

Shenzhen HTT Technology Co., Ltd.

Report No.: HTT202206175F02

TEST Report

Applicant: Shenzhen TwoTrees Technology Co., Ltd.

Address of Applicant: Room 402, Building 11, No. 9 Qilin Road, Nankeng Community

Bantian Street, Longgang District, Shenzhen, China

Manufacturer: Shenzhen TwoTrees Technology Co., Ltd.

Address of Room 402, Building 11, No. 9 Qilin Road, Nankeng Community

Manufacturer: Bantian Street, Longgang District, Shenzhen, China

Equipment Under Test (EUT)

Product Name: LASER ENGRAVER

Model No.: TTS-10

Series model: TTS-55, TTS-25

Trade Mark: N/A

FCC ID: 2A7F8-TTS-10

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: Jun.09,2022

Date of Test: Jun.09,2022~Jun.15,2022

Date of report issued: Jun.15,2022

Test Result: PASS *

^{*} In the configuration tested, the EUT complied with the standards specified above.

1. Version

Version No.	Date	Description
00	Jun.15,2022	Original

Tested/ Prepared By	Ervin Xu	Date:	Jun.15,2022
	Project Engineer		
Check By:	Bruce Zhu	Date:	Jun.15,2022
	Reviewer		
Approved By :	Kein Yang	Date:	Jun.15,2022
	Authorized Signature		

2. Contents

		Page
1. '	VERSION	2
2. (CONTENTS	3
	TEST SUMMARY	
4. (GENERAL INFORMATION	5
4.1	1. GENERAL DESCRIPTION OF EUT	5
4.2		
4.3		7
4.4		
4.5	5. ABNORMALITIES FROM STANDARD CONDITIONS	
4.6	6. Test Facility	7
4.7	7. TEST LOCATION	7
4.8	3. Additional Instructions	7
5. ·	TEST INSTRUMENTS LIST	8
6.	TEST RESULTS AND MEASUREMENT DATA	9
6.1	1. CONDUCTED EMISSIONS	9
6.2		
6.3	3. 20DB EMISSION BANDWIDTH	13
6.4	4. Frequencies Separation	
6.5	5. HOPPING CHANNEL NUMBER	19
6.6	6. DWELL TIME	21
6.7		
	6.7.1. Conducted Emission Method	
	6.7.2. Radiated Emission Method	
6.8		
	6.8.1. Conducted Emission Method	
(6.8.2. Radiated Emission Method	37
7.	TEST SETUP PHOTO	45
8. I	EUT CONSTRUCTIONAL DETAILS	45

3. Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)(iii)	Pass
Dwell Time	15.247 (a)(1)(iii)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes		
Radiated Emission	30~1000MHz	3.45 dB	(1)		
Radiated Emission	1~6GHz	3.54 dB	(1)		
Radiated Emission	6~40GHz	5.38 dB	(1)		
Conducted Disturbance 0.15~30MHz 2.66 dB (1)					
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of 9	95%.		

4. General Information

4.1. General Description of EUT

Product Name:	LASER ENGRAVER
Model No.:	TTS-10
Series model:	TTS-55, TTS-25
Test sample(s) ID:	HTT202206175-1(Engineer sample) HTT202206175-2(Normal sample)
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, π/4-DQPSK, 8-DPSK
Antenna Type:	FPC Antenna
Antenna gain:	3.0dBi
Power Supply:	DC 24V, 4A
Adapter Information:	Mode: FY0902404000 Input: AC100-240V, 50/60Hz, 1.5A Output: DC 24V, 4A

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency		
The lowest channel	2402MHz		
The middle channel	2441MHz		
The Highest channel	2480MHz		

4.2. Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

4.3. Description of Support Units

None.

4.4. Deviation from Standards

None.

4.5. Abnormalities from Standard Conditions

None.

4.6. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 779513 Designation Number: CN1319

Shenzhen HTT Technology Co.,Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6435.01

Shenzhen HTT Technology Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

4.7. Test Location

All tests were performed at:

Shenzhen HTT Technology Co.,Ltd.

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Tel: 0755-23595200 Fax: 0755-23595201

4.8. Additional Instructions

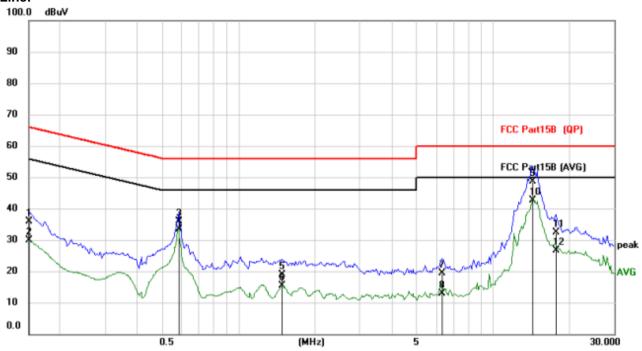
Test Software	Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode
Power level setup	Default

5. Test Instruments list

Item	Test Equipment	Manufacturer	Model No.	Inventory	Cal.Date	Cal.Due date
				No.	(mm-dd-yy)	(mm-dd-yy)
1	3m Semi- Anechoic Chamber	Shenzhen C.R.T technology co., LTD	9*6*6	HTT-E028	Aug. 10 2020	Aug. 09 2024
2	Control Room	Shenzhen C.R.T technology co., LTD	4.8*3.5*3.0	HTT-E030	Aug. 10 2020	Aug. 09 2024
3	EMI Test Receiver	Rohde&Schwar	ESCI7	HTT-E022	May 23 2022	May 22 2023
4	Spectrum Analyzer	Rohde&Schwar	FSP	HTT-E037	May 23 2022	May 22 2023
5	Coaxial Cable	ZDecl	ZT26-NJ-NJ-0.6M	HTT-E018	May 23 2022	May 22 2023
6	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-2M	HTT-E019	May 23 2022	May 22 2023
7	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-0.6M	HTT-E020	May 23 2022	May 22 2023
8	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-8.5M	HTT-E021	May 23 2022	May 22 2023
9	Composite logarithmic antenna	Schwarzbeck	VULB 9168	HTT-E017	Aug. 22 2021	Aug. 21 2022
10	Horn Antenna	Schwarzbeck	BBHA9120D	HTT-E016	Aug. 22 2021	Aug. 21 2022
11	Loop Antenna	Zhinan	ZN30900C	HTT-E039	Aug. 22 2021	Aug. 21 2022
12	Horn Antenna	Beijing Hangwei Dayang	OBH100400	HTT-E040	Aug. 22 2021	Aug. 21 2022
13	low frequency Amplifier	Sonoma Instrument	310	HTT-E015	May 23 2022	May 22 2023
14	high-frequency Amplifier	HP	8449B	HTT-E014	May 23 2022	May 22 2023
15	Variable frequency power supply	Shenzhen Anbiao Instrument Co., Ltd	ANB-10VA	HTT-082	May 23 2022	May 22 2023
16	EMI Test Receiver	Rohde & Schwarz	ESCS30	HTT-E004	May 23 2022	May 22 2023
17	Artificial Mains	Rohde & Schwarz	ESH3-Z5	HTT-E006	May 23 2022	May 22 2023
18	Artificial Mains	Rohde & Schwarz	ENV-216	HTT-E038	May 23 2022	May 22 2023
19	Cable Line	Robinson	Z302S-NJ-BNCJ-1.5M		May 23 2022	May 22 2023
20	Attenuator	Robinson	6810.17A	HTT-E007	May 23 2022	May 22 2023
21	Variable frequency power supply	Shenzhen Yanghong Electric Co., Ltd	YF-650 (5KVA)	HTT-E032	May 23 2022	May 22 2023
22	Control Room	Shenzhen C.R.T technology co., LTD	8*4*3.5	HTT-E029	May 23 2022	May 22 2023
23	DC power supply	Agilent	E3632A	HTT-E023	May 23 2022	May 22 2023
24	EMI Test Receiver	Agilent	N9020A	HTT-E024	May 23 2022	May 22 2023
25	Analog signal generator	Agilent	N5181A	HTT-E025	May 23 2022	May 22 2023
26	Vector signal generator	Agilent	N5182A	HTT-E026	May 23 2022	May 22 2023
27	Power sensor	Keysight	U2021XA	HTT-E027	May 23 2022	May 22 2023
28	Temperature and humidity meter	Shenzhen Anbiao Instrument Co., Ltd	TH10R	HTT-074	May 23 2022	May 22 2023
29	Radiated Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
30	Conducted Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
31	RF Test Software	panshanrf	TST	N/A	N/A	N/A

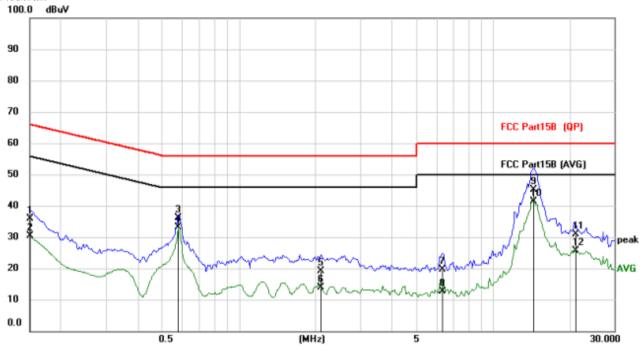
6. Test results and Measurement Data

6.1. Conducted Emissions

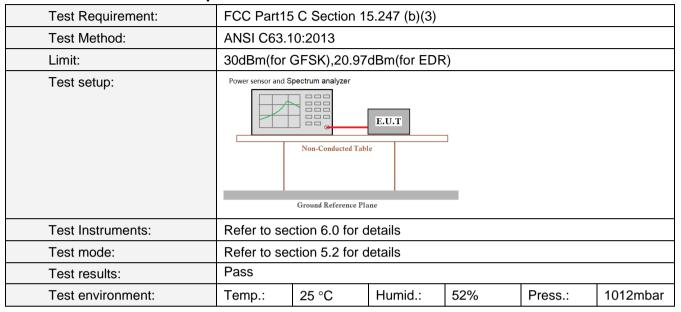

FCC Part15 C Section 15.207				
ANSI C63.10:2013				
150KHz to 30MHz				
Class B				
RBW=9KHz, VBW=30KHz, S	weep time=auto			
Fraguency range (MHz)	Limit	(dBuV)		
	Quasi-peak	Avera		
		+		
		50)	
_				
Reference Plane LISN 40cm 80cm Filter Ac power Equipment Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted				
		measurement.	•	
1		_		
<u> </u>	nid.: 52%	Press.:	1012mbar	
AC 120V, 60Hz				
Pass				
	ANSI C63.10:2013 150KHz to 30MHz Class B RBW=9KHz, VBW=30KHz, S Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * Decreases with the logarithm Reference Plane LISN 40cm 80cm AUX Equipment LISN Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators a line impedance stabilization 50ohm/50uH coupling impedence Stabilization 50ohm/50uH coupling impedence Stabilization Network 1. The peripheral devices are LISN that provides a 50ohn termination. (Please refer to photographs). 3. Both sides of A.C. line are interference. In order to fin positions of equipment and according to ANSI C63.10: Refer to section 6.0 for details Refer to section 5.2 for details Temp.: 25 °C Hur AC 120V, 60Hz	ANSI C63.10:2013 150KHz to 30MHz Class B RBW=9KHz, VBW=30KHz, Sweep time=auto Frequency range (MHz) Ouasi-peak 0.15-0.5 66 to 56* 0.5-5 5-30 * Decreases with the logarithm of the frequency. Reference Plane LISN AUX Equipment Under Test LISN Tequipment Under Test LISN Time Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators are connected to the line impedance stabilization network (L.I.S.N.). 500hm/50uH coupling impedance for the measurement of the photographs). 3. Both sides of A.C. line are checked for maximulators interference. In order to find the maximum emist positions of equipment and all of the interface of according to ANSI C63.10:2013 on conducted in Refer to section 5.2 for details Temp.: 25 °C Humid.: 52% AC 120V, 60Hz	ANSI C63.10:2013 150KHz to 30MHz Class B RBW=9KHz, VBW=30KHz, Sweep time=auto Frequency range (MHz) O.15-0.5 O.5-5 O.5-5 O.5-5 Decreases with the logarithm of the frequency. Reference Plane LISN AUX Equipment Under Test LISN Line Impedence Stabilization Network Test table legistical bin 1. The E.U.T and simulators are connected to the main power to line impedance stabilization network (L.I.S.N.). This provides 50ohm/50uH coupling impedance for the measuring equipmed. LISN that provides a 50ohm/50uH coupling impedance with 6 termination. (Please refer to the block diagram of the test set photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relat positions of equipment and all of the interface cables must be according to ANSI C63.10:2013 on conducted measurement Refer to section 6.0 for details Refer to section 5.2 for details Temp.: 25 °C Humid.: 52% Press.: AC 120V, 60Hz	

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.

Measurement data:



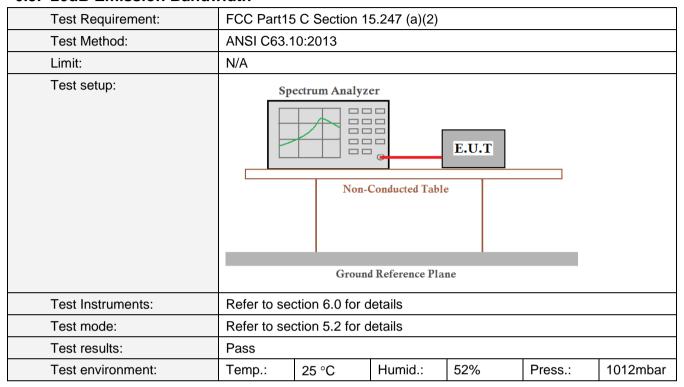
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1500	25.46	10.37	35.83	66.00	-30.17	QP
2	0.1500	19.52	10.37	29.89	56.00	-26.11	AVG
3	0.5829	25.39	10.57	35.96	56.00	-20.04	QP
4	0.5829	22.70	10.57	33.27	46.00	-12.73	AVG
5	1.4838	8.12	10.86	18.98	56.00	-37.02	QP
6	1.4838	4.54	10.86	15.40	46.00	-30.60	AVG
7	6.3306	8.17	11.31	19.48	60.00	-40.52	QP
8	6.3306	1.52	11.31	12.83	50.00	-37.17	AVG
9	14.3295	36.63	12.02	48.65	60.00	-11.35	QP
10 *	14.3295	30.55	12.02	42.57	50.00	-7.43	AVG
11	17.6952	20.01	12.26	32.27	60.00	-27.73	QP
12	17.6952	14.41	12.26	26.67	50.00	-23.33	AVG


No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1500	25.54	10.27	35.81	66.00	-30.19	QP
2	0.1500	20.02	10.27	30.29	56.00	-25.71	AVG
3	0.5790	25.60	10.47	36.07	56.00	-19.93	QP
4	0.5790	22.78	10.47	33.25	46.00	-12.75	AVG
5	2.1039	8.42	10.82	19.24	56.00	-36.76	QP
6	2.1039	3.17	10.82	13.99	46.00	-32.01	AVG
7	6.3306	8.76	10.92	19.68	60.00	-40.32	QP
8	6.3306	1.69	10.92	12.61	50.00	-37.39	AVG
9	14.4543	33.04	12.13	45.17	60.00	-14.83	QP
10 *	14.4543	29.37	12.13	41.50	50.00	-8.50	AVG
11	21.1857	18.36	12.53	30.89	60.00	-29.11	QP
12	21.1857	13.03	12.53	25.56	50.00	-24.44	AVG

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Los

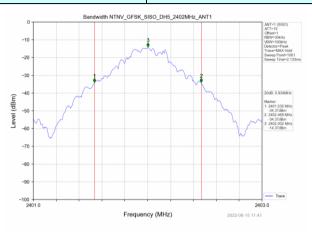
6.2. Conducted Peak Output Power



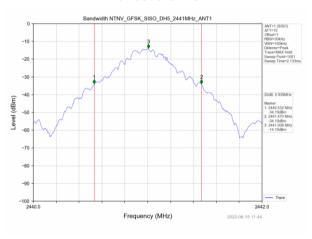
Measurement Data

Mode	Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
	Lowest	-11.93		
GFSK	Middle	-11.70	30.00	Pass
	Highest	-11.12		
	Lowest	-9.79		
π/4-DQPSK	Middle	-9.49	20.97	Pass
	Highest	-8.97		
	Lowest	-9.25		
8-DPSK	Middle	-8.97	20.97	Pass
	Highest	-8.48		

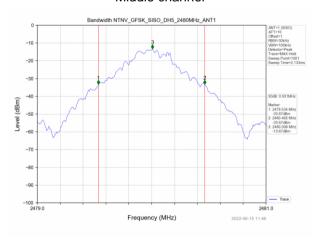
6.3. 20dB Emission Bandwidth


Measurement Data

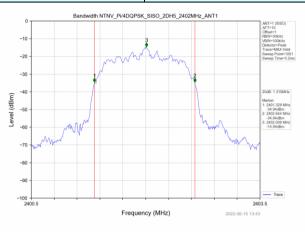
Mode	Test channel 20dB Emission Bandwid (MHz)		Result
	Lowest	0.934	
GFSK	Middle	0.939	Pass
	Highest	0.931	
	Lowest	1.315	
π/4-DQPSK	Middle	1.311	Pass
	Highest	1.315	
	Lowest	1.312	
8-DPSK	Middle	1.308	Pass
	Highest	1.310	



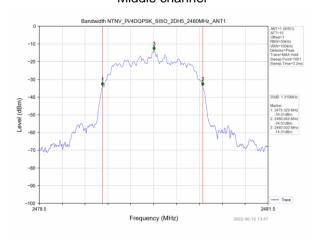
Test plot as follows:


Test mode: GFSK mode

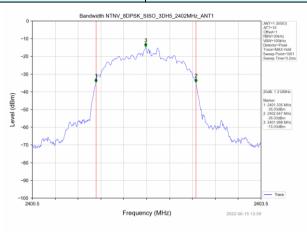
Lowest channel

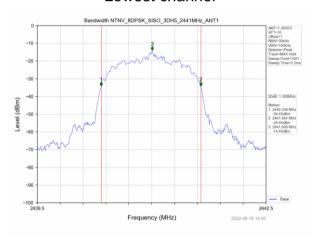

Middle channel

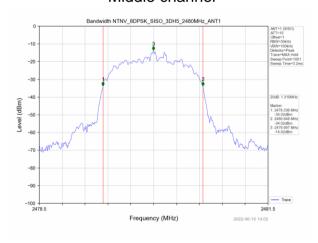
Highest channel


Test mode: $\pi/4$ -DQPSK mode

Lowest channel


Middle channel


Highest channel


Test mode: 8-DPSK mode

Lowest channel

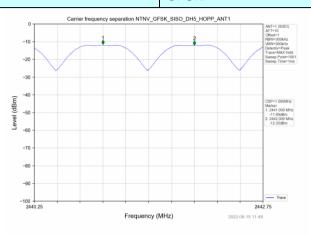
Middle channel

Highest channel

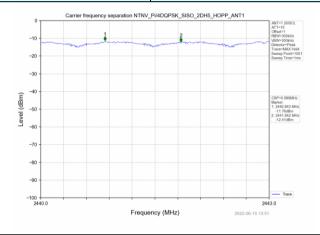
6.4. Frequencies Separation

	-1					
Test Requirement:	FCC Part15 C Section 15.247 (a)(1)					
Test Method:	ANSI C63.	ANSI C63.10:2013				
Receiver setup:	RBW=100h	KHz, VBW=30	00KHz, detec	ctor=Peak		
Limit:	GFSK: 20dB bandwidth π /4-DQPSK : 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)					
Test setup:	Sp					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar

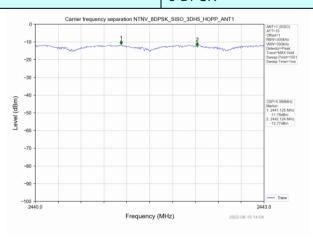
Measurement Data


Mode	Test channel	Frequencies Separation (MHz)	Limit (kHz)	Result
GFSK	Middle	1.000	0.626	Pass
π/4-DQPSK	Middle	0.999	0.877	Pass
8-DPSK	Middle	0.999	0.875	Pass

Remark: We have tested all mode at high, middle and low channel, and recorded worst case at middle



Test plot as follows:

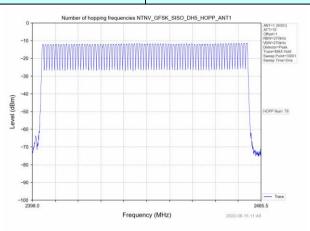

Modulation mode: GFSK

Test mode: $\pi/4$ -DQPSK

Modulation mode: 8-DPSK

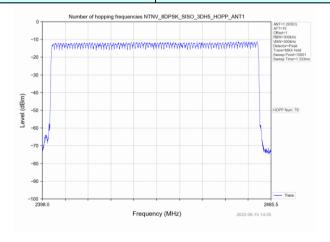
6.5. Hopping Channel Number

Test Requirement:	FCC Part15	C Section 1	5.247 (a)(1)(iii)		
Test Method:	ANSI C63.1	10:2013		•		
Receiver setup:	RBW=100k Detector=P		00kHz, Frequ	ency range=2	2400MHz-24	83.5MHz,
Limit:	15 channels	S				
Test setup:	Spe			E.U.T		
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar


Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK	79		Pass
π/4-DQPSK	79	≥15	Pass
8-DPSK	79		Pass

Test plot as follows:


Test mode: GFSK

Test mode: $\pi/4$ -DQPSK

Test mode: 8-DPSK

6.6. Dwell Time

Test Requirement:	FCC Part1	5 C Section 1	5.247 (a)(1)(i	ii)		
Test Method:	ANSI C63.	10:2013				
Receiver setup:	RBW=1MH	z, VBW=1MH	Iz, Span=0Hz	z, Detector=F	Peak	
Limit:	0.4 Second					
Test setup:	Sp					
Test Instruments:	Refer to se	Refer to section 6.0 for details				
Test mode:	Refer to se	Refer to section 5.2 for details				
Test results:	Pass	Pass				
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar

Measurement Data

GFSK mode:

Frequency	Packet	Pulse time (ms)	Dwell time(ms)	Limit(ms)	Result
Hopping	DH1	0.364	116.480	400	Pass
Hopping	DH3	1.633	241.684	400	Pass
Hopping	DH5	2.881	311.148	400	Pass

Note: We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Dwell time=Pulse time (ms) \times (1600 \div 2 \div 79) \times 31.6 Second for DH1, 2-DH1, 3-DH1

Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second for DH3, 2-DH3, 3-DH3

Dwell time=Pulse time (ms) \times (1600 \div 6 \div 79) \times 31.6 Second for DH5, 2-DH5, 3-DH5

$\pi/4$ -DQPSK mode:

Frequency	Packet	Pulse time (ms)	Dwell time(ms)	Limit(ms)	Result
Hopping	2DH1	0.395	126.400	400	Pass
Hopping	2DH3	1.646	268.298	400	Pass
Hopping	2DH5	2.895	301.080	400	Pass

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Dwell time=Pulse time (ms) \times (1600 \div 2 \div 79) \times 31.6 Second for DH1, 2-DH1, 3-DH1

Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second for DH3, 2-DH3, 3-DH3

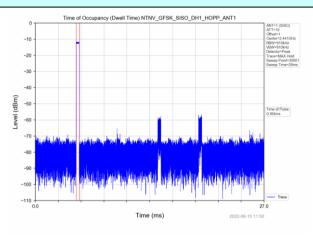
Dwell time=Pulse time (ms) \times (1600 \div 6 \div 79) \times 31.6 Second for DH5, 2-DH5, 3-DH5

8-DPSK mode:

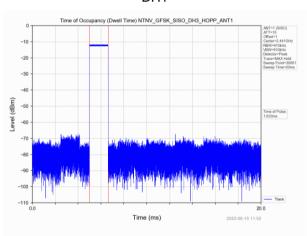
Frequency	Packet	Pulse time (ms)	Dwell time(ms)	Limit(ms)	Result
Hopping	3DH1	0.394	126.080	400	Pass
Hopping	3DH3	1.643	276.024	400	Pass
Hopping	3DH5	2.897	289.700	400	Pass

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

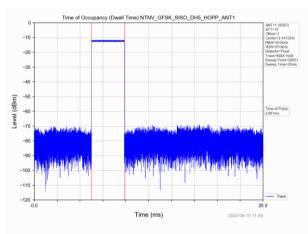
Dwell time=Pulse time (ms) \times (1600 \div 2 \div 79) \times 31.6 Second for DH1, 2-DH1, 3-DH1


Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second for DH3, 2-DH3, 3-DH3

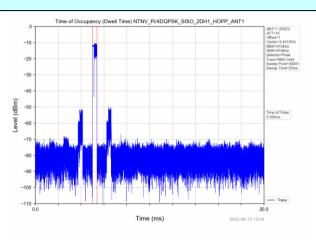
Dwell time=Pulse time (ms) \times (1600 \div 6 \div 79) \times 31.6 Second for DH5, 2-DH5, 3-DH5



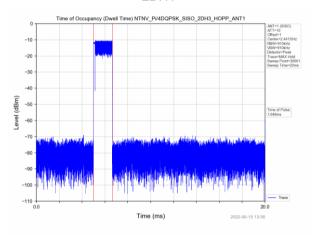
Test plot as follows:

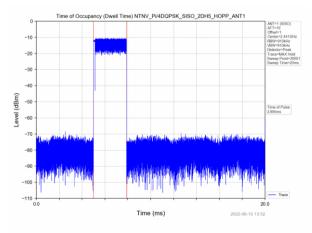

GFSK mode

DH1

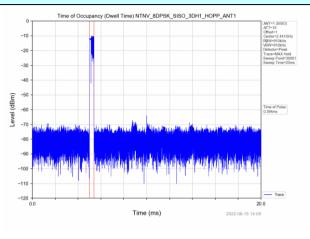


DH3

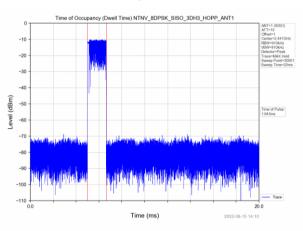


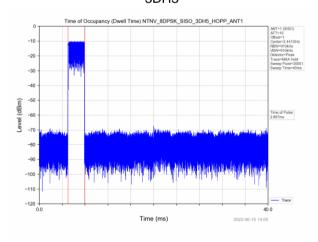

π/4-DQPSK mode

2DH1



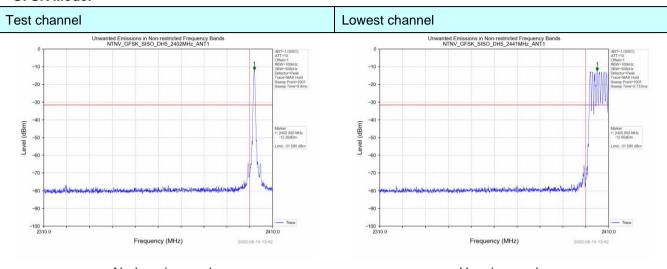
2DH3




8-DPSK mode

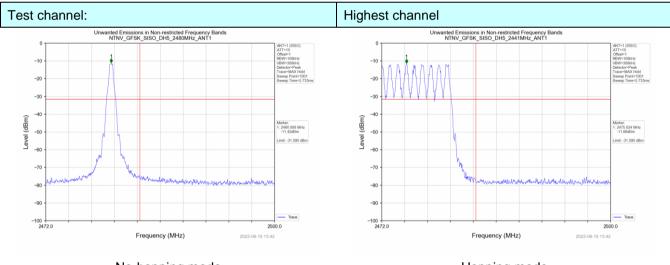
3DH1

3DH3


6.7. Band Edge

6.7.1. Conducted Emission Method

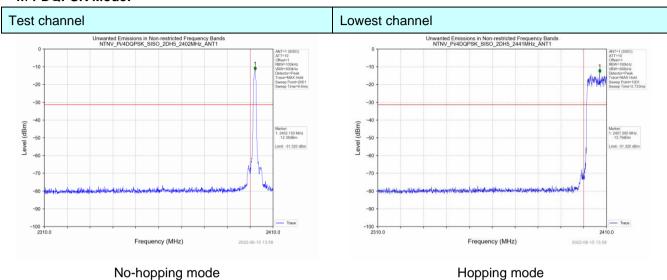
spectrum intentional radiator is operating, the radio frequency power the is produced by the intentional radiator shall be at least 20 dB below that the 100 kHz bandwidth within the band that contains the highest level the desired power, based on either an RF conducted or a radiated measurement. Test setup: Spectrum Analyzer E.U.T						
Receiver setup: In any 100 kHz bandwidth outside the frequency band in which the spr spectrum intentional radiator is operating, the radio frequency power the is produced by the intentional radiator shall be at least 20 dB below the the 100 kHz bandwidth within the band that contains the highest level the desired power, based on either an RF conducted or a radiated measurement. Test setup: Spectrum Analyzer E.U.T	Test Requirement:	FCC Part15 C Section 15.247 (d)				
Limit: In any 100 kHz bandwidth outside the frequency band in which the spr spectrum intentional radiator is operating, the radio frequency power the is produced by the intentional radiator shall be at least 20 dB below that the 100 kHz bandwidth within the band that contains the highest level the desired power, based on either an RF conducted or a radiated measurement. Test setup: Spectrum Analyzer E.U.T	Test Method:	ANSI C63.10:2013				
spectrum intentional radiator is operating, the radio frequency power the is produced by the intentional radiator shall be at least 20 dB below that the 100 kHz bandwidth within the band that contains the highest level the desired power, based on either an RF conducted or a radiated measurement. Test setup: Spectrum Analyzer E.U.T	Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak				
E.U.T	Limit:	·				
Ground Reference Plane	Test setup:	Non-Conducted Table				
Test Instruments: Refer to section 6.0 for details	Test Instruments:	Refer to section 6.0 for details				
Test mode: Refer to section 5.2 for details	Test mode:	Refer to section 5.2 for details				
Test results: Pass	Test results:	Pass				
Test environment: Temp.: 25 °C Humid.: 52% Press.: 1012r	Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar				



Test plot as follows: GFSK Mode:

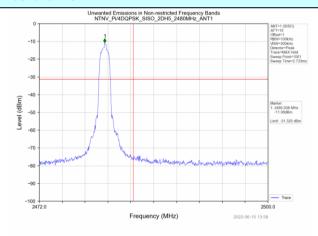
No-hopping mode

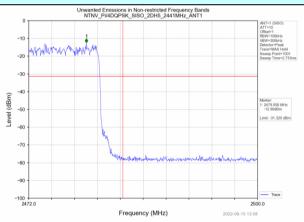
Hopping mode



No-hopping mode

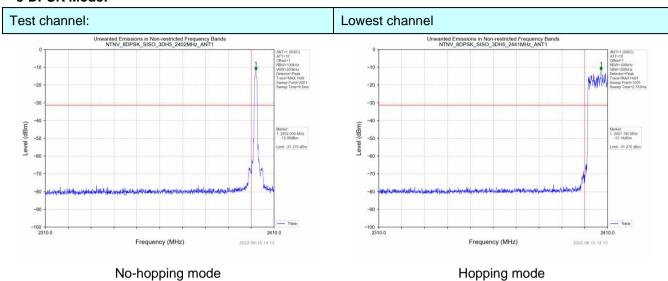
Hopping mode




π/4-DQPSK Mode:

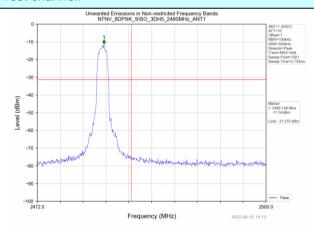
Test channel:

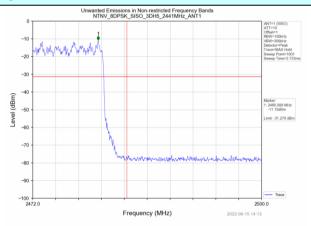
Highest channel



No-hopping mode

Hopping mode




8-DPSK Mode:

Test channel:

Highest channel

No-hopping mode

Hopping mode

6.7.2. Radiated Emission Method

0.7.2. Radialed E	TITIISSIOTI IVIE	uiou									
Test Requirement:	FCC Part15	C Section 1	5.209 a	and 15.20	5						
Test Method:	ANSI C63.10:2013										
Test Frequency Range:	All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.										
Test site:	Measurement Distance: 3m										
Receiver setup:	Frequenc	y Dete	ctor	RBW	VBW	/ Re	mark				
·	Above 1GHz										
Limit:	Fre	equency	L	₋imit (dBu	ıV/m @3m	n) Re	mark				
	Abo	Above 1GHz 54.00 Average Value 74.00 Peak Value									
Test setup:	Turn Table <150cm;	Test Antenna - < lm 4m > < lm 4m > - <									
Test Procedure:	1. The EUT	was placed				ole 1.5 meters	s above the				
	determin 2. The EUT antenna, tower. 3. The ante ground to horizonta measure 4. For each and then and the r maximum 5. The test-Specified 6. If the em limit specified EUT would have mad the mad the mad the maximum 1. The test-Specified the maximum the m	e the position was set 3 m which was no man height is determine the land vertical ment. suspected enthe antenna ota table was not reading. receiver system is a man level of the intented in the level of the intented in the land be reported in gin would be set in which would be reported in the land in the	of the eters a nounted varied he max I polarizemission was turned with Martin the Elsting ced. Other ere-tes	highest raway from don the to from one cimum valuations of the EU aximum H EU aximum H EU aximum H EU aximum H EU EU aximum H EU	radiation. I the interfector of a value of the interfector of the inte	erence-receivriable-height four meters affield strength ina are set to anged to its wing 1 meter to 4 360 degrees et Function are vas 10dB low d the peak vans that did no ing peak, qua in a data she	ving antenna above the Both make the vorst case meters to find the er than the alues of the thave si-peak or				
Test Instruments:	Refer to sec	ction 6.0 for c	letails								
Test mode:	Refer to sec	ction 5.2 for c	letails								
Test results:	Pass										
Test environment:	Temp.:	25 °C	Humi	d.: 52	2%	Press.:	1012mbar				

Measurement Data

Remark: GFSK, Pi/4 DQPSK,8-DPSK all have been tested, only worse case GFSK is reported.

Operation Mode: GFSK TX Low channel(2402MHz)

Horizontal (Worst case)

1 10112011	tai (VVOISt C	43C)						
Frequency	Meter Reading	Antenna		Preamp	Emission Level	Limits	Margin	
Troqueriey	Wictor Ftodding	Factor	Cable Loss	Factor	Elimodion Edvor	Lillino	ivia giii	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2390	57.59	26.20	5.72	33.30	56.21	74.00	-17.79	peak
2390	45.26	26.20	5.72	33.30	43.88	54.00	-10.12	AVG

Vertical:

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2390	59.02	26.20	5.72	33.30	57.64	74.00	-16.36	peak
2390	46.25	26.20	5.72	33.30	44.87	54.00	-9.13	AVG

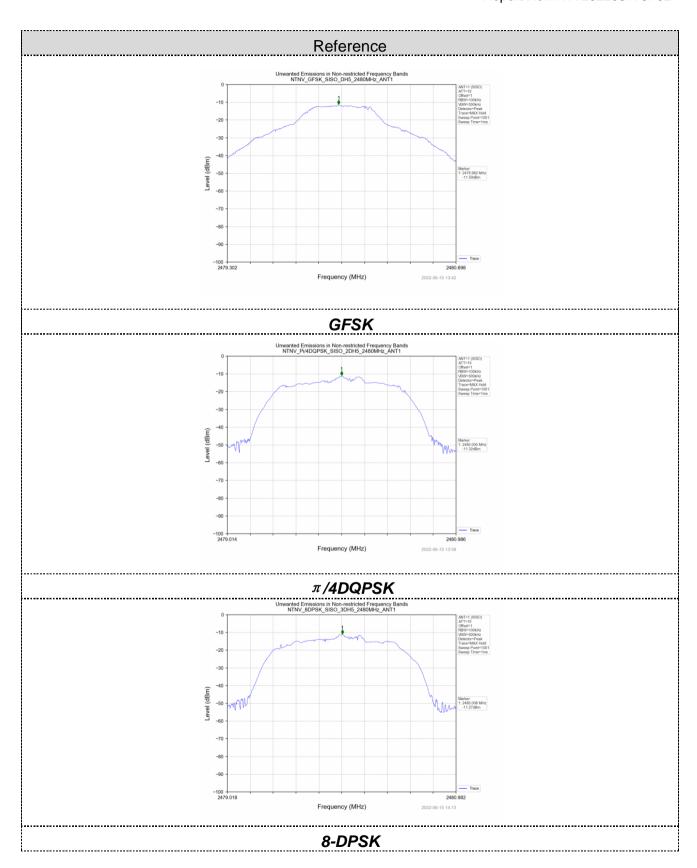
Operation Mode: GFSK TX High channel (2480MHz)

Horizontal (Worst case)

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2483.5	55.31	28.60	6.97	32.70	58.18	74.00	-15.82	peak
2483.5	41.36	28.60	6.97	32.70	44.23	54.00	-9.77	AVG

Vertical:

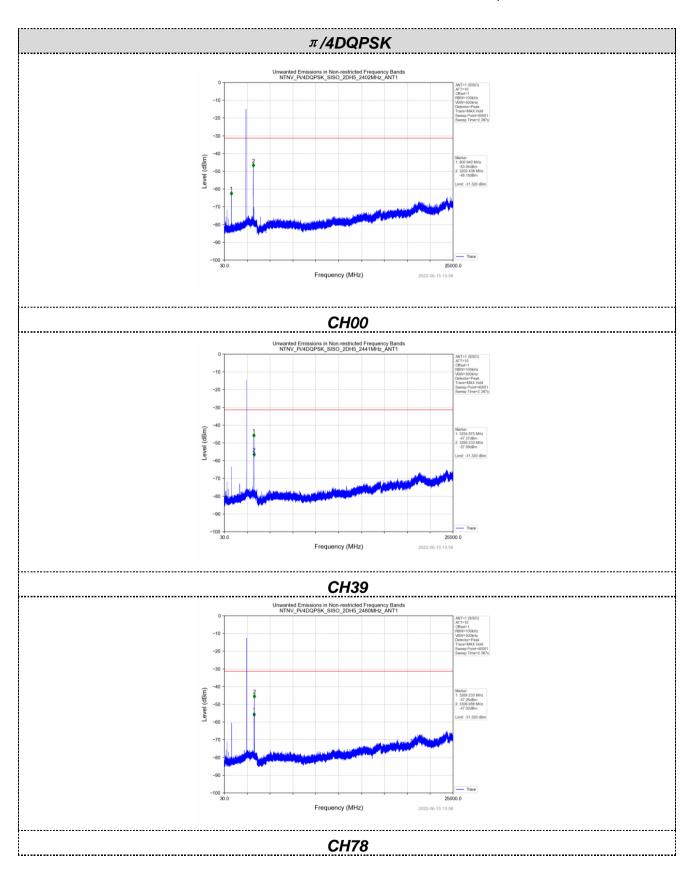
Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2483.5	55.48	28.60	6.97	32.70	58.35	74.00	-15.65	peak
2483.5	42.37	28.60	6.97	32.70	45.24	54.00	-8.76	AVG

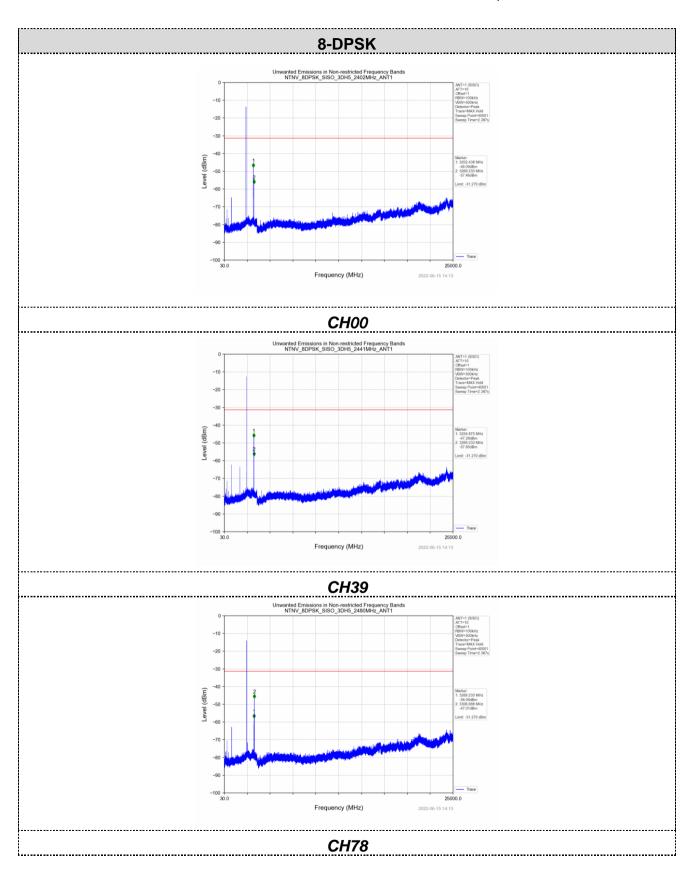


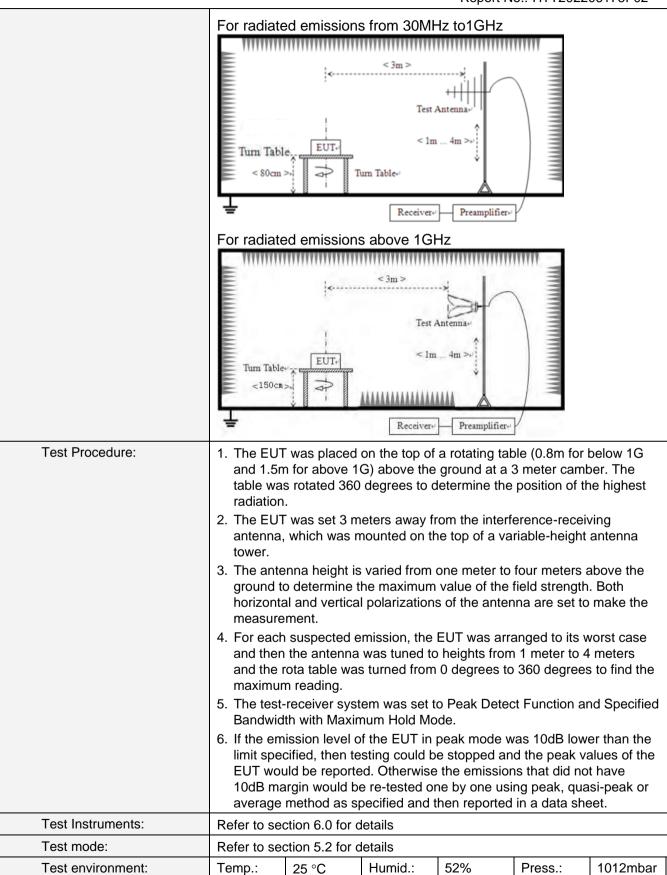
6.8. Spurious Emission

6.8.1. Conducted Emission Method

Test Requirement:	FCC Part15	C Section 1	5.247 (d)						
Test Method:	ANSI C63.1	ANSI C63.10:2013							
Limit:	spectrum in is produced the 100 kHz	tentional radi by the intent bandwidth v power, base	ator is opera ional radiator vithin the ban	e frequency be ting, the radio shall be at le d that contain n RF conduct	o frequency peast 20 dB be ns the highes	ower that elow that in t level of			
Test setup:	Spo								
Test Instruments:	Refer to sec	ction 6.0 for c	letails						
Test mode:	Refer to sec	ction 5.2 for c	letails						
Test results:	Pass								
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar			







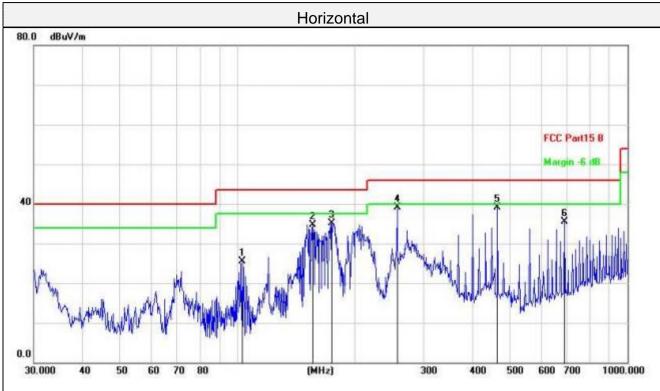
6.8.2. Radiated Emission Method

0.0.2. Nadiated L	illission wethou							
Test Requirement:	FCC Part15 C Section	on 15	5.209					
Test Method:	ANSI C63.10:2013							
Test Frequency Range:	9kHz to 25GHz							
Test site:	Measurement Distar	nce: 3	3m					
Receiver setup:	Frequency		Detector	RBV	٧	VBW	'	Value
	9KHz-150KHz	Q	ıasi-peak	200F	Ηz	600H	z	Quasi-peak
	150KHz-30MHz	ă	ıasi-peak	9KH	lz	30KH	z	Quasi-peak
	30MHz-1GHz	ă	ıasi-peak	120K	Hz	300KF	lz	Quasi-peak
	Above 1GHz		Peak	1M⊢	lz	3MHz	<u>z</u>	Peak
	Above 1GHz		Peak	1MH	lz	10Hz	<u>.</u>	Average
Limit:	Frequency		Limit (u\	//m)	V	alue	N	Measurement Distance
	0.009MHz-0.490M	lHz	2400/F(k	(Hz)		QP		300m
	0.490MHz-1.705M	lHz	24000/F(KHz)		QP		30m
	1.705MHz-30MH	lz	30			QP		30m
	30MHz-88MHz		100			QP		
	88MHz-216MHz	<u>z</u>	150			QP		
	216MHz-960MH	Z	200 500			QP		3m
	960MHz-1GHz				QP			OIII
	Above 1GHz		500		Av	erage		
	710070 10112		5000		F	Peak		
Test setup:	For radiated emiss	sions	from 9kH	z to 30	MH:	Z		
	Tum Table EUT	+	< 3m >	ntenna 1m				

Test voltage:	AC 120V, 60Hz
Test results:	Pass

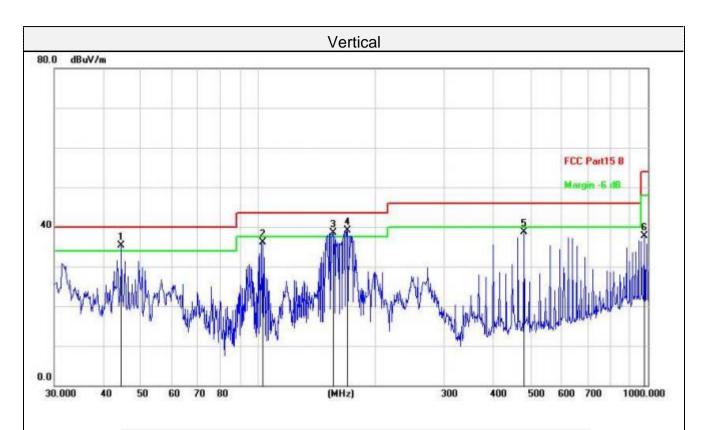
Measurement data:

Remarks:


- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.


For 30MHz-1GHz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		102.7192	46.49	-20.90	25.59	43.50	-17.91	QP
2		155.9101	52.52	-17.77	34.75	43.50	-8.75	QP
3		174.4241	54.71	-19.54	35.17	43.50	-8.33	QP
4	*	256.5211	57.90	-18.72	39.18	46.00	-6.82	QP
5		463.9696	53.67	-14.50	39.17	46.00	-6.83	QP
6		689.5644	44.34	-8.80	35.54	46.00	-10.46	QP

Final Level = Receiver Read level + Correct Factor

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1	!	44.5868	52.76	-17.42	35.34	40.00	-4.66	QP
2		102.7192	57.02	-20.90	36.12	43.50	-7.38	QP
3	!	155.9101	56.24	-17.77	38.47	43.50	-5.03	QP
4	*	169.5990	58.44	-19.39	39.05	43.50	-4.45	QP
5		480.5276	52.87	-14.25	38.62	46.00	-7.38	QP
6		979.1804	41.95	-4.19	37.76	54.00	-16.24	QP

Final Level =Receiver Read level + Correct Factor

For 1GHz to 25GHz

Remark: For test above 1GHz GFSK,Pi/4 DQPSK and 8-DPSK were test at Low, Middle, and High channel; only the worst result of GFSK was reported as below:

CH Low (2402MHz)

Horizontal:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detecto Type
4804	51.64	31.40	8.18	31.50	59.72	74.00	-14.28	peak
4804	37.28	31.40	8.18	31.50	45.36	54.00	-8.64	AVG
7206	44.96	35.80	10.83	31.40	60.19	74.00	-13.81	peak
7206	30.10	35.80	10.83	31.40	45.33	54.00	-8.67	AVG

Vertical:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4804	52.37	31.40	8.18	31.50	60.45	74.00	-13.55	peak
4804	37.14	31.40	8.18	31.50	45.22	54.00	-8.78	AVG
7206	42.98	35.80	10.83	31.40	58.21	74.00	-15.79	peak
7206	28.46	35.80	10.83	31.40	43.69	54.00	-10.31	AVG

CH Middle (2441MHz)

Horizontal:

110								
		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4880	51.36	31.40	9.17	32.10	59.83	74.00	-14.17	peak
4880	37.46	31.40	9.17	32.10	45.93	54.00	-8.07	AVG
7320	44.26	35.80	10.83	31.40	59.49	74.00	-14.51	peak
7320	28.37	35.80	10.83	31.40	43.60	54.00	-10.40	AVG
1320	20.31	33.60	10.63	31.40	43.60	54.00	-10.40	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Vertical:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4880	51.37	31.40	9.17	32.10	59.84	74.00	-14.16	peak
4880	37.16	31.40	9.17	32.10	45.63	54.00	-8.37	AVG
	40.00	0= 00	40.00			74.00	40.00	
7320	42.69	35.80	10.83	31.40	57.92	74.00	-16.08	peak
7320	28.45	35.80	10.83	31.40	43.68	54.00	-10.32	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

CH High (2480MHz)

Horizontal:

							1	
		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4960	51.67	31.40	9.17	32.10	60.14	74.00	-13.86	peak
4960	36.45	31.40	9.17	32.10	44.92	54.00	-9.08	AVG
- 440	44.50	05.00	40.00	04.40		74.00		l .
7440	44.58	35.80	10.83	31.40	59.81	74.00	-14.19	peak
7440	27.49	35.80	10.83	31.40	42.72	54.00	-11.28	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Vertical:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4960	51.33	31.40	9.17	32.10	59.80	74.00	-14.20	peak
4960	37.14	31.40	9.17	32.10	45.61	54.00	-8.39	AVG
7440	43.15	35.80	10.83	31.40	58.38	74.00	-15.62	peak
7440	28.47	35.80	10.83	31.40	43.70	54.00	-10.30	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Remark:

- (1) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (2) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

7. Test Setup Photo

Reference to the appendix I for details.

8. EUT Constructional Details

Reference to the appendix II for details.

