer to the attachment EXHIBIT C-TEST SETUP PHOTOGRAPHS.

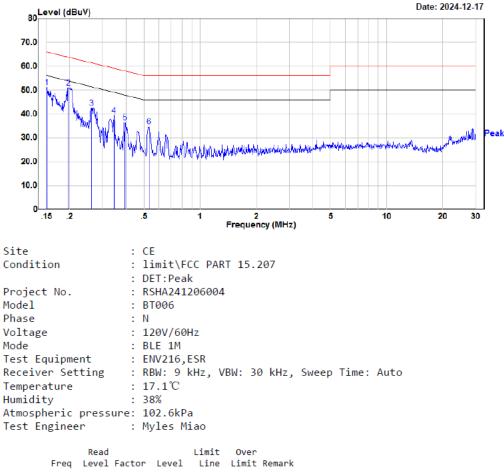
APPENDIX - TEST DATA

Environmental Conditions & Test Information


The state of the second	AC LINE	SPURIOUS EMISSIONS					
Test Item:	CONDUCTED EMISSIONS	9kHz-1GHz	30 MHz-1 GHz	1 GHz-18 GHz	18 GHz-25 GHz		
Test Date:	2024-12-17	2024-12-16	2024-12-16	2024-12-17	2024-12-24		
Temperature:	17.1 ℃	15.6 °C	15.6 °C	17.1 °C	25.8 °C		
Relative Humidity:	38 %	42 %	42 %	38 %	50 %		
ATM Pressure:	102.6 kPa	102.7 kPa	102.7 kPa	102.6 kPa	100.3 kPa		
Test Result:	Pass	Pass	Pass	Pass	Pass		
Test Engineer:	Myles Miao	Jerry Yan	Jerry Yan	Destine Hu	Hugh Wu		

Test Item:	DUTY CYCLE	6 DB EMISSION BANDWIDTH	MAXIMUM CONDUCTED OUTPUT POWER	BAND EDGE	POWER SPECTRAL DENSITY
Test Date:	2025-01-07	2025-01-07	2025-01-07	2025-01-07	2025-01-07
Temperature:	24.2 °C	24.2 °C	24.2 °C	24.2 °C	24.2 °C
Relative Humidity:	52 %	52 %	52 %	52 %	52 %
ATM Pressure:	101.0 kPa	101.0 kPa	101.0 kPa	101.0 kPa	101.0 kPa
Test Result:	/	Pass	Pass	Pass	Pass
Test Engineer:	Neil Zhou	Neil Zhou	Neil Zhou	Neil Zhou	Neil Zhou

AC LINE CONDUCTED EMISSIONS

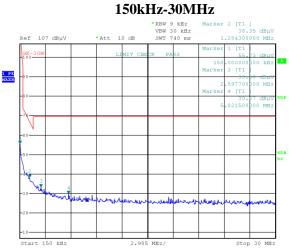

EUT operation mode: Transmitting in BLE (1 Mbps) Low channel (maximum output power)

AC 120V/60 Hz, Line

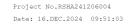
	Freq	Level	Factor	Level	Line	Limit	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	
1	0.152	30.01	20.12	50.13	65.88	-15.75	Peak
2	0.195	30.58	20.11	50.69	63.81	-13.12	Peak
3		22.95	20.15	43.10	61.03	-17.93	Peak
4	0.347	20.01	20.19	40.20	59.04	-18.84	Peak
5	0.535	16.63	20.12	36.75	56.00	-19.25	Peak
6	0.649	15.95	20.08	36.03	56.00	-19.97	Peak

AC 120V/60 Hz, Neutral

	MHz	dBuV	dB	dBuV	dBuV	dB	
1	0.151	31.09	20.12	51.21	65.96	-14.75	Peak
2	0.195	30.93	20.11	51.04	63.81	-12.77	Peak
3	0.261	22.45	20.14	42.59	61.40	-18.81	Peak
4	0.345	19.15	20.19	39.34	59.09	-19.75	Peak
5	0.394	16.29	20.20	36.49	57.97	-21.48	Peak
6	0.532	14.76	20.12	34.88	56.00	-21.12	Peak


SPURIOUS EMISSIONS

Test Result: Compliant.


EUT operation mode: Transmitting

9 kHz-30MHz: Transmitting in maximum output power mode BLE (1 Mbps) low channel Parallel(worst case)

Project No.RSHA241206004 Date: 16.DEC.2024 09:46:50 Tester:Jerry Yan

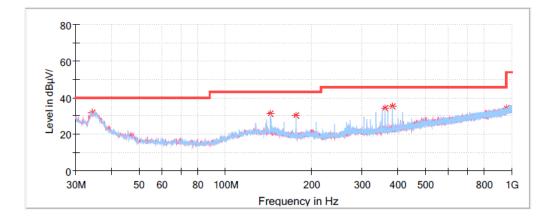
Tester:Jerry Yan

9 kHz-150 kHz

Frequency (MHz)	Corrected Amplitude (dBµV/m) @3m	Detector PK/QP/Ave.	Corrected Factor (dB/m)	Limit (dBµV/m) @3m	Margin (dB)
0.009282	92.68	РК	56.82	128.25	35.57
0.013794	92.39	РК	53.95	124.81	32.42
0.015486	92.36	РК	52.87	123.81	31.45
0.021690	90.68	РК	49.53	120.88	30.20

150 kHz-30 MHz

Frequency (MHz)	Corrected Amplitude (dBµV/m) @3m	Detector PK/QP/Ave.	Corrected Factor (dB/m)	Limit (dBµV/m) @3m	Margin (dB)
0.15000	55.73	РК	50.90	104.08	48.35
1.28430	38.35	РК	5.10	65.43	27.08
2.59770	33.50	РК	11.89	69.54	36.04
5.82150	30.07	РК	7.40	69.54	39.47

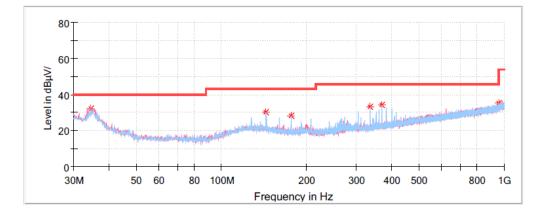

FCC Part 15.247

BLE (1 Mbps):

30 MHz - 1 GHz:

Low Channel: 2402 MHz

Project No: EUT Model: Test Mode: Standard: Test Equipment: Receiver Setting: Temperature: Humidity: Barometric Pressure: Test Engineer: Test Date: RSHA241206004 BT006 Transmitting in BLE-1M mode low channel FCC Part 15.247 ESCI, JB3, 310N RBW:100 kHz, VBW: 300 kHz, Sweep Time: Auto 15.6℃ 42% 102.7kPa Jerry Yan 2024/12/16

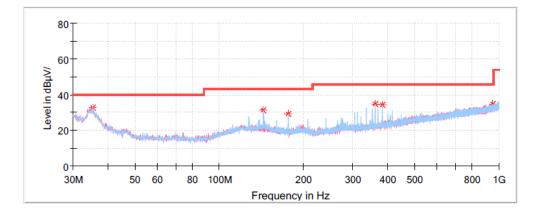


Frequency (MHz)	MaxPeak (dBµ V/m)	Limit (dBμ V/m)	Margin (dB)	Pol	Corr. (dB/m)
34.243750	31.82	40.00	8.18	V	-7.5
143.975000	31.26	43.50	12.24	Н	-11.4
175.985000	30.14	43.50	13.36	Н	-12.8
359.921250	34.04	46.00	11.96	Н	-8.9
384.050000	35.10	46.00	10.90	Н	-8.4
956.592500	34.43	46.00	11.57	Н	1.6

Middle Channel: 2440 MHz

Common Information

Project No:	RSHA241206004
EUT Model:	BT006
Test Mode:	Transmitting in BLE-1M mode middle channel
Standard:	FCC Part 15.247
Test Equipment:	ESCI, JB3, 310N
Receiver Setting:	RBW:100 kHz, VBW: 300 kHz, Sweep Time: Auto
Temperature:	15.6℃
Humidity:	42%
Barometric Pressure:	102.7kPa
Test Engineer:	Jerry Yan
Test Date:	2024/12/16



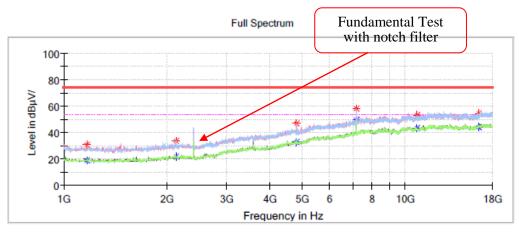
	•				
Frequency	MaxPeak	Limit	Margin	Pol	Corr.
(MHz)	(dBµ V/m)	(dBµ V/m)	(dB)		(dB/m)
34.607500	31.99	40.00	8.01	V	-7.8
143.975000	30.03	43.50	13.47	Н	-11.4
175.985000	28.42	43.50	15.08	Н	-12.8
336.035000	33.29	46.00	12.71	Н	-9.5
368.045000	33.98	46.00	12.02	Н	-8.7
954.410000	35.36	46.00	10.64	V	1.5

High Channel:2480 MHz

Common Information

el
ne: Auto

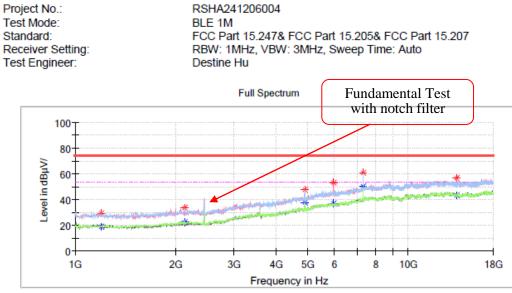
Frequency (MHz)	MaxPeak (dBμ V/m)	Limit (dBµ V/m)	Margin (dB)	Pol	Corr. (dB/m)
35.213750	32.59	40.00	7.41	Н	-8.2
143.975000	31.15	43.50	12.35	Н	-11.4
175.985000	29.05	43.50	14.45	Н	-12.8
360.042500	34.67	46.00	11.33	Н	-8.9
384.050000	34.16	46.00	11.84	Н	-8.4
946.165000	34.94	46.00	11.06	Н	1.3


1 GHz-18 GHz:

Low Channel: 2402 MHz

Common Information

Project No.:
Test Mode:
Standard:
Receiver Setting:
Test Engineer:


RSHA241206004 BLE 1M FCC Part 15.247& FCC Part 15.205& FCC Part 15.207 RBW: 1MHz, VBW: 3MHz, Sweep Time: Auto Destine Hu

Frequency	MaxPeak	Average	Limit	Margin	Pol	Corr.
(MHz)	(dB µ V/m)	(dB µ V/m)	(dB µ V/m)	(dB)		(dB/m)
1166.600000		19.01	54.00	34.99	V	-15.2
1166.600000	30.53		74.00	43.47	V	-15.2
2125.400000		21.57	54.00	32.43	Н	-11.3
2125.400000	33.84		74.00	40.16	Н	-11.3
4801.200000		32.80	54.00	21.20	Н	-3.2
4801.200000	46.92		74.00	27.08	Н	-3.2
7205.000000		49.57	54.00	4.43	Н	3.1
7205.000000	58.21		74.00	15.79	Н	3.1
10829.400000		43.32	54.00	10.68	Н	7.2
10829.400000	53.18		74.00	20.82	Н	7.2
16368.000000		44.04	54.00	9.96	V	10.4
16368.000000	54.67		74.00	19.33	V	10.4

Middle Channel: 2440 MHz

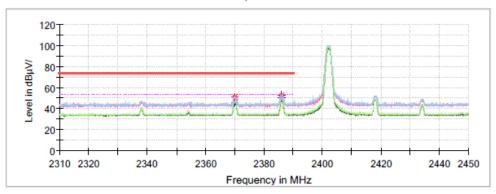
Common Information

Frequency (MHz)	MaxPeak (dB µ V/m)	Average (dB µ V/m)	Limit (dB µ V/m)	Margin (dB)	Pol	Corr. (dB/m)
1193.800000		19.10	54.00	34.90	V	-15.2
1193.800000	29.17		74.00	44.83	V	-15.2
2128.800000		22.71	54.00	31.29	Н	-11.3
2128.800000	33.34		74.00	40.66	Н	-11.3
4879.400000		37.85	54.00	16.15	Н	-2.9
4879.400000	47.62		74.00	26.38	Н	-2.9
5981.000000		37.23	54.00	16.77	V	0.0
5981.000000	53.21		74.00	20.79	V	0.0
7320.600000		50.32	54.00	3.68	Н	3.4
7320.600000	60.52		74.00	13.48	Н	3.4
13957.400000		43.49	54.00	10.51	V	9.8
13957.400000	56.64		74.00	17.36	V	9.8

High Channel: 2480 MHz

Frequency (MHz)	MaxPeak (dB µ V/m)	Average (dB µ V/m)	Limit (dB µ V/m)	Margin (dB)	Pol	Corr. (dB/m)
1244.800000	(UD # V/III)	18.87	(UB # V/III) 54.00	35.13	v	-15.1
1244.800000	28.62		74.00	45.38	v	-15.1
2128.800000		22.20	54.00	31.80	V	-11.3
2128.800000	33.82		74.00	40.18	V	-11.3
4957.600000	47.94		74.00	26.06	Н	-2.6
4957.600000		37.47	54.00	16.53	Н	-2.6
7439.600000		53.01	54.00	0.99	Н	3.7
7439.600000	61.24		74.00	12.76	Н	3.7
12889.800000		44.99	54.00	9.01	V	9.7
12889.800000	55.60		74.00	18.40	V	9.7
17119.400000		44.93	54.00	9.07	V	12.1
17119.400000	55.95		74.00	18.05	V	12.1

RESTRICTED BANDS EMISSION:

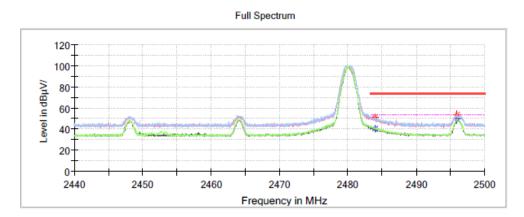

Left Side

Common Information

Project No.:
Test Mode:
Standard:
Receiver Setting:
Test Engineer:

RSHA241206004 BLE 1M FCC Part 15.247& FCC Part 15.205& FCC Part 15.207 RBW: 1MHz, VBW: 3MHz, Sweep Time: Auto Destine Hu

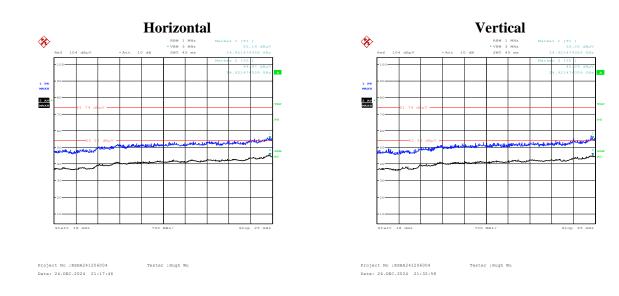
Full Spectrum



	Frequency (MHz)	MaxPeak Average (dB µ V/m) (dB µ V/m)		Limit (dB µ V/m)			Corr. (dB/m)
Г	2369.920000		46.52	54.00	7.48	Н	-0.6
	2369.920000	51.12		74.00	22.88	Н	-0.6
	2386.104000		50.30	54.00	3.70	Н	-0.6
	2386.104000	53.28		74.00	20.72	Н	-0.6

Right Side

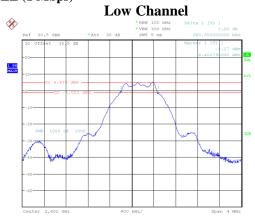
Common Information

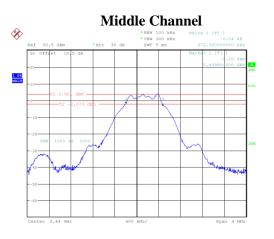

Project No.: Test Mode: Standard: Receiver Setting: Test Engineer: RSHA241206004 BLE 1M FCC Part 15.247& FCC Part 15.205& FCC Part 15.207 RBW: 1MHz, VBW: 3MHz, Sweep Time: Auto Destine Hu

Frequency (MHz)	MaxPeak (dB µ V/m)	Average (dB µ V/m)	Limit (dB µ V/m)	Margin (dB)	Pol	Corr. (dB/m)
2484.016000		40.67	54.00	13.33	V	-0.3
2484.016000	51.10		74.00	22.90	V	-0.3
2495.944000		49.39	54.00	4.61	Н	-0.2
2495.944000	53.32		74.00	20.68	Н	-0.2

Frequency (MHz)	MaxPeak (dBµV/m)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Pol	Corr. (dB/m)
24921.47		44.97	54	9.03	Н	15.37
24921.47	55.14		74	18.86	Н	15.37
24921.47		45.09	54	8.91	V	15.37
24921.47	55.05		74	18.95	V	15.37

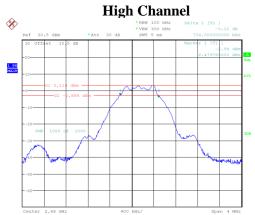
18 GHz - 25 GHz: BLE (1Mbps) Low channel was worst




Note: The test distance is 3m. The limit is $74dB\mu V/m$ (Peak) and $54dB\mu V/m$ (Average)

6 dB EMISSION BANDWIDTH

Mode	Channel	Frequency (MHz)	6 dB Emission Bandwidth (MHz)	Limit (MHz)
BLE (1 Mbps)	Low	2402	0.680	≥0.5
	Middle	2440	0.672	≥0.5
	High	2480	0.704	≥0.5

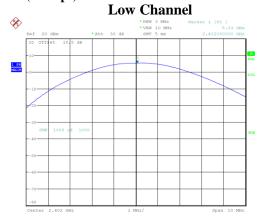

BLE (1 Mbps)

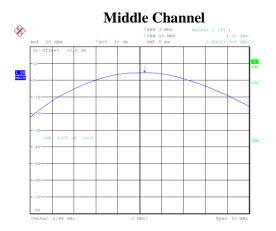
ProjectNo.:RSHA241206004 Tester:Neil Zhou Date: 7.JAN.2025 14:17:35

ProjectNo.:RSHA241206004 Tester:Neil Zhou Date: 7.JAN.2025 14:10:49

ProjectNo.:RSHA241206004 Tester:Neil Zhou Date: 7.JAN.2025 14:25:06

Page 39 of 43


MAXIMUM CONDUCTED OUTPUT POWER


Test Result: Compliant.

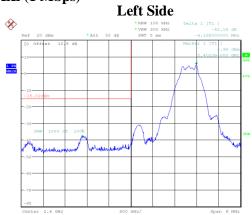
EUT operation mode: Transmitting

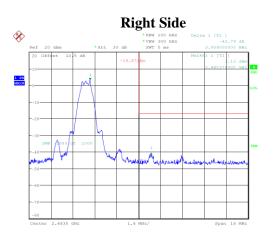
Mode	Channel	Frequency (MHz)	Max Conducted Peak Output Power (dBm)	Limit (dBm)	Result
BLE (1 Mbps)	Low	2402	5.33	30	Pass
	Middle	2440	4.32	30	Pass
	High	2480	3.53	30	Pass

BLE (1 Mbps)

ProjectNo.:RSHA241206004 Tester:Neil Zhou Date: 7.JAN.2025 14:22:29

ProjectNo.:RSHA241206004 Tester:Neil Zhou Date: 7.JAN.2025 14:30:00


BAND EDGE

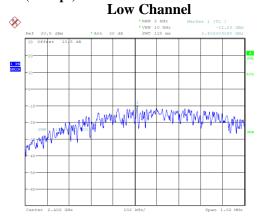

Test Result: Compliant.

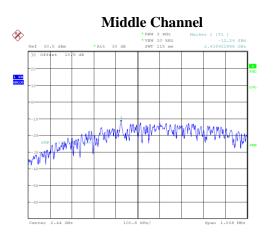
EUT operation mode: Transmitting

Mode	Channel	Frequency (MHz)	Result (dBc)	Limit (dBc)	
BLE (1 Mbps)	Low	2402	42.18	20	
	High	2480	43.79	20	

BLE (1 Mbps)

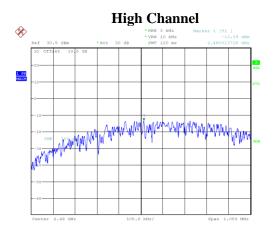
ProjectNo.:RSHA241206004 Tester:Neil Zhou Date: 7.JAN.2025 14:10:08 ProjectNo.:RSHA241206004 Tester:Neil Zhou Date: 7.JAN.2025 14:24:12


POWER SPECTRAL DENSITY


Test Result: Compliant.

EUT operation mode: Transmitting

Mode	Channel	Frequency (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)
BLE (1 Mbps)	Low	2402	-11.23	≤ 8
	Middle	2440	-12.24	≤8
	High	2480	-13.39	≤8


BLE (1 Mbps)

ProjectNo.:RSHA241206004 Tester:Neil Zhou Date: 7.JAN.2025 14:22:49

ProjectNo.:RSHA241206004 Tester:Neil Zhou Date: 7.JAN.2025 14:16:32

ProjectNo.:RSHA241206004 Tester:Neil Zhou Date: 7.JAN.2025 14:30:20

Declarations

1. The laboratory is not responsible for the authenticity of any information provided by the applicant. Information from the applicant that may affect test results is marked with " \star ".

2. The test data was only valid for the test sample(s).

3. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

4. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

5. The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor k=2 with the 95.45% confidence interval.

***** END OF REPORT *****

FCC Part 15.247