

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

Tel: +86-755-27521059 Fax: +86-755-27521011 Http://www.sz-ctc.org.cn

	EST REPORT		
Report No:	CTC20231800E03		
FCC ID:	2AGKB-KM2PLUS-D		
Applicant:	Videostrong Technology Co.,Ltd	I	
Address:	604, Lushi industrial Building, 28 D District,Shenzhen, China	listrict, Bao'an	
Manufacturer	Videostrong Technology Co.,Ltd		
Address:	604, Lushi industrial Building, 28 D District,Shenzhen, China)istrict, Bao'an	
Product Name:	Set Top Box		
Trade Mark:	MECOOL		
Model/Type reference:	KM2 PLUS D		
Listed Model(s):	KM2 PLUS DELUXE, Lumia, HP4423, HP4422, HP4426, HP44J, Ooredoo tv, Leap-S4		
Standard:	FCC CFR Title 47 Part 15 Subpart C Section 15.247		
Date of receipt of test sample:	Oct. 24, 2023		
Date of testing	Oct. 27, 2023 ~ Nov. 15, 2023		
Date of issue	Nov. 30, 2023		
Result:	PASS		
Compiled by: (Printed name+signature)	Lucy Lan	luey lown Zric zhang	
Supervised by:		a: shard	
(Printed name+signature)	Eric Zhang	Ene Diany	
Approved by:		Jehras	
(Printed name+signature)	Totti Zhao	/*	
Testing Laboratory Name:	CTC Laboratories, Inc.		
Address:	2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China		
This test report may be duplicated co not be reproduced except in full, with it to claim product endorsement by C The test report shall be invalid withou Any objections must be raised to CT not be taken into consideration beyon	out the written approval of our labora TC. The Test Result in the report on at all the signatures of testing engine C within 15 days since the date when	atory. The client should not use ly apply to the tested sample. ers, reviewer and approver. In the report is received. It will	

Table of Contents

Page

1. T	rest summary	3
1.1.	. Test Standards	3
1.2.	. Report Version	3
1.3.	. Test Description	3
1.4.		
1.5.		
1.6.	. Environmental Conditions	5
2. G	GENERAL INFORMATION	6
2.1.	CLIENT INFORMATION	6
2.2.	. GENERAL DESCRIPTION OF EUT	7
2.3.	Accessory Equipment Information	8
2.4.	OPERATION STATE	9
2.5.	. Measurement Instruments List	11
3. Т	rest item and results	12
3.1.	. Conducted Emission	
3.2.	. RADIATED EMISSION	
3.3.	. Band Edge Emissions (Radiated)	
3.4.	. BAND EDGE AND SPURIOUS EMISSIONS (CONDUCTED)	91
3.5.	DTS BANDWIDTH	
3.6.		
3.7.		
3.8.		
3.9.	. ANTENNA REQUIREMENT	

CTC Laboratories, Inc.

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.247: Operation within the bands 902–928MHz, 2400–2483.5MHz, and 5725-5850MHz.

ANSI C63.10-2013: American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

1.2. Report Version

Revised No.	Report No.	Date of issue	Description
01	CTC20231800E03	Nov. 30, 2023	Original

1.3. Test Description

FCC Part 15 Subpart C (15.247)				
Test Item	Standard Section	Result	Test Engineer	
Antenna Requirement	15.203	Pass	Curry	
Conducted Emission	15.207	Pass	Curry	
Conducted Band Edge and Spurious Emissions	15.247(d)	Pass	Curry	
Radiated Band Edge and Spurious Emissions	15.205&15.209& 15.247(d)	Pass	Curry	
6dB Bandwidth	15.247(a)(2)	Pass	Curry	
Conducted Max Output Power	15.247(b)(3)	Pass	Curry	
Power Spectral Density	15.247(e)	Pass	Curry	
Transmitter Radiated Spurious	15.209&15.247(d)	Pass	Curry	

Note:

1. The measurement uncertainty is not included in the test result.

N/A: means this test item is not applicable for this device according to the technology characteristic of 2. device.

CTC Laboratories, Inc.

1.4. Test Facility

Address of the report laboratory

CTC Laboratories, Inc.

Add: 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

A2LA-Lab Cert. No.: 4340.01

CTC Laboratories, Inc. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

Industry Canada (Registration No.: 9783A, CAB Identifier: CN0029)

CTC Laboratories, Inc. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 9783A on Jan, 2016.

FCC (Registration No.: 951311, Designation Number CN1208)

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 951311, Aug 26, 2017.

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2" and is documented in the CTC Laboratories, Inc. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Test Items	Measurement Uncertainty	Notes
DTS Bandwidth	±0.0196%	(1)
Maximum Conducted Output Power	±0.686 dB	(1)
Maximum Power Spectral Density Level	±0.743 dB	(1)
Band-edge Compliance	±1.328 dB	(1)
Unwanted Emissions In Non-restricted Freq Bands	9kHz-1GHz: ±0.746dB 1GHz-26GHz: ±1.328dB	(1)
Conducted Emissions 9kHz~30MHz	±3.08 dB	(1)
Radiated Emissions 30~1000MHz	±4.51 dB	(1)
Radiated Emissions 1~18GHz	±5.84 dB	(1)
Radiated Emissions 18~40GHz	±6.12 dB	(1)

Below is the best measurement capability for CTC Laboratories, Inc.

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.6. Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15 °C to 35 °C
Relative Humidity:	20 % to 75 %
Air Pressure:	101 kPa

CTC Laboratories, Inc.

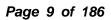
2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

2. GENERAL INFORMATION

2.1. Client Information

Applicant:	Videostrong Technology Co.,Ltd
Address:	604, Lushi industrial Building, 28 District, Bao'an District, Shenzhen, China
Manufacturer:	Videostrong Technology Co.,Ltd
Address:	604, Lushi industrial Building, 28 District, Bao'an District, Shenzhen, China
Factory:	Shenzhen Skyworth Digital Technology Co., LTD. Baoan Branch Factory
Address:	2-5F,Integration Multi-Storied Building, Skyworth Science and Technology Industrial Park, Tangtou Industrial Zone, Shiyan Street, Baoan District, Shenzhen city, China.

EN


2.2. General Description of EUT

Product Name:	Set Top Box	
Trade Mark:	MECOOL	
Model/Type reference:	KM2 PLUS D	
Listed Model(s):	KM2 PLUS DELUXE, Lumia, HP4423, HP4422, HP4426, HP44J, Ooredoo tv, Leap-S4	
Model Difference:	All these models are identical in the same PCB, layout and electrical circuit, Different is model number.	
Power supply:	DC12V 1A from AC/DC Adapter	
Adapter Model:	AT-506A-120100JC Input: 100-240V~ 50/60Hz 0.4A Output: 12Vdc/1A 12W	
Hardware Version:	/	
Software Version:	/	
2.4G Wi-Fi		
Modulation:	802.11b: DSSS (CCK, DQPSK, DBPSK) 802.11g/ n: OFDM (BPSK, QPSK, 16QAM, 64QAM) 802.11ax: OFDMA (BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM)	
Operation Frequency:	802.11b/ g/ n(HT20)/ ax(HE20): 2412MHz~2462MHz 802.11n(HT40)/ ax(HE40): 2422MHz~2452MHz	
Channel Number:	802.11b/ g/ n(HT20)/ ax(HE20): 11 channels 802.11n(HT40)/ ax(HE40): 7 channels	
Channel Separation:	5MHz	
Antenna Type:	FPC Antenna	
Antenna Gain:	2.3dBi	

2.3. Accessory Equipment Information

Equipment Information			
Name	Model	S/N	Manufacturer
Notebook	ThinkBook 14G3 ACL	MP246QDR	Lenovo
Displayer	EW3270-T	EW3270U	BenQ
Cable Information			
Name	Shielded Type	Ferrite Core	Length
LAN Cable	Without	Without	1.5M
HDMI Cable	Without	Without	1.5M
Test Software Information			
Name	Versions	/	/
SecureCRT	/	1	/

2.4. Operation State

Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing.

Operation Frequency List:

Channel	Frequency (MHz)
01	2412
02	2417
03	2422
04	2427
05	2432
06	2437
07	2442
08	2447
09	2452
10	2457
11	2462

Note: CH 01~CH 11 for 802.11b/g/n(HT20)/ax(HE20), CH 03~CH 09 for 802.11n(HT40)/ax(HE40).

Data Rated:

Preliminary tests were performed in different data rate, and found which the below bit rate is worst case mode, so only show data which it is the worst case mode.

Test Mode	Data Rate (worst mode)
802.11b	1Mbps
802.11g	6Mbps
802.11n(HT20)/ (HT40)	HT-MCS8
802.11ax(HE20)/ (HE40)	HE-MCS0

Test Mode:

For	PF	toet	itame
FOr	ĸF	test	items:

The engineering test program was provided and enabled to make EUT continuous transmit.

For AC power line conducted emissions:

The EUT was set to connect with the WLAN AP under large package sizes transmission.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

CTC Laboratories, Inc.

Tel.: (86)755-27521059 可监督管理委员会

RU Configuration:

Operating Mode	Resource Unit	26 Tone (2M)
		0
	Specific Resource Unit	4
		8
	Resource Unit	52 Tone (4M)
		37
802.11ax(HE20)	Specific Resource Unit	38
	Specific Resource Unit	39
		40
	Resource Unit	106 Tone (8M)
		53
	Specific Resource Unit	54
	Resource Unit	242 Tone (20M)
	Specific Resource Unit	61
Operating Mode	Resource Unit	26 Tone (2M)
		0
	Specific Resource Unit	8
		17
	Resource Unit	52 Tone (4M)
	_	37
	_	38
		39
	Cresifie Dessures Lipit	40
	Specific Resource Unit	41
		42
802.11ax(HE40)		43
	-	44
	Resource Unit	106 Tone (8M)
		53
		54
	Specific Resource Unit	55
		56
	Resource Unit	242 Tone (20M)
		61
	Specific Resource Unit	62
	Resource Unit	484 Tone (40M)
	Specific Resource Unit	65
		00

2.5. Measurement Instruments List

RF Tes	st System				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until
1	MXA Signal Analyzer	Keysight	N9020A	MY52091402	Aug. 22, 2024
2	High and low temperature test chamber	ESPEC	MT3035	/	Mar. 24, 2024
3	USB Wideband Power Sensor	Keysight	U2021XA	MY55130004	Mar. 14, 2024
4	USB Wideband Power Sensor	Keysight	U2021XA	MY55130006	Mar. 14, 2024
5	Test Software	WCS	WCS-WCN	2023.08.04	/

Radiate	d Emission (3m chamber 3	3)			
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until
1	Trilog-Broadband Antenna	Schwarzbeck	VULB 9163	01026	Dec. 18, 2024
2	Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-647	Dec. 01, 2024
3	Test Receiver	Keysight	N9038A	MY56400071	Dec. 16, 2023
4	Broadband Amplifier	SCHWARZBECK	BBV9743B	259	Dec. 16, 2023
5	Mirowave Broadband Amplifier	SCHWARZBECK	BBV9718C	111	Dec. 16, 2023
6	3m chamber 3	YIHENG	EE106	/	Aug. 28, 2026
7	Test Software	FARA	EZ-EMC	FA-03A2	/

Conduc	ted Emission				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until
1	LISN	R&S	ENV216	101112	Dec. 16, 2023
2	LISN	R&S	ENV216	101113	Dec. 16, 2023
3	EMI Test Receiver	R&S	ESCS30	100353	Dec. 16, 2023
4	ISN CAT6	Schwarzbeck	NTFM 8158	CAT6-8158-0046	Dec. 16, 2023
5	ISN CAT5	Schwarzbeck	NTFM 8158	CAT5-8158-0046	Dec. 16, 2023
6	Test Software	R&S	EMC32	6.10.10	/

Note: 1. The Cal. Interval was one year.

2. The Cal. Interval was three years of the antenna.

3. The cable loss has been calculated in test result which connection between each test instruments.

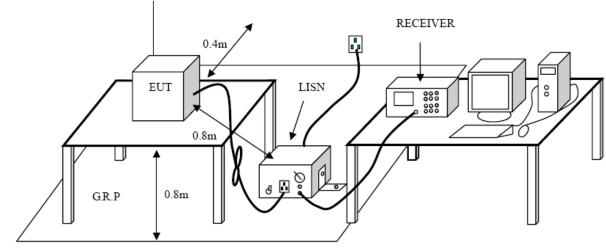
CTC Laboratories, Inc.

Tel.: (86)755-27521059

可监 管理委员会 中国国家认 EN 11F

3. TEST ITEM AND RESULTS

3.1. Conducted Emission


Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.207

	Conducted Limit (dBµV)					
Frequency (MHz)	Quasi-peak	Average				
0.15 - 0.5	66 to 56 *	56 to 46 *				
0.5 - 5	56	46				
5 - 30	60	50				

* Decreases with the logarithm of the frequency.

Test Configuration

Test Procedure

1. The EUT was setup according to ANSI C63.10:2013 requirements.

The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting 2. ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.

The EUT and simulators are connected to the main power through a line impedance stabilization 3. network (LISN). The LISN provides a 50 ohm / 50 µH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Please refer to the 4. block diagram of the test setup and photographs)

Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was 5. individually connected through a LISN to the input power source.

The excess length of the power cord between the EUT and the LISN receptacle were folded back and 6. forth at the center of the lead to form a bundle not exceeding 40 cm in length.

Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a 7. receiver bandwidth of 9 kHz.

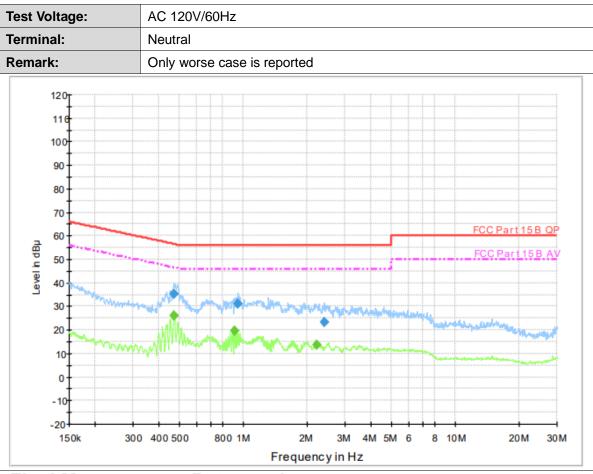
During the above scans, the emissions were maximized by cable manipulation. 8.

Test Mode

Please refer to the clause 2.4.

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059


Test Voltage:	: A	C 120V/6	0Hz						
Ferminal:	L	ine							
Remark:	C	Only worse	case is rep	orted					
120 .		······································		Ţ	1			1	
110-									
100									
90 -									
80									
70									
-								FCC Pa	art 15 B QP
a ⁶⁰									art 15 BAV
							•	FUUP	
a 40									
30	A CONTRACTOR OF THE OWNER OWNER OWNER OF THE OWNER OWN								
20		C.M.	- And	WW	the years	hipindh	ALLAN ALLAN	and stories	
20	man								and the second
10				VVV					
0									
- 10									
-20									
150k	300 4	400 500	800 1M	2M	3M	4M 5M	6 8 1	ОM	20M 30M
			Fr	requen	cy in Hz	2			
Final Me	easuren	nent De	etector	1					
Frequency	QuasiPeak	Meas.	Bandwidth		r Line				Comment
(MHz)	(dBµ V)	Time (ms)	(kHz)			(dB)	(dB)	(dBµ V)	
0.471700	34.0	1000.00	9.000) On	L1	9.5	5 22.5	- /	
0.944790 2.255710	23.2	1000.00	9.000		L1	9.5 9.5			
2.200710	20.7	1000.00	9.000			9.5	30.0	50.0	
Final Me	asurem	ent Det	tector 2						
Frequency	Average	Meas.	Bandwidth	Filter	Line	Corr.	Margin	Limit	Comment
(MHz)	(dBµ V)	Time (ms)	(kHz)			(dB)	(dB)	(dBµ V)	
0.471700	28.7	1000.00	9.000	On	L1	9.5	17.8	46.5	
0.525380 2.522470	16.6 12.4	1000.00 1000.00	9.000 9.000	On On	L1 L1	9.5 9.5	29.4 33.6	46.0 46.0	
							53.6	46 []	

CTC Laboratories, Inc.

可监督管理委员会 中国国家认证认 EN

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Final Measurement Detector 1

	Frequency (MHz)	QuasiPeak (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
Γ	0.466090	35.3	1000.00	9.000	On	N	9.4	21.3	56.6	
ſ	0.937270	31.0	1000.00	9.000	On	Ν	9.4	25.0	56.0	
	2.394900	23.4	1000.00	9.000	On	N	9.4	32.6	56.0	

Final Measurement Detector 2

Frequency	Average	Meas.	Bandwidth	Filter	Line	Corr.	Margin	Limit	Comment
(MHz)	(dBµ V)	Time	(kHz)			(dB)	(dB)	(dBµ	
		(ms)						V)	
0.469820	25.9	1000.00	9.000	On	N	9.4	20.6	46.5	
0.900590	19.8	1000.00	9.000	On	N	9.4	26.2	46.0	
2.219970	13.5	1000.00	9.000	On	N	9.4	32.5	46.0	
									,

Emission Level = Read Level + Correct Factor

CTC Laboratories, Inc.

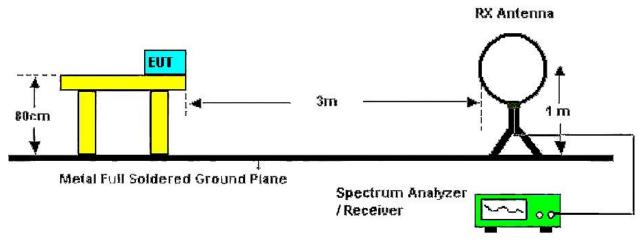
可监督管理委员会 中国国家认证认 EN

3.2. Radiated Emission

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.209

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F (kHz)	300
0.490~1.705	24000/F (kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

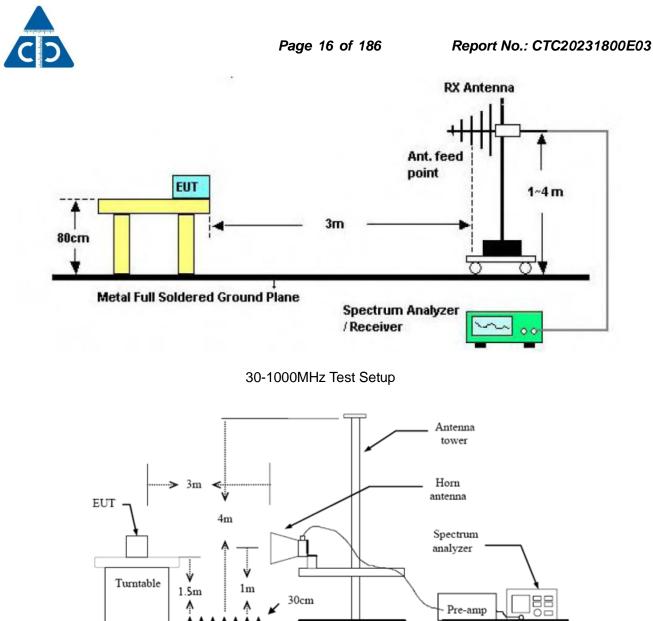

	dBµV/m (at 3 meters)				
Frequency Range (MHz)	Peak	Average			
Above 1000	74	54			

Note:

(1) The tighter limit applies at the band edges.

(2) Emission Level (dB μ V/m)=20log Emission Level (μ V/m).

Test Configuration



Below 30MHz Test Setup

CTC Laboratories, Inc.

Tel.: (86)755-27521059

Above 1GHz Test Setup

Test Procedure

1. The EUT was setup and tested according to ANSI C63.10:2013.

The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for 2. above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.

The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable 3. height antenna tower.

For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna 4. tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.

- Set to the maximum power setting and enable the EUT transmit continuously. 5.
- Use the following spectrum analyzer settings 6.
- Span shall wide enough to fully capture the emission being measured; (1)
- (2) 9k 150kHz:

RBW=300 Hz, VBW=1 kHz, Sweep=auto, Detector function=peak, Trace=max hold (3) 0.15M – 30MHz:

RBW=10 kHz, VBW=30 kHz, Sweep=auto, Detector function=peak, Trace=max hold (4) 30M - 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the

Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

CTC Laboratories, Inc.

peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(5) From 1 GHz to 10th harmonic:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW see note 1 with Peak Detector for Average Value.

Note 1: For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 3.8 Duty Cycle.

Test Mode

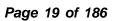
Please refer to the clause 2.4.

Test Result

9 kHz~30 MHz

From 9 kHz to 30 MHz: The conclusion is PASS.

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.



Ant. No.		Ant 1					
Ant. Pol		Horizontal					
Test Mode: TX 802.11b Mode 2412MHz							
Remark	:	Only worse cas	e is reported				
90.0 dBu	iV/m						
80							
70							
60					ECC Pa	rt15 C 30-100	
50					Margin		
40				2	4 5		
30				A MAN WWWWWW		hunder for the second	hurdonwood
20	the Manusan	www.manuerabilitidad	LANN WANN		and antimuture	WWWWWWWWWW	
10	· · · · · · · · · · · · · · · · · · ·	with the way and a second	lo Mone, i tra				
0							
-10 30.000	60.0	0	(MHz)	300.	.00		1000.000
No.	Frequency		Factor	Level	Limit	Margin	Detector
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector
1	38.0833	36.97	-14.90	22.07	40.00	-17.93	QP
2	225.6167	53.91	-15.22	38.69	46.00	-7.31	QP
3	315.5033	49.38	-12.98	36.40	46.00	-9.60	QP
4	335.8733	51.00	-12.31	38.69	46.00	-7.31	QP
5 *	384.0500	51.54	-11.35	40.19	46.00	-5.81	QP
	1						

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

nt. No.		Ant 1					
Ant. Pol	nt. Pol. Vertical						
Fest Mo	de:	TX 802.11b	/lode 2412MHz				
Remark		Only worse of	ase is reported				
10.0 dBu	iV/m						
:0							
'o							
:0					FCC Pa	art15 C 30-100	OM
io					Margin	-6 d8	
			3				
10 A	m		×	S A But I W	M. Marken	white the approved	NHW HAT HANNAM
:0	mann	when work have	NANANAMANAM	2 alimbredia	" How Alland and Andread Alla	Lahar	
0		I WANT IN THE REAL	NP 14				
•							
10 30.000	00	.00	(MHz)	300	00		1000.0
50.000	60		(M112)	300	.00		1000.0
No.	Frequence (MHz)	y Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	33.2333	50.77	-15.67	35.10	40.00	-4.90	QP
2	35.8200	47.97	-15.51	32.46	40.00	-7.54	QP
3	191.9900	9 49.28	-16.67	32.61	43.50	-10.89	QP
4	223.3533	3 50.85	-15.29	35.56	46.00	-10.44	QP
_	315.8267	7 44.47	-12.97	31.50	46.00	-14.50	QP
5					46.00		

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11b Mode 2412MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4824.083	32.08	2.11	34.19	54.00	-19.81	AVG
2	4824.124	41.73	2.11	43.84	74.00	-30.16	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11b Mode 2412MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4823.971	37.29	2.11	39.40	74.00	-34.60	peak
2 *	4823.971	31.33	2.11	33.44	54.00	-20.56	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Tel.: (86)755-27521059 可监督管理委员会 EN 中国国家认证认

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11b Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4873.655	41.43	2.18	43.61	74.00	-30.39	peak
2 *	4874.105	30.37	2.18	32.55	54.00	-21.45	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11b Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4873.971	41.22	2.18	43.40	74.00	-30.60	peak
2 *	4874.042	30.51	2.18	32.69	54.00	-21.31	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11b Mode 2462MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4923.779	40.25	2.26	42.51	74.00	-31.49	peak
2 *	4924.023	27.62	2.26	29.88	54.00	-24.12	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11b Mode 2462MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4923.973	33.13	2.26	35.39	74.00	-38.61	peak
2 *	4923.973	27.47	2.26	29.73	54.00	-24.27	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11g Mode 2412MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4823.439	24.25	2.11	26.36	54.00	-27.64	AVG
2	4823.917	39.54	2.11	41.65	74.00	-32.35	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11g Mode 2412MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4824.035	24.65	2.11	26.76	54. <mark>0</mark> 0	-27.24	AVG
2	4824.775	38.85	2.11	40.96	74.00	-33.04	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11g Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	4873.271	38.97	2.18	41.15	74.00	-32.85	peak
2 *	4874.708	24.30	2.18	26.48	54.00	-27.52	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11g Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4873.331	39.60	2.18	41.78	74.00	-32.22	peak
2 *	4874.527	23.96	2.18	26.14	54.00	-27.86	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11g Mode 2462MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	4923.586	39.23	2.26	41.49	74.00	-32.51	peak
2 *	4924.062	29.24	2.26	31.50	54.00	-22.50	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11g Mode 2462MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4923.684	22.97	2.26	25.23	54.00	-28.77	AVG
2	4923.725	38.52	2.26	40.78	74.00	-33.22	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT20) Mode 2412MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4823.911	25.37	2.11	27.48	54.00	-26.52	AVG
2	4824.029	39.51	2.11	41.62	74.00	-32.38	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT20) Mode 2412MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4823.657	39.27	2.11	41.38	74.00	-32.62	peak
2 *	4824.800	24.23	2.11	26.34	54.00	-27.66	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT20) Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4873.384	39.06	2.18	41.24	74.00	-32.76	peak
2 *	4874.762	23.78	2.18	25.96	54.00	-28.04	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT20) Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4874.410	23.75	2.18	25.93	54.00	-28.07	AVG
2	4874.930	38.89	2.18	41.07	74.00	-32.93	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT20) Mode 2462MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4923.136	39.93	2.25	42.18	74.00	-31.82	peak
2 *	4923.541	23.30	2.26	25.56	54.00	-28.44	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT20) Mode 2462MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4923.035	23.31	2.25	25.56	54.00	-28.44	AVG
2	4924.141	38.87	2.26	41.13	74.00	-32.87	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT40) Mode 2422MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	4844.444	40.78	2.13	42.91	74.00	-31.09	peak
2 *	4844.451	24.95	2.13	27.08	54.00	-26.92	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT40) Mode 2422MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4843.300	39.92	2.12	42.04	74.00	-31.96	peak
2 *	4844.577	25.06	2.13	27.19	54.00	-26.81	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT40) Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4873.845	38.64	2.18	40.82	74.00	-33.18	peak
2 *	4874.699	24.27	2.18	26.45	54.00	-27.55	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT40) Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

N	О.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1		4873.917	38.13	2.18	40.31	74.00	-33.69	peak
2	*	4873.943	24.28	2.18	26.46	54.00	-27.54	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT40) Mode 2452MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4904.432	38.89	2.22	41.11	74.00	-32.89	peak
2 *	4904.609	24.17	2.22	26.39	54.00	-27.61	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT40) Mode 2452MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4903.496	38.39	2.22	40.61	74.00	-33.39	peak
2 *	4904.541	24.26	2.22	26.48	54.00	-27.52	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Horizontal
Test Mode:	TX 802.11ax(HE20) Mode 2412MHz 242/61
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4823.477	24.98	2.11	27.09	54.00	-26.91	AVG
2	4823.763	40.12	2.11	42.23	74.00	-31.77	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Vertical
Test Mode:	TX 802.11ax(HE20) Mode 2412MHz 242/61
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4824.025	38.99	2.11	41.10	74.00	-32.90	peak
2 *	4824.422	25.80	2.11	27.91	54.00	-26.09	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Horizontal
Test Mode:	TX 802.11ax(HE20) Mode 2437MHz 242/61
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4874.276	39.92	2.18	42.10	74.00	-31.90	peak
2 *	4874.758	24.05	2.18	26.23	54.00	-27.77	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Vertical
Test Mode:	TX 802.11ax(HE20) Mode 2437MHz 242/61
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4873.641	39.21	2.18	41.39	74.00	-32.61	peak
2 *	4874.311	23.25	2.18	25.43	54.00	-28.57	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Horizontal
Test Mode:	TX 802.11ax(HE20) Mode 2462MHz 242/61
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4923.190	37.98	2.25	40.23	74.00	-33.77	peak
2 *	4923.735	23.17	2.26	25.43	54.00	-28.57	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Vertical
Test Mode:	TX 802.11ax(HE20) Mode 2462MHz 242/61
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4923.077	22.92	2.25	25.17	54.00	-28.83	AVG
2	4923.693	38.99	2.26	41.25	74.00	-32.75	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Horizontal
Test Mode:	TX 802.11ax(HE40) Mode 2422MHz 484/65
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4844.097	25.08	2.13	27.21	54.00	-26.79	AVG
2	4844.499	39.43	2.13	41.56	74.00	-32.44	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Vertical
Test Mode:	TX 802.11ax(HE40) Mode 2422MHz 484/65
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4843.266	38.92	2.12	41.04	74.00	-32.96	peak
2 *	4844.202	25.15	2.13	27.28	54.00	-26.72	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Horizontal
Test Mode:	TX 802.11ax(HE40) Mode 2437MHz 484/65
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4873.097	39.63	2.18	41.81	74.00	-32.19	peak
2 *	4874.623	23.83	2.18	26.01	54.00	-27.99	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Vertical
Test Mode:	TX 802.11ax(HE40) Mode 2437MHz 484/65
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4873.505	24.59	2.18	26.77	54.00	-27.23	AVG
2	4874.553	38.57	2.18	40.75	74.00	-33.25	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Horizontal
Test Mode:	TX 802.11ax(HE40) Mode 2452MHz 484/65
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4903.465	39.69	2.22	41.91	74.00	-32.09	peak
2 *	4904.795	23.83	2.22	26.05	54.00	-27.95	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Vertical
Test Mode:	TX 802.11ax(HE40) Mode 2452MHz 484/65
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

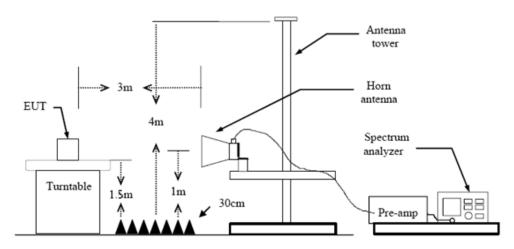
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4903.486	38.40	2.22	40.62	74.00	-33.38	peak
2 *	4904.101	23.02	2.22	25.24	54.00	-28.76	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn


3.3. Band Edge Emissions (Radiated)

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d) / RSS-247 5.5

Restricted Frequency Band	(dBµV/m	ı) (at 3m)
(MHz)	Peak	Average
2310 ~ 2390	74	54
2483.5 ~ 2500	74	54

Test Configuration

Test Procedure

1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.

The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 2. degrees to determine the position of the maximum emission level.

The EUT was positioned such that the distance from antenna to the EUT was 3 meters. 3.

4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement. The receiver set as follow: 5

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW see note 1 with Peak Detector for Average Value.

Note 1: For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 3.8 Duty Cycle.

Test Mode

Please refer to the clause 2.4.

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011

Ant. Pol. Horizontal Test Mode: TX 802.11b Mode 2412MHz 120.0 dBuV/m 100 0 90 0											1	Ant					. No.	
120.0 dBuV/m 110										tal	zonta	Hori					. Pol.	An
No. Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dB)							2MH	2412	lode	11b N	302.1	ТХ 8				le:	t Moc	Tes
100 90 80 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 70 70 70 70 70 70 70 70 70 70 70 70															1	//m) dBu\	120.
90 80 FCC Part15 C - Above 16 PK 60 FCC Part15 C - Above 16 PK 60 FCC Part15 C - Above 16 AV 50 X X 40 Z X 30 Z X X 40 Z X X 30 Z Z X X 40 Z Z X Z 30 Z Z X Z 20 Z Z Z Z Z 30 Z Z Z Z Z 20 Z Z Z Z Z 20 Z Z Z Z Z 20 Z Z Z Z Z Z 20 Z Z Z Z Z Z Z 20 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z <thz< th=""> Z Z <thz< th="" th<=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>110</th></thz<></thz<>																		110
80 FCC Part15 C - Above 16 PK 60 FCC Part15 C - Above 16 AV 50 X 40 X 30 X 20 X 30 X 20 X 30 X 30 X 20 X 30 X 20 X 30 X 20 X 20 X 30 X 20 X 30 X 20 X 210 X 220 X 2302.800 2314.80 2326.80 2302.800 2314.80 2326.80 2398.80 2302.800 2314.80 2326.80 2398.80 2410.80																		100
FCC Part15 C - Above 1G PK FCC Part15 C - Above 1G AV FCC Part10 - Z302.800 FCC Par																		90
70 FCC Part15 C Above 16 AV 50 30 <	G PK	- Above 16 F	Part15 C -	FCC														80
S0 FCC Part15 C Above 1G AV 40 30 3 3 4 4 30 2 4 4 4 4 4 30 2 4 4 4 4 4 4 4 30 2 2 4			T ditt's C	100														70
50 1 3 40 2 4 30 2 4 30 2 4 30 2 4 30 2 4 30 2 4 30 2 4 30 2 4 30 2 4 30 2 4 10 2 2 20 2 2 20 2 2 20 2 2 20 2 2 20 2 2 20 2 2 20 2 2 20 2 2 20 2 2 20 2 2 20 2 2 20 2 2 20 2 2 20 2 2 20 2 2 20 2 2 20 2	G AV	Above 16 A	Part15 C -	FCC														60
30 20 <td< td=""><td></td><td></td><td>M</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>50</td></td<>			M															50
Z0 Image: Constraint of the second secon			N N	2	margar			an talan sa ma			herein	m						40
I0 I0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>30</td></th<>																		30
0.0 2302.800 2314.80 2326.80 2338.80 2350.80 (MHz) 2374.80 2386.80 2398.80 2410.80 No. Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dB) 1 2385.200 17.89 31.31 49.20 74.00 -24.80																		20
2302.800 2314.80 2326.80 2338.80 2350.80 (MHz) 2374.80 2386.80 2398.80 2410.80 No. Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dB) 1 2385.200 17.89 31.31 49.20 74.00 -24.80																		
NO. (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 1 2385.200 17.89 31.31 49.20 74.00 -24.80	410.80 2422.8	80 2410	2398.0	386.80	0 2	2374.	Hz)	(MI	50.80	23	38.80	23	26.80	232	4.80	231	02.800	
NO. (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 1 2385.200 17.89 31.31 49.20 74.00 -24.80																1		_
													-			F	lo.	
2 * 2385.200 8.46 31.31 39.77 54.00 -14.23	0 peak	-24.80	.00	74.	0	49.2		1.31	3	39	17.89	1	0	5.20	2385	2	1	
	3 AVG	-14.23	.00	54.	7	39.7		1.31	3	6	8.46		00	5.20	2385	2	2 *	
3 2390.000 18.06 31.31 49.37 74.00 -24.63	3 peak	-24.63	.00	74.	7	49.3		1.31	3)6	18.06	1	00	0.00	2390	2	3	
4 2390.000 4.93 31.31 36.24 54.00 -17.76	6 AVG	-17.76	.00	54.	4	36.2		1.31	3	3	4.93		00	0.00	2390	2	4	

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Ant. No.		Ant	1								
Ant. Pol	•	Ver	tical								
Test Mo	de:	TX	802.11b	Mode 2	2412MF	Ηz					
120.0 dBu	ı¥/m										
110											
100											
90										N V	\mathcal{A}
80								FCC	Part15 C	- Above 1G P	ĸ
70										1	
60								FCC	Part15_C	Above 1G A	v
50								1 X			
40	Luther and a second second				a damarak	والمراحل ومعالماتها	the state of the s	1 martin	<u>ا</u> ۲		
30											
20											
10											
0.0											
2302.800	2314.80 232	6.80 23	338.80	2350.80	(MHz)	237	4.80	2386.80	2398.	80 2410.	80 2422.80
No.	Frequence (MHz)		eading dBuV)		actor 3/m)	1	vel V/m)	Lin (dBu'		Margin (dB)	Detector
1	2390.00	0	15.20	31	.31	46	.51	74.	00	-27.49	peak
2 *	2390.00	0	6.08	31	.31	37	.39	54.	00	-16.61	AVG
Remarks			otor (df	//m) : 0 =							<u> </u>
1.Factor	(dB/m) = Ante	enna ⊦a	ctor (dE	/m)+Ca	DIE Fac	ctor (de	s)-Pre-a	ampilifie	er Faci	OF	

Ant. No.		Ant 1					
Ant. Pol.		Horizontal					
Test Mod	le:	TX 802.11b I	Mode 2462MH	Ηz			
120.0 dBu\	//m						
110							
100							
90 0	\sim						
во //	v						
70					FCC Part15 C	- Above 1G P	ĸ
60							
		1 X 3			FCC Part15 C	- Above 1G A	v
50		× 3 4					
40 /	Y	2 Known	property whether and when when	- monorthrought and	Manager Manager and Manager	-	eduction and second
30							
20							
10 0.0							
2450.000	2462.00 2474.0	0 2486.00 2	498.00 (MHz)	2522.00	2534.00 2546	.00 2558.0	00 2570.0
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2483.500	19.51	31.48	50.99	74.00	-23.01	peak
2	2483.500	5.14	31.48	36.62	54.00	-17.38	AVG
<u> </u>	2487.800	17.67	31.49	49.16	74.00	-24.84	peak
3	2487.800	8.79	31.49	40.28	54.00	-13.72	AVG

Ant. No.		Ant 1					
Ant. Pol.		Vertical					
est Mod	de:	TX 802.11b	Mode 2462MH	Ηz			
20.0 dBu	V/m						
10							
00							
	ν h _i						
- <i>L</i>					FCC Part15 C	- Above 1G P	ĸ
0		1 X			FCC Part15 C	- Above 1G A	v
0							
0		2 th	math my man of the space			mander	Annalter
0							
0							
0							
0.0							
2450.600	2462.60 2474.6	0 2486.60 2	498.60 (MHz)	2522.60	2534.60 2546.	60 2558.	60 2570.6
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2483.500	20.71	31.48	52.19	74.00	-21.81	peak
2	2483.500	8.97	31.48	40.45	54.00	-13.55	AVG
3	2487.320	24.82	31.49	56.31	74.00	-17.69	peak
4 *	2487.320	11.36	31.49	42.85	54.00	-11.15	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. N	No.			An	ıt 1										
Ant. F	Pol.			Ho	orizontal										
Test N	Mode	e:		ТХ	(802.11	g M	ode 2412	2MF	Ηz						
120.0	dBuV≀	/m													1
110															
100															
90															
80															
											FCC	Part15 C	- Above 1G F	YK	
70															1
60											FCC	Part15 C	- Above 1G A	iv \	
50											2	and and a			-
40	Angerenand		-						Januaratan	and the second second	Varian Berton				-
30															-
20															-
10															-
0.0 2302.	800	2314.80	2326.	80	2338.80	235	50.80 (M	Hz)	237	4.80	2386.80	2398.	80 2410	80 242	22.80
No).		luenc <u>y</u> 1Hz)		Readin (dBuV		Facto (dB/m			vel IV/m)	Lir (dBu		Margin (dB)	Detect	tor
1		239	0.000		23.20		31.31		54	.51	74	.00	-19.49	pea	k
2	*	239	0.000		9.81		31.31		41	.12	54	.00	-12.88	AVG	3
Rema	arks:														

CTC Laboratories, Inc.

可监督管理委员会 中国 EN ιĿ.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Ant	. No.				Ant 1											
Ant	. Pol.				Verti	cal										
Tes	t Mod				TX 8	02.11g N	/lode 2	2412M	Hz							
120.0) dBu\	//m														1
110																
100																
90													-		\square	
80																
70											FCC	Part15 C	- Above	1G PI	(
60											1)	
50												Part15 C	- Above	16 A\	/	
40											2	armon and a second				
30	and the sector of the	Sum and		niender of		lanas an an an Alberta	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	herre de la constante	the second descent she	antorin	T*-					
20																
10																
0.0																
23	801.600	2313.60	23	25.60	233	7.60 23	49.60	(MHz)	23	73.60	2385.60	2397	60 2	2409.6	60 242	1.60
Ν	l o.		quen /IHz)			ading BuV)		actor 3/m)	1	evel uV/m)		nit V/m)	Marg (dE		Detect	or
	1	239	90.00	0	2	6.82	31	.31	58	.13	74	.00	-15.	87	peal	k
	2 *	239	0.00	0	1	2.51	31	.31	43	.82	54	.00	-10.	18	AVG	3
Ren	narks															<u> </u>

nt. No.			Ant 1									
nt. Pol	-		Horizo	ntal								
est Mo	de:		TX 802	2.11g N	/lode 24	62MH	Ηz					
20.0 dBu	W/m		1									7
10												
, [<u> </u>											
, <u> </u>												
									FCC Part1	5 C - Above 1G	РК	-
			1 X						FCC Part1	i C - Above 1G	AV	
		hanna	· 2									1
			and the second sec	- Angland angen	Arrenterseeme	and the second	nonmalian	enklymmin	nous Munmutunter			-
												1
												1
2451.800	2463.80	2475.80	2487.	30 24	99.80	(MHz)	252	3.80 2	2535.80 2	47.80 255	9.80 257	71.8
No.		uency Hz)	Rea (dB	-	Fact (dB/r		Le ^v (dBu		Limit (dBuV/n	Margi	n _{Detect}	tor
1	2483	, 500	24		31.4	<u> </u>	55.		74.00	-18.46	5 pea	k
2 *	2483	.500	10	45	31.4	8	41.	.93	54.00	-12.07	· ·	_
											-	

nt. No.			Ant 1										
nt. Pol.			Vertical										
est Mod	le:		TX 802.1	l1g Mc	ode 2462	2MH	łz						
20.0 dBu¥	'/m					1							_
0													
0													
									FCC P	art15 C	: - Above 1G	PK	
			1										
		++-	1 X						FCC P	art15 C	- Above 1G	AV	-
		the	2										
			- and many	manhana	Madadamana		s.Almana	markateria	and the second of			hereiter	_
							And the second second second	All and a second se				14 (\$500 \$140 000 * 2 ·	
.0													
2452.400	2464.40	2476.40	2488.40	2500).40 (MI	Hz)	252	4.40 2	2536.40	2548	8.40 256	0.40 2	572.
			1						1		1		
No.		uency Hz)	Readi (dBu	-	Facto (dB/m			vel IV/m)	Lim (dBu\		Margii (dB)	n Dete	cto
1	2483	3.500	29.3	7	31.48		60	.85	74.	00	-13.15	5 pea	ak
2 *	2483	3.500	15.0	0	31.48	;	46	.48	54.	00	-7.52	AV	G
emarks:													

Ant. No.			Ant 1 + Ar	nt 2									
Ant. Pol			Horizontal										
est Mo	de:		TX 802.11	n(HT20)) Mod	e 24	412MF	Ηz					
20.0 dBu	V/m												_
10													
00													
o													
,												·	
									FCC	Part15 C	- Above 1G	PK	
, ,													
, <u> </u>										Part15 C	Above 1G	AV	
, ,									1 X]			
mont		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mare was			etwo		m.derver.com		Andrewing			
)													
)													
)).0													
2303.400	2315.40	2327.40	2339.40	2351.40	(MH	lz)	2375	5.40	2387.40	2399.	40 241	1.40	2423.4
No.		iency Hz)	Readir (dBuV		Factor		Lev (dBu		Lin (dBu'		Margii (dB)	n _{Det}	ector
1	2390	.000	16.71	3	31.31	\uparrow	48.	02	74.	00	-25.98	3 pe	eak
2 *	2390	.000	6.07	3	31.31	\neg	37.	38	54.	00	-16.62	2 A'	VG
2	2390		0.07		51.51		57.	50		00	-10.02	<u>- A</u>	vG

2.Margin value = Level -Limit value

Ant. No	-		Ant 1 + Ar	nt 2								
Ant. Po	Ι.		Vertical									
Fest Mo	de:		TX 802.11	n(HT2	0) Mode	e 2412	MHz					
20.0 dB	uV/m											_
10												
00												
0											~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
0												
								FCC F	Part15 C	- Above 1G	PK	
								FCC F	Part15 C	- Above 1G	AV	1
0								×				
0	how when the second	markensel		monumenter		manthema	algeration days and the	mar morene	promptioned	, 		
0												-
0												-
0												-
0.0 2302.80	0 2314.80	2326.80	2338.80	2350.8	0 (MHz) 2	2374.80	2386.80	2398.	80 241	0.80 24	122.8
	Erog		Readir		Factor		evel	Lin	ait	Margi		
No.		uency Hz)	(dBuV	U	dB/m)		BuV/m)	1		Margii (dB)	Deteo	:tor
1	239	0.000	18.90) ;	31.31	5	0.21	74.	00	-23.79) pea	ık
2 *	239	0.000	6.67		31.31	3	7.98	54.	00	-16.02	2 AV	G
Remark												

nt. Pol. est Mode		11					
est Mode		Horizonta	1				
	e:	TX 802.11	In(HT20) Mode	e 2462MHz			
20.0 dBuV/	'm						
10							
,							
					FCC Part15 C	- Above 1G Pl	к
					FCC Part15 C	- Above 1G A	v
	+	×					
	holyman	Martin 2	and the second		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	m. A. Martin Maran	lation the second
I							
·							
).0 2451,800	2463.80 2475.	.80 2487.80	2499.80 (MHz) 2523.80	2535.80 2547.	.80 2559.8	80 2571.8
	Frequency	y Readir	ng Factor	Level	Limit	Margin	
No.	(MHz)	(dBuV	/) (dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector
1	2483.500	18.95	5 31.48	50.43	74.00	-23.57	peak
2 *	2483.500	5.79	31.48	37.27	54.00	-16.73	AVG

2.Margin value = Level -Limit value

nt. No.			Ant 1 + Ant 2					
nt. Pol.			Vertical					
est Mod	e:		TX 802.11n(F	IT20) Mode 2	2462MHz			
20.0 dBu¥	7m		i i					
10								
						FCC Part15 C	- Above 1G P	ĸ
						FCC Part15 C	- Above 1G A	v
1		hannah	1 X 2					
		- Though	2	a mandember and a second against	er www.WWW.WWW.	and more thanks	phylinese der and the second	Alternative
.0 2450.600	2462.60	2474.60	2486.60 24	98.60 (MHz)	2522.60	2534.60 2546	.60 2558.	60 2570 .1
No.	Freque (MH	-	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2483.	500	16.94	31.48	48.42	74.00	-25.58	peak
2 *	2483.	500	9.06	31.48	40.54	54.00	-13.46	AVG
			,			-	-	

2.Margin value = Level -Limit value

nt. No.			Ant 1 + An	t 2								
nt. Pol.			Horizontal									
est Mod	le:		TX 802.11	n(HT40) I	Mode 2	2422MI	Ηz					
0.0 dBu¥	//m											_
o												
0												
								~				
								FCC P	art15 C ·	Above 1G	РК	-
							1 X	FOC P	art15 C ·	Above 1G	AV	H.
												Υ.
mandalage	com have made	nan afrenderskrive	mannighter	meneral observations	ness House in our	hive contrenden	2	emodell				
.0 2293.000	2308.00	2323.00	2338.00	2353.00	(MHz)	238	3 00	2398.00	2413.0	0 2428	200 24	
No.		uency Hz)	Readin (dBuV)		ctor 8/m)		vel V/m)	Lim (dBu\		Margir (dB)	Detec	:tor
1	2390	000.	17.38	31	.31	48	.69	74.(00	-25.31	pea	ık
2 *	2390	000.	6.48	31	.31	37	79	54.0	00	-16.21	AV	G
				·								

2.Margin value = Level -Limit value

Ant. No.			Ant 1	+ Ant 2								
Ant. Pol	-		Vertica	al								
Test Mo	de:		TX 80	2.11n(ŀ	HT40)	Mode	2422M	Hz				
120.0 dBu	V/m											
110												
100												
90												
80											Y	
70									FCC	: Part15 C	- Above 1G F	<u>РК – – – – – – – – – – – – – – – – – – –</u>
60												
50								1 X	FC	Part15 C	- Above 1G A	<u>v</u>
40								2				
	la harden and an and a second second	www.	na na katala katala ka	pontiment	www.hoturaturatur	phymologian	water the Afr	**********	weet the set			
20												
10												
0.0												
2293.000	2308.00 23	23.00	2338	.00 23	353.00	(MHz)	238	3.00	2398.00	2413.	.00 2428.	00 2443.00
No.	Frequen	•		ading	Fa	actor		vel	1	mit	Margin	Detector
	(MHz)		(dE	BuV)	· ·	3/m)				ıV/m)		
1	2390.00	0	19	.71	31	.31	51	.02	74	.00	-22.98	peak
2 *	2390.00	0	7.	50	31	.31	38	.81	54	.00	-15.19	AVG
Remarks												

Ant. I	No.			Ant 1	+ Ant 2	2								
Ant. F	Pol.			Horiz	ontal									
Fest I	Mod	e:		TX 8)2.11n((HT40)	Mode	2452M	Hz					
20.0	dBu¥	/m												
110														
00														
0														
10		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		٦										
0										FCC	Part15 C	- Above 10	G PK	
0														
0					1					FCC	Part15 C	- Above 10	AV	
0					1 X									
0				have	vielan 2	mantan	homenture	and and the	Multanion	Marcabledo	montremation	mound	much	handrander
o														
0														
o														
0.0														
2431	.750	2446.75	2461.75	247	6.75 2	2491.75	(MHz)	252	1.75	2536.75	2551	.75 25	66.75	2581.7
No	b .	Frequ (MF	•		ading BuV)		actor B/m)		vel IV/m)		nit V/m)	Margi (dB)		etector
1		2483	.500	1	9.98	3	1.48	51	.46	74	.00	-22.5	4	peak
2	*	2483	.500	8	.24	3	1.48	39	.72	54	.00	-14.2	8	AVG
Rema	arks:													

CTC Laboratories, Inc.

可监督管理委员会 中国 EN

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Ant. No	о.			Ant	1 + A	nt 2											
Ant. Po	ol.			Verti	cal												
Fest M	ode:			TX 8	802.1	1n(⊦	IT40)	Mod	e 245	2M	Hz						
20.0 d	BuV/m	1															
10																	
00																	
		Y															
0													FCC Par	t15 C	- Above 1G	PK	
o - -				-		1								115 C	- Above 1G	AV/	
□ [=															- ADOTE TO		
נ					- water days	n Zerne	-	Public 1		/	11 a.t						
, 📃									AT SHOW	W-W	ah multi-risk	F94**419	and a second	(An-sharrow)	onanto de la companya de la company La companya de la comp	vpulave.	werner wither a
,																	
)).0																	
2429.5	00 244	4.50	2459.50	24	74.50	24	89.50	(MH	z)	251	9.50	2534	.50	2549.	.50 256	4.50	2579
No.	F	requ (Mł	ency Iz)		eadi IBu\	• I		actor 3/m)			vel V/m)		Limi BuV/		Margii (dB))etecto
1	2	2483	.500	2	3.0	3	31	.48		54	.51	·	74.0	0	-19.49)	peak
2 *	2	2483	.500	1	0.8	2	31	.48		42	.30		54.0	0	-11.70)	AVG
Remarl																	

(ю)[,] 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

可监督管理委员会 中国 EN

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

nt. Pol.			Ant 1 + Ar	nt Z								
		1	Horizonta	ıl								
est Mod	e:	-	TX 802.11	1ax(HE2	20) Moc	de 2412	MHz 26	6/0				
20.0 dBuV	/m							1				_
10												
										Λ		
										1	2.00.0	
								FCC	Part15 C	Above 1G	PK	
D										'		
									Part15 C	- Above 1G	AV	F
								×	1			
D	whether when the	solomention	musthations	meensurationa	rithebaumberton	and the second sec		warm to m	www			₩
D												
D												-
												-
2303.400	2315.40	2327.40	2339.40	2351.40	(MH:	z] 237	75.40	2387.40	2399.	.40 241	1.40 24	423.4
D.O										I		2
No.	Freque (MH		Readir (dBuV		⁻ actor dB/m)		vel IV/m)	Lin (dBu		Margii (dB)	n _{Detec}	cto
1	2390.0	000	18.69	э з	31.31	50	.00	74.	00	-24.00) pea	ak
2 *	2390.0	000	6.50	3	31.31	37	.81	54.	00	-16.19	9 AV	G

2.Margin value = Level -Limit value

nt. No.			Ant 1 + Ar	nt 2							
nt. Pol.			Vertical								
est Mod	de:		TX 802.11	lax(HE	20) Moc	le 2412	MHz 26	6/0			
20.0 dBu\	V/m						1				
10											
										_	
00										Λ	
)											
)								FCC	Part15 C	- Above 16	NANA PK
)											
)											
,									Part15 C	- Above 1G	
,								2			U.
-		hormania				a-o-anti-terrend			and a start of the		40
)											
)											
)											
).0 2304.768	2316.77	2328.77	2340.77	2352.77	7 (MH2	1 237	6.77	2388.77	2400	.77 2412	.77 2424.3
No.	Frequ (Mł	-	Readir (dBuV	U	=actor dB/m)		vel IV/m)	Lir (dBu		Margin (dB)	Detector
1	2390	.000	18.25	; ;	31.31	49	.56	74	00	-24.44	peak
2 *	2390	.000	5.86	:	31.31	37	.17	54	00	-16.83	AVG

nt. No).	A	Ant 1 + Ant	2				
Ant. Po	d.	F	Horizontal					
est M	ode:	Г	TX 802.11a	ax(HE20) Mode	e 2412MHz 52	2/37		
20.0 dl	}uV/m							
10								
DO								
							\cap	
							1 mar	nmm
						FCC Part15 C	Above 1G P	K Y
,								
						FCC Part15 C	Above 16 A	 III
)						X 2		n n
) ••••• •• ••••	here was an an and the second second	n brown blower		ulenterphonessenters	market the man when when the man	mar Brouden mult		4
)								
)								
)								
2303.40	0 2315.40 23	27.40	2339.40	2351.40 (MHz)	2375.40	2387.40 2399	.40 2411.4	40 2423.4
						1		
No	Frequen		Reading		Level	Limit	Margin	Detector
No.	(MHz)		(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector
No. 1								Detector peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

可监督管理委员会 中国国家认证认 EN

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

nt. No		A	nt 1 + Ant 2					
nt. Pol	•	V	/ertical					
est Mo	de:	Т	X 802.11ax(HE20) Mode	2412MHz 52	2/37		
20.0 dBu	iV/m				ĺ	i i		
0								
0								
							\square	
							hyp	m
						FCC Part15 C	- Above 1G Pl	K \
						FCC Part15 C	- Above 1G A	 Image: A second s
						1 X 2		M
anna du	angletan and an and an and an and an	Web-Horsson	unterser and a subscription	a har a sur descendence and	han an a	where the second s		
.0								
2304.768	2316.77 232	B.77	2340.77 23	52.77 (MHz)	2376.77	2388.77 2400.	.77 2412.7	77 2424.3
	Frequenc	<u> </u>	Reading	Factor	Level	Limit	Margin	
No.	(MHz)	<i>.</i> у	(dBuV)	(dB/m)		(dBuV/m)		Detector
1	2390.00	0	15.76	31.31	47.07	74.00	-26.93	peak
2 *	2390.00	0	6.77	31.31	38.08	54.00	-15.92	AVG
	1				1	1	1	

CTC Laboratories, Inc.

可监督管理委员会 中国国家认证认 EN

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

nt. N	lo.			Ant 1	+ Ant	2								
nt. P	ol.			Horiz	contal									
est M	lode	: :		TX 8	02.11a	x(HE20) Mode	e 2412	MHz 10	6/53				
0.0 d	dBu¥∕	m			1				1					_
o 🔔														
o 📃														
												$\left(\right)$		
										FCC	Part15 C	Above 1G	PK	
														tt.
										FCC	Part15 C	- Above 1G	AV	
										1 X				\mathbf{H}
enner	and set of the	more	hannan	www.		www.andaw	monthemation	hormandembal		1	and a seal of a sealing of the			-V
-														_
														_
.0 2303.4		2315.40	2327.4		9.40	2351.40	(MHz)		'5.40	2387.40	2399		1.40	2423.4
No.			iency Hz)		ading BuV)		actor 3/m)		vel iV/m)	Lir (dBu		Margi (dB)	n _{Dete}	ector
1		2390	000.	1	5.72	31	1.31	47	.03	74	.00	-26.97	7 pe	ak
2 '	*	2390	.000	6	6.46	31	1.31	37	.77	54	.00	-16.23	3 A\	/G

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

nt. No.			Ant 1 + A	nt 2								
nt. Pol.			Vertical									
est Mod	de:		TX 802.1	1ax(HE2	0) Mode	e 2412N	ИHz 10	6/53				
20.0 dBu\	V/m											_
10												
00												
										~		
											nm	
0								FCC I	Part15 C	- Above 1G	1	
0												\square
o								1ECC I	Part15 C	- Above 1G	۸V	$\left \right $
o 📃								2001		- Abore Tu		Ħ
0								2	mont			Ym
**************************************	k-kontrandisekelettising	and a state of the second s	and an an and a second strengthere where	12.00°=\$1.00°=1~2.00°++		nthey len progen will an e	gertige when the start of	And an				
o												
0												
0.0												
2304.768	2316.77	2328.77	2340.77	2352.77	(MHz)	237	6.77	2388.77	2400	.77 241	2.77	2424.
No.	Frequ (Mł	-	Readir (dBu\	U	actor IB/m)		vel V/m)	Lin (dBu\		Margir (dB)	n _{Det}	ecto
1	2390	000.	22.51	I 3	1.31	53	.82	74.	00	-20.18	3 pe	eak
	2390	.000.	6.91	3	1.31	38	.22	54.	00	-15.78	3 A'	VG

CTC Laboratories, Inc.

可监督管理委员会 中国 EN il.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Ant. No.			Ant 1 + A	nt 2									
Ant. Pol.			Horizonta	al									
Fest Mod	le:		TX 802.1	1ax(H	E20) Mo	ode	2412N	1Hz 24	2/61				
20.0 dBu\	//m			1									
10													
00													
0													
											\bigcap		
									FCC	Part15 C	- Above 1G	РК	
										Part15 C	- Above 1G	AV	
0									×	- 1			+
)		an and the states of the state				مبمياس			-meridianet	w			
)													
0													_
o													
0.0 2304.000	2316.00	2328.00	2340.00	2352	00 (14	Hz)	237	- 00	2388.00	2400	00 241	2.00	2424.0
No.		uency Hz)	Readii (dBu\		Facto (dB/m		Lev (dBu		Lin (dBu)		Margii (dB)	n _{Det}	ector
1	2390	000.	18.78	3	31.31		50.	09	74.	00	-23.91	l pe	eak
2 *	2390	000.	6.00		31.31		37.	31	54.	00	-16.69) A'	VG

2.Margin value = Level -Limit value

Ant. No.		Ant 1 + Ant 2					
Ant. Pol.		Vertical			<u> </u>		
		TX 802.11ax(HE20) Mode	2412MHz 24	2/61		
120.0 dBu\	*/10						
110							
100							
90							
80							
70					FCC Part15 C	- Above 1G Pl	<u> </u>
60					FCC Part15 C	Above 1G A	/
50					×		
40	- the market and the market dates	Martine and the second	moundersections		2 water water water and		
30							
20							
10							
0.0							
2303.100	2315.10 2327.10	0 2339.10 23	151.10 (MHz)	2375.10	2387.10 2399.	10 2411.1	0 2423.10
		1	1				
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2390.000	18.95	31.31	50.26	74.00	-23.74	peak
2 *	2390.000	7.61	31.31	38.92	54.00	-15.08	AVG
Remarks	:						

. IN	lo.			Ant 1	+ Ant 2									
nt. P	ol.			Horiz	ontal									
est M	lode:			TX 8	02.11ax	(HE20) Mo	de :	24621	/Hz 26	/8				
20.0 d	dBu¥/m	1												_
10														
, 📃		Δ												
	mm	www												
	Д'									FCC	Part15 C	- Above 1G	PK	
- h+ f										FCC	Part15 C	- Above 1G	AV	
				×										
' ₩-			White Mark	m Sen		mand more thanks	hours	al and a second	whether	179	Malanna	enshertingerangeransk	-ngenerkandrang	****
			_											
.0 2449.4	400 240	61.40 24	73.40	248	5.40 24	497.40 (M	Hz)	252	1.40	2533.40	2545	.40 255	7.40	2569.4
	F	requer		Re	ading	Facto	or	Le	vel	Lin	nit	Margii	ו Dete	
No.	•	///////////////////////////////////////	-				1		1/100	(dD.)	1100			SCIO
		(MHz))	(d	BuV)	(dB/m				(dBu)				
1		(MHz) 2483.50 2483.50) 00	(d	BuV) 8.11 6.79	(dB/m 31.48 31.48	3	49	V/m) .59 .27	(dBu) 74. 54.	00	(dB) -24.41 -15.73	l pe	ak /G

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

		Ant 1 + Ant	2				
nt. Pol.		Vertical					
est Mod	de:	TX 802.11a	x(HE20) Mode	2462MHz 26	/8		
20.0 dBu	V/m						
0							
	mm				FCC Part15 C	- Above 1G Pl	<u>(</u>
¥-		1 X			FCC Part15 C	- Above 1G A	/
	N	1 2 Marina Managaran	ghadahMadh-maa-harabhighaad-	non an an de souther an an an	- Caralle Caller March Caraller	ngholansananana	e
.0							
2450.000	2462.00 2474.0	00 2486.00	2498.00 (MHz)	2522.00	2534.00 2546.	00 2558.0	0 2570.(
				1			
No.	Frequency (MHz)	/ Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
No. 1							Detector peak

CTC Laboratories, Inc.

可监督管理委员会 中国国家认证认 EN

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

		Ant 1 + Ant	2				
nt. Pol.		Horizontal					
est Mod	le:	TX 802.11a	x(HE20) Mode	2462MHz 52	/40		
0.0 dBu\	//m						
0							
0							
	\square						
	mm						
					FCC Part15 C	- Above 1G P	<u> </u>
					FCC Part15 C	- Above 1G A	/
	4	×					
11 "	Y	the work on the work of the second	an a	handberge	Newsymet Hard and the State of State of States	meetinesaltetin	with which with
.0 2449.400	2461.40 2473.	40 2485.40	2497.40 (MHz)	2521.40	2533.40 2545.	40 2557.4	40 2569.4
2110.100	2101.10 2110.			LULIII	2000.10 2010.	10 2001.	
No.	Frequency	· · · ·	Factor	Level	Limit	Margin	Detector
110.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Delector
1	2483.500	18.92	31.48	50.40	74.00	-23.60	peak
2 *	2483.500	7.70	31.48	39.18	54.00	-14.82	AVG
				1	1	I	I

2.Margin value = Level -Limit value

nt. No.		Ant 1	+ Ant 2					
nt. Pol.		Verti	cal					
est Mod	de:	TX 8	02.11ax(HE20) Mode	2462MHz 52	/40		
:0.0 dBu ¹	V/m							
0								
0								
- AM	when !					FCC Part15 C	- Above 1G P	K
		1 X				FCC Part15 C	- Above 16 A	v
1	/	Man 2		at a sure of the second			recontractor	and the state of the second
			an and a start ways	ALLER CONTRACTOR IN CARD		n (ferrefrend, jamen under eiter) erst		
.0								
2450.000	2462.00 2474.	DO 248	6.00 24	98.00 (MHz)	2522.00	2534.00 2546.	.00 2558.	00 2570.
	Frequency		ading	Factor	Level	Limit	Margin	
No.	(MHz)		BuV)	(dB/m)	1	(dBuV/m)	(dB)	Detector
1	2483.500	2	4.36	31.48	55.84	74.00	-18.16	peak
2 *	2483.500	7	7.58	31.48	39.06	54.00	-14.94	AVG
						-		

CTC Laboratories, Inc.

可监督管理委员会 中国国家认证认 EN

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

nt. No.		Ant 1 + Ant	2				
nt. Pol		Horizontal					
est Mo	de:	TX 802.11a	x(HE20) Mode	2462MHz 10	6/54		
0.0 dBu	V/m						
o							
0							
	m						
					FCC Part15 C	- Above 1G PK	<u> </u>
		i			FCC Part15 C	- Above 1G A	/
		×					
r.J		Mary 2	whether the provide in the descent sector of the sector of	water flores and a standard and a	elasticaesis and benericaes ally	and an	in the second
.0 2449.400	2461.40 2473.	40 2485.40	2497.40 (MHz)	2521.40	2533.40 2545.	40 2557.4	0 2569.4
No	Frequency	y Reading	Factor	Level	Limit	Margin	Detecto
No.	(MHz)	(dBuV)	(dB/m)		(dBuV/m)	(dB)	Detector
1	2483.500	18.61	31.48	50.09	74.00	-23.91	peak
2 *	2483.500	6.81	31.48	38.29	54.00	-15.71	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. Pol. Test Mode: 20.0 dBuV/m 10 00 0 0 0 0 0 0 0 0 0 0 0		Vertical TX 802.11ax(HE20) Mode	2462MHz 10	6/54		
20.0 dBuV/m 10 00 0 0 0 0 0 0		TX 802.11ax(HE20) Mode	2462MHz 10	6/54		
					FCC Part15 C	- Above 1G P	ĸ
					FCC Part15 C	- Above 16 A	/
11.1	-	×					
V	`	2	n he man water a second the second	when more the second	And mar and	and when the second and	brechniderso
.0	0.00 0.174.00		00.00 (111)	0500.00		00 0550 /	
2450.000 2462	2.00 2474.00) 2486.00 24	98.00 (MHz)	2522.00	2534.00 2546.	.00 2558.0	0 2570.0
E.		Deedine	Fastar	Laval	1 : :4	Dennin	
No.	requency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 2	483.500	17.83	31.48	49.31	74.00	-24.69	peak
2 * 2	483.500	6.71	31.48	38.19	54.00	-15.81	AVG
emarks:							

/111) Anten 2.Margin value = Level -Limit value

nt. Pol. est Mode: 20.0 dBuV/m 10 00 00 01 01 01 01 01 01 01 01 01 01		Horizontal TX 802.11a	ax(HE20) Mode	2462MHz 24	2/61		
20.0 dBuV/m		TX 802.11a	ax(HE20) Mode	2462MHz 24	2/61]
)))							
					FCC Part15 C	- Above 1G P	'K
·							
		1 X			FCC Part15 C	- Above 1G A	N
) ↓		2 marting stymus march	hand hall the and the second	ward the second s	when we are a second and the second	-	and the second
)							
)							
)).0							
	2462.00 2474.	.00 2486.00	2498.00 (MHz)	2522.00	2534.00 2546.	.00 2558.	.00 2570.0
No.	Frequency (MHz)	y Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detecto
1	2483.500	19.23	31.48	50.71	74.00	-23.29	peak
2 *	2483.500	7.34	31.48	38.82	54.00	-15.18	AVG

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Ant. No. Ant. Pol.			Ant 1 + Ant 2											
		Vertical												
Test Mode:			TX 802.11ax(HE20) Mode 2462MHz 242/61											
20.0 dBu	uV/m		ĺ										7	
0														
0														
,		man -												
, 📙														
, 🕂									FCC	Part15 C	: - Above 1G	PK	-	
			1 X						FCC	Part15 C	- Above 1G	AV	-	
		human	2											
			and the second	mandah	-andre descendence	m	nahathantakhkanat	hardhaterne	where have not the		1	matter and the	-	
)													1	
)														
2449.400) 2461.40	2473.40	2485.40	24	197.40 (N	(Hz)	252	1.40	2533.40	2545	5.40 255	7.40 25	69.4	
	Freau	lency	Read	ina	Facto	or	Le	vel	Lir	nit	Margii	1		
No.	(MHz)		(dBuV)		(dB/m)				(dBuV/m)			Detec	Detector	
1	2483	2483.500		19.00		31.48		50.48		74.00		2 pea	k	
2 * 2483.500		.500	8.49		31.48		39.97		54.	00	-14.03	B AVO	G	

CTC Laboratories, Inc.

可监督管理委员会 中国国家认证认 EN

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Ant. No. Ant. Pol.			Ant 1 + Ant 2										
			Horizontal										
Test Mode:			TX 802.11ax(HE40) Mode 2422MHz 26/0										
20.0 dBu	V/m		1										
10													
									- ſ				
,													
									FCC	Part15 C	- Above 1G	РК	
)													
									FCC	Part15 C	- Above 1G	AV	
)								X				th MAN	
manhad	-enterior there	an transferran	under an a dara	hanna	construction and	nnha	Albertahohon		Jun W		"teal.	NA ANA M	
)													
)													
).0 2293.000	2308.00	2323.00	2338.00	2353.0	00 (MI	12)	2383	3 00	2398.00	2413.	00 242	B.00 2443.	
No.	Frequency (MHz)		Readir (dBu∖	U	Factor (dB/m)		Level (dBuV/m)		Limit (dBuV/m)		Margir (dB)	Detector	
1	2390	2390.000		6	31.31		49.37		74.00		-24.63	3 peak	
2 *	* 2390.000		6.98		31.31		38.29		54.00		-15.71	AVG	

2.Margin value = Level -Limit value

Ant. No. Ant. Pol.			Ant 1 + Ant 2										
			Vertical										
est Mode:			TX 802.11ax(HE40) Mode 2422MHz 26/0										
20.0 dBu	V/m												
0													
									Λ				
										mm	~		
									FCC	Part15 C	- Above 1G P	1G PK	
									FCC	Part15 C	- Above 1G A	<u></u>	
								1 X	100			Mary at	
		and the second	andrehenster		han an the second		and a second	2	an and		Ullima /	. L MM	
-fog-blacklase	man and a start and a start and a start and a start a s	11011101111111111111111111111111111111	*****	referantik (nalikaka (nalika	1448-00 WIN								
.0													
2294.800	2309.80	2324.80	2339.80	2354.	80 (M	Hz)	238	4.80	2399.80	2414.	80 2429.	80 2444.	
No.	Frequ (MI		Readir (dBu√	U	Facto (dB/m		Le ^v (dBu	vel V/m)	1	nit V/m)	Margin (dB)	Detector	
1	2390.000		20.09		31.31		51.40		74.00		-22.60	peak	
2 *	2390.000		8.92		31.31		40.23		54.00		-13.77	AVG	
emarks													

nt. No.			Ant 1 + Ar	nt 2								
nt. Pol.	,		Horizonta									
est Mod	de:		TX 802.11	ax(H	E40) Mo	ode	2422N	1Hz 52	2/37			
20.0 dBu'	V/m											
10												
,									ſ	ר		
										h		
									FCC	Part15 C	Above 1G	РК
, ,												
, <u> </u>								1	FCC	Part15 C	- Above 1G	AV M
								1 X 2				M MM
reneltingustation	or more denting at	former and the	manshiridan mende	and a start of the	Marine Mary	with	www.a.www.	2 hrandskindler	wheth		bullast	(+)
)												
2293.000	2308.00	2323.00	2338.00	2353.	.00 (M	Hz)	2383	3.00	2398.00	2413.	00 242	8.00 2443.
No.		uency Hz)	Readir (dBuV		Facto (dB/m		Le ^v (dBu		Lir (dBu	nit V/m)	Margi (dB)	n Detecto
1	2390	000.	16.85	;	31.31		48.	.16	74	.00	-25.84	4 peak
2 *	2390	000.	6.97		31.31		38.	.28	54	.00	-15.72	2 AVG
2 *	2390	0.000	6.97		31.31		38.	.28	54	.00	-15.72	2 AVC

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

可监督管理委员会 中国国家认 EN

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

nt. No.		Ant 1 + Ant	2				
nt. Pol	•	Vertical					
est Moo	de:	TX 802.11a	x(HE40) Mode	2422MHz 52	/37		
20.0 dBu	V/m						
0							
0							
					Mar	M	
					FCC Part15 C	- Above 1G Pl	<u>(</u>
				1 X	FCC Part15 C	- Above 1G A	
				2		we had	m m
	meterskalander of the second	Anna de martin anna de 1996	and a stand the second stand of the second stand st	and the second			
2294.800	2309.80 2324	.80 2339.80	2354.80 (MHz)	2384.80 2	2399.80 2414.	80 2429.8	30 2444.8
No.	Frequenc			Level	Limit	Margin	Detector
110.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000) 17.05	31.31	48.36	74.00	-25.64	peak
2 *	2390.000) 7.25	31.31	38.56	54.00	-15.44	AVG

nt. No.		A	nt 1 + Ant 2	<u>)</u>				
nt. Pol.		Н	lorizontal					
est Moo	le:	Т	X 802.11ax	(HE40) Mode	2422MHz 10	6/53		
:0.0 dBu ¹	//m			1		1		
0								
0								
						FCC Part15/C	- Above 1G Pl	<u> </u>
					1	FCC Part15 C	- Above 1G AV	/
					1 X 2			MWW -
w.	uning the second second second	wherem	-man and a star with a loss	word where the and the second	harrow water and the started	upper la construction	Michalawa	
.0								
2293.000	2308.00 2323	3.00	2338.00 2	353.00 (MHz)	2383.00	2398.00 2413.	00 2428.0	0 2443.0
No.	Frequenc (MHz)	ху 🛛	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detecto
	. ,	\rightarrow	17.04	31.31	48.35	74.00	-25.65	peak
1	2390.000							

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

nt. No.			Ant 1 + Ai	nt 2							
nt. Pol.			Vertical								
est Mod	de:		TX 802.1	lax(HE	40) Mo	de 2422	2MHz 1	06/53			
20.0 dBu	V/m						1	ĺ.			
0											
								6	~		
									1 a.m.	. Ile	
								FCC	Part15 C	- Above 1G F	к
								FCC	Part15 C	- Above 1G A	v
							1 X				Muyun
d Same 10	an a	un da late par de dela	weeks also see the second thereas	tike on state the set	at a Marker property and	Weller Myselve		VALAND		howhowe	put town Low
di maniferation.			Protocol - Contraction								
.0											
2294.800	2309.80	2324.80	2339.80	2354.8	O (MĤ	z) 2	384.80	2399.80	2414	.80 2429.	80 2444.
No.		uency Hz)	Readir (dBuV	-	Factor dB/m)		evel uV/m	Lir) (dBu		Margin (dB)	Detector
1	`).000	16.74	· ·	31.31		8.05	74.	,	-25.95	peak
2 *	2390	000.	7.18		31.31	3	8.49	54.	00	-15.51	AVG

2.Margin value = Level -Limit value

nt. No.		A	nt 1 + A	nt 2									
nt. Pol.		Н	orizonta	ıl									
est Mod	de:	T.	X 802.1	1ax(HE40) Mo	de 2	422N	1Hz 24	2/61				
20.0 dBu	V/m				1								_
0													
o													
									Í				
									FCC	Part15 C	- Above 10	i PK	
								1	FCC	Part15 C	- Above 10	AV	_
								1 X				Mr.J	M
4 mart 14 m	wheel marked and the second	mantananaka	www.man	whether	under generation of the second	Astronom	htten Wenned	2 www.hungernam	www.		the	mmhhm	,,îħ
.0													
.0 2293.000	2308.00 2323	3.00	2338.00	23	53.00 (MH	łz)	238	3.00 2	2398.00	2413.	00 242	28.00 2	2443.0
No.	Frequence (MHz)	y I	Readir (dBu)		Facto			vel V/m)		nit V/m)	Margi		ector
No.	Frequenc (MHz) 2390.000		Readir (dBu∖ 17.43	/)	Facto (dB/m) 31.31			V/m)	(dBu				ector

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Ant.	No.			Ant 1 + An	t 2					
Ant.	Pol.			Vertical						
Test	Moc	le:		TX 802.11	ax(ł	HE40) Mode	2422MHz 24	12/61		
120.0 Г	dBu\	//m								
110										
100										
90										
80										
70								FCC Part15 C	- Above 1G Pl	<u><</u>
60										
50								FCC Part15 C	- Above 1G A	<u> </u>
40							1 × 2		hourses	M. M.
~	whenthe	harmonichterender	where	mpromother of the sport	with	a ferrer and sharefund	na man stan stan the state the	ha-india		- In Arth
30										
20										
10 0.0										
	94.800	2309.80 232	4.80	2339.80	235	54.80 (MHz)	2384.80	2399.80 2414.	.80 2429.8	30 2444.80
				1			1	1		
N	lo.	Frequence (MHz)	су	Readin (dBuV		Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1	2390.00	0	15.83		31.31	47.14	74.00	-26.86	peak
2) *	2390.00	0	8.44		31.31	39.75	54.00	-14.25	AVG
Rem	narks									L

Ant. No	•		Ant 1 + Ant 2	2				
Ant. Pol	l .		Horizontal					
est Mo	de:	-	TX 802.11ax	(HE40) Mode	2422MHz 48	4/65		
20.0 dB	uV/m							
10								
00								
o 📃								
,							~~~~	
						FCC Part15 C	- Above 1G P	ĸ
					i	FCC Part15 C	- Above 16 A	v
D		aparte strange	whether a poly and a poly of the poly of t	and a strategy of the state of the	ar heretagilaria and stadentees	www.th		
0								
0.0								
2293.750	0 2308.75 23	23.75	2338.75 2	353.75 (MHz)	2383.75	2398.75 2413.	75 2428.	75 2443.7
	Frequen	CV/	Reading	Factor	Level	Limit	Margin	
No.	(MHz)		(dBuV)	(dB/m)		(dBuV/m)	(dB)	Detector
1	2390.00	00	18.66	31.31	49.97	74.00	-24.03	peak
2 *	2390.00	00	6.88	31.31	38.19	54.00	-15.81	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

		Ant 1 + Ar	nt 2								
		Vertical									
le:		TX 802.11	lax(HE4	0) Mode	e 2422N	/Hz 48	84/65				
//m											
									myhow		
							FCC	Part15 C	- Above 1G F	<u>к</u>	
						1	FCC	Part15 C	- Above 1G A	<u>~ </u>	
										V.	
Analthean Andrews	gonagherrafi sabarat mbar	non-antantic strategic termination	mannaturation	Anno managemente	under mathematican	www.electerstation.	and and a start of the start of				
2309 75	2222 75	2228 75	2252 75	(111-2)	230	3 75	2298 75	2413	75 2429	.75 2443.	
	-	1	U		1				Margin	Detector	
	·			· · ·				· · ·			
2390.	.000	16.72	3	1.31	48.	.03	74.	00	-25.97	peak	
2390.	.000	7.19	3	1.31	38.	.50	54.	00	-15.50	AVG	
	(MH 2390.		le: TX 802.11 //m ///// 2390.000 16.72	Ie: TX 802.11ax(HE4) //m	Ie: TX 802.11ax(HE40) Mode //m	Ie: TX 802.11ax(HE40) Mode 2422N //m //m //m //m	Ie: TX 802.11ax(HE40) Mode 2422MHz 48 //m //m //m //m /	Ie: TX 802.11ax(HE40) Mode 2422MHz 484/65 //m Fcc //m Fcc <th m<="" th=""> Fcc <tr< td=""><td>TX 802.11ax(HE40) Mode 2422MHz 484/65 //m FCC Part15 C FCC Part15 C FCC Part15 C FCC Part15 C 2308.75 2323.75 2338.75 2353.75 (MHz) 2383.75 2398.75 2398.75 2413 Frequency (MHz) Reading (dBuV) Level (dBuV/m) Limit (dBuV/m) 2390.000 16.72 31.31 48.03 74.00</td><td>Ie: TX 802.11ax(HE40) Mode 2422MHz 484/65 //m FCC Part15 C - Above 16 F FCC Part15 C - Above 16 F FCC Part15 C - Above 16 F 2308.75 2323.75 2338.75 2353.75 (MHz) 2383.75 2398.75 2413.75 2428 Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dB) 2390.000 16.72 31.31 48.03 74.00 -25.97</td></tr<></th>	Fcc <tr< td=""><td>TX 802.11ax(HE40) Mode 2422MHz 484/65 //m FCC Part15 C FCC Part15 C FCC Part15 C FCC Part15 C 2308.75 2323.75 2338.75 2353.75 (MHz) 2383.75 2398.75 2398.75 2413 Frequency (MHz) Reading (dBuV) Level (dBuV/m) Limit (dBuV/m) 2390.000 16.72 31.31 48.03 74.00</td><td>Ie: TX 802.11ax(HE40) Mode 2422MHz 484/65 //m FCC Part15 C - Above 16 F FCC Part15 C - Above 16 F FCC Part15 C - Above 16 F 2308.75 2323.75 2338.75 2353.75 (MHz) 2383.75 2398.75 2413.75 2428 Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dB) 2390.000 16.72 31.31 48.03 74.00 -25.97</td></tr<>	TX 802.11ax(HE40) Mode 2422MHz 484/65 //m FCC Part15 C FCC Part15 C FCC Part15 C FCC Part15 C 2308.75 2323.75 2338.75 2353.75 (MHz) 2383.75 2398.75 2398.75 2413 Frequency (MHz) Reading (dBuV) Level (dBuV/m) Limit (dBuV/m) 2390.000 16.72 31.31 48.03 74.00	Ie: TX 802.11ax(HE40) Mode 2422MHz 484/65 //m FCC Part15 C - Above 16 F FCC Part15 C - Above 16 F FCC Part15 C - Above 16 F 2308.75 2323.75 2338.75 2353.75 (MHz) 2383.75 2398.75 2413.75 2428 Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dB) 2390.000 16.72 31.31 48.03 74.00 -25.97

2.Margin value = Level -Limit value

nt. No.		Ant 1 + Ant 2	2				
nt. Pol.		Horizontal					
est Mod	de:	TX 802.11ax	(HE40) Mode	2452MHz 26	5/17		
20.0 dBu ¹	V/m						
10							
00							
,		Λ					
	phan	~			FCC Part15 C	- Above 1G P	ĸ
ded at	un l				FCC Part15 C	- Above 1G A	v
r M	All A	1 X					
	- Lund	2 Marine Stanton	un marken and the second second		anyan kung mag dian sydan di	man som and the And	way way to be a second
·							
.0	0417 50 0400			0500 50		F0 0F07	<u> </u>
2432.500	2447.50 2462.5	50 2477.50 2	492.50 (MHz)	2522.50	2537.50 2552	.50 2567.	50 2582.9
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2483.500	15.62	31.48	47.10	74.00	-26.90	peak
2 *	2483.500	7.32	31.48	38.80	54.00	-15.20	AVG
			·	-	-	-	

2.Margin value = Level -Limit value

nt. No.		Ant 1 + Ant	2				
nt. Pol		Vertical					
est Mo	de:	TX 802.11a	x(HE40) Mode	2452MHz 26	5/17		
0.0 dBu	V/m						
o							
		\square					
	pro	-~~					
		<i>2</i>			FCC Part15 C	- Above 1G P	ĸ
		1			FCC Part15 C	- Above 16 A	v
1/X/	N I	X					
Nr M	Munan	Menter 2	mannen		ware and all and the second second	**************************************	and the second
·							
.0							
2430.250	2445.25 2460).25 2475.25	2490.25 (MHz)	2520.25	2535.25 2550.	.25 2565.2	25 2580.2
	_		- Fastar		1 : :4		
No.	Frequence (MHz)	y Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2483.500	20.71	31.48	52.19	74.00	-21.81	peak
2 *	2483.500	8.17	31.48	39.65	54.00	-14.35	AVG

nt. No.		Ant 1 + Ant	2				
nt. Pol.		Horizontal					
est Mod	de:	TX 802.11a	x(HE40) Mode	2452MHz 52	2/44		
20.0 dBu	V/m			1			
10							
		n					
	MA	V I			FCC Part15 C	- Above 1G F	'K
					FCC Part15 C	- Above 1G A	v
M		×					
1.10	Holeman	wellingen m	waren war the work of the state of the second se		- and the child aparton was the	Autoritation and market	anadeseeseeseeseeseeseeseeseeseeseeseeseese
·							
.0 2432.500	2447.50 2462	.50 2477.50	2492.50 (MHz)	2522.50	2537.50 2552	.50 2567.	50 2582.
							1
No.	Frequency (MHz)	y Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2483.500	18.35	31.48	49.83	74.00	-24.17	peak
2 *	2483.500	6.54	31.48	38.02	54.00	-15.98	AVG
	-			-		-	

2.Margin value = Level -Limit value

nt. No.		Ant 1 + Ant 2					
nt. Pol.		Vertical					
est Mod	de:	TX 802.11ax	(HE40) Mode	2452MHz 52	/44		
20.0 dBu	V/m						
10							
		\cap					
·							
·	production	~			FCC Part15 C	- Above 1G Pl	
					ECC Paul 5 C	Abaua 1C Al	
		×			FCC Part15 C	- ADUYE TO AY	
, ∦ \≁	M	Indu Zan			and a second and the second	and the state of	
			and have a second s		***************************************	Adversion of Advance	and the second of
.0							
2430.250	2445.25 2460.2	25 2475.25 24	190.25 (MHz)	2520.25	2535.25 2550.	25 2565.2	5 2580.2
	1						
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2483.500	18.30	31.48	49.78	74.00	-24.22	peak
2 *	2483.500	8.09	31.48	39.57	54.00	-14.43	AVG

		Ant 1 + Ant 2					
nt. Pol.	1	Horizontal					
est Mod	de:	TX 802.11ax	(HE40) Mode	2452MHz 10	6/56		
20.0 dBu¥	√/m						
10							
DO							
	~	~					
	MM				FCC Part15 C	- Above 1G Pl	٢
					FCC Part15 C	- Above 1G A	/
		×					
o (<u>1111)</u>	Discound	Mr. Some	and we are the state of the second state of the second states and the second states and the second states and the			mound	annanan
0							
0							
0							
0.0 2432.500	2447.50 2462.5	50 2477.50 24	492.50 (MHz)	2522.50 2	2537.50 2552.	50 2567.5	50 2582.5
	Frequency	Reading	Factor	Level	Limit	Margin	
No.	(MHz)	(dBuV)	(dB/m)		(dBuV/m)		Detector
1	2483.500	18.90	31.48	50.38	74.00	-23.62	peak
	2483.500	6.33	31.48	37.81	54.00	-16.19	AVG

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Int. Pol. est Mode: 20.0 dBuV/m 20.0 dBuV/m 10	medici i	Vertical TX 802.11ax(2452MHz 10	FCC Part15 C	- Above 16 AV	v
20.0 dBuV/m 10 10 10 10 10 10 10 10 10 10	market				FCC Part15 C	- Above 16 AV	v
		N			FCC Part15 C	- Above 16 AV	v
	- Mapa	N			FCC Part15 C	- Above 16 AV	v
	man -	N			FCC Part15 C	- Above 16 AV	v
	web	N	and a second second second		FCC Part15 C	- Above 16 AV	v
	mpn]	N	100 Anisent Madrice Contractor		FCC Part15 C	- Above 16 AV	v
1. MINM 1. MINM 1. MINM	weater -	N	Maderian Maderice Creditions	~~~~	FCC Part15 C	- Above 16 AV	v
r MINM have		N	no have not here have a not been a				
r MINM have	1	N	Medanina Medana Materia				
4	usedice	N	mikrosent autorer rekenne	~			
1	1948-45-59	Mark Com	Makalan kalan sa kal	- www.	mana	maninthesetants	Whentheman
2430.250 244	5.25 2460.25	5 2475.25 24	190.25 (MHz)	2520.25 2	2535.25 2550.	.25 2565.2	25 2580.
No.	requency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 2	2483.500	17.41	31.48	48.89	74.00	-25.11	peak
2 * 2	483.500	7.66	31.48	39.14	54.00	-14.86	AVG
<u> </u>			-				

CTC Laboratories, Inc.

可监督管理委员会 中国国家认证认 EN

nt. No.			Ant 1	+ Ant 2									
nt. Pol.			Horizontal										
est Mod	de:		TX 802.11ax(HE40) Mode 2452MHz 242/62										
0.0 dBu	¥/m				1								
0													
0													
									FCC Part	15 C	- Above 1G	PK	
				1					FCC Parl	15 C	- Above 1G	AV	
MA.			las	1 X									
The Partient	Horan		91004	Myr. 4, 2. Myr 11.	any with a work of the	arthur 1	anthorn beginning th	undelseethe	- Andrew	ennerth	have been a second	mana	hundrad
.0													
2432.500	2447.50	2462.50	247	7.50 24	92.50 (M	Hz)	252	2.50 2	2537.50	2552.	50 256	7.50	2582.
No.	Frequ (Mł			ading BuV)	Facto (dB/m			vel V/m)	Limit (dBuV/		Margii (dB)	n c	Detector
1	2483	.500	1	6.43	31.48	;	47	.91	74.00)	-26.09	9	peak
2 *	2483	.500	E	6.16	31.48	;	37	.64	54.00)	-16.36	3	AVG
	1		L		1		I		I		1		

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

nt. No.		Ant 1 + Ant 2	2		Ant 1 + Ant 2						
nt. Pol.		Vertical	/ertical								
est Mod	de:	TX 802.11ax	TX 802.11ax(HE40) Mode 2452MHz 242/62								
20.0 dBu	V/m										
10											
00											
)											
					FCC Part15 C	- Above 1G P	ĸ				
					FCC Part15 C	- Above 16 A	v				
105		X									
Mar	and the second states and the second states and second states an	have 2				and the second	hardward and an				
2430.250	2445.25 2460.	25 2475.25 2	490.25 (MHz)	2520.25	2535.25 2550.	.25 2565.2	25 2580.2				
N	Frequency	Reading	Factor	Level	Limit	Margin					
No.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)		Detector				
1	2483.500	19.61	31.48	51.09	74.00	-22.91	peak				
2 *	2483.500	9.72	31.48	41.20	54.00	-12.80	AVG				
	-			-	-	-					

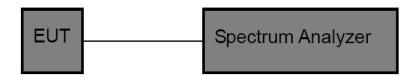
nt. No.		Ant 1 + Ant	2							
nt. Pol		Horizontal	Horizontal							
est Mo	de:	TX 802.11a	TX 802.11ax(HE40) Mode 2452MHz 484/65							
0.0 dBu	W/m									
o										
0										
	m have	~~~~								
					FCC Part15 C	- Above 1G Pl	<u>¢</u>			
		¹			FCC Part15 C	- Above 1G A	<u> </u>			
		1								
w.		hierdariya ingenigitya i	work and many work	reconnection and the Marconne	haden and an Alexander Manager	homeses for the	sharenalling			
.0										
2429.500	2444.50 2459.	50 2474.50	2489.50 (MHz)	2519.50	2534.50 2549.	.50 2564.5	50 2579.			
No.	Frequency (MHz)	y Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector			
1	2483.500	17.58	31.48	49.06	74.00	-24.94	peak			
2 *	2483.500	7.79	31.48	39.27	54.00	-14.73	AVG			
							L			

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

nt. No.		Ant 1 + Ant 2	Ant 1 + Ant 2							
nt. Pol.		Vertical	√ertical							
est Mod	de:	TX 802.11ax	TX 802.11ax(HE40) Mode 2452MHz 484/65							
20.0 dBu ¹	V/m									
10										
DO										
		m								
					FCC Part15 C	- Above 1G Pl	<u>K</u>			
)		1			FCC Part15 C	- Above 1G A	/			
			Annowing							
) w		and the second	wayno water warde	warmen and Maria	and when the second and the second	n rub market and	hungome			
)										
).0 2428.750	2443.75 2458.7	5 2473.75 24	488.75 (MHz)	2518.75	2533.75 2548.	75 2563.7	75 2578.7			
	Frequency	Reading	Factor	Level	Limit	Margin				
No.	(MHz)	(dBuV)	(dB/m)		(dBuV/m)		Detector			
1	2483.500	21.36	31.48	52.84	74.00	-21.16	peak			
2 *	2483.500	10.72	31.48	42.20	54.00	-11.80	AVG			
				-						


3.4. Band Edge and Spurious Emissions (Conducted)

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Configuration

Test Procedure

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- Use the following spectrum analyzer settings: RBW = 100 kHz, VBW ≥ RBW, scan up through 10th harmonic. Sweep = auto, Detector function = peak, Trace = max hold.
- 4. Measure and record the results in the test report.

Test Mode

Please refer to the clause 2.4.

Test Result

(1) Band Edge Conducted Test & Conducted Spurious Emissions Test

				OOB	OOB		
Mode	Channel	RU & Index	Ant.	Emission Frequency (MHz)	Emission Level (dBm)	Limit (dBm)	Result
				2400.00	-43.095	-30.91	PASS
			0	2398.01	-35.799	-30.91	PASS
				23492.4	-43.140	-30.91	PASS
	1			2400.00	-48.640	-30.87	PASS
			1	2396.97	-34.958	-30.87	PASS
			•	23848.2	-43.261	-30.87	PASS
IEEE 802.11b		-	0	24978.2	-42.516	-30.74	PASS
	6		1	24899.5	-42.234	-30.93	PASS
		-	1	2483.50	-47.921	-30.47	PASS
			0	1766.08	-41.608	-30.47	PASS
	11			2483.50	-49.788	-30.63	PASS
			1				PASS
		-		24811.5	-43.044	-30.63	
			0	2400.00	-41.358	-32.6	PASS
			0	2397.62	-37.866	-32.6	PASS
	1			24996.9	-43.036	-32.6	PASS
				2400.00	-33.927	-32.53	PASS
			1	2398.27	-33.313	-32.53	PASS
IEEE 802.11g				24964.4	-43.330	-32.53	PASS
1222 002.11g	6		0	23551.7	-43.564	-32.64	PASS
	0		1	23631.0	-42.977	-32.63	PASS
			0	2483.50	-42.638	-32.24	PASS
	11	NI/A	0	23684.7	-43.278	-32.24	PASS
			4	2483.50	-44.384	-32.45	PASS
			1	24754.7	-43.698	-32.45	PASS
		N/A		2400.00	-48.780	-38.73	PASS
			0	2398.92	-47.797	-38.73	PASS
			-	21847.5	-43.430	-38.73	PASS
	1			2400.00	-49.130	-38.83	PASS
			1	2386.05	-48.591	-38.83	PASS
IEEE			•	21246.3	-43.271	-38.83	PASS
802.11n_20			0	23633.5	-43.314	-38.06	PASS
002.1111_20	6		1	24918.8	-42.935	-39.65	PASS
	11			2483.50	-46.688	-38.2	PASS
			0	23767.1	-43.628	-38.2	PASS
				2483.50	-50.020	-38.59	PASS
			1	2463.50			PASS
				2400.00	-43.276	-38.59	PASS
			0		-51.529	-41.1	
			0	2394.50	-48.559	-41.1	PASS PASS
	3			24780.3	-42.913	-41.1	
			4	2400.00	-50.352	-41.64	PASS
			1	2394.50	-45.688	-41.64	PASS
IEEE		4	2	23410.0	-42.432	-41.64	PASS
802.11n_40	6		0	23476.2	-43.052	-41.36	PASS
		4	1	24860.8	-42.645	-41.19	PASS
			0	2483.50	-49.136	-42.23	PASS
	9		v	824.69	-44.227	-42.23	PASS
	Ĭ		1	2483.50	-52.366	-42.59	PASS
				23742.1	-47.086	-42.59	PASS
				2400.00	-46.857	-39.72	PASS
			0	2396.97	-46.197	-39.72	PASS
		2420164		24925.7	-42.170	-39.72	PASS
		242RU61		2400.00	-48.243	-39.65	PASS
IEEE			1	2398.27	-47.683	-39.65	PASS
802.11ax_20	1			21909.3	-42.774	-39.65	PASS
_				2400.00	-46.495	-22.49	PASS
		0.05110	0	24819.6	-43.023	-22.49	PASS
		26RU0		2400.00	-47.868	-23.31	PASS
			1	23506.8	-42.735	-23.31	PASS
	1	1		_0000.0	12.100	-0.01	. / .00

CTC Laboratories, Inc.

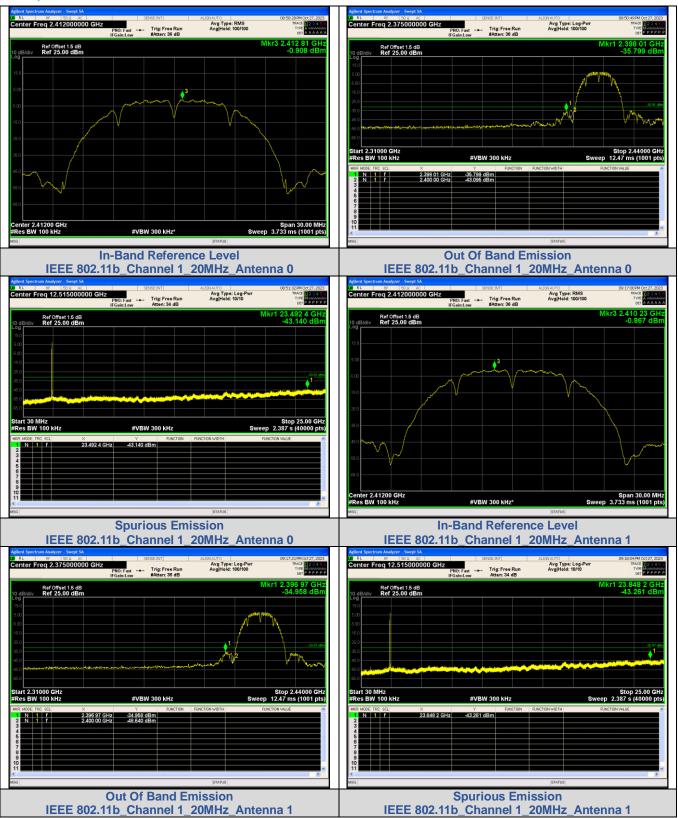
日 中国国家认证认 可监督管理委员会

Bit Part 1 Bit Part 2 Bit Par								
S2RU37 1 2490.00 442.78 -26.69 PASS 1 2400.00 446.278 -26.93 PASS 106RUS3 0 2400.00 44.8427 -26.93 PASS 106RUS3 1 2400.00 44.8478 -30.46 PASS 6 242RU61 0 2430.02 42.9344 -30.36 PASS 6 242RU61 0 2480.6 -43.343 -30.36 PASS 6 242RU61 0 2480.6 -43.943 -30.36 PASS 242RU61 0 22842.5 -44.571 -38.89 PASS 242RU61 1 248071 -13.442 PASS PASS 26RU8 0 22628.0 -44.871 -23.42 PASS 26RU4 0 2483.50 -52.948 -24.928 PASS 26RU4 1 2483.50 -51.471 -23.42 PASS 106RU54 1 2483.50 -52.656 -				0	2400.00	-46.498	-26.66	PASS
Image: stand			5001107	0	24913.9	-42.071	-26.66	PASS
Image: start of the s			52RU37	4	2400.00	-48.278		
IDERUST 0 24310.2 -42.994 -30.45 PASS 6 242RU61 0 2490.00 +49.376 -30.36 PASS 6 242RU61 0 2490.00 +43.940 -30.36 PASS 6 242RU61 0 22483.60 +43.940 -30.36 PASS 1 2470.8 +42.491 -39.63 PASS PASS 242RU61 0 22483.60 +42.971 -38.89 PASS 1 2483.60 +42.971 -39.88 PASS PASS 2481.80 +44.807 -23.42 PASS PASS PASS 2481.80 +42.971 +43.985 -23.59 PASS PASS </td <td></td> <td></td> <td></td> <td>1</td> <td>24305.8</td> <td>-43.172</td> <td>-26.93</td> <td>PASS</td>				1	24305.8	-43.172	-26.93	PASS
IDERUST 0 24310.2 -42.994 -30.45 PASS 6 242RU61 0 2490.00 +49.376 -30.36 PASS 6 242RU61 0 2490.00 +43.940 -30.36 PASS 6 242RU61 0 22483.60 +43.940 -30.36 PASS 1 2470.8 +42.491 -39.63 PASS PASS 242RU61 0 22483.60 +42.971 -38.89 PASS 1 2483.60 +42.971 -39.88 PASS PASS 2481.80 +44.807 -23.42 PASS PASS PASS 2481.80 +42.971 +43.985 -23.59 PASS PASS </td <td></td> <td></td> <td></td> <td>0</td> <td>2400.00</td> <td>-48.467</td> <td>-30.45</td> <td>PASS</td>				0	2400.00	-48.467	-30.45	PASS
IDENUS3 2400.00 -49.376 -30.36 PASS 6 242RU61 0 24995.0 -43.340 -30.36 PASS 6 242RU61 1 22970.8 -42.491 -39.63 PASS 7 2498.50 -45.512 -38.69 PASS PASS 242RU61 -22482.5 -442.703 -38.69 PASS 242RU61 -22480.5 -442.703 -38.69 PASS 2480.1 -2480.71 -43.462 -39.88 PASS 266U8 0 -22528.0 -44.807 -23.42 PASS 267U4 -2480.71 -43.607 -23.42 PASS 268U4 -22481.5 -44.711 -23.42 PASS 52RU40 -24815.8 -42.716 -23.42 PASS 106RU54 -2483.50 -51.411 -23.42 PASS 106RU54 -2483.50 -51.719 -23.42 PASS 106RU54 -2483.50 -51.719 -28.22			40001150	0	24310.2	-42.994	-30.45	
Image: start of the s			106R053					
b 242R061 1 22770.8 -42.491 -39.83 PASS 2433.50 -45.512 -38.89 PASS -2493.50 -45.512 -38.89 PASS 1 2493.50 -49.672 -39.89 PASS -2493.50 -49.672 -39.89 PASS 26RU8 0 -2493.50 -51.791 -23.42 PASS -2493.50 -49.672 -23.42 PASS 1 2382.0 -49.686 -23.42 PASS -249.55 -26.32 PASS 1 2383.10 -52.565 -26.32 PASS -249.50 -26.22 PASS 1 2493.50 -52.655 -26.32 PASS -249.50 -26.22 PASS 1 2483.50 -51.791 -22.88 PASS -249.50 -26.22 PASS 1 2495.50 -50.7179 -28.82 PASS -249.50 -26.82 PASS 1 249.50 -51.719 -28.42 PASS -249.50<				1	24995.0	-43.340	-30.36	PASS
b 242R061 1 22770.8 -42.491 -39.83 PASS 2433.50 -45.512 -38.89 PASS -2493.50 -45.512 -38.89 PASS 1 2493.50 -49.672 -39.89 PASS -2493.50 -49.672 -39.89 PASS 26RU8 0 -2493.50 -51.791 -23.42 PASS -2493.50 -49.672 -23.42 PASS 1 2382.0 -49.686 -23.42 PASS -249.55 -26.32 PASS 1 2383.10 -52.565 -26.32 PASS -249.50 -26.22 PASS 1 2493.50 -52.655 -26.32 PASS -249.50 -26.22 PASS 1 2483.50 -51.791 -22.88 PASS -249.50 -26.22 PASS 1 2495.50 -50.7179 -28.82 PASS -249.50 -26.82 PASS 1 249.50 -51.719 -28.42 PASS -249.50<		0	0.4001.004	0		-43.058	-39.63	
Image: start		6	242RU61		23770.8			
Image: start				0				PASS
Image: start			0.4001.104	0	22842.5	-42.703	-38.89	
Image: space of the system of the s			242RU61		2483.50		-39.88	PASS
Image: start				1		-43.462		
Image: start				0	2483.50	-51.791	-23.59	PASS
11 1 2483.50 -44.80/ -42483.73 -42.761 -2.342 PASS PASS 52RU40 0 2483.50 -52.761 -2.632 PASS 1 2483.50 -50.948 -26.92 PASS 1 2483.50 -50.948 -26.9 PASS 1 2382.11 -43.242 -26.9 PASS 106RU54 1 2483.50 -51.779 -29.28 PASS 1 2483.50 -51.779 -29.28 PASS -2342.1 PASS 2400.00 -50.533 -42.41 PASS -2342.1 PASS 2342.12.9 43.384 -42.41 PASS -2342.1 PASS 2400.00 -43.249 PASS -2400.00 +42.98 PASS 26RU0 1 2496.66 +40.911 -42.98 PASS 26RU0 1 2400.00 -43.241 PASS 26RU0 1 2490.00 -43.491 -23.26 PASS			0000110	0	23528.0	-43.685	-23.59	
III III 23547.3 -42.781 -23.42 PASS 52RU40 0 24815.0 +52.565 -26.32 PASS 1 2483.50 +52.565 -26.32 PASS 1 2483.50 +52.565 -26.32 PASS 1 2483.50 +52.565 -26.32 PASS 106RU54 0 22483.50 +51.719 -29.28 PASS 106RU54 0 22483.50 +51.779 -29.82 PASS 1 2443.50 -51.779 -29.82 PASS -42.98 PASS 2400.00 +43.384 +42.41 PASS -2400.00 +43.384 +42.41 PASS 2400.00 +43.249 PASS -2382 PASS -2382 PASS 26RU0 1 2365.66 +40.91 -42.98 PASS 26RU0 1 2400.00 +43.291 PASS 2475.8 +3.42 PASS -23.26 PASS			26RU8		2483.50	-44.807	-23.42	PASS
8 0 2483.50 -22.585 -26.32 PASS 24815.8 -42.151 -26.32 PASS 1 2483.50 -50.948 -26.9 PASS 106RU54 -0 22483.50 -51.441 -29.28 PASS 106RU54 -1 2483.50 -51.441 -29.28 PASS 2483.50 -51.441 -29.28 PASS -29.28 PASS 2400.00 -50.533 -42.41 PASS -23421.9 -43.384 -42.41 PASS 2306.97 -47.894 -42.41 PASS -23421.9 +43.384 -42.41 PASS 2400.00 -50.758 -42.98 PASS -2400.00 -43.298 PASS 26RU0 1 2405.66 -48.091 -42.98 PASS 26RU0 1 2400.00 -43.294 -23.32 PASS 26RU0 1 2400.00 -47.389 -22.66 PASS 1 2400.00 -47.31		44		1			-23.42	
IEEE 52RU40 24815.8 -42.151 -26.32 PASS 0 2435.50 -50.948 -26.9 PASS 0 23283.9 -43.022 -22.8 PASS 1 2435.50 -51.441 -22.82 PASS 1 2435.50 -51.441 -22.82 PASS 1 243710.3 -43.191 -2.82 PASS 1 24710.3 -43.191 -2.82 PASS 0 2336.97 -47.894 -42.41 PASS 1 2305.66 -48.091 -42.98 PASS 2460.00 -63.758 -42.98 PASS 2468.00 1 2305.66 -48.091 -42.28 266.00 1 2400.00 -43.249 -23.32 PASS 266.00 1 23069.1 -43.107 -23.26 PASS 268.00 0 24468.3 -42.574 -25.69 PASS 21 2339.92 -47.78 <t< td=""><td></td><td>11</td><td></td><td>0</td><td>2483.50</td><td>-52.565</td><td>-26.32</td><td>PASS</td></t<>		11		0	2483.50	-52.565	-26.32	PASS
Image: start of the s			5001140	0	24815.8		-26.32	PASS
Image: start of the s			52RU40	4	2483.50	-50.948	-26.9	PASS
Image: second state in the image inthe image inthe image in the image in the image in the image ino				1				
IDEE IDERUS4 0 22283.9 43.022 -29.28 PASS 1 2483.50 -51.79 -29.82 PASS 1 24710.3 -43.191 -29.82 PASS 2400.00 -50.533 -42.41 PASS 2396.97 -47.894 -42.41 PASS 2396.97 -47.894 -42.41 PASS 2400.00 -50.758 -42.98 PASS 2400.00 -50.758 -42.98 PASS 26RU0 2 2476.4 -46.766 -42.98 PASS 26RU0 1 2366.6 -43.941 -23.32 PASS 26RU0 1 23669.1 -43.107 -23.26 PASS 26RU0 1 23669.1 -43.107 -23.26 PASS 26RU3 2400.00 -47.389 -25.66 PASS 2400.00 -47.389 -25.86 PASS 2400.00 -47.381 -29.13 PASS 24490.0			40001154	0				
IUGRUS4 1 2483.50 -51.779 -29.82 PASS 24710.3 -43.191 -29.82 PASS 0 2396.97 -47.894 -42.41 PASS 2400.00 -50.533 -42.41 PASS 2421.9 -47.894 -42.41 PASS 2420.00 -50.758 -42.98 PASS 2400.00 -50.758 -42.98 PASS 24768.4 -46.766 -42.98 PASS 26RU0 1 2385.66 -48.091 -42.98 PASS 26RU0 1 2400.00 -43.249 -23.32 PASS 26RU0 1 2400.00 -43.017 -23.26 PASS 26RU3 -22400.00 -43.107 -23.26 PASS -2460.00 -42.472 -25.86 PASS 3 52RU37 1 23679.7 -42.472 -25.86 PASS -2460.00 -43.145 -29.13 PASS 106RU53 1 2398.66				0			-29.28	
IEEE 1 24710.3 -43.191 -29.82 PASS 484RU65 0 2396.97 -47.894 -42.41 PASS 23421.9 -43.384 -42.41 PASS -23421.9 -43.384 -42.41 PASS 23421.9 -43.384 -42.41 PASS -23421.9 -43.384 -42.98 PASS 2400.00 -50.786 -42.98 PASS -2400.00 -43.3249 -23.32 PASS 26RU0 0 24845.8 -43.491 -23.32 PASS -2400.00 -45.586 -25.69 PASS 26RU0 1 2400.00 -47.3107 -23.26 PASS 26RU17 1 2398.66 -46.672 -25.69 PASS 2400.00 -47.389 -25.86 PASS -25.86 PASS 2400.00 -47.313 -29.13 PASS -2460.30 -47.182 -29.13 PASS 2420.11 106RU53 1 2398.92 -47.182 -29.13 <td></td> <td> 1</td> <td>106RU54</td> <td></td> <td></td> <td></td> <td></td> <td></td>		1	106RU54					
IEEE 0 2400.00 -60.533 -42.41 PASS 3 484RU65 0 2396.97 -47.894 -42.41 PASS 2400.00 -50.758 -42.98 PASS 2400.00 -60.758 -42.98 PASS 2400.00 -60.758 -42.98 PASS -43.84 -42.41 PASS 2400.00 -60.758 -42.98 PASS -43.91 -23.32 PASS 24845.8 -43.491 -23.32 PASS -448.58 -43.91 -23.32 PASS 26RU0 0 2400.00 -45.966 -25.69 PASS -2465.8 PASS -2367.9 -25.86 PASS -2367.9 -2400.00 -47.374 -25.68 PASS -2367.9 -24.472 -25.86 PASS -2367.9 -42.472 -25.86 PASS -2367.9 -42.472 -25.86 PASS -2367.9 -42.472 -25.86 PASS -2367.9 -42.472 -25.86 PASS -2367.1 -232.26				1			-29.82	
$IEEE \\ 802.11ax_40 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ P \\ 26RU17 \\ P \\ 26RU17 \\ P \\ 26RU17 \\ P \\ P \\ 26RU17 \\ P \\ 28RU2 \\ P \\ 28RU$							-42.41	
IEEE 484RU65 23421.9 43.384 -42.41 PASS 3 2400.00 -50.758 -42.98 PASS 24758.4 -40.766 -42.98 PASS 24758.4 -40.766 -42.98 PASS 24758.4 -40.766 -23.32 PASS 2400.00 -43.249 -23.32 PASS 24845.8 -43.015 -23.26 PASS 0 2400.00 -43.015 -23.26 PASS 0 2400.00 -45.586 -25.69 PASS 0 2400.00 -47.397 -25.68 PASS 2400.00 -47.397 -25.86 PASS 2400.00 -47.313 PASS 2400.00 -47.312 -29.13 PASS 2400.00 -47.312 -29.13 PASS 24200.00 -48.52 -29.17 PASS 24200.00 -48.52 -29.17 PASS 2422RU61 1 2398.79 -46.72				0			-42.41	
IEEE 3 484RU65 2400.00 -50.758 -42.98 PASS 2385.66 -48.091 -42.98 PASS 2385.66 -48.091 -42.98 PASS 24758.4 -46.766 -42.98 PASS 26RU0 0 2480.8 -43.249 -23.32 PASS 1 2400.00 -43.107 -23.26 PASS 1 2400.00 -43.107 -23.26 PASS 2400.00 -445.86 -26.69 PASS 1 2386.66 -46.672 -25.86 PASS 2400.00 -47.182 -21.3 PASS 2400.00 -47.182 -29.13 PASS 106RU53 1 2387.7 -42.472 -25.86 PASS 106RU53 0 2398.92 -47.182 -29.13 PASS 2440.00 -44.721 -23.13 PASS -23.22 PASS 242RU61 1 23742.1 -43.145 -29.17 <td< td=""><td></td><td></td><td>40.401.105</td><td></td><td></td><td></td><td>-42.41</td><td></td></td<>			40.401.105				-42.41	
IEEE 802.11ax_40 9 1 26RU0 3 1 26RU0 26RU0 3 1 26RU0 3 1 26RU0			484RU65		2400.00		-42.98	
$IEEE \\ 802.11ax_40 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ P \\ P \\ P$				1	2385.66	-48.091	-42.98	PASS
$IEEE \\ 802.11ax_40 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ P \\ P \\ P$					24758.4	-46.766	-42.98	
$ \text{EEE} \\ 802.11ax_40 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 26 \text{RU0} \\ \begin{array}{ c c c c c c c c } 26 \text{RU0} \\ \hline 1 \\ 26 \text{RU0} \\ \hline 1 \\ 26 \text{RU0} \\ \hline 1 \\ 236 \text{RU0} \\ \hline 1 \\ 236 \text{RU0} \\ \hline 1 \\ 236 \text{RU1} \\ \hline 1 \\ 236 \text{RU1} \\ \hline 1 \\ 236 \text{RU1} \\ \hline 1 \\ 2398.66 \\ -46.672 \\ -25.86 \\ -46.672 \\ -25.86 \\ -25.17 \\ -2483.50 \\ -26.17 \\ -2483.50 \\ -25.156 \\ -25.17 \\ -25.85 \\ -25.$				0				
IEEE 26RU0 1 2400.00 -43.015 -23.26 PASS 3 52RU37 0 2400.00 -45.566 -25.69 PASS 2400.00 -45.566 -25.69 PASS PASS 24868.3 -42.974 -25.66 PASS 2398.66 -46.672 -25.86 PASS 23679.7 -42.472 -25.86 PASS 106RU53 0 2398.92 -47.182 -29.13 PASS 2490.00 -47.331 -29.17 PASS 242806.3 -42.528 -29.13 PASS 24280.00 -47.314 -29.17 PASS 24280.00 -47.314 -29.17 PASS 24280.00 -48.352 -33.14 PASS 24280.00 -48.753 -33.24 PASS 24280.00 -48.753 -33.24 PASS 24280.01 2398.14 -46.647 -42.91 PASS 24280.01 -23501.8 -42.834 -33.24 PASS			000110	0				
3 1 23669.1 -43.107 -23.26 PASS 3 52RU37 0 2400.00 -45.586 -25.69 PASS 3 52RU37 1 2398.66 -46.672 -25.86 PASS 23679.7 -42.472 -25.86 PASS 23679.7 -42.472 -25.86 PASS 106RU53 1 2398.66 -46.672 -25.86 PASS 24858.3 -42.528 -29.13 PASS 106RU53 1 23742.1 -43.145 -29.17 PASS 2422RU61 1 23742.1 -43.145 -29.17 PASS 242RU61 242RU61 1 2398.79 -46.721 -33.14 PASS 242RU61 242RU61 1 2398.79 -46.721 -33.14 PASS 242RU61 1 2398.79 -46.721 -33.14 PASS 242RU61 1 2399.1 -46.677 -33.24 PASS 24282.0 0 22			26RU0		2400.00	-43.015	-23.26	
3 52RU37 0 24868.3 -42.974 -25.69 PASS 3 1 2398.66 -46.672 -25.86 PASS 2398.79.7 -42.472 -25.86 PASS 2387.97.7 -42.472 -25.86 PASS 106RU53 0 2398.92 -47.182 -29.13 PASS 106RU53 1 2400.00 -47.331 -29.17 PASS 24808.3 -42.528 -29.13 PASS -242.12 -24.13 PASS 106RU53 1 2398.79 -46.721 -33.14 PASS 242RU61 2398.79 -46.721 -33.14 PASS 242RU61 2398.79 -46.721 -33.14 PASS 242RU61 1 2398.79 -46.721 -33.24 PASS 242RU61 22770.2 -42.401 -33.24 PASS 2428L00 22769.5 -46.902 -42.13 PASS 6 484RU65 0 22769.5 -46.607<				1			-23.26	
3 52RU37 0 24868.3 -42.974 -25.69 PASS 3 1 2398.66 -46.672 -25.86 PASS 2398.79.7 -42.472 -25.86 PASS 2387.97.7 -42.472 -25.86 PASS 106RU53 0 2398.92 -47.182 -29.13 PASS 106RU53 1 2400.00 -47.331 -29.17 PASS 24808.3 -42.528 -29.13 PASS -242.12 -24.13 PASS 106RU53 1 2398.79 -46.721 -33.14 PASS 242RU61 2398.79 -46.721 -33.14 PASS 242RU61 2398.79 -46.721 -33.14 PASS 242RU61 1 2398.79 -46.721 -33.24 PASS 242RU61 22770.2 -42.401 -33.24 PASS 2428L00 22769.5 -46.902 -42.13 PASS 6 484RU65 0 22769.5 -46.607<			52RU37	0		-45.586		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				0	24868.3	-42.974	-25.69	PASS
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					2400.00	-47.389	-25.86	PASS
$ { } { } { } { } { } { } { } { } { } { $		3		1	2398.66	-46.672	-25.86	PASS
IEEE 106RU53 0 2398.92 -47.182 -29.13 PASS 802.11ax_40 1 2400.00 -47.331 -29.17 PASS 802.11ax_40 1 2400.00 -47.331 -29.17 PASS 802.11ax_40 1 2400.00 -47.331 -29.17 PASS 242RU61 1 2400.00 -48.352 -33.14 PASS 242RU61 0 2398.79 -46.721 -33.14 PASS 2400.00 -48.353 -33.24 PASS 2398.14 -46.745 -33.24 PASS 23501.8 -42.834 -33.24 PASS 23501.8 -42.834 -33.24 PASS 6 484RU65 0 22769.5 -46.902 -42.13 PASS 996RU67 1 2359.1 -46.647 -42.91 PASS 1 2483.50 -47.521 -43.21 PASS 996RU67 1 2483.50 -52.076 -22.51 PASS <					23679.7	-42.472	-25.86	PASS
IEEE 802.11ax_40 IEEE 802.11ax_40 IEEE 80.11a IEEE 80					2400.00	-47.216	-29.13	PASS
IEEE 802.11ax_40 IEEE 802.11ax_40 IEEE 802.11ax_40 IEEE 802.11ax_40 IEEE 802.11ax_40 IEEE 802.11ax_40 IEEE 802.11ax_40 IEEE 1 242RU61 IEEE 1 242RU61 I				0	2398.92	-47.182	-29.13	PASS
IEEE 802.11ax_40 IEEE 802.11ax_40 IEEE 802.11ax_40 IEEE 802.11ax_40 IEEE 802.11ax_40 IEEE 802.11ax_40 IEEE 802.11ax_40 IEEE 1 242RU61 IEEE 1 242RU61 I			106RU53					PASS
IEEE 802.11ax_40 802.11ax_40 242RU61 242RU61 242RU61 1 23742.1 -43.145 -29.17 PASS 2400.00 -48.352 -33.14 PASS 22720.2 -42.401 -33.14 PASS 22720.2 -42.401 -33.14 PASS 22720.2 -42.401 -33.14 PASS 22720.2 -42.401 -33.14 PASS 2400.00 -48.753 -33.24 PASS 23501.8 -42.834 -33.24 PASS 2483.50 -46.902 -42.13 PASS 996RU67 0 2483.50 -46.647 -42.91 PASS 24827.7 -47.337 -43.21 PASS 2482.1 -47.479 -42.55 PASS 24827.7 -47.337 -43.21 PASS 2482.1 -47.479 -42.55 PASS 2482.1 -47.479 -42.55 PASS 2482.1 -47.479 -42.55 PASS 2483.50 -52.076 -22.51 PASS 23157.8 -42.629 -20.72 PASS 23157.8 -42.629 -20.72 PASS 2483.50 -52.17 PASS			ļ Ī	4	2400.00		-29.17	PASS
$9 \\ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				I	23742.1	-43.145	-29.17	
$9 \begin{array}{c c c c c c c c c c c c c c c c c c c $	802.11ax_40					-48.352	-33.14	
$9 \begin{array}{c c c c c c c c c c c c c c c c c c c $				0				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			2/20161					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			2421001					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1			-33.24	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$9 \begin{array}{c ccccccccccccccccccccccccccccccccccc$		6	18101 ISS					
$9 \\ 996 RU67 \\ \hline 0 \\ \hline 24827.7 \\ -47.337 \\ -43.21 \\ PASS \\ PASS \\ \hline 2483.50 \\ -48.470 \\ -42.55 \\ PASS \\ PASS \\ PASS \\ -48.50 \\ -42.536 \\ -22.51 \\ PASS \\ -25.156 \\ -25.17 \\ PASS \\ -25.17 \\ PASS \\ -25.03 \\ PAS \\ -25$		0	4041000	1				
$9 = 996 \text{RU67} + \frac{24827.7}{1} + \frac{2483.7}{47.337} + \frac{243.21}{43.21} + \frac{2485}{43.50} + \frac{24827.7}{47.479} + \frac{243.21}{42.55} + \frac{2485}{42.55} + \frac{2483.50}{24842.1} + \frac{2483.50}{47.479} + \frac{242.55}{42.55} + \frac{2485}{42.55} + \frac{2483.50}{23754.6} + \frac{22.51}{42.55} + \frac{2485}{23157.8} + \frac{2483.50}{42.629} + \frac{20.72}{20.72} + \frac{2485}{2335.1} + \frac{2483.50}{43.648} + \frac{25.17}{25.17} + \frac{2485}{2580} + \frac{2483.50}{2335.1} + \frac{2483.50}{43.648} + \frac{25.17}{25.03} + \frac{2485}{2580} + \frac{2483.50}{25.05} + \frac{25.03}{25.03} + \frac{2485}{2580} + \frac{2483.50}{25.05} + \frac{25.03}{25.03} + \frac{2485}{2580} + \frac{2483.50}{25.05} + \frac{25.03}{25.03} + \frac{25.03}{25.03} + \frac{25.03}{25.03} + \frac{25.03}{25.05} + \frac{25.05}{25.05} + 2$				0	2483.50	-47.521	-43.21	
$9 \qquad \begin{array}{c} 1 & \frac{2483.50}{24842.1} & \frac{-48.470}{-42.55} & \frac{PASS}{PASS} \\ \hline \\ 24842.1 & -47.479 & -42.55 & PASS \\ \hline \\ 2483.50 & -52.076 & -22.51 & PASS \\ \hline \\ 23754.6 & -42.536 & -22.51 & PASS \\ \hline \\ 23754.6 & -42.536 & -22.51 & PASS \\ \hline \\ 23157.8 & -42.629 & -20.72 & PASS \\ \hline \\ 23157.8 & -42.629 & -20.72 & PASS \\ \hline \\ 52RU44 & 0 & \frac{2483.50 & -52.156 & -25.17 & PASS \\ \hline \\ 23335.1 & -43.648 & -25.17 & PASS \\ \hline \\ 1 & 2483.50 & -50.693 & -25.03 & PASS \\ \hline \end{array}$			00601167	0	24827.7	-47.337		
$9 \qquad \begin{array}{c ccccccccccccccccccccccccccccccccccc$			3301.001	1				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				I		-47.479		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				0		-52.076	-22.51	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	2601147	U	23754.6	-42.536	-22.51	
I 23157.8 -42.629 -20.72 PASS 52RU44 0 2483.50 -52.156 -25.17 PASS 1 2483.50 -50.693 -25.03 PASS		9	20KU1/	1			-20.72	PASS
52RU44 0 2483.50 -52.156 -25.17 PASS 1 2483.50 -43.648 -25.17 PASS				1			-20.72	
52RU44 0 23335.1 -43.648 -25.17 PASS 2483.50 -50.693 -25.03 PASS						-52.156	-25.17	PASS
1 2483.50 -50.693 -25.03 PASS			52DI 144	0		-43.648	-25.17	
			52KU44	1		-50.693	-25.03	
20100.2 -40.240 -20.00 FAO				I	23760.2	-43.245	-25.03	PASS

CTC Laboratories, Inc.

可监督管理委员会 中国国家认证认 EN

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 Accreditation Administration of the People's Republic of China : http://yz.cnca.cn



	0	2483.50	-51.676	-28.83	PASS
106RU56	0	23688.4	-42.557	-28.83	PASS
1008030	1 -	2483.50	-52.285	-29.65	PASS
		24815.8	-43.497	-29.65	PASS
	2 0	2483.50	-49.326	-32.66	PASS
242RU62		24335.2	-42.710	-32.66	PASS
2428002		2483.50	-38.087	-32.82	PASS
	I	24938.8	-42.651	-32.82	PASS

CTC Laboratories, Inc. 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 下anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Test plot as follows:

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

Tel.: (86)755-27521059

FN

Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and 中国国家认证认可监督管理委员会

Accreditation Administration of the People's Republic of China : http://yz.cnca.cn