FCC and ISED Test Report

Sepura Limited Model: SCG2228

In accordance with FCC 47 CFR Part 2, FCC 47 CFR Part 90, ISED RSS-119 and ISED RSS-GEN (TETRA)

FCC ID: XX6SCG2228X IC: 8739A-SCG2228X

COMMERCIAL-IN-CONFIDENCE

Document 75958868-04 Issue 01

SIG	GNATURE			
\leq	, MA			
NA	ME	JOB TITLE	RESPONSIBLE FOR	ISSUE DATE
Ste	eve Marshall	Senior Engineer	Authorised Signatory	23 February 2024

ENGINEERING STATEMENT

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC 47 CFR Part 2, FCC 47 CFR Part 90, ISED RSS-119 and ISED RSS-GEN. The sample tested was found to comply with the requirements defined in the applied rules.

RESPONSIBLE FOR	NAME		DATE	SIGNATURE	
Tasting	Thomas Biddlecombe		23 February 2024	JANN	
Testing	George Williams		23 February 2024	Gwilliams	
FCC Accreditation		ISED Accredita	ation		
492497/UK2010 Octagor	House, Fareham Test Laboratory	12669A Octag	on House, Fareham Te	est Laboratory	
EXECUTIVE SUMMARY					

EXECUTIVE SUMMARY

A sample of this product was tested and found to be compliant with FCC 47 CFR Part 22: 2021, FCC 47 CFR Part 90: 2022, ISED RSS-119: Issue 12 (05-2015) and ISED RSS-GEN: Issue 5 (04-2018) + A2 (02-2021) for the tests detailed in section 1.3.

DISCLAIMER AND COPYRIGHT

This non-binding report has been prepared by TÜV SÜD with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD. No part of this document may be reproduced without the prior written approval of TÜV SÜD. © 2024 TÜV SÜD. This report relates only to the actual item/items tested. ACCREDITATION

Our UKAS Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our UKAS Accreditation. Results of tests not covered by our UKAS Accreditation Schedule are marked NUA (Not UKAS Accredited). Results of tests covered by our Flexible UKAS Accreditation Schedule are marked FS (Flexible Scope).

TÜV SÜD

is a trading name of TUV SUD Ltd Registered in Scotland at East Kilbride, Glasgow G75 0QF, United Kingdom Registered number: SC215164

TÜV SÜD

TUV SUD Ltd is a TÜV SÜD Group Company Phone: +44 (0) 1489 558100 Fax: +44 (0) 1489 558101 www.tuvsud.com/en TÜV SÜD Octagon House Concorde Way Fareham Hampshire PO15 5RL United Kingdom

Contents

1	Report Summary	2
1.1	Report Modification Record	2
1.2	Introduction	
1.3	Brief Summary of Results	
1.4	Application Form	5
1.5	Product Information	8
1.6	Deviations from the Standard	8
1.7	EUT Modification Record	
1.8	Test Location	
2	Test Details	9
2.1	Maximum Conducted Output Power	9
2.2	Radiated Spurious Emissions	
3	Measurement Uncertainty	

1 Report Summary

1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

Issue	Description of Change	
1	First Issue	23-February-2024

Table 1

1.2 Introduction

Applicant	Sepura Limited
Manufacturer	Sepura Limited
Model Number(s)	SCG2228
Serial Number(s)	1PR002401GPT84X
Hardware Version(s)	PLX-85015500
Software Version(s)	Development
Number of Samples Tested	1
Test Specification/Issue/Date	FCC 47 CFR Part 2: 2021 FCC 47 CFR Part 90: 2022 ISED RSS-119: Issue 12 (05-2015) ISED RSS-GEN: Issue 5 (04-2018) + A2 (02-2021)
Order Number	PLC-PO026141-1
Date	27-June-2023
Date of Receipt of EUT	19-January-2024
Start of Test	29-January-2024
Finish of Test	15-February-2024
Name of Engineer(s)	Thomas Biddlecombe and George Williams
Related Document(s)	ANCI C63.26: 2015
Software Version(s) Number of Samples Tested Test Specification/Issue/Date Order Number Date Date of Receipt of EUT Start of Test Finish of Test Name of Engineer(s)	Development 1 FCC 47 CFR Part 2: 2021 FCC 47 CFR Part 90: 2022 ISED RSS-119: Issue 12 (05-2015) ISED RSS-GEN: Issue 5 (04-2018) + A2 (02-2021) PLC-PO026141-1 27-June-2023 19-January-2024 29-January-2024 15-February-2024 Thomas Biddlecombe and George Williams

1.3

ΓÜΛ SÜD Summary of

A brief summary of the tests carried out in accordance with FCC 47 CFR Part 2, FCC 47 CFR Part 90, ISED RSS-119 and ISED RSS-GEN is shown below. These tests have been performed as spot-check measurements as per KDB 484596 D01. All other compliance is to be shown as per the report for the "Premium" variant.

Castian	Specification Clause				Test Description		
Section	Part 2	Part 90	RSS-119	RSS-GEN	Test Description	Result	Comments/Base Standard
Configuratio	Configuration and Mode: Tetra Basic Variant Spot Check - 806 MHz to 825 MHz						
2.1	2.1046	90.205	5.4	6.12	Maximum Conducted Output Power	Pass	ANCI C63.26: 2015
2.2	2.1053	90.210	5.8	6.13	Radiated Spurious Emissions	Pass	ANSI C63.26: 2015
Configuratio	n and Mode: Te	etra Basic Varia	ant Spot Check	- 851 MHz to 8	70 MHz		
2.1	2.1046	90.205	5.4	6.12	Maximum Conducted Output Power	Pass	ANCI C63.26: 2015
2.2	2.1053	90.210	5.8	6.13	Radiated Spurious Emissions	Pass	ANSI C63.26: 2015

Table 2

Brief Results Document 75958868-04 Issue 01 COMMERCIAL-IN-CONFIDENCE

A brief carried out 75958868variant) is

summary of the tests in document 01 ("Premium" shown below.

Castian		Specificati	on Clause		Toot Description	Desult	Commente/Dess Ctesdeut
Section	Part 2	Part 90	RSS-119	RSS-GEN	Test Description	Result	Comments/Base Standard
Configuration and Mode: Tetra - 806 MHz to 825 MHz					·	·	
2.1	2.1046	90.205	5.4	6.12	Maximum Conducted Output Power	Pass	ANCI C63.26: 2015
2.2	2.1047	90.207	5.2	-	Types of Emissions	Pass	
2.3	2.1049	90.209	5.5	6.7	Bandwidth Limitations	Pass	ANSI C63.26: 2015
2.4	2.1051	90.210	5.8	6.13	Spurious Emissions at Antenna Terminals	Pass	
2.5	2.1053	90.210	5.8	6.13	Radiated Spurious Emissions	Pass	ANSI C63.26: 2015
2.6	2.1055	90.213	5.3	6.11	Frequency Stability	Pass	ANSI C63.26: 2015
2.7	-	90.221	5.8.9.1	-	Adjacent Channel Power	Pass	
Configuratio	n and Mode: Tet	tra - 851 MHz to	870 MHz		·	·	
2.1	2.1046	90.205	5.4	6.12	Maximum Conducted Output Power	Pass	ANCI C63.26: 2015
2.2	2.1047	90.207	5.2	-	Types of Emissions	Pass	
2.3	2.1049	90.209	5.5	6.7	Bandwidth Limitations	Pass	ANSI C63.26: 2015
2.4	2.1051	90.210	5.8	6.13	Spurious Emissions at Antenna Terminals	Pass	
2.5	2.1053	90.210	5.8	6.13	Radiated Spurious Emissions	Pass	ANSI C63.26: 2015
2.6	2.1055	90.213	5.3	6.11	Frequency Stability	Pass	ANSI C63.26: 2015
2.7	-	90.221	5.8.9.1	-	Adjacent Channel Power	Pass	

Table 3

1.4 Application Form

Equipment Description

Technical Description: (Please provide a brief description of the intended use of the equipment including the technologies the product supports)		The SCG2228 mobile terminal is a TETRA enabled radio with GNSS			
Manufacturer:		Sepura Limited	d		
Model:	Model:				
Part Number:		SCG2228			
Hardware Version:	Hardware Version:		PLX-85015500		
Software Version:		Development	Development		
FCC ID of the product under te	est – <u>see guidar</u>	nce here	XX6SCG2228X		
IC ID of the product under test – see guidance here		e here	8739A-SCG2228X		
Device Category	vice Category Mobile 🖂		Portable	Fixed	
Equipment is fitted with an Audio Low Pass Filter		ilter	Yes 🗆	No 🗆	

Table 4

Intentional Radiators

Technology	TETRA / TMO	TETRA / DMO		
Frequency Range (MHz to MHz)	806 to 824	851 to 870		
Conducted Declared Output Power (dBm)	40	40		
Antenna Gain (dBi)	5	5		
Supported Bandwidth(s) (MHz) (e.g. 1 MHz, 20 MHz, 40 MHz)	25 kHz	25 kHz		
Modulation Scheme(s) (e.g. GFSK, QPSK etc)	DQPSK	DQPSK		
ITU Emission Designator (see guidance here) (not mandatory for Part 15 devices)	22K0DXW	22K0DXW		
Bottom Frequency (MHz)	806	851.0125		
Middle Frequency (MHz)	815.00	860.00		
Top Frequency (MHz)	824	868.9875		

Table 5

Un-intentional Radiators

Highest frequency generated or used in the device or on which the device operates or tunes	2480 MHz		
Lowest frequency generated or used in the device or on which the device operates or tunes	32.768 kHz		
Class A Digital Device (Use in commercial, industrial or business environment)			
Class B Digital Device (Use in residential environment only) \Box			

Table 6

AC Power Source

AC supply frequency:	50	Hz
Voltage	240	V
Max current:	90W	A
Single Phase 🖂 Three Phase 🗆		

Table 7

DC Power Source

Nominal voltage:	12	V
Extreme upper voltage:	15.6	V
Extreme lower voltage:	10.8	V
Max current:	90W	A

Table 8

Battery Power Source

Voltage:			V
End-point voltage:			V (Point at which the battery will terminate)
Alkaline 🗆 Leclanche 🗆 Lithium 🗆 Nicke	el Cadmium 🗆 Lead A	$d = \frac{1}{2} (Vehicle reg$	ulated)
Other 🗆	Please detail:		

Table 9

Charging

Can the EUT transmit whilst being charged	Yes 🗆 No 🗆
---	------------

Table 10

Temperature

Minimum temperature:	-20	٥°
Maximum temperature:	+55	٦°

Adapter Cable Loss (Conducted sample)	dB

Table 12

Antenna Characteristics

Antenna connector \boxtimes			State impedance	50	Ohm
Temporary antenna connector \Box		State impedance		Ohm	
Integral antenna 🗆	Type:		Gain		dBi
External antenna 🖂	Type:	Panorama AFGB-S5	Gain	5	dBi
For external antenna on	v.				

For external antenna only:

Standard Antenna Jack 🛛 If yes, describe how user is prohibited from changing antenna (if not professional installed):

Equipment is only ever professionally installed \Box

Non-standard Antenna Jack

All part 15 applications will need to show how the antenna gain was derived either from a manufacturer data sheet or a measurement. Where the gain of the antenna is inherently accounted for as a result of the measurement, such as field strength measurements on a part 15.249 or 15.231 device, so the gain does not necessarily need to be verified. However, enough information regarding the construction of the antenna shall be provided. Such information maybe photographs, length of wire antenna etc.

Table 13

Ancillaries (if applicable)

Manufacturer:	Part Number:	
Model:	Country of Origin:	

Table 14

I hereby declare that the information supplied is correct and complete.

Prakriti Gupla

Name:Prakriti Gupta Position held: Conformance team leader Date: 23/02/2024

1.5 Product Information

1.5.1 Technical Description

The SCG2228 mobile terminal is a TETRA enabled radio with GNSS.

1.6 Deviations from the Standard

No deviations from the applicable test standard were made during testing.

1.7 EUT Modification Record

The table below details modifications made to the EUT during the test programme.

The modifications incorporated during each test are recorded on the appropriate test pages.

Modification State	Description of Modification still fitted to EUT	Modification Fitted By	Date Modification Fitted			
Model: SCG2228, Serial Number: 1PR002401GPT84X						
0 As supplied by the customer Not Applicable Not Applicable						

Table 15

1.8 Test Location

TÜV SÜD conducted the following tests at our Octagon House Test Laboratory.

Test Name	Name of Engineer(s) Accreditation			
Configuration and Mode: Tetra Basic Variant Spot Check - 806 MHz to 825 MHz				
Maximum Conducted Output Power	Thomas Biddlecombe	UKAS		
Radiated Spurious Emissions	George Williams	UKAS		
Configuration and Mode: Tetra Basic Variant Spot Check - 851 MHz to 870 MHz				
Maximum Conducted Output Power	Thomas Biddlecombe	UKAS		
Radiated Spurious Emissions	George Williams	UKAS		

Table 16

Office Address:

TÜV SÜD Octagon House Concorde Way Fareham Hampshire PO15 5RL United Kingdom

2 Test Details

2.1 Maximum Conducted Output Power

2.1.1 Specification Reference

FCC 47 CFR Part 2, Clause 2.1046 FCC 47 CFR Part 90, Clause 90.205 ISED RSS-119, Clause 5.4 ISED RSS-GEN, Clause 6.12

2.1.2 Equipment Under Test and Modification State

SCG2228, S/N: 1PR002401GPT84X - Modification State 0

2.1.3 Date of Test

15-February-2024

2.1.4 Test Method

The test was applied in accordance with the test method requirements of FCC 47 CFR Part 90, Industry Canada RSS-119, and ISED RSS-GEN with reference to ANSI C63.26, clause 5.2.4.3.

The EUT was configured to transmit on maximum power on only one channel per band in burst mode. The EUT was connected to a spectrum analyser via a cable and 20 dB of attenuation. The path loss was measured using a network analyser and entered as a reference level offset in the spectrum analyser. The RBW of the spectrum analyser was set to 30 kHz and the video bandwidth to 91 kHz with the trace set to average using an RMS detector and the result was recorded.

2.1.5 Environmental Conditions

Ambient Temperature	21.2 °C
Relative Humidity	52.5 %

2.1.6 Test Results

Tetra Basic Variant Spot Check - 806 MHz to 825 MHz

Parameter	823.9875 MHz	
Conducted Output Power (dBm)	39.002	
Manufacturer Declared Power (dBm)	40.0	
Δ from manufacturer Power (dB)	0.998	
Antenna Gain (dBi)	5.0	
ERP (dBm)	44.002	

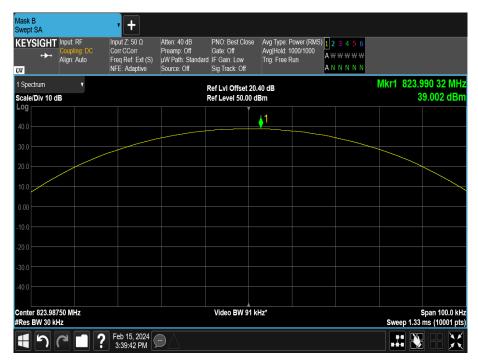



Figure 1 – 823.9875 MHz

Tetra Basic Variant Spot Check - 851 MHz to 870 MHz

Parameter	N/A MHz
Conducted Output Power (dBm)	39.052
Manufacturer Declared Power (dBm)	40.0
Δ from manufacturer Power (dB)	0.948
Antenna Gain (dBi)	5
ERP (dBm)	44.052

KEYSIGHT Input: RF Coupling: DC Align: Auto	Input Ζ: 50 Ω Corr CCorr Freq Ref: Ext (S) NFE: Adaptive	Atten: 40 dB Preamp: Off µW Path: Standard Source: Off	Gate: Off	Avg Type: Por Avg Hold: 100 Trig: Free Ru	¥	
1 Spectrum v Scale/Div 10 dB			Ref LvI Offset 20. Ref Level 50.00 d		Mkr1	851.011 64 MH 39.052 dBi
40.0			<u>(1</u>			
20.0						
0.00						
.30.0						
-40.0 Center 851.01250 MHz			Video BW 91 k	U-*		Span 100.0 k
Res BW 30 kHz			VIGEO BVV ST K	ΠZ	Swee	p 1.33 ms (10001 pi

Figure 2 – 851.0125 MHz

FCC 47 CFR Part 90, Limit Clause 90.205

Frequency (MHz)	Limit
< 25	1000 W
25 to 50	300 W
72 to 76	300 W
150 to 174	Refer to 90.205 (d) of the specification
217 to 220	Refer to 90.259 of the specification
220 to 222	Refer to 90.729 of the specification
421 to 430	Refer to 90.279 of the specification
450 to 470	Refer to 90.205 (h) of the specification
470 to 512	Refer to 90.307 and 90.309 of the specification
758 to 775 and 788 to 805	Refer to 90.541 and 90.542 of the specification
806 to 824, 851 to 869, 869 to 901 and 935 to 940	Refer to 90.635 of the specification
902 to 927.25	LMS systems operating pursuant to subpart M of the specification : 30 W
927.25 to 928	LMS equipment: 300 W
929 to 930	Refer to 90.494 of the specification
1427 to 1429.5 and 1429.5 to 1432	Refer to 90.259 of the specification
2450 to 2483.5	5 W
4940 to 4990	Refer to 90.1215 of the specification
5850 to 5925	Refer to subpart M of the specification
All other frequency bands	On a case by case basis

Table 19 - FCC Limits for Maximum ERP

Industry Canada RSS-119, Limit Clause 5.4

The output power shall be within $\pm 1 \text{ dB}$ of the manufacturer's rated power listed in the equipment specifications.

Frequency (MHz)	Transmitter Output Power (W)			
	Base/Fixed Equipment	Mobile Equipment		
27.41 to 28 and 29.7 to 50	300	30		
72 to 76	No Limit	1		
138 to 174	111100	60		
217 to 217 and 219 to 220	See SRSP-512 for ERP limit	30*		
220 to 222	110	50		
406.1 to 430 and 450 to 470	See SRSP-511 for ERP limit	60		
768 to 776 and 798 to 806	110	30 3 W ERP for portable equipment		
806 to 821, 851 to 866, 821 to 824 and 866 to 869	110	30		
896 to 901 and 935 to 940	110	60		
929 to 930 and 931 to 932	110	30		
928 to 929, 952 to 953, 932 to 932.5 and 941 to 941.5	110	30		
932.5 to 935 ad 941.5 to 944	110	30		
*Equipment is generally authorised for effective radiated po	wer (ERP) of less than 5 W.			

Table 20 - Industry Canada Limits for Transmitter Output Power

2.1.7 Test Location and Test Equipment Used

This test was carried out in RF Laboratory 1.

Instrument	Manufacturer	Туре No	TE No	Calibration Period (months)	Calibration Expires
Multimeter	Fluke	79 Series III	611	12	15-Dec-2024
Hygrometer	Rotronic	I-1000	3220	12	28-Nov-2024
Network Analyser	Rohde & Schwarz	ZVA 40	3548	12	06-Mar-2024
Calibration Unit	Rohde & Schwarz	ZV-Z54	4368	12	06-Mar-2024
Signal Analyzer	Keysight Technologies	PXA N9030B	5432	12	08-Jun-2024
Attenuator 5W 20dB DC- 18GHz	Aaren	AT40A-4041-D18- 20	5500	12	21-May-2024
Modular Power System Mainframe	Keysight Technologies	N6701C	5835	-	TU
DC Power Module 60V 20A 300W	Keysight Technologies	N6754A	5836	-	O/P Mon
1m K-Type Cable	Junkosha	MWX221/B	5908	12	21-May-2024
Frequency Standard	Orolia	SecureSync 2402- 053	6339	6	12-Mar-2024

Table 21

TU - Traceability Unscheduled

O/P Mon – Output Monitored using calibrated equipment

2.2 Radiated Spurious Emissions

2.2.1 Specification Reference

FCC 47 CFR Part 2, Clause 2.1053 FCC 47 CFR Part 90, Clause 90.210 ISED RSS-119, Clause 5.8 ISED RSS-GEN, Clause 6.13

2.2.2 Equipment Under Test and Modification State

SCG2228, S/N: 1PR002401GPT84X - Modification State 0

2.2.3 Date of Test

08-February-2024

2.2.4 Test Method

A preliminary profile of the Radiated Spurious Emissions was obtained up to the 10th harmonic by operating the EUT on a remotely controlled turntable within a semi-anechoic chamber. Measurements of emissions from the EUT were obtained with the Measurement Antenna in both Horizontal and Vertical Polarisations. The profiling produced a list of the worst-case emissions together with the EUT azimuth and antenna polarisation.

Testing was performed in accordance with ANSI C63.26, Clause 5.5.

Prescans and final measurements were performed using the direct field strength method.

Field strength measurements were performed and then converted to Equivalent Power Measurements in accordance with ANSI C63.26, Clause 5.2.7 equation c)

Example calculation:

E (dBuV/m) + 20log(d) - 104.8 = EIRP (dBm) where (d) is the measurement distance.

82.2 (dBuV/m) + 20log(3) - 104.8 = EIRP (dBm)

-13.0 = EIRP (dBm)

The Emissions were tested against RSS-119 Clause 5.8.10, as opposed to FCC Part 90.210(b), since the limit in RSS-119 is -17dBm, compliance with the limits provided also prove compliance with FCC Part 90.210(b).

2.2.5 Example Test Setup Diagram

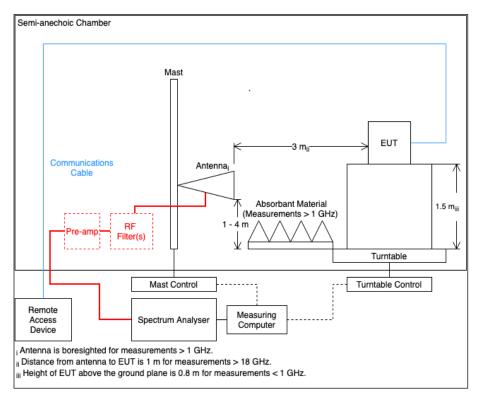


Figure 3

2.2.6 Environmental Conditions

Ambient Temperature	21.5 °C
Relative Humidity	45.0 %

2.2.7 Test Results

Tetra Basic Variant Spot Check - 806 MHz to 825 MHz

I	Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation

Table 22

*No emissions were detected within 10 dB of the limit.

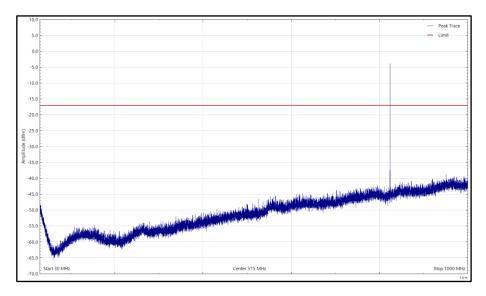


Figure 4 - 30 MHz to 1 GHz, Horizontal Polarisation

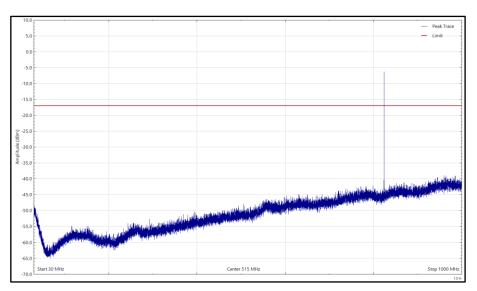


Figure 5 - 30 MHz to 1 GHz, Vertical Polarisation

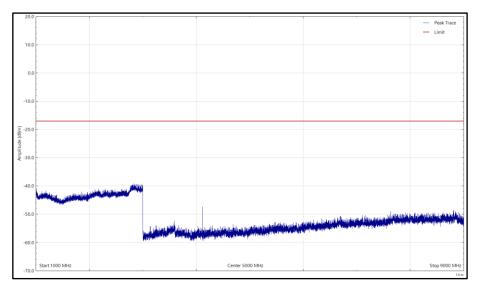


Figure 6 - 1 GHz to 9 GHz, Horizontal Polarisation

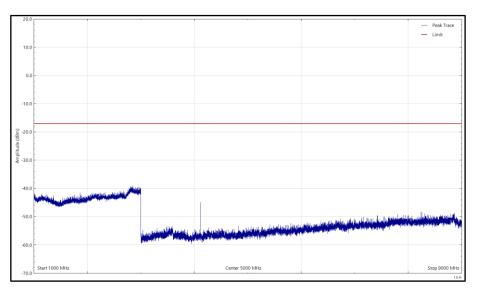


Figure 7 - 1 GHz to 9 GHz, Vertical Polarisation

Tetra Basic Variant Spot Check - 851 MHz to 870 MHz

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation

Table 23

*No emissions were detected within 10 dB of the limit.

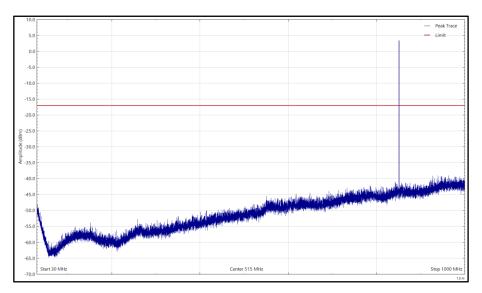


Figure 8 - 30 MHz to 1 GHz, Horizontal Polarisation

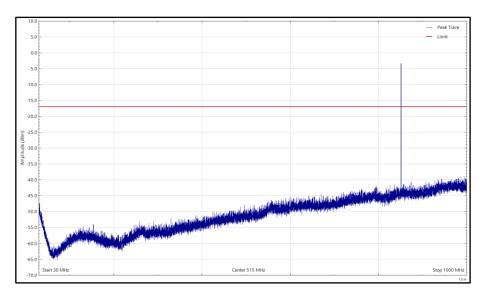


Figure 9 - 30 MHz to 1 GHz, Vertical Polarisation

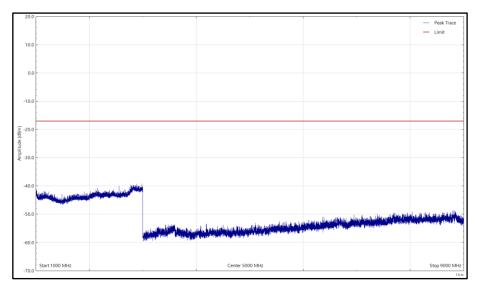


Figure 10 - 1 GHz to 9 GHz, Horizontal Polarisation

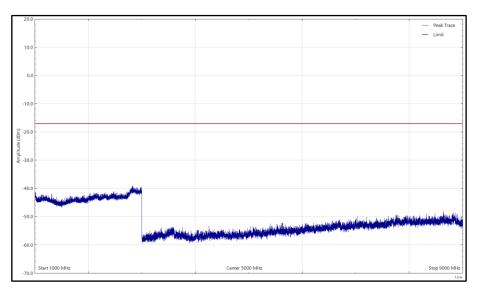


Figure 11 - 1 GHz to 9 GHz, Vertical Polarisation

FCC 47 CFR Part 90, Limit Clause 90.210

The EUT shall comply with emission mask B as per FCC 47 CFR Part 90, clause 90.210.

Industry Canada RSS-119, Limit Clause 5.8

The EUT shall comply with emission mask Y as per Industry Canada RSS-119. clause 5.8.

2.2.8 Test Location and Test Equipment Used

This test was carried out in EMC Chamber 12.

Instrument	Manufacturer	Туре No	TE No	Calibration Period (months)	Calibration Expires
Power Supply Unit	Hewlett Packard	6267B	21	-	TU
Termination (50ohm)	Меса	405-1	550	12	23-Nov-2024
Test Receiver	Rohde & Schwarz	ESU40	3506	12	30-Mar-2024
Antenna (DRG 1- 10.5GHz)	Schwarzbeck	BBHA9120B	4848	12	09-Jul-2024
Emissions Software	TUV SUD	EmX V3.1.12	5125	-	Software
1 Meter Cable	Teledyne	PR90-088-1MTR	5194	12	10-Aug-2024
Pre-Amplifier (1 GHz to 18 GHz)	Schwarzbeck	BBV 9718 C	5350	12	01-Dec-2024
Cable (K Type 2m)	Junkosha	MWX241- 02000KMS	5421	12	08-Mar-2024
Thermo-Hygro-Barometer	PCE Instruments	PCE-THB-40	5471	12	28-Apr-2024
Turntable & Mast Controller	Maturo Gmbh	NCD/498/2799.01	5612	-	TU
Tilt Antenna Mast	Maturo Gmbh	TAM 4.0-P	5613	-	TU
Turntable	Maturo Gmbh	Turntable 1.5 SI-2t	5614	-	TU
Antenna (Bi-Log, 30 MHz to 1 GHz)	Teseq	CBL6111D	5615	24	15-Mar-2025
3m Semi-Anechoic Chamber	MVG	EMC Chamber 12	5621	36	07-Aug-2026
Cable (N to N 8m)	Junkosha	MWX221- 08000NMSNMS/B	6330	12	16-Feb-2024
Termination, N-Type(M) 10W, DC-3GHz	Aaren	AT40T-10E03	6565	12	18-Jun-2024

Table 24

TU - Traceability Unscheduled

3 Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

Test Name	Measurement Uncertainty		
Maximum Conducted Output Power	± 3.2 dB		
Radiated Spurious Emissions	30 MHz to 1 GHz: ± 5.2 dB		
	1 GHz to 18 GHz: ± 6.3 dB		

Table 25

Measurement Uncertainty Decision Rule - Accuracy Method

Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115:2021, Clause 4.4.3 (Procedure 2). The measurement results are directly compared with the test limit to determine conformance with the requirements of the standard.

Risk: The uncertainty of measurement about the measured result is negligible with regard to the final pass/fail decision. The measurement result can be directly compared with the test limit to determine conformance with the requirement (compare IEC Guide 115). The level of risk to falsely accept and falsely reject items is further described in ILAC-G8.