DECLARATION OF COMPLIANCE SAR ASSESSMENT Part 1 of 2 Motorola Solutions Inc. EME Test Laboratory Motorola Solutions Malaysia Sdn Bhd (Innoplex) Plot 2A, Medan Bayan Lepas, Mukim 12 SWD 11900 Bayan Lepas Penang, Malaysia. **Date of Report:** 12/19/2019 Report Revision: B **Responsible Engineer:** Lee Kin Kting (EME Engineer) **Report Author:** Lee Kin Kting (EME Engineer) **Date/s Tested:** 10/30/2019 Manufacturer:Motorola Solutions Inc.Applicant Name:Motorola Solutions Inc. **DUT Description:** Handheld Portable – T110 FRS Consumer Radio 462 -467 MHz Test TX mode(s): CW (PTT) Max. Power output: 0.63W (462.5500 – 462.7250 MHz), (467.5625- 467.7125MHz) Nominal Power: 0.45W (462.5500 – 462.7250 MHz), (467.5625- 467.7125MHz) **Tx Frequency Bands:** 462.5500 – 462.7250 MHz, 467.5625 - 467.7125 MHz Signaling type: FM **Model(s) Tested:** T11X (PMUE5536A) Model(s) Certified: T11X (PMUE5536A), T11X (PMUE5539A), T11X (PMUE5542A), T11X (PMUE5543A) **Serial Number(s):** 69010VV0007 Classification: General Population/Uncontrolled Environment FCC ID: AZ489FT4956 IC: 109U-89FT4956 **ISED Test Site registration:** 24843 **FCC Test Firm Registration** Number: 823256 The test results clearly demonstrate compliance with FCC General Population / Uncontrolled RF Exposure limits of 1.6 W/kg averaged over 1 gram per the requirements of FCC 47 CFR § 2.1093 and RSS-102 (Issue 5). Based on the information and the testing results provided herein, the undersigned certifies that when used as stated in the operating instructions supplied, said product complies with the national and international reference standards and guidelines listed in section 4.0 of this report (no deviation from standard methods). This report shall not be reproduced without written approval from an officially designated representative of the Motorola Solutions Inc EME Laboratory. I attest to the accuracy of the data and assume full responsibility for the completeness of these measurements. This reporting format is consistent with the suggested guidelines of the TIA TSB-150 December 2004. The results and statements contained in this report pertain only to the device(s) evaluated. Tiong Nguk Ing Tiong **Deputy Technical Manager (Approved Signatory)** **Approval Date: 12/19/2019** ## Part 1 of 2 | 1.0 | Introduction2 | | | | | |--|--|--|----|--|--| | 2.0 | FCC S | AR Summary | 4 | | | | 3.0 | Abbrev | viations / Definitions | 4 | | | | 4.0 | Refere | nced Standards and Guidelines | 5 | | | | 5.0 | SAR L | imits | 6 | | | | 6.0 | Description of Device Under Test (DUT) | | | | | | 7.0 Optional Accessories and Test Criteria | | | | | | | | 7.1 | Antenna | 7 | | | | | 7.2 | Battery | 7 | | | | | 7.3 | Body worn Accessories | 7 | | | | | 7.4 | Audio Accessories | 7 | | | | | Not ap | plicable | 7 | | | | 8.0 | Descrij | ption of Test System | 8 | | | | | 8.1 | Descriptions of Robotics/Probes/Readout Electronics | | | | | | 8.2 | Description of Phantom(s) | 9 | | | | | 8.3 | Description of Simulated Tissue | 9 | | | | 9.0 | Additio | onal Test Equipment | 10 | | | | 10.0 | SAR M | Measurement System Validation and Verification | 11 | | | | | 10.1 | System Validation | 11 | | | | | 10.2 | System Verification | 11 | | | | | 10.3 | Equivalent Tissue Test Results | 12 | | | | 11.0 | Enviro | nmental Test Conditions | 12 | | | | 12.0 | DUT T | est Setup and Methodology | 13 | | | | | 12.1 | Measurements | 13 | | | | | 12.2 | DUT Configuration(s) | 13 | | | | | 12.3 | DUT Positioning Procedures | | | | | | | 12.3.1 Body | 14 | | | | | | 12.3.2 Head | 14 | | | | | | 12.3.3 Face | | | | | | 12.4 | DUT Test Channels | | | | | | 12.5 | SAR Result Scaling Methodology | | | | | | 12.6 | DUT Test Plan | | | | | 13.0 | DUT T | est Data | 16 | | | | | 13.1 | Assessment at the Face for 462.5500 – 462.7250MHz band | | | | | | 13.2 | Assessment at the Face for 467.5625 – 467.7125MHz band | 17 | | | | | 13.5 | Shortened Scan Assessment | 17 | | | | 14.0 | Results | S Summary | 18 | | | | 15.0 | Variab | ility Assessment | 19 | | | | 16.0 | System | Uncertainty | 19 | | | | APP | PENDICES | | |--------|---|----| | A | Measurement Uncertainty Budget | 20 | | | | | | C | Dipole Calibration Certificates | 39 | | Part | t 2 of 2 | | | APP | PENDICES | | | D | System Verification Check Scans | 2 | | E | DUT Scans | 4 | | F | Shorten Scan of Highest SAR Configuration | 7 | | | | | | G | DUT Test Position Photos | 10 | | G
H | DUT Test Position Photos DUT, Body worn and audio accessories Photos | | ## **Report Revision History** | Date | Revision | Comments | |------------|----------|--------------------------------------| | 11/01/2019 | A | Initial release | | 12/19/2019 | В | Include Applicant Name at cover page | #### 1.0 Introduction This report details the utilization, test setup, test equipment, and test results of the Specific Absorption Rate (SAR) measurements performed at the Motorola Solutions Inc. EME Test Laboratory for handheld portable model number T110 (PMUE5536A). This device is classified as General Population/Uncontrolled. #### 2.0 FCC SAR Summary Table 1 | Equipment
Class | Frequency band (MHz) | Max Calc at Face
(W/kg) | |--------------------|----------------------|----------------------------| | Class | | 1g-SAR | | EDE | 462.5500 – 462.7250 | 0.44 | | FRF | 467.5625 - 467.7125 | 0.53 | #### 3.0 Abbreviations / Definitions CNR: Calibration Not Required CW: Continuous Wave DUT: Device Under Test FRF: Part 95 Family Radio Face Held Transmitter EME: Electromagnetic Energy FM: Frequency Modulation NA: Not Applicable PTT: Push to Talk SAR: Specific Absorption Rate Body worn accessories: These accessories allow the DUT to be worn on the body of the user. Maximum Power: Defined as the upper limit of the production line final test station. #### 4.0 Referenced Standards and Guidelines This product is designed to comply with the following applicable national and international standards and guidelines. - IEC62209-1 (2016) Procedure to determine the specific absorption rate (SAR) for handheld devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz) - Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, FCC, Washington, D.C.: 1997. - IEEE 1528 (2013), Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques - American National Standards Institute (ANSI) / Institute of Electrical and Electronics Engineers (IEEE) C95. 1-1992 - Institute of Electrical and Electronics Engineers (IEEE) C95.1-2005 - International Commission on Non-Ionizing Radiation Protection (ICNIRP) 1998 - Ministry of Health (Canada) Safety Code 6 (2015), Limits of Human Exposure to Radio frequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz - RSS-102 (Issue 5) Radio Frequency (RF) Exposure Compliance of Radio communication Apparatus (All Frequency Bands) - Australian Communications Authority Radio communications (Electromagnetic Radiation -Human Exposure) Standard (2014) - ANATEL, Brazil Regulatory Authority, Resolution No. 303 of July 2, 2002 "Regulation of the limitation of exposure to electrical, magnetic, and electromagnetic fields in the radio frequency range between 9 kHz and 300 GHz." and "Attachment to resolution # 303 from July 2, 2002" - IEC62209-2 Edition 1.0 2010-03, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz). - FCC KDB 643646 D01 SAR Test for PTT Radios v01r03 - FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 - FCC KDB 865664 D02 RF Exposure Reporting v01r02 - FCC KDB 447498 D01 General RF Exposure Guidance v06 #### 5.0 SAR Limits Table 2 | | SAR (W/kg) | | | | |---|--|--|--|--| | EXPOSURE LIMITS | (General Population /
Uncontrolled Exposure
Environment) | (Occupational /
Controlled Exposure
Environment) | | | | Spatial Average - ANSI - | | | | | | (averaged over the whole body) | 0.08 | 0.4 | | | | Spatial Peak - ANSI - | | | | | | (averaged over any 1-g of tissue) | 1.6 | 8.0 | | | | Spatial Peak – ICNIRP/ANSI - | | | | | | (hands/wrists/feet/ankles averaged over 10-g) | 4.0 | 20.0 | | | | Spatial Peak - ICNIRP - | | | | | | (Head and Trunk 10-g) | 2.0 | 10.0 | | | ## **6.0** Description of Device Under Test (DUT) This device operates in a half duplex system. A half duplex system only allows the user to transmit or receive. This device cannot transmit and receive simultaneously. The user must stop transmitting in order to receive a signal or listen for a response, regardless of PTT button or use of voice activated audio accessories. This type of operation, along with the RF safety booklet, which instructs the user to transmit no more than 50% of the time, justifies the use of 50% duty factor for this device. Table 3 below summarizes the bands, maximum duty cycles and maximum output powers. Maximum output powers are defined as upper limit of the production line final test station. Table 3 | Band (MHz) | Duty Cycle (%) | Max Power (W) | | |---------------------|----------------|---------------|--| | 467.5625 - 467.7125 | *50 | 0.62 | | | 462.5500 – 462.7250 | *30 | 0.63 | | Note - * includes 50% PTT operation The intended operating positions are "at the face" with the DUT at
least 1 inch (2.5cm) from the mouth. No audio jack available for this device, thus PTT operation at the body not applicable for this model. #### Report ID: P18833-EME-00003 #### 7.0 Optional Accessories and Test Criteria This device is offered with optional accessories. All accessories were individually evaluated during the test plan creation to determine if testing was required per the guidelines outlined in 4.0 to assess compliance of the device. #### 7.1 Antenna There is one fixed antenna offered for this product. The table below lists its descriptions. Table 4 | Antenna
No. | Antenna Models | Description | Selected
for test | Tested | |----------------|----------------|---------------------------------------|----------------------|--------| | 1 | Fixed Antenna | Fixed, 462-467MHz ,1/4 wave, 0.55 dBi | Yes | Yes | #### 7.2 Battery There is one battery offered for this product. The table below lists its descriptions. Table 5 | Battery
No. | Battery Models | Description | Comments | |----------------|----------------|-------------------------------------|----------| | 1 | AAA Alkaline | 3xAAA Alkaline individual batteries | | ## 7.3 Body worn Accessories All body worn accessories were considered. The Table below lists the body worn accessories, and body worn accessory descriptions. Table 6 | Body
worn No. | Body worn
Models | Description | Selected for test | Tested | Comments | |------------------|--------------------------|--|-------------------|--------|--------------------------------------| | 1 | 1564028V01 | TLKR- T3 T40 T50 T60 XTB Belt Clip | No | No | For convenient | | 2 | 1564028V03 | Talkabout- Belt Clip White | No | 1 10() | carry purpose only. PTT | | 3 | PMLN7438A | Belt Clip,T200 Series Belt Clip Twin
Pack | No | No | operation at body
not feasible as | | 4 | 42015005001 | Carry Land yard | No | 3. T | there is no audio | | 5 | PMLN7707A/
PMLN7707AR | Bike Mount | No | | jack for this device. | #### 7.4 Audio Accessories Not applicable ## 8.0 Description of Test System ## 8.1 Descriptions of Robotics/Probes/Readout Electronics Table 8 | Dosimetric System type | System version | DAE type | Probe Type | |--|----------------|----------|---------------------| | Schmid & Partner
Engineering AG
SPEAG DASY 5 | 52.10.2.1495 | DAE4 | EX3DV4
(E-Field) | The DASY5TM system is operated per the instructions in the DASY5TM Users Manual. The complete manual is available directly from SPEAGTM. All measurement equipment used to assess SAR compliance was calibrated according to ISO/IEC 17025 A2LA guidelines. Section 9.0 presents additional test equipment information. Appendices B and C present the applicable calibration certificates. The E-field probe first scans a coarse grid over a large area inside the phantom in order to locate the interpolated maximum SAR distribution. After the coarse scan measurement, the probe is automatically moved to a position at the interpolated maximum. The subsequent scan can directly use this position as reference for the cube evaluations. #### 8.2 Description of Phantom(s) Table 9 | | | Material | Phantom
Dimensions
LxWxD | Material
Thickness | Support
Structure | Loss
Tangent | |--------------|-----------------|--|--------------------------------|-----------------------|----------------------|-----------------| | Phantom Type | Phantom(s) Used | Parameters | (mm) | (mm) | Material | (wood) | | Triple Flat | NA | 200MHz -6GHz;
Er = 3-5,
Loss Tangent =
≤0.05 | 280x175x175 | | | | | SAM | NA | 300MHz -6GHz;
Er = < 5,
Loss Tangent =
≤0.05 | Human Model | 2mm
+/- 0.2mm | Wood | < 0.05 | | Oval Flat | V | 300MHz -6GHz;
Er = 4+/- 1,
Loss Tangent =
≤0.05 | 600x400x190 | | | | ## 8.3 Description of Simulated Tissue The sugar based simulate tissue is produced by placing the correct measured amount of De-ionized water into a large container. Each of the dried ingredients are weighed and added to the water carefully to avoid clumping. If the solution has a high sugar concentration the water is pre-heated to aid in dissolving the ingredients. The simulated tissue mixture was mixed based on the Simulated Tissue Composition indicated in Table 10. During the daily testing of this product, the applicable mixture was used to measure the Di-electric parameters at each of the tested frequencies to verify that the Di-electric parameters were within the tolerance of the tissue specifications. Simulated Tissue Composition (percent by mass) Table 10 | Ingredients | 450MHz | |-------------------|--------| | Sugar | 56.0 | | Diacetin | 0 | | De ionized –Water | 39.10 | | Salt | 3.80 | | HEC | 1.0 | | Bact. | 0.1 | ## 9.0 Additional Test Equipment The Table below lists additional test equipment used during the SAR assessment. Table 11 | Equipment Type | Model
Number | Serial Number | Calibration
Date | Calibration Due Date | |---------------------------------|-----------------|---------------|---------------------|----------------------| | SPEAG PROBE | EX3DV4 | 7364 | 01/23/2019 | 01/23/2020 | | SPEAG DAE | DAE4 | 1483 | 01/10/2019 | 01/10/2020 | | POWER AMPLIFIER | 50W 1000A | 14715 | CNR | CNR | | POWER SENSOR | 8481B | SG41090248 | 12/20/2018 | 12/20/2019 | | POWER SENSOR | E9301B | MY41495733 | 04/19/2019 | 04/19/2020 | | POWER METER | E4418B | MY45100532 | 11/07/2018 | 11/07/2019 | | POWER METER | E4418B | MY45107917 | 07/01/2019 | 07/01/2021 | | BI-DIRECTIONAL COUPLER | 3020A | 41931 | 07/11/2019 | 07/11/2020 | | VECTOR SIGNAL GENERATOR | E4438C | MY45091270 | 08/13/2018 | 08/13/2020 | | TEMPERATURE & HUMINIDITY LOGGER | TM320 | 12253047 | 10/30/2018 | 10/30/2019 | | THERMOMETER | HH806AU | 080307 | 12/05/2018 | 12/05/2019 | | TEMPERATURE PROBE | 80PK-22 | 06032017 | 12/05/2018 | 12/05/2019 | | DIELECTRIC ASSESSMENT KIT | DAK-3.5 | 1156 | 01/08/2019 | 01/08/2020 | | NETWORK ANALYZER | E5071B | MY42403147 | 12/19/2018 | 12/19/2019 | | SPEAG DIPOLE | D450V3 | 1053 | 10/19/2018 | 10/19/2020 | | POWER METER | E4416A | MY50001037 | 08/30/2019 | 08/30/2021 | | POWER SENSOR | E9301B | MY50290001 | 05/06/2019 | 05/06/2020 | #### 10.0 SAR Measurement System Validation and Verification DASY output files of the probe/dipole calibration certificates and system verification test results are included in appendices B, C & D respectively. #### **10.1** System Validation The SAR measurement system was validated according to procedures in KDB 865664. The validation status summary Table is below. Table 12 | Dates | Probe Calibration
Point | | Probe | | red Tissue
ameters | | Validation | | | | |------------|----------------------------|------|-------|--|-----------------------|-------------|------------|----------|--|--| | | Po | IIIt | SIN | σ $\epsilon_{\rm r}$ $\epsilon_{\rm r}$ | | Sensitivity | Linearity | Isotropy | | | | | CW | | | | | | | | | | | 03/15/2019 | Head | 450 | 7364 | 0.85 | 42.6 | Pass | Pass | Pass | | | #### **10.2** System Verification System verification checks were conducted each day during the SAR assessment. The results are normalized to 1W. Appendix D includes DASY plots for each day during the SAR assessment. The Table below summarizes the daily system check results used for the SAR assessment. Table 13 | Probe
Serial # | Tissue Type | Dipole Kit /
Serial # | Ref SAR @ 1W
(W/kg) | System Check
Results
Measured
(W/kg) | System Check Test
Results when
normalized to 1W
(W/kg) | Tested
Date | |-------------------|-------------|--------------------------|------------------------|---|---|----------------| | 7364 | IEEE/IEC | SPEAG
D450V3 / 1053 | 4.57 +/- 10% | 1.11 | 4.44 | 10/30/2019 | #### 10.3 Equivalent Tissue Test Results Simulated tissue prepared for SAR measurements is measured daily and within 24 hours prior to actual SAR testing to verify that the tissue is within +/- 5% of target parameters at the center of the transmit band. This measurement is done using the applicable equipment indicated in section 9.0. The Table below summarizes the measured tissue parameters used for the SAR assessment. Table 14 | Frequency (MHz) | Tissue Type | Conductivity
Target (S/m) | Dielectric Constant
Target | Conductivity
Meas. (S/m) | Dielectric
Constant
Meas. | Tested Date | |-----------------|--------------|------------------------------|-------------------------------|-----------------------------|---------------------------------|--------------------| | 450 | | 0.87
(0.83-0.91) | 43.5
(41.3-45.7) | 0.86 | 42.4 | | | 463 | IEEE/
IEC | 0.87
(0.83-0.91) | 43.4
(41.3-45.6) | 0.88 | 42.2 | 10/30/2019 | | 468 | | 0.87
(0.83-0.91) | 43.4
(41.2-45.6) | 0.88 | 42.1 | | #### 11.0 Environmental Test Conditions The EME Laboratory's ambient environment is well controlled resulting in very stable simulated tissue temperature and therefore stable dielectric properties. Simulated tissue temperature is measured prior to each scan to insure it is within +/ - 2°C of the temperature at which the dielectric properties were determined. The liquid depth within the phantom used for measurements was at least 15cm. Additional precautions are routinely taken to ensure the stability of the simulated tissue such as covering the phantoms when scans are not actively in process in order to minimize evaporation. The lab environment is continuously monitored. The Table below presents the range and average environmental conditions during the SAR tests reported herein: Table 15 | | Target | Measured | |---------------------|------------|-------------------------------------| | Ambient Temperature | 18 – 25 °C | Range:20.4 – 24.7°C
Avg. 22.2 °C | | Tissue
Temperature | 18 – 25 °C | Range:20.5-22.4°C
Avg. 21.45°C | Relative humidity target range is a recommended target The EME Lab RF environment uses a Spectrum Analyzer to monitor for extraneous large signal RF contaminants that could possibly affect the test results. If such unwanted signals are discovered the SAR scans are repeated. #### Report ID: P18833-EME-00003 #### 12.0 DUT Test Setup and Methodology #### 12.1 Measurements SAR measurements were performed using the DASY system described in section 8.0 using zoom scans. Oval flat phantoms filled with applicable simulated tissue were used for face testing. The Table below includes the step sizes and resolution of area and zoom scans per KDB 865664 requirements. Table 16 | Description | ≤3 GHz | > 3 GHz | | | |--|---|--|--|--| | Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface | 5 ± 1 mm | $\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$ | | | | Maximum probe angle from probe axis to phantom surface normal at the measurement location | 30° ± 1° | 20° ± 1° | | | | | ≤ 2 GHz: ≤ 15 mm | $3-4$ GHz: ≤ 12 mm | | | | | $2-3$ GHz: ≤ 12 mm | $4-6$ GHz: ≤ 10 mm | | | | | When the x or y dimension | on of the test device, in | | | | Maximum area scan spatial resolution: ΔxArea, ΔyArea | the measurement plane orientation, is smaller | | | | | Waxiiiuiii area seaii spatiai resolutioii. AxArea, AyArea | than the above, the measurement resolution must | | | | | | be \leq the corresponding x | or y dimension of the | | | | | test device with at least of | ne measurement point | | | | | on the test device. | | | | | Maximum zoom scan spatial resolution: ΔxZoom, ΔyZoom | \leq 2 GHz: \leq 8 mm | $3 - 4 \text{ GHz: } \leq 5 \text{ mm*}$ | | | | | $2-3 \text{ GHz: } \leq 5 \text{ mm*}$ | $4-6 \text{ GHz: } \leq 4 \text{ mm*}$ | | | | Maximum zoom scan spatial uniform grid: ΔzZoom(n) | | $3-4$ GHz: ≤ 4 mm | | | | resolution, normal to | ≤ 5 mm | $4-5 \text{ GHz:} \leq 3 \text{ mm}$ | | | | phantom surface | | $5-6$ GHz: ≤ 2 mm | | | Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details. #### 12.2 **DUT Configuration(s)** The DUT is a portable device operational at the face as described in section 6.0 while using the applicable accessories listed in section 7.0. All accessories listed in section 7.0 of this report were considered when implementing the guidelines specified in KDB 643646. ^{*} When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is \leq 1.4 W/kg, \leq 8 mm, \leq 7 mm and \leq 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. #### **Report ID: P18833-EME-00003** ## 12.3 **DUT Positioning Procedures** The positioning of the device for each body location is described below and illustrated in Appendix G. ## 12.3.1 Body Not applicable. #### 12.3.2 Head Not applicable. #### 12.3.3 Face The DUT was positioned with its' front side separated 2.5cm from the phantom. Page 14 of 48 #### 12.4 DUT Test Channels The number of test channels was determined by using the following IEEE 1528 equation. The use of this equation produces the same or more test channels compared to the FCC KDB 447498 number of test channels formula. $$N_c = 2 * roundup[10 * (f_{high} - f_{low}) / f_c] + 1$$ Where N_c = Number of channels $F_{high} = Upper channel$ $F_{low} = Lower channel$ F_c = Center channel #### 12.5 SAR Result Scaling Methodology The calculated 1-gram averaged SAR results indicated as "Max Calc. 1g-SAR" in the data Tables is determined by scaling the measured SAR to account for power leveling variations and drift. Appendix F includes a shortened scan to justify SAR scaling for drift. For this device the "Max Calc. 1g-SAR" is scaled using the following formula: $$Max_Calc = SAR_meas \cdot 10^{\frac{-Drift}{10}} \cdot \frac{P_max}{P_int} \cdot DC$$ $P_{max} = Maximum Power (W)$ P int = Initial Power (W) Drift = DASY drift results (dB) SAR_meas = Measured 1-g or 10-g Avg. SAR (W/kg) DC = Transmission mode duty cycle in % where applicable 50% duty cycle is applied for PTT operation Note: for conservative results, the following are applied: If $P_{int} > P_{max}$, then $P_{max}/P_{int} = 1$. Drift = 1 for positive drift Additional SAR scaling was applied using the methodologies outlined in FCC KDB 865664 using tissue sensitivity values. SAR was scaled for conditions where the tissue permittivity was measured above the nominal target and for tissue conductivity that was measured below the nominal target. Negative or reduced SAR scaling is not permitted. #### 12.6 DUT Test Plan The guidelines and requirements outlined in section 4.0 were used to assess compliance of this device. All modes of operation identified in section 6.0 were considered during the development of the test plan. All tests were performed in CW modes and 50% duty cycle was applied to PTT configurations in the final results. #### 13.0 DUT Test Data #### 13.1 Assessment at the Face for 462.5500 – 462.7250MHz band Conducted power measurements for channel within FCC allocated frequency range 462.5500 - 462.7250 MHz was measured and listed in Table 17. Table 17 | | Power (W) | |------------------|-----------| | Test Freq. (MHz) | AAA | | | Alkaline | | 462.6500 | 0.622 | DUT assessment with fixed antenna and offered battery with front of DUT positioned 2.5cm facing phantom was performed. SAR plots of the results per Table 18 are presented in Appendix E. Table 18 | | 1 0.000 | | | | | | | | | |---------|----------|-------------|-----------|-----------|-------|-------|--------|---------------------|-----------| | | | | | | Init | SAR | Meas. | Max
Calc.
1g- | | | | | | | | 11111 | SAI | ıg- | ıg- | | | | | Carry | Cable | Test Freq | Pwr | Drift | SAR | SAR | | | Antenna | Battery | Accessory | Accessory | (MHz) | (W) | (dB) | (W/kg) | (W/kg) | Run# | | Fixed | AAA | None, Radio | None | 462.6500 | 0.62 | 0.61 | 0.75 | 0.44 | ZZ-FACE- | | Fixed | Alkaline | @ Front | none | 402.0300 | 0.02 | -0.01 | 0.73 | 0.44 | 191030-03 | #### 13.2 Assessment at the Face for 467.5625 – 467.7125MHz band Conducted power measurements for channel within FCC allocated frequency range 467.5625-467.7125 MHz was measured and listed in Table 19. Table 19 | | Power (W) | |------------------|-----------| | Test Freq. (MHz) | AAA | | | Alkaline | | 467.6375 | 0.624 | DUT assessment with fixed antenna and offered battery with front of DUT positioned 2.5cm facing Phantom per KDB 643646. SAR plot of the result per Table 18 are presented in Appendix E. Table 20 | Antenna | Battery | Carry
Accessory | Cable
Accessory | Test Freq
(MHz) | Pwr | | SAR | Max
Calc.
1g-
SAR
(W/kg) | Run# | |---------|-----------------|------------------------|--------------------|--------------------|------|-------|------|--------------------------------------|-----------------------| | Fixed | AAA
Alkaline | None, Radio
@ Front | None | 467.6375 | 0.62 | -0.64 | 0.87 | 0.51 | ZZ-FACE-
191030-06 | #### 13.5 Shortened Scan Assessment A "shortened" scan using the highest SAR configuration overall from above was performed to validate the SAR drift of the full DASY5TM coarse and zoom scans. Note that the shortened scan represents the zoom scan performance result; this is obtained by first running a coarse scan to find the peak area and then, using a newly charged battery, a zoom scan was performed. The results of the shortened cube scan presented in Appendix F demonstrate that the scaling methodology used to determine the calculated SAR results presented herein are valid. The SAR result from the Table below is provided in Appendix F. Table 21 | | | Carry | Cable | Test Freq | | SAR
Drift | 0 | Max
Calc.
1g-
SAR | | |---------|----------|-------------|-----------|-----------|------|--------------|--------|----------------------------|-----------| | Antenna | Battery | Accessory | Accessory | (MHz) | (W) | (dB) | (W/kg) | (W/kg) | Run# | | Fixed | AAA | None, Radio | None | 467.6375 | 0.62 | 0.47 | 0.94 | 0.53 | ZZ-FACE- | | Fixeu | Alkaline | @ Front | None | 407.0373 | 0.02 | -0.47 | 0.94 | 0.55 | 191030-08 | ## 14.0 Results Summary Based on the test guidelines from section 4.0 and satisfying frequencies within FCC and ISED frequency band, the highest Operational Maximum Calculated 1-gram average SAR values found for this filing: Table 22 | Technologies | Engagement hand (MIII) | Max Calc at Face (W/kg) | | | | | | | |--------------|------------------------|-------------------------|--|--|--|--|--|--| | | Frequency band (MHz) | 1g-SAR | | | | | | | | | FCC US & ISED Canada | | | | | | | | | FM | 462.5500 – 462.7250 | 0.44 | | | | | | | | FM | 467.5625 – 467.7125 | 0.53 | | | | | | | #### 15.0 Variability Assessment Per the guidelines in KDB 865664 SAR variability assessment is not required because SAR results are below 0.8W/kg (General population). #### **16.0** System Uncertainty A system uncertainty analysis is not required for this report per KDB 865664 because the highest report SAR value for General Population is less than 1.5 W/kg. Per the guidelines of ISO 17025 a reported system uncertainty is required and therefore measurement uncertainty budget is included in Appendix A. Page 19 of 48 # Appendix A Measurement Uncertainty Budget Table A.1: Uncertainty Budget for Device Under Test for 450 MHz | | | | | | | | h = | i = | | |--|-------------------------|------------|--------------|------------|-------------|--------------|-------------------------------
--------------------------------|----------| | a | b | с | d | e = f(d,k) | f | g | cxf/e | c x g / e | k | | Uncertainty Component | IEEE
1528
section | Tol. (± %) | Prob
Dist | Div. | ci
(1 g) | ci
(10 g) | 1 g
u _i
(±%) | 10 g
u _i
(±%) | v_i | | Measurement System | | | | | | | | | | | Probe Calibration | E.2.1 | 6.7 | N | 1.00 | 1 | 1 | 6.7 | 6.7 | 8 | | Axial Isotropy | E.2.2 | 4.7 | R | 1.73 | 0.707 | 0.707 | 1.9 | 1.9 | 8 | | Hemispherical Isotropy | E.2.2 | 9.6 | R | 1.73 | 0.707 | 0.707 | 3.9 | 3.9 | 8 | | Boundary Effect | E.2.3 | 1.0 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | 8 | | Linearity | E.2.4 | 4.7 | R | 1.73 | 1 | 1 | 2.7 | 2.7 | 8 | | System Detection Limits | E.2.5 | 1.0 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | 8 | | Readout Electronics | E.2.6 | 0.3 | N | 1.00 | 1 | 1 | 0.3 | 0.3 | 8 | | Response Time | E.2.7 | 1.1 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | ∞ | | Integration Time | E.2.8 | 1.1 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | ∞ | | RF Ambient Conditions - Noise | E.6.1 | 3.0 | R | 1.73 | 1 | 1 | 1.7 | 1.7 | ∞ | | RF Ambient Conditions - Reflections | E.6.1 | 0.0 | R | 1.73 | 1 | 1 | 0.0 | 0.0 | ∞ | | Probe Positioner Mech. Tolerance | E.6.2 | 0.4 | R | 1.73 | 1 | 1 | 0.2 | 0.2 | ∞ | | Probe Positioning w.r.t Phantom | E.6.3 | 1.4 | R | 1.73 | 1 | 1 | 0.8 | 0.8 | ∞ | | Max. SAR Evaluation (ext., int., avg.) | E.5 | 3.4 | R | 1.73 | 1 | 1 | 2.0 | 2.0 | ∞ | | Test sample Related | | | | | | | | | | | Test Sample Positioning | E.4.2 | 3.2 | N | 1.00 | 1 | 1 | 3.2 | 3.2 | 29 | | Device Holder Uncertainty | E.4.1 | 4.0 | N | 1.00 | 1 | 1 | 4.0 | 4.0 | 8 | | SAR drift | 6.6.2 | 5.0 | R | 1.73 | 1 | 1 | 2.9 | 2.9 | ∞ | | Phantom and Tissue Parameters | | | | | | | | | | | Phantom Uncertainty | E.3.1 | 4.0 | R | 1.73 | 1 | 1 | 2.3 | 2.3 | ∞ | | Liquid Conductivity (target) | E.3.2 | 5.0 | R | 1.73 | 0.64 | 0.43 | 1.8 | 1.2 | ∞ | | Liquid Conductivity (measurement) | E.3.3 | 3.3 | N | 1.00 | 0.64 | 0.43 | 2.1 | 1.4 | ∞ | | Liquid Permittivity (target) | E.3.2 | 5.0 | R | 1.73 | 0.6 | 0.49 | 1.7 | 1.4 | ∞ | | Liquid Permittivity (measurement) | E.3.3 | 1.9 | N | 1.00 | 0.6 | 0.49 | 1.1 | 0.9 | ∞ | | Combined Standard Uncertainty | | | RSS | | | | 11 | 11 | 477 | | Expanded Uncertainty
(95% CONFIDENCE LEVEL) | | | k=2 | | | | 23 | 22 | | Notes for uncertainty budget Tables: - a) Column headings a-k are given for reference. - b) Tol. tolerance in influence quantity. - c) Prob. Dist. Probability distribution - d) N, R normal, rectangular probability distributions - e) Div. divisor used to translate tolerance into normally distributed standard uncertainty - f) *ci* sensitivity coefficient that should be applied to convert the variability of the uncertainty component into a variability of SAR. - g) ui SAR uncertainty - h) vi degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty Table A.2: Uncertainty Budget for System Validation (dipole & flat phantom) for 450 MHz | | | | | | | | h = | <i>i</i> = | | |---|-------------------------|------------|--------------|--------|----------------------|-----------------------|-------------------------------|--------------------------------|------------------| | | | | | e = | | | cxf | cx | | | a | b | c | d | f(d,k) | f | g | / e | g/e | \boldsymbol{k} | | Uncertainty Component | IEEE
1528
section | Tol. (± %) | Prob
Dist | Div. | c _i (1 g) | c _i (10 g) | 1 g
U _i
(±%) | 10 g
U _i
(±%) | v_i | | Measurement System | | | | | | | | | | | Probe Calibration | E.2.1 | 6.7 | N | 1.00 | 1 | 1 | 6.7 | 6.7 | 8 | | Axial Isotropy | E.2.2 | 4.7 | R | 1.73 | 1 | 1 | 2.7 | 2.7 | 8 | | Spherical Isotropy | E.2.2 | 9.6 | R | 1.73 | 0 | 0 | 0.0 | 0.0 | 8 | | Boundary Effect | E.2.3 | 1.0 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | ∞ | | Linearity | E.2.4 | 4.7 | R | 1.73 | 1 | 1 | 2.7 | 2.7 | ∞ | | System Detection Limits | E.2.5 | 1.0 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | ∞ | | Readout Electronics | E.2.6 | 0.3 | N | 1.00 | 1 | 1 | 0.3 | 0.3 | ∞ | | Response Time | E.2.7 | 1.1 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | ∞ | | Integration Time | E.2.8 | 0.0 | R | 1.73 | 1 | 1 | 0.0 | 0.0 | ∞ | | RF Ambient Conditions - Noise | E.6.1 | 3.0 | R | 1.73 | 1 | 1 | 1.7 | 1.7 | ∞ | | RF Ambient Conditions - Reflections | E.6.1 | 0.0 | R | 1.73 | 1 | 1 | 0.0 | 0.0 | ∞ | | Probe Positioner Mechanical Tolerance | E.6.2 | 0.4 | R | 1.73 | 1 | 1 | 0.2 | 0.2 | ∞ | | Probe Positioning w.r.t. Phantom | E.6.3 | 1.4 | R | 1.73 | 1 | 1 | 0.8 | 0.8 | ∞ | | Max. SAR Evaluation (ext., int., avg.) | E.5 | 3.4 | R | 1.73 | 1 | 1 | 2.0 | 2.0 | ∞ | | Dipole | | | | | | | | | | | Dipole Axis to Liquid Distance | 8, E.4.2 | 2.0 | R | 1.73 | 1 | 1 | 1.2 | 1.2 | ∞ | | Input Power and SAR Drift Measurement | 8, 6.6.2 | 5.0 | R | 1.73 | 1 | 1 | 2.9 | 2.9 | ∞ | | Phantom and Tissue Parameters | | | | | | | | | | | Phantom Uncertainty | E.3.1 | 4.0 | R | 1.73 | 1 | 1 | 2.3 | 2.3 | ∞ | | Liquid Conductivity (target) | E.3.2 | 5.0 | R | 1.73 | 0.64 | 0.43 | 1.8 | 1.2 | ∞ | | Liquid Conductivity (measurement) | E.3.3 | 3.3 | R | 1.73 | 0.64 | 0.43 | 1.2 | 0.8 | ∞ | | Liquid Permittivity (target) | E.3.2 | 5.0 | R | 1.73 | 0.6 | 0.49 | 1.7 | 1.4 | ∞ | | Liquid Permittivity (measurement) | E.3.3 | 1.9 | R | 1.73 | 0.6 | 0.49 | 0.6 | 0.5 | ∞ | | Combined Standard Uncertainty | | | RSS | | | | 10 | 9 | 99999 | | Expanded Uncertainty (95% CONFIDENCE LEVEL) | | | k=2 | | | | 19 | 18 | | Notes for uncertainty budget Tables: - a) Column headings *a-k* are given for reference. - b) Tol. tolerance in influence quantity. - c) Prob. Dist. Probability distribution - d) N, R normal, rectangular probability distributions - e) Div. divisor used to translate tolerance into normally distributed standard uncertainty - f) *ci* sensitivity coefficient that should be applied to convert the variability of the uncertainty component into a variability of SAR. - g) ui SAR uncertainty - h) vi degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty # Appendix B Probe Calibration Certificates #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client I **Motorola Solutions MY** Certificate No: EX3-7364_Jan19 #### CALIBRATION CERTIFICATE Object EX3DV4 - SN:7364 Calibration procedure(s) QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v5, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes Calibration date: January 23, 2019 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-18 (No. 217-02672/02673) | Apr-19 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-18 (No. 217-02672) | Apr-19 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-18 (No. 217-02673) | Apr-19 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 04-Apr-18 (No. 217-02682) | Apr-19 | | DAE4 | SN: 660 | 19-Dec-18 (No. DAE4-660_Dec18) | Dec-19 | | Reference Probe ES3DV2 | SN: 3013 | 31-Dec-18 (No. ES3-3013_Dec18) | Dec-19 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-18) | In house check: Jun-20 | | Network Analyzer E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-18) | In house check: Oct-19 | Calibrated by: Jeton Kastrati Function Laboratory Technician Signature Approved by: Katja Pokovic Technical Manager Issued: January 26, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EX3-7364_Jan19 Page 1 of 15 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is
Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 Techniques", June 2013 b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-7364_Jan19 Page 2 of 15 January 23, 2019 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7364 **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--|----------|----------|----------|-----------| | Norm (µV/(V/m) ²) ^A | 0.46 | 0.46 | 0.57 | ± 10.1 % | | DCP (mV) ⁸ | 99.7 | 97.6 | 99.3 | | Calibration Results for Modulation Response | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Max
dev. | Unc ^E
(k=2) | |-----|---------------------------|---|---------|------------|-----|---------|----------|-------------|---------------------------| | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 114.6 | + 2.7 % | ±4.7 % | | | | Y | 0.0 | 0.0 | 1.0 | | 112.4 | | | | | | Y | 0.0 | 0.0 | 1.0 | 2 | 127.7 | | | Note: For details on UID parameters see Appendix The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ^{A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). Numerical linearization parameter: uncertainty not required. Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the} field value. January 23, 2019 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7364 #### **Sensor Model Parameters** #### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 129.9 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | | | | Certificate No: EX3-7364_Jan19 Page 4 of 15 January 23, 2019 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7364 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity F | Conductivity
(S/m) | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|----------------------------|-----------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 150 | 52.3 | 0.76 | 12.97 | 12.97 | 12.97 | 0.00 | 1.00 | ± 13.3 % | | 300 | 45.3 | 0.87 | 12.05 | 12.05 | 12.05 | 0.09 | 1.20 | ± 13.3 % | | 450 | 43.5 | 0.87 | 10.75 | 10.75 | 10.75 | 0.13 | 1.30 | ± 13.3 % | | 750 | 41.9 | 0.89 | 10.42 | 10.42 | 10.42 | 0.56 | 0.80 | ± 12.0 % | | 835 | 41.5 | 0.90 | 10.23 | 10.23 | 10.23 | 0.30 | 1.09 | ± 12.0 % | | 900 | 900 41.5 0.97 | | 9.78 | 9.78 | 9.78 | 0.31 | 1.08 | ± 12.0 % | | 1810 | 40.0 | 1.40 | 8.25 | 8.25 | 8.25 | 0.35 | 0.87 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 8.19 | 8.19 | 8.19 | 0.37 | 0.85 | ± 12.0 % | | 2100 | 39.8 | 1.49 | 8.15 | 8.15 | 8.15 | 0.25 | 1.09 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.38 | 7.38 | 7.38 | 0.40 | 0.85 | ± 12.0 % | | 5250 | 35.9 | 4.71 | 5.08 | 5.08 | 5.08 | 0.40 | 1.80 | ± 13.1 % | | 5500 | 35.6 | 4.96 | 4.86 | 4.86 | 4.86 | 0.40 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.68 | 4.68 | 4.68 | 0.40 | 1.80 | ± 13.1 % | | 5750 | 35.4 | 5.22 | 4.72 | 4.72 | 4.72 | 0.40 | 1.80 | ± 13.1 % | ^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to Certificate No: EX3-7364_Jan19 measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and o) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. Apha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. January 23, 2019 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7364 #### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|----------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 150 | 61.9 | 0.80 | 12.37 | 12.37 | 12.37 | 0.00 | 1.00 | ± 13.3 % | | 300 | 58.2 | 0.92 | 11.79 | 11.79 | 11.79 | 0.05 | 1.20 | ± 13.3 % | | 450 | 56.7 | 0.94 | 11.17 | 11.17 | 11.17 | 0.14 | 1.30 | ± 13.3 % | | 750 | 55.5 | 0.96 | 10.24 | 10.24 | 10.24 | 0.50 | 0.83 | ± 12.0 % | | 835 | 55.2 | 0.97 | 9.94 | 9.94 | 9.94 | 0.41 | 0.90 | ± 12.0 % | | 900 | 00 55.0 1.05 9 | | 9.93 | 9.93 | 9.93 | 0.35 | 0.96 | ± 12.0 % | | 1810 | 53.3 | 1.52 | 7.97 | 7.97 | 7.97 | 0.44 | 0.85 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 7.89 | 7.89 | 7.89 | 0.46 | 0.85 | ± 12.0 % | | 2100 | 53.2 | 1.62 | 7.96 | 7.96 | 7.96 | 0.46 | 0.90 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 7.48 | 7.48 | 7.48 | 0.34 | 0.98 | ± 12.0 % | | 5250 | 48.9 | 5.36 | 4.47 | 4.47 | 4.47 | 0.45 | 1.90 | ± 13.1 % | | 5500 | 48.6 | 5.65 | 4.07 | 4.07 | 4.07 | 0.45 | 1.90 | ± 13.1 % | | 5600 | 48.5 | 5.77 | 3.89 | 3.89 | 3.89 | 0.45 | 1.90 | ± 13.1 % | | 5750 | 48.3 | 5.94 | 4.19 | 4.19 | 4.19 | 0.45 | 1.90 | ± 13.1 % | ^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if
liquid compensation formula is applied to Certificate No: EX3-7364_Jan19 measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. Apha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. January 23, 2019 EX3DV4-SN:7364 # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) Certificate No: EX3-7364_Jan19 Page 7 of 15 EX3DV4- SN:7364 January 23, 2019 # Receiving Pattern (ϕ), $\theta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) Certificate No: EX3-7364_Jan19 Page 8 of 15 EX3DV4- SN:7364 January 23, 2019 ## Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) Certificate No: EX3-7364_Jan19 Page 9 of 15 January 23, 2019 ## **Conversion Factor Assessment** # Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1. Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2) Certificate No: EX3-7364_Jan19 Page 10 of 15 EX3DV4- SN:7364 January 23, 2019 #### **Appendix: Modulation Calibration Parameters** | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Unc ^E
(k=2) | |-----------------------------|-----------------------------------|---|---------|------------|------|---------|----------|---------------------------| | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 114.6 | ±2.7 % | | | | Y | 0.0 | 0.0 | 1.0 | | 112.4 | | | | | Z | 0.0 | 0.0 | 1.0 | | 127.7 | | | 10021-
DAC | GSM-FDD (TDMA, GMSK) | X | 1.72 | 63.0 | 12.0 | 9.39 | 94.6 | ±1.9 % | | | | Y | 1.71 | 65.4 | 13.2 | | 68.7 | | | | | Z | 2.22 | 65.7 | 13.5 | | 108.0 | | | 10023-
DAC | GPRS-FDD (TDMA, GMSK, TN 0) | × | 1.75 | 63.4 | 12.3 | 9.57 | 91.5 | ±1.7 % | | | | Y | 1.83 | 65.6 | 13.2 | 7 | 67.1 | | | | | Z | 2.26 | 65.5 | 13.3 | | 104.9 | | | 10024-
DAC | GPRS-FDD (TDMA, GMSK, TN 0-1) | X | 1.71 | 64.7 | 10.9 | 6.56 | 147.1 | ±1.2 % | | | | Y | 4.98 | 81.5 | 18.4 | | 127.8 | | | | | Z | 2.35 | 69.4 | 14.0 | | 131.0 | · 1000000000 | | 10025-
DAC | EDGE-FDD (TDMA, 8PSK, TN 0) | X | 5.28 | 72.4 | 25.7 | 12.62 | 61.2 | ±1.2 % | | | | Y | 4.38 | 68.1 | 23.6 | 9 | 44.2 | | | 10000 | | Z | 5.84 | 75.3 | 27.6 | | 69.5 | 0.000000 | | 10026-
DAC EDGE-FDD (TDM | EDGE-FDD (TDMA, 8PSK, TN 0-1) | X | 5.13 | 74.3 | 24.8 | 9.55 | 140.7 | ±1.9 % | | | | Y | 4.43 | 71.4 | 23.6 | | 100.8 | | | | | Z | 5.35 | 74.8 | 25.1 | | 128.7 | | | 10027-
DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2) | X | 1.22 | 62.4 | 8.8 | 4.80 | 140.5 | ±1.7 % | | | | Y | 29.58 | 100.0 | 21.9 | | 130.1 | | | 40000 | 0000 500 5001 | Z | 34.45 | 99.7 | 22.2 | | 118.2 | 2000000 | | 10028-
DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2-3) | X | 54.30 | 99.7 | 20.4 | 3.55 | 116.7 | ±1.9 % | | | | Y | 0.97 | 66.1 | 10.9 | | 148.2 | | | 40000 | FROM FROM WOLLD AND A STATE OF | Z | 43.93 | 99.7 | 21.0 | | 131.0 | | | 10029-
DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2) | X | 4.59 | 72.8 | 23.2 | 7.78 | 137.7 | ±1.4 % | | | | Y | 3.83 | 68.9 | 21.1 | | 125.2 | | | 10000 | OD1440000 /4 DEE DO4 | Z | 5.87 | 78.6 | 26.0 | | 118.8 | | | 10039-
CAB | CDMA2000 (1xRTT, RC1) | X | 4.72 | 66.7 | 19.1 | 4.57 | 123.7 | ±0.9 % | | | | Y | 4.44 | 65.3 | 18.2 | | 121.2 | | | 10056- | UNITS TOD (TO CODIAL 4 CO. 4) | Z | 4.88 | 67.4 | 19.4 | | 140.2 | | | CAA | UMTS-TDD (TD-SCDMA, 1.28 Mcps) | × | 4.17 | 68.9 | 23.5 | 11.01 | 89.7 | ±1.4 % | | | | Y | 3.52 | 65.8 | 22.2 | - 33 | 64.7 | | | IONEO | EDGE EDD (TDMA ODGY TALC.) | Z | 4.64 | 71.3 | 24.8 | | 101.7 | | | 10058-
DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3) | X | 4.77 | 75.3 | 23.9 | 6.52 | 116.4 | ±1.4 % | | | | Y | 4.03 | 71.6 | 22.1 | | 147.1 | | | 10004 | CDAMAGOOD (4. DET COO) | Z | 5.32 | 76.9 | 24.4 | | 133.3 | | | 10081-
CAB | CDMA2000 (1xRTT, RC3) | X | 4.00 | 66.6 | 18.9 | 3.97 | 120.2 | ±0.5 % | | | | Y | 3.78 | 65.2 | 18.0 | | 118.1 | | | | | Z | 4.11 | 67.0 | 19.1 | | 136.1 | | Certificate No: EX3-7364_Jan19 January 23, 2019 | 10090- | GPRS-FDD (TDMA, GMSK, TN 0-4) | Х | 1.59 | 64.6 | 11.2 | 6.56 | 144.9 | ±1.9 % | |---------------|---|---|-------|--------------|------|--------|-------|----------| | DAC | | V | 4.00 | 00.0 | 400 | journe | 126.4 | 1100-100 | | | | Z | 1.86 | 68.3
71.7 | 12.9 | | 131,1 | | | 10099- | EDGE-FDD (TDMA, 8PSK, TN 0-4) | X | 5.33 | 75.9 | 25.9 | 9.55 | 139.0 | ±2.2 % | | DAC | EDGET DD (TDMP), of GN, 1110-4) | ^ | 5.55 | 75.8 | 20.9 | 3.55 | 133.0 | 12.2 70 | | | | Y | 4.36 | 71.0 | 23.4 | | 99.7 | | | | | Z | 5.59 | 76.5 | 26.3 | | 126.6 | | | 10117-
CAC | IEEE 802.11n (HT Mixed, 13.5 Mbps,
BPSK) | х | 9.95 | 68.2 | 21.0 | 8.07 | 124.6 | ±2.2 % | | | | Y | 9.62 | 67.4 | 20.5 | | 119.2 | | | | | Z | 10.30 | 69.2 | 21.6 | | 143.9 | | | 10196-
CAC | IEEE 802.11n (HT Mixed, 6.5 Mbps,
BPSK) | × | 9.61 | 68.0 | 21.0 | 8.10 | 119.9 | ±1.9 % | | | | Y | 9.28 | 67.1 | 20.4 | | 114.4 | | | | | Z | 9.94 | 69.0 | 21.6 | | 137.6 | | | 10290-
AAB | CDMA2000, RC1, SO55, Full Rate | X | 4.41 | 67.8 | 19.3 | 3.91 | 123.6 | ±0.7 % | | | | Y | 4.02 | 65.7 | 18.1 | | 120.5 | | | 1000 | ODIMAGO BOO COST T TO | Z | 4.58 | 68.5 | 19.6 | | 139.9 | | | 10291-
AAB | CDMA2000, RC3, SO55, Full Rate | х | 3.79 | 67.8 | 19.3 | 3.46 | 120.1 | ±0.5 % | | | | Y | 3.37 | 65.1 | 17.7 | | 117.4 | | | 10000 | 001110000 000 0000 5 10 | Z | 3.91 | 68.2 | 19.5 | | 135.9 | | | 10292-
AAB | CDMA2000, RC3, SO32, Full Rate | × | 3.75 | 67.9 | 19.4 | 3.39 | 120.3 | ±0.5 % | | | | Y | 3.35 | 65.3 | 17.8 | | 117.1 | | | | | Z | 3.86 | 68.3 | 19.5 | | 135.5 | | | 10293-
AAB | CDMA2000, RC3, SO3, Full Rate | × | 3.86 | 68.0 | 19.4 | 3.50 | 120.3 | ±0.5 % | | | | Y | 3.44 | 65.4 | 17.9 | | 117.0 | | | | 001110000 001 000 101 0 1 001 | Z | 3.91 | 68.0 | 19.4 | 10.10 | 135.8 | | | 10295-
AAB | CDMA2000, RC1, SO3, 1/8th Rate 25 fr. | X | 5.27 | 66.0 | 23.4 | 12.49 | 74.0 | ±1.4 % | | | | Y | 4.56 | 62.5 | 21.4 | | 53.0 | | | 10100 | OD1440000 (4 5) (DO D 0) | Z | 5.70 | 68.1 | 24.8 | 0.70 | 84.1 | | | 10403-
AAB | CDMA2000 (1xEV-DO, Rev. 0) | X | 5.20 | 70.4 | 19.9 | 3.76 | 126.4 | ±0.5 % | | | | Y | 4.56 | 67.7 | 18.4 | | 123.3 | | | 10101 | CD1442000 (4-5) (DC D A) | Z | 5.28 | 70.5 | 19.9 | 0.77 | 143.5 | 10.77.0/ | | 10404-
AAB | CDMA2000 (1xEV-DO, Rev. A) | × | 5.38 | 71.6 | 20.6 | 3.77 | 124.9 | ±0.7 % | | | | Y | 4.42 | 67.3 | 18.2 | | 121.9 | | | 10400 | CDM42000 DC2 CC22 CCLD E. | Z | 5.02 | 69.8 | 19.6 | E 00 | 142.4 | 40.75 | | 10406-
AAB | CDMA2000, RC3, SO32, SCH0, Full
Rate | X | 6.70 | 71.0 | 20.9 | 5.22 | 129.5 | ±0.7 % | | | | Y | 5.85 | 67.9 | 19.2 | | 125.2 | | | 10445 | IEEE 900 445 WEE 2 4 CH2/DCCC 4 | Z | 6.66 | 70.6 | 20.7 | 4.54 | 148.5 | 10.50 | | 10415-
AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1
Mbps, 99pc duty cycle) | X | 3.44 | 72.9 | 21.1 | 1.54 | 126.4 | ±0.5 % | | | | Y | 2.56 | 67.0 | 17.9 | | 123.5 | | | 10110 | IEEE OOD 44- WELC 1 OLL IEEE | Z | 3.20 | 71.3 | 20.2 | 0.00 | 142.2 | | | 10416-
AAA | IEEE 802.11g WiFi 2.4 GHz (ERP-
OFDM, 6 Mbps, 99pc duty cycle) | X | 9.70 | 68.1 | 21.2 | 8.23 | 119.3 | ±1.9 % | | | | Y | 9.38 | 67.2 | 20.5 | | 114.1 | | | | | Z | 10.02 | 69.0 | 21.7 | | 137.1 | | Certificate No: EX3-7364_Jan19 Page 12 of 15 EX3DV4-SN:7364 January 23, 2019 | 10417-
AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6
Mbps, 99pc duty cycle) | X | 9.70 | 68.1 | 21.2 | 8.23 | 119.3 | ±1.9 % | |----------------------|--|---|-------|--------------|------
------|----------------|--------| | | | Y | 9.42 | 67.3 | 20.6 | - | 114.1 | | | | | Z | 10.03 | 69.0 | 21.7 | _ | 137.4 | - | | 10418-
AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 6 Mbps, 99pc duty cycle, Long
preambule) | Х | 9.58 | 68.0 | 21.1 | 8.14 | 118.4 | ±1.9 % | | | | Y | 9.30 | 67.2 | 20.5 | | 113,4 | | | 10458- | OBLUGACIO | Z | 9.87 | 68.9 | 21.6 | | 136.2 | | | AAA | CDMA2000 (1xEV-DO, Rev. B, 2 carriers) | Х | 7.83 | 67.4 | 19.9 | 6.55 | 108.2 | ±1.2 % | | | | Y | 7.69 | 67.0 | 19.4 | | 104.5 | | | 10459- | CDMA2000 (1xEV-DO, Rev. B. 3 | Z | 8.11 | 68.2 | 20.3 | | 124.3 | | | AAA | carriers) | X | 10.63 | 69.2 | 21.7 | 8.25 | 130.7 | ±2.2 % | | | | Y | 10.48 | 68.9 | 21.4 | | 123.4 | | | 10515- | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 | Z | 10.07 | 67.8 | 20.9 | | 101.8 | | | AAA | Mbps, 99pc duty cycle) | X | 3.51 | 73.4 | 21.3 | 1.58 | 125.8 | ±0.5 % | | | | Y | 2.68 | 68.0 | 18.5 | | 122.8 | | | 10518- | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 | Z | 3.41 | 72.6 | 20.8 | | 142.5 | - | | AAB | Mbps, 99pc duty cycle) | × | 9.68 | 68.0 | 21.1 | 8.23 | 118.9 | ±1.9 % | | | | Y | 9.42 | 67.3 | 20.6 | | 114.1 | | | 10525- | IEEE 802.11ac WiFi (20MHz, MCS0. | Z | 10.04 | 69.1 | 21.7 | | 137.4 | | | AAB 99pc duty cycle) | | - | 9.92 | 68.2 | 21.3 | 8.36 | 120.5 | ±1.9 % | | | | Y | 9.66 | 67.6 | 20.8 | | 116.3 | | | 10526- | IEEE 802.11ac WiFi (20MHz, MCS1, | Z | 10.24 | 69.2 | 21.9 | 0.10 | 139.1 | | | AAB | 99pc duty cycle) | Ŷ | 9.69 | 68.3 | 21.4 | 8.42 | 120.7 | ±1.9 % | | | | Z | 10.32 | 67.5 | 20.8 | | 116.2 | | | 10534-
AAB | IEEE 802.11ac WiFi (40MHz, MCS0, 99pc duty cycle) | X | 10.41 | 69.3
68.7 | 22.0 | 8.45 | 139.3
125.5 | ±2.2 % | | | | Y | 10.06 | 67.8 | 20.9 | | 120.8 | | | | | Z | 10.78 | 69.7 | 22.1 | | 145.9 | | | 10535-
AAB | IEEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle) | х | 10.43 | 68.7 | 21.5 | 8.45 | 126.5 | ±2.2 % | | | A CONTRACTOR OF THE PARTY TH | Y | 10.08 | 67.9 | 20.9 | | 121.2 | | | | | Z | 10.78 | 69.7 | 22.1 | | 146.0 | | | 10544-
NAB | IEEE 802.11ac WiFi (80MHz, MCS0, 99pc duty cycle) | Х | 10.74 | 69.0 | 21.5 | 8.47 | 130.5 | ±2.2 % | | | | Y | 10.26 | 67.9 | 20.8 | | 123.8 | | | 0545- | IEEE 900 44 MIE (0044) - 1000 | Z | 10.20 | 67.7 | 20.8 | | 101.3 | | | VAB | IEEE 802.11ac WiFi (80MHz, MCS1,
99pc duty cycle) | X | 10.83 | 69.1 | 21.6 | 8.55 | 130.8 | ±2.2 % | | | | Y | 10.36 | 68.1 | 21.0 | | 124.5 | | | 0564- | IEEE 802.11g WiFi 2.4 GHz (DSSS- | Z | 10.28 | 67.8 | 20.9 | | 101.7 | | | AA | OFDM, 9 Mbps, 99pc duty cycle) | X | 9.76 | 68.2 | 21.2 | 8.25 | 119.0 | ±1.9 % | | | | Y | 9.46 | 67.4 | 20.7 | | 114.6 | | | 0571- | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 | Z | 10.08 | 69.1 | 21.8 | | 137.5 | | | AA | Mbps, 90pc duty cycle) | X | 3.65 | 73.3 | 21.4 | 1.99 | 123.5 | ±0.5 % | | | | Y | 2.71 | 67.4 | 18.4 | | 120.2 | | | | | Z | 3.53 | 72.6 | 21.0 | | 138.6 | | Certificate No: EX3-7364_Jan19 Page 13 of 15 EX3DV4- SN:7364 January 23, 2019 | 10572-
AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2
Mbps, 90pc duty cycle) | X | 3.80 | 74.3 | 21.8 | 1.99 | 122.7 | ±0.5 % | |---------------|--|---|-------|------|------|------|-------|--------| | | | Y | 2.83 | 68.4 | 18.9 | | 120.1 | | | | | Z | 3.60 | 73.2 | 21.2 | | 138.7 | | | 10575-
AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 6 Mbps, 90pc duty cycle) | х | 9.84 | 68.2 | 21.5 | 8.59 | 117.1 | ±1.9 % | | | | Y | 9.55 | 67.4 | 20.9 | | 112.7 | | | | | Z | 10.17 | 69.1 | 22.0 | | 134.4 | | | 10576-
AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 9 Mbps, 90pc duty cycle) | Х | 9.84 | 68.2 | 21.5 | 8.60 | 116.5 | ±1.9 % | | | | Y | 9.55 | 67.4 | 20.9 | | 112.4 | | | | | Z | 10.18 | 69.2 | 22.1 | | 134.2 | | | 10583-
AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6
Mbps, 90pc duty cycle) | Х | 9.87 | 68.3 | 21.5 | 8.59 | 117.1 | ±1.9 % | | | | Y | 9.55 | 67.4 | 20.9 | | 112.6 | | | | | Z | 10.18 | 69.2 | 22.1 | | 134.3 | | | 10584-
AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9
Mbps, 90pc duty cycle) | Х | 9.87 | 68.3 | 21.5 | 8.60 | 116.6 | ±1.9 % | | | | Υ | 9.54 | 67.4 | 20.9 | | 112.3 | | | | | Z | 10.17 | 69.2 | 22.1 | | 134.1 | | | 10591-
AAB | IEEE 802.11n (HT Mixed, 20MHz,
MCS0, 90pc duty cycle) | Х | 9.98 | 68.3 | 21.5 | 8.63 | 118.4 | ±1.9 % | | | | Y | 9.66 | 67.4 | 20.9 | | 113.7 | | | | | Z | 10.29 | 69.2 | 22.1 | | 136.0 | | | 10592-
AAB | IEEE 802.11n (HT Mixed, 20MHz,
MCS1, 90pc duty cycle) | х | 10.14 | 68.4 | 21.7 | 8.79 | 118.6 | ±2.2 % | | | | Y | 9.83 | 67.6 | 21.1 | | 113.8 | | | | | Z | 10.49 | 69.5 | 22.3 | | 136.9 | | | 10599-
AAB | IEEE 802.11n (HT Mixed, 40MHz,
MCS0, 90pc duty cycle) | X | 10.57 | 68.8 | 21.8 | 8.79 | 124.4 | ±2.2 % | | | | Y | 10.16 | 67.8 | 21.1 | | 118.7 | | | | | Z | 10.89 | 69.7 | 22.4 | | 143.5 | | | 10600-
AAB | IEEE 802.11n (HT Mixed, 40MHz,
MCS1, 90pc duty cycle) | X | 10.65 | 68.9 | 21.9 | 8.88 | 123.9 | ±2.2 % | | | | Y | 10.24 | 67.9 | 21.2 | | 118.8 | | | | | Z | 10.98 | 69.9 | 22.5 | | 143.9 | | | 10607-
AAB | IEEE 802.11ac WiFi (20MHz, MCS0,
90pc duty cycle) | X | 9.99 | 68.3 | 21.5 | 8.64 | 118.6 | ±2.2 % | | | | Y | 9.67 | 67.4 | 20.9 | | 113.5 | | | | | Z | 10.33 | 69.3 | 22.1 | | 136.4 | | | 10608-
AAB | IEEE 802.11ac WiFi (20MHz, MCS1,
90pc duty cycle) | Х | 10.13 | 68.4 | 21.7 | 8.77 | 118.9 | ±1.9 % | | | | Y | 9.80 | 67.6 | 21.1 | | 113.5 | | | | | Z | 10.48 | 69.5 | 22.3 | 0.00 | 137.0 | 1000 | | 10616-
AAB | IEEE 802.11ac WiFi (40MHz, MCS0, 90pc duty cycle) | Х | 10.58 | 68.8 | 21.8 | 8.82 | 124.5 | ±2.2 % | | | | Y | 10.21 | 67.9 | 21.2 | | 118.8 | | | | | Z | 10.94 | 69.8 | 22.4 | 0.04 | 143.9 | 15.55 | | 10617-
AAB | IEEE 802.11ac WiFi (40MHz, MCS1, 90pc duty cycle) | X | 10.59 | 68.8 | 21.8 | 8.81 | 124.8 | ±2.2 % | | | | Y | 10.21 | 67.9 | 21.2 | | 118.9 | | | | | Z | 10.93 | 69.8 | 22.4 | 0.00 | 144.1 | | | 10626-
AAB | IEEE 802.11ac WiFi (80MHz, MCS0,
90pc duty cycle) | X | 10.89 | 69.1 | 21.8 | 8.83 | 128.8 | ±2.2 % | | | | Y | 10.39 | 68.0 | 21.1 | | 121.6 | | | | | Z | 11.24 | 70.1 | 22.4 | | 149.4 | | Certificate No: EX3-7364_Jan19 Page 14 of 15 ### EX3DV4- SN:7364 January 23, 2019 | 10627-
AAB | IEEE 802.11ac WiFi (80MHz, MCS1, 90pc duty cycle) | X | 10.94 | 69.1 | 21.9 | 8.88 | 129.3 | ±2.2 % | |---------------|---|---|-------|------|------|------|-------|--------| | | | Y | 10.43 | 68.0 | 21.1 | | 121.2 | | | 10010 | | Z | 11.32 | 70.2 | 22.5 | | 149.9 | | | 10648-
AAA | CDMA2000 (1x Advanced) | X | 3.77 | 67.8 | 19.4 | 3.45 | 120.1 | ±0.7 % | | | | Y | 3.51 | 66.0 | 18.3 | | 117.6 | | | | | Z | 3.94 | 68.6 | 19.8 | | 136.8 | | E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. Certificate No: EX3-7364_Jan19 Page 15 of 15 FCC ID: AZ489FT4956 / 109U-89FT4956 Report ID: P18833-EME-00003 # Appendix C Dipole Calibration Certificates Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Certificate No: D450V3-1053 Oct18 Accreditation No.: SCS 0108 Client Motorola Solutions MY CALIBRATION CERTIFICATE Object D450V3 - SN:1053 Calibration procedure(s) QA CAL-15.v8 Calibration procedure for dipole validation kits below 700 MHz Calibration date: October 19, 2018 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 04-Apr-18 (No. 217-02672/02673) Apr-19 Power sensor NRP-Z91 SN: 103244 04-Apr-18 (No. 217-02672) Apr-19 Power sensor NRP-Z91 SN: 103245 04-Apr-18 (No. 217-02673) Apr-19 Reference 20 dB Attenuator SN: 5277 (20x) 04-Apr-18 (No. 217-02682) Apr-19 Type-N mismatch combination SN: 5047.2 / 06327 04-Apr-18 (No. 217-02683) Apr-19 Reference Probe EX3DV4 30-Dec-17 (No. EX3-3877_Dec17) SN: 3877 Dec-18 DAE4 SN: 654 05-Jul-18 (No. DAE4-654_Jul18) Jul-19 Secondary Standards ID# Check Date (in house) Scheduled Check Power meter E4419B SN: GB41293874 12-Jun-18 (No. 217-02285/02284) In house check: Jun-20 Power sensor E4412A SN: MY41498087 12-Jun-18 (No. 217-02285) In house check: Jun-20 Power sensor E4412A SN: 000110210 12-Jun-18 (No. 217-02284) In house check: Jun-20 RF generator HP 8648C SN: US3642U01700 04-Aug-99 (in house check Jun-18) In house check: Jun-20 Network Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-18) In house check: Oct-19 Name Function Calibrated by: Claudio Leubler Laboratory Technician Approved by: Katja Pokovic Technical Manager Certificate No: D450V3-1053_Oct18 Page 1 of 8 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Issued: October 19, 2018 ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue
simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D450V3-1053_Oct18 Page 2 of 8 ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.2 | |------------------------------|------------------------|-----------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | ELI4 Flat Phantom | Shell thickness: 2 ± 0.2 mm | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 450 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 43.5 | 0.87 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 44.1 ± 6 % | 0.87 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.14 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 4.57 W/kg ± 18.1 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | 11 11 11 11 11 11 | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 0.762 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 3.05 W/kg ± 17.6 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 56.7 | 0.94 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 55.5 ± 6 % | 0.92 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL | SAR averaged over 1 cm3 (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.12 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 4.53 W/kg ± 18.1 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 0.753 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 3.05 W/kg ± 17.6 % (k=2) | Certificate No: D450V3-1053_Oct18 Page 3 of 8 ## Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 57.6 Ω - 4.4 jΩ | | | |--------------------------------------|-----------------|--|--| | Return Loss | - 21.7 dB | | | ### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 55.1 Ω - 7.0 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 21.7 dB | | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.351 ns | | |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | | |-----------------|-------------------|--| | Manufactured on | December 16, 2005 | | Certificate No: D450V3-1053_Oct18 #### **DASY5 Validation Report for Head TSL** Date: 19.10.2018 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN:1053 Communication System: UID 0 - CW; Frequency: 450 MHz Medium parameters used: f = 450 MHz; $\sigma = 0.87 \text{ S/m}$; $\epsilon_r = 44.1$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN3877; ConvF(10.5, 10.5, 10.5) @ 450 MHz; Calibrated: 30.12.2017 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn654; Calibrated: 05.07.2018 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003 DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) ## Dipole Calibration for Head Tissue/d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 38.89 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 1.74 W/kg SAR(1 g) = 1.14 W/kg; SAR(10 g) = 0.762 W/kg Maximum value of SAR (measured) = 1.52 W/kg 0 dB = 1.52 W/kg = 1.82 dBW/kg ## Impedance Measurement Plot for Head TSL Certificate No: D450V3-1053_Oct18 ### DASY5 Validation Report for Body TSL Date: 19.10.2018 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN:1053 Communication System: UID 0 - CW; Frequency: 450 MHz Medium parameters used: f = 450 MHz; $\sigma = 0.92 \text{ S/m}$; $\varepsilon_r = 55.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN3877; ConvF(10.8, 10.8, 10.8) @ 450 MHz; Calibrated: 30.12.2017 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn654; Calibrated: 05.07.2018 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003 DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) ## Dipole Calibration for Body Tissue/d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 41.78 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 1.72 W/kg SAR(1 g) = 1.12 W/kg; SAR(10 g) = 0.753 W/kg Maximum value of SAR (measured) = 1.50 W/kg 0 dB = 1.50 W/kg = 1.76 dBW/kg ## Impedance Measurement Plot for Body TSL Certificate No: D450V3-1053_Oct18 # **Dipole Data** As stated in KDB 865664, only dipoles used for longer calibration intervals required to provide supporting information and measurement to qualify for extended calibration interval. | Dipole 450-1053 | Head | | | |------------------------|---------------|---------|--------------------| | | Impedance | | Return Loss | | Date Measured | real Ω | imag jΩ | dB | | 11/08/2018 | 53.78 | -7.39 | -21.97 | | 11/10/2019 | 53.95 | -6.72 | -22.49 |