

RF Test Report

For

Applicant Name: SHENZHEN HSJY TECHNOLOGY CO.,LTD.

Address: 5th Floor, Building G, Hongzhu Yongqi Industrial Zone, Lezhujiao,

Baoan Dist.Shenzhen City,GD Province,China

EUT Name: MayTag Tracker

Brand Name: N/A

Model Number: HST-FM01

Issued By

Company Name: BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park,

Address: Tantou Community, Songgang Street, Bao'an District, Shenzhen,

China

Report Number: BTF231023R00201 Test Standards: 47 CFR Part 15.247 FCC ID: 2BDFSHST-FM01

Test Conclusion: Pass

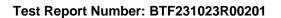
Test Date: 2023-10-23 to 2023-11-08

Date of Issue: 2023-11-09

Prepared By:

JWAN LiM9

Jason Liang / Project Engineer

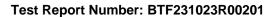

Date: 2023-11-09

Approved By:

Ryan.CJ / EMC Manager

Date: 2023-11-09

Note: All the test results in this report only related to the testing samples. Which can be duplicated completely for the legal use with approval of applicant; it shall not be reproduced except in full without the written approval of BTF Testing Lab (Shenzhen) Co., Ltd., All the objections should be raised within thirty days from the date of issue. To validate the report, you can contact us.



Revision History				
Version	Issue Date	Revisions Content		
R_V0	2023-11-09	Original		
Note: Once the revision has been made, then previous versions reports are invalid.				

Table of Contents

1	INTR	ODUCTION	5
	1.1	Identification of Testing Laboratory	
	1.2 1.3	Identification of the Responsible Testing LocationAnnouncement	
2		DUCT INFORMATION	
	2.1	Application Information	
	2.2	Manufacturer Information	
	2.3	Factory Information	
	2.4 2.5	General Description of Equipment under Test (EUT) Technical Information	
_		MARY OF TEST RESULTS	
3			
	3.1 3.2	Test StandardsUncertainty of Test	
	3.3	Summary of Test Result	
4	TEST	T CONFIGURATION	
	4.1	Test Equipment List	
	4.2	Test Auxiliary Equipment	10
	4.3	Test Modes	
5	EVAI	LUATION RESULTS (EVALUATION)	11
	5.1	Antenna requirement	
		5.1.1 Test Data:	11
6	RAD	IO SPECTRUM MATTER TEST RESULTS (RF)	12
	6.1	Occupied Bandwidth	
		6.1.1 E.U.T. Operation:	
		6.1.2 Test Setup Diagram: 6.1.3 Test Data:	
	6.2	Maximum Conducted Output Power	
	0.2	6.2.1 E.U.T. Operation:	
		6.2.2 Test Setup Diagram:	
		6.2.3 Test Data:	
	6.3	Power Spectral Density	
		6.3.1 E.U.T. Operation: 6.3.2 Test Setup Diagram:	
		6.3.3 Test Data:	
	6.4	Emissions in non-restricted frequency bands	
		6.4.1 E.U.T. Operation:	
		6.4.2 Test Setup Diagram:	
		6.4.3 Test Data:	
	6.5	Band edge emissions (Radiated)	
		6.5.1 E.U.T. Operation: 6.5.2 Test Setup Diagram:	
		6.5.3 Test Data:	
	6.6	Emissions in frequency bands (below 1GHz)	18
		6.6.1 E.U.T. Operation:	
		6.6.2 Test Setup Diagram:	
	6.7	6.6.3 Test Data:	
	0.7	Emissions in frequency bands (above 1GHz)	
		6.7.2 Test Setup Diagram:	

	6.7.3	Test Data:	22
7	TEST SETU	JP PHOTOS	24
		TRUCTIONAL DETAILS (EUT PHOTOS)	
		` '	

Test Report Number: BTF231023R00201

1 Introduction

1.1 Identification of Testing Laboratory

Company Name: BTF Testing Lab (Shenzhen) Co., Ltd.		
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China	
Phone Number:	+86-0755-23146130	
Fax Number:	+86-0755-23146130	

1.2 Identification of the Responsible Testing Location

Company Name:	BTF Testing Lab (Shenzhen) Co., Ltd.	
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China	
Phone Number:	+86-0755-23146130	
Fax Number:	+86-0755-23146130	
FCC Registration Number:	518915	
Designation Number:	CN1330	

1.3 Announcement

- (1) The test report reference to the report template version v0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by BTF and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

Test Report Number: BTF231023R00201

2 Product Information

2.1 Application Information

Company Name:	SHENZHEN HSJY TECHNOLOGY CO.,LTD.
Address:	5th Floor , Building G , Hongzhu Yongqi Industrial Zone , Lezhujiao , Baoan Dist.Shenzhen City,GD Province,China

2.2 Manufacturer Information

Company Name:	SHENZHEN HSJY TECHNOLOGY CO.,LTD.
Address:	5th Floor , Building G , Hongzhu Yongqi Industrial Zone , Lezhujiao , Baoan Dist.Shenzhen City,GD Province,China

2.3 Factory Information

Company Name:	SHENZHEN HSJY TECHNOLOGY CO.,LTD.
Address:	5th Floor , Building G , Hongzhu Yongqi Industrial Zone , Lezhujiao , Baoan Dist.Shenzhen City,GD Province,China

2.4 General Description of Equipment under Test (EUT)

EUT Name:	MayTag Tracker
Test Model Number:	HST-FM01

2.5 Technical Information

Power Supply:	DC 3V
Operation Frequency:	2402MHz to 2480MHz
Number of Channels:	40
Modulation Type:	GFSK
Antenna Type:	Ceramic Antenna
Antenna Gain [#] :	3dBi

Note:

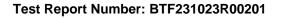
^{#:} The antenna gain provided by the applicant, and the laboratory will not be responsible for the accumulated calculation results which covers the information provided by the applicant.

Test Report Number: BTF231023R00201

3 Summary of Test Results

3.1 Test Standards

The tests were performed according to following standards: 47 CFR Part 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

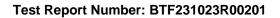

3.2 Uncertainty of Test

Measurement Uncertainty
±69kHz
±0.87dB
±0.69dB
±0.95dB
1-6GHz: ±3.94dB 6-18GHz: ±4.16dB
±4.12dB

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

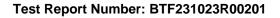
3.3 Summary of Test Result

Item	Standard	Requirement	Result
Antenna requirement	47 CFR Part 15.247	47 CFR 15.203	Pass
Occupied Bandwidth	47 CFR Part 15.247	47 CFR 15.247(a)(2)	Pass
Maximum Conducted Output Power	47 CFR Part 15.247	47 CFR 15.247(b)(3)	Pass
Power Spectral Density	47 CFR Part 15.247	47 CFR 15.247(e)	Pass
Emissions in non-restricted frequency bands	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass
Band edge emissions (Radiated)	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (below 1GHz)	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (above 1GHz)	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass



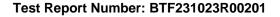
Test Configuration

Test Equipment List


Occupied Bandwidth Maximum Conducted Output Power
Power Spectral Density
Emissions in non-restricted frequency bands

Linissions in non-restricted frequency bands					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RFTest software	/	V1.00	/	/	/
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23

Pand adda amissions (Padistad)						
Band edge emissions (Radiated) Emissions in frequency bands (below 1GHz)						
Emissions in frequency bands (above 1GHz)						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23	
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23	
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23	
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23	
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23	
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23	
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23	
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/	
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27	
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23	
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23	
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	1	
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23	
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21	
EZ_EMC	Frad	FA-03A2 RE+	/	/	/	
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/	
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27	

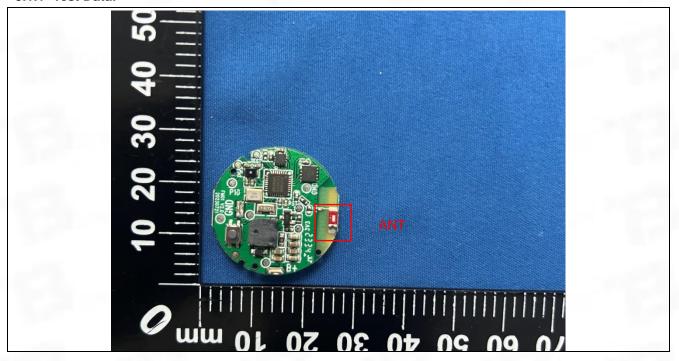


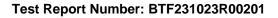
4.2 Test Auxiliary Equipment

The EUT was tested as an independent device.

4.3 Test Modes

No.	Test Modes	Description
TM1	TX made	Keep the EUT connect to DC power line and works in continuously transmitting mode with GFSK modulation.


5 Evaluation Results (Evaluation)

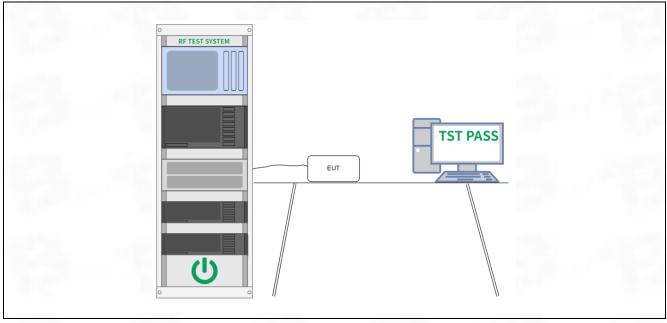

5.1 Antenna requirement

Test Requirement:

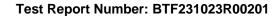
Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

5.1.1 Test Data:

6 Radio Spectrum Matter Test Results (RF)


6.1 Occupied Bandwidth

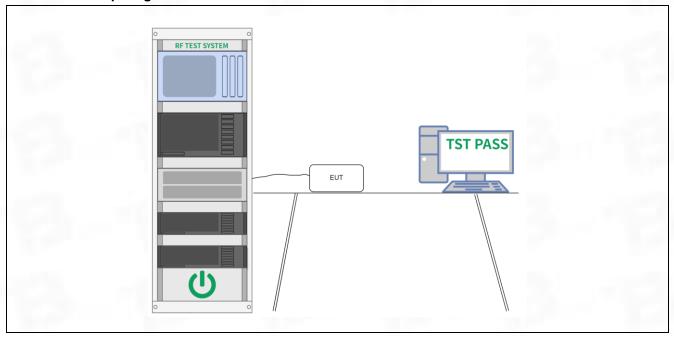
Test Requirement:	47 CFR 15.247(a)(2)
Test Method:	ANSI C63.10-2013, section 11.8
Test Limit:	Refer to 47 CFR 15.247(a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Procedure:	a) Set RBW = 100 kHz. b) Set the VBW >= [3 x RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.


6.1.1 E.U.T. Operation:

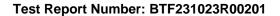
Operating Environment:		
Temperature:	24 °C	
Humidity:	51.9 %	
Atmospheric Pressure:	1010 mbar	

6.1.2 Test Setup Diagram:

6.1.3 Test Data:


6.2 Maximum Conducted Output Power

Test Requirement:	47 CFR 15.247(b)(3)
Test Method:	ANSI C63.10-2013, section 11.9.1
Test Limit:	Refer to 47 CFR 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Procedure:	ANSI C63.10-2013, section 11.9.1 Maximum peak conducted output power


6.2.1 E.U.T. Operation:

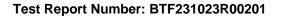
Operating Environment:			
Temperature:	24 °C		
Humidity:	51.9 %		
Atmospheric Pressure:	1010 mbar		

6.2.2 Test Setup Diagram:

6.2.3 Test Data:


6.3 Power Spectral Density

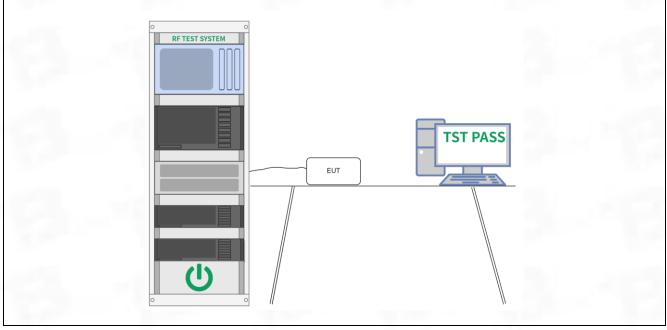
	•
Test Requirement:	47 CFR 15.247(e)
Test Method:	ANSI C63.10-2013, section 11.10
Test Limit:	Refer to 47 CFR 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Procedure:	ANSI C63.10-2013, section 11.10, Maximum power spectral density level in the fundamental emission


6.3.1 E.U.T. Operation:

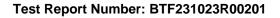
Operating Environment:				
Temperature:	24 °C			
Humidity:	51.9 %			
Atmospheric Pressure:	1010 mbar			

6.3.2 Test Setup Diagram:

6.3.3 Test Data:


6.4 Emissions in non-restricted frequency bands

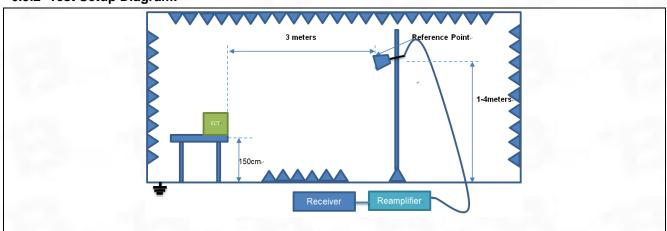
Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Method:	ANSI C63.10-2013 section 11.11
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Procedure:	ANSI C63.10-2013 Section 11.11.1, Section 11.11.2, Section 11.11.3

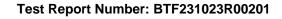

6.4.1 E.U.T. Operation:

Operating Environment:	
Temperature:	24 °C
Humidity:	51.9 %
Atmospheric Pressure:	1010 mbar

6.4.2 Test Setup Diagram:

6.4.3 Test Data:


6.5 Band edge emissions (Radiated)


Test Requirement:	Refer to 47 CFR 15.247(d), In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).`			
Test Method:	ANSI C63.10-2013 section 6.10			
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)	
	0.009-0.490	2400/F(kHz)	300	
	0.490-1.705	24000/F(kHz)	30	
	1.705-30.0	30	30	
	30-88	100 **	3	
	88-216	150 **	3	
	216-960	200 **	3	
Test Limit:	Above 960	500	3	
	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz 110–490 kHz and above 1000 MHz. Radiated emission limits in these three band are based on measurements employing an average detector.			
Procedure:	ANSI C63.10-2013 section 6.10.5.2			

6.5.1 E.U.T. Operation:

Operating Environment:			
Temperature:	24.2 °C		
Humidity:	54.3 %		
Atmospheric Pressure:	1010 mbar		

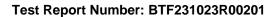
6.5.2 Test Setup Diagram:

6.5.3 Test Data:

TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: L

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2310.000	71.08	-30.59	40.49	74.00	-33.51	peak	Р
2	2390.000	69.67	-30.49	39.18	74.00	-34.82	peak	Р
3 *	2400.000	81.04	-30.48	50.56	74.00	-23.44	peak	Р

TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: L

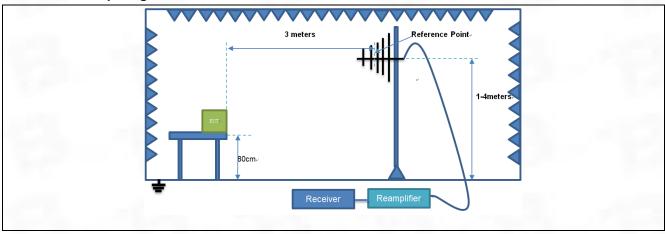

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2310.000	68.00	-30.59	37.41	74.00	-36.59	peak	Р
2	2390.000	69.97	-30.49	39.48	74.00	-34.52	peak	Р
3 *	2400.000	82.81	-30.48	52.33	74.00	-21.67	peak	Р

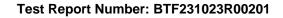
TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: H

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	2483.500	77.53	-30.39	47.14	74.00	-26.86	peak	Р
2	2500.000	69.49	-30.37	39.12	74.00	-34.88	peak	Р

TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: H

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	2483.500	80.83	-30.39	50.44	74.00	-23.56	peak	Р
2	2500.000	71.95	-30.37	41.58	74.00	-32.42	peak	Р

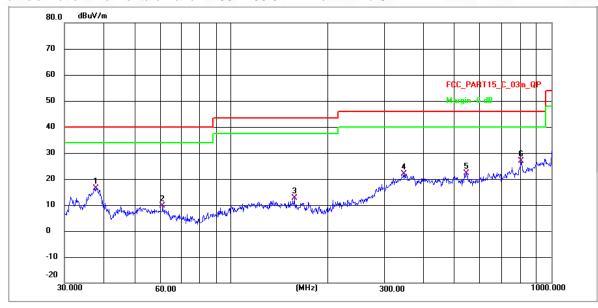

6.6 Emissions in frequency bands (below 1GHz)

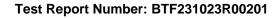

	Refer to 47 CFR 15.247(d), In addition, radiated emission	ons which fall in the		
Test Requirement:		ned in § 15.205(a), must also co			
·		in § 15.209(a)(see § 15.205(c))			
Test Method:	ANSI C63.10-2013 section	on 6.6.4			
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)		
	0.009-0.490	2400/F(kHz)	300		
	0.490-1.705	24000/F(kHz)	30		
	1.705-30.0	30	30		
	30-88	100 **	3		
	88-216	150 **	3		
	216-960	200 **	3		
Test Limit:	Above 960	500	3		
Test Littit.	radiators operating unde 54-72 MHz, 76-88 MHz, these frequency bands is 15.231 and 15.241. In the emission table about the emission limits show employing a CISPR quasi	paragraph (g), fundamental em r this section shall not be locate 174-216 MHz or 470-806 MHz. It is permitted under other sections ove, the tighter limit applies at the in the above table are based si-peak detector except for the formal residual si-peak detector except f	d in the frequency bands However, operation within s of this part, e.g., §§ ne band edges. on measurements requency bands 9–90 kHz,		
	110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.				
Procedure:	ANSI C63.10-2013 section	, , , , , , , , , , , , , , , , , , , ,			

6.6.1 E.U.T. Operation:

Operating Environment:			
Temperature:	24.2 °C		
Humidity:	54.3 %		
Atmospheric Pressure:	1010 mbar		

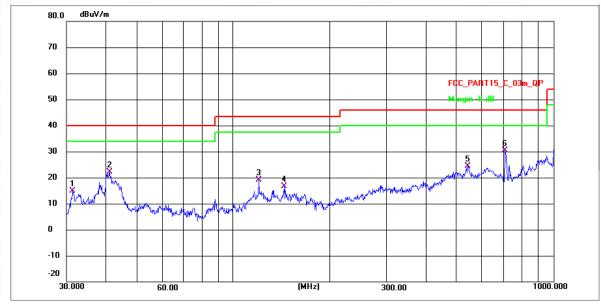
6.6.2 Test Setup Diagram:



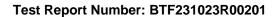


6.6.3 Test Data:

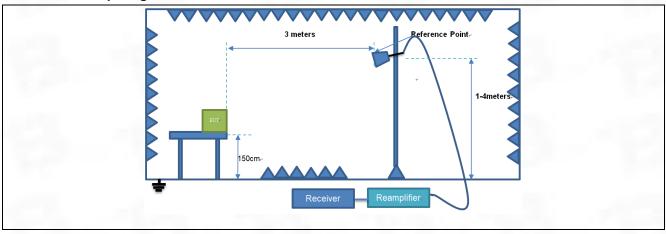
TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: L

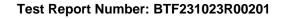


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	37.6137	34.78	-18.43	16.35	40.00	-23.65	QP	Р
2	60.8108	27.70	-18.18	9.52	40.00	-30.48	QP	Р
3	157.2828	40.40	-27.72	12.68	43.50	-30.82	QP	Р
4	344.9898	47.03	-25.07	21.96	46.00	-24.04	QP	Р
5	544.2273	43.67	-21.60	22.07	46.00	-23.93	QP	Р
6 *	808.8459	50.40	-23.57	26.83	46.00	-19.17	QP	Р



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	31.4542	35.61	-20.71	14.90	40.00	-25.10	QP	Р
2	40.8444	42.64	-20.51	22.13	40.00	-17.87	QP	Р
3	120.0660	47.30	-28.05	19.25	43.50	-24.25	QP	Р
4	144.0820	44.38	-27.83	16.55	43.50	-26.95	QP	Р
5	541.3724	46.03	-21.57	24.46	46.00	-21.54	QP	Р
6 *	707.9400	53.99	-23.54	30.45	46.00	-15.55	QP	Р


6.7 Emissions in frequency bands (above 1GHz)


Test Requirement:	In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).						
Test Method:	ANSI C63.10-2013 secti	,,					
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)				
	0.009-0.490	2400/F(kHz)	300				
	0.490-1.705	24000/F(kHz)	30				
	1.705-30.0	30	30				
	30-88	100 **	3				
	88-216	150 **	3				
	216-960	200 **	3				
Test Limit:	Above 960	500	3				
	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands						
Procedure:	ANSI C63.10-2013 secti	ents employing an average det on 6.6.4	00.01.				

6.7.1 E.U.T. Operation:

Operating Environment:			
Temperature:	24.2 °C		
Humidity:	54.3 %		
Atmospheric Pressure:	1010 mbar		

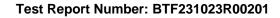
6.7.2 Test Setup Diagram:

6.7.3 Test Data:

TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: L

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	1087.434	68.74	-29.46	39.28	74.00	-34.72	peak	Р
2	3890.255	72.46	-29.01	43.45	74.00	-30.55	peak	Р
3	4640.339	77.03	-28.39	48.64	74.00	-25.36	peak	Р
4	4804.110	79.59	-27.92	51.67	74.00	-22.33	peak	Р
5	7242.052	76.89	-24.86	52.03	74.00	-21.97	peak	Р
6 *	8943.274	77.76	-24.42	53.34	74.00	-20.66	peak	Р

TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: L

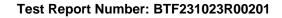

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	1093.738	67.62	-29.49	38.13	74.00	-35.87	peak	Р
2	3205.345	71.86	-29.32	42.54	74.00	-31.46	peak	Р
3	4640.339	81.28	-28.39	52.89	74.00	-21.11	peak	Р
4 *	4804.110	81.56	-27.92	53.64	74.00	-20.36	peak	Р
5	6377.195	74.19	-25.37	48.82	74.00	-25.18	peak	Р
6	7454.429	76.63	-24.79	51.84	74.00	-22.16	peak	Р

TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: M

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	1038.290	68.53	-29.18	39.35	74.00	-34.65	peak	Р
2	3415.787	72.06	-29.13	42.93	74.00	-31.07	peak	Р
3	4804.110	80.31	-27.92	52.39	74.00	-21.61	peak	Р
4	7263.015	75.75	-24.85	50.90	74.00	-23.10	peak	Р
5 *	9152.479	77.92	-23.98	53.94	74.00	-20.06	peak	Р
6	10822.922	77.07	-23.82	53.25	74.00	-20.75	peak	Р

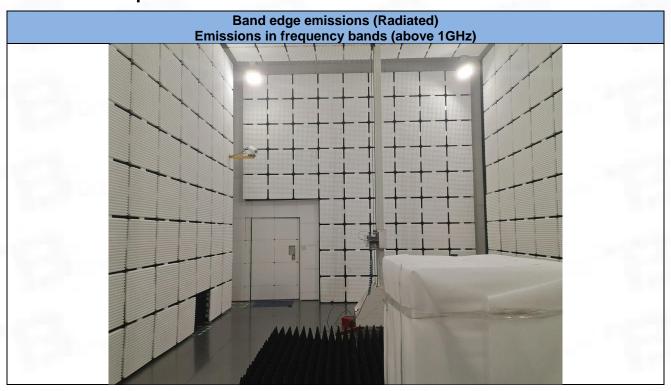
TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: M

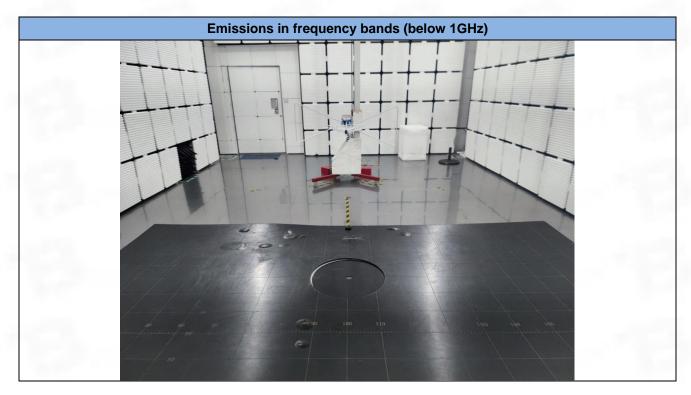
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	1081.166	68.87	-29.42	39.45	74.00	-34.55	peak	Р
2	3016.575	71.12	-29.50	41.62	74.00	-32.38	peak	Р
3	3629.539	72.38	-29.04	43.34	74.00	-30.66	peak	Р
4 *	4804.110	82.60	-27.92	54.68	74.00	-19.32	peak	Р
5	7898.049	77.68	-25.38	52.30	74.00	-21.70	peak	Р
6	10822.922	77.22	-23.82	53.40	74.00	-20.60	peak	Р

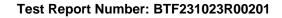


TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: H

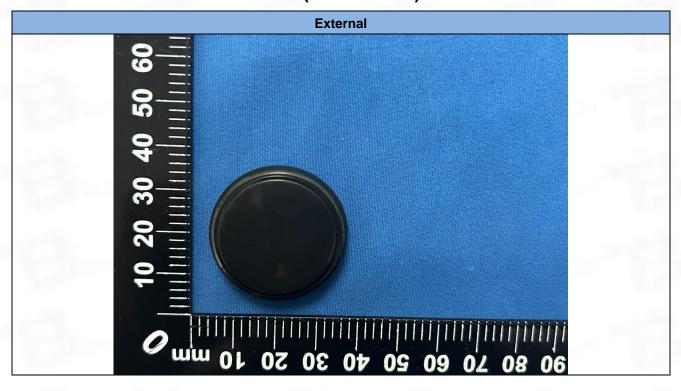
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	1065.653	68.18	-29.34	38.84	74.00	-35.16	peak	Р
2	3016.575	72.25	-29.50	42.75	74.00	-31.25	peak	Р
3	3879.027	72.37	-29.02	43.35	74.00	-30.65	peak	Р
4	4959.307	76.86	-27.49	49.37	74.00	-24.63	peak	Р
5	6564.209	75.10	-25.32	49.78	74.00	-24.22	peak	Р
6 *	9393.689	76.25	-23.43	52.82	74.00	-21.18	peak	Р

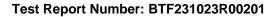

TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: H


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	1342.882	65.99	-30.84	35.15	74.00	-38.85	peak	Р
2	3007.868	70.98	-29.50	41.48	74.00	-32.52	peak	Р
3	3396.098	72.32	-29.15	43.17	74.00	-30.83	peak	Р
4	4004.339	71.78	-29.00	42.78	74.00	-31.22	peak	Р
5 *	4959.307	79.38	-27.49	51.89	74.00	-22.11	peak	Р
6	7476.006	76.59	-24.79	51.80	74.00	-22.20	peak	Р

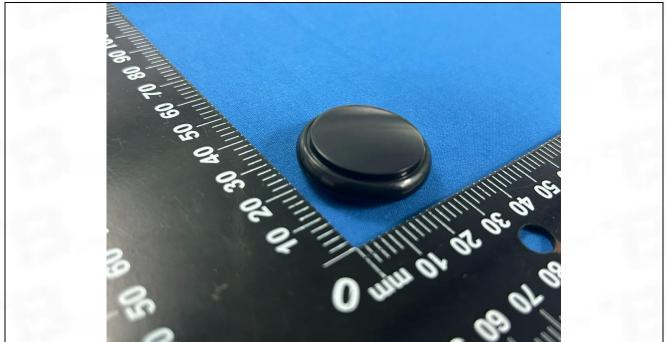


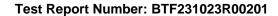
7 Test Setup Photos

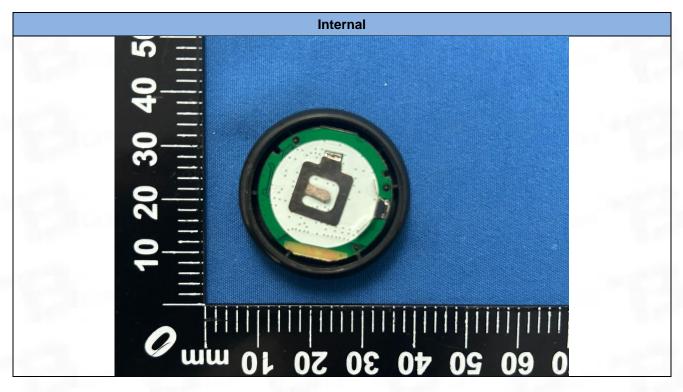


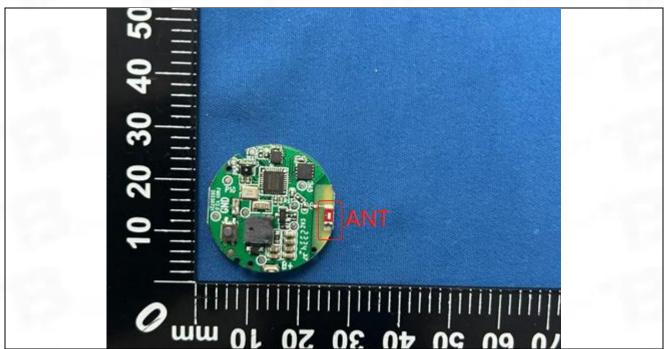


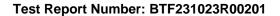
8 EUT Constructional Details (EUT Photos)

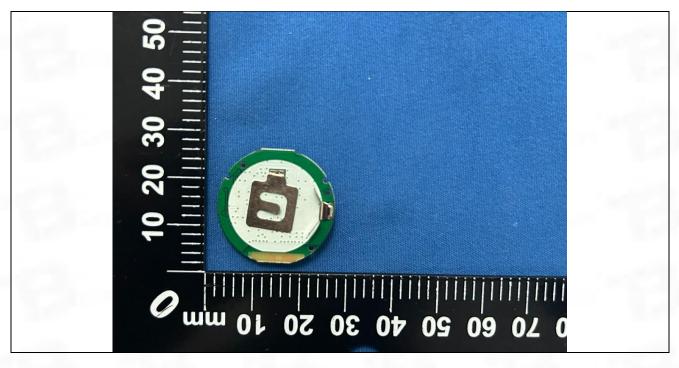


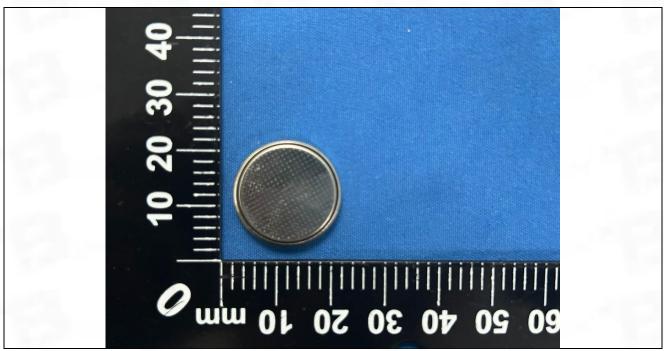


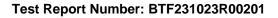


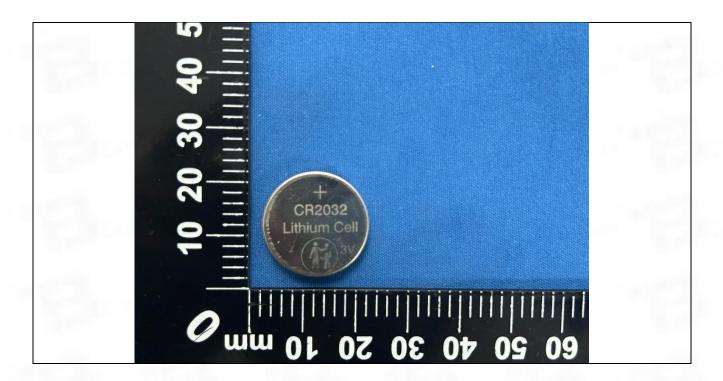


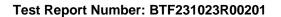


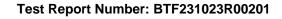




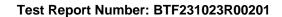






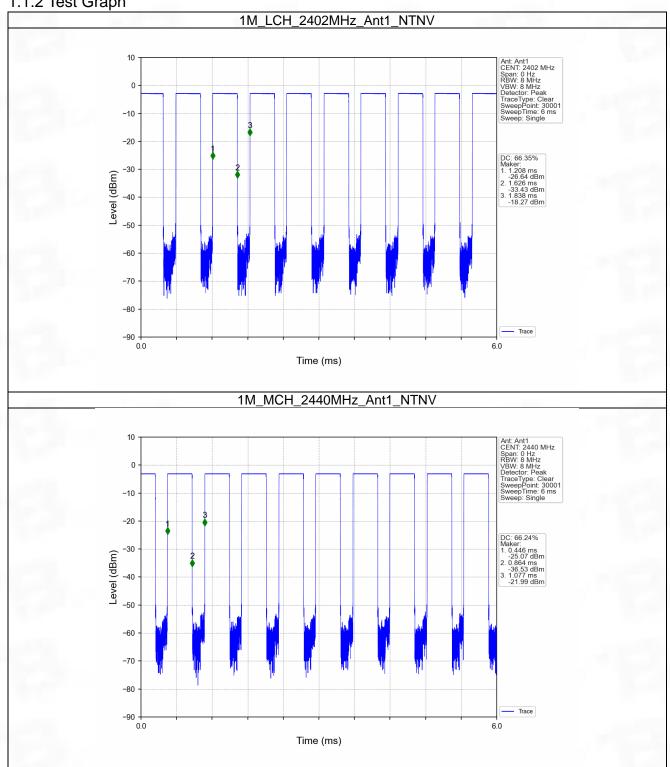


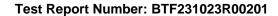
Appendix

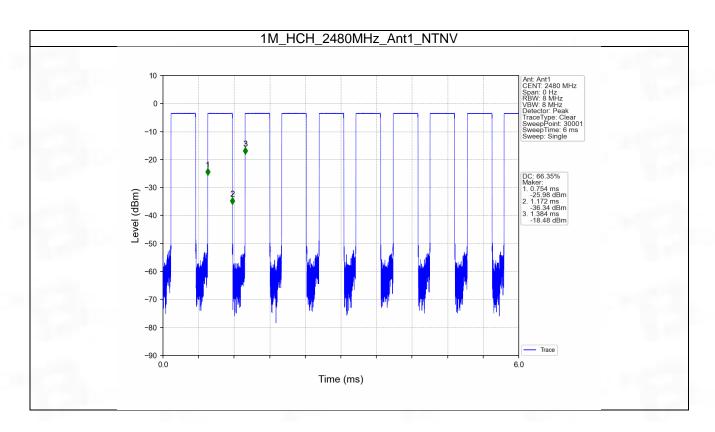


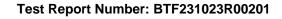
1. Duty Cycle

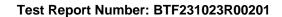
1.1 Ant1


1.1.1 Test Result

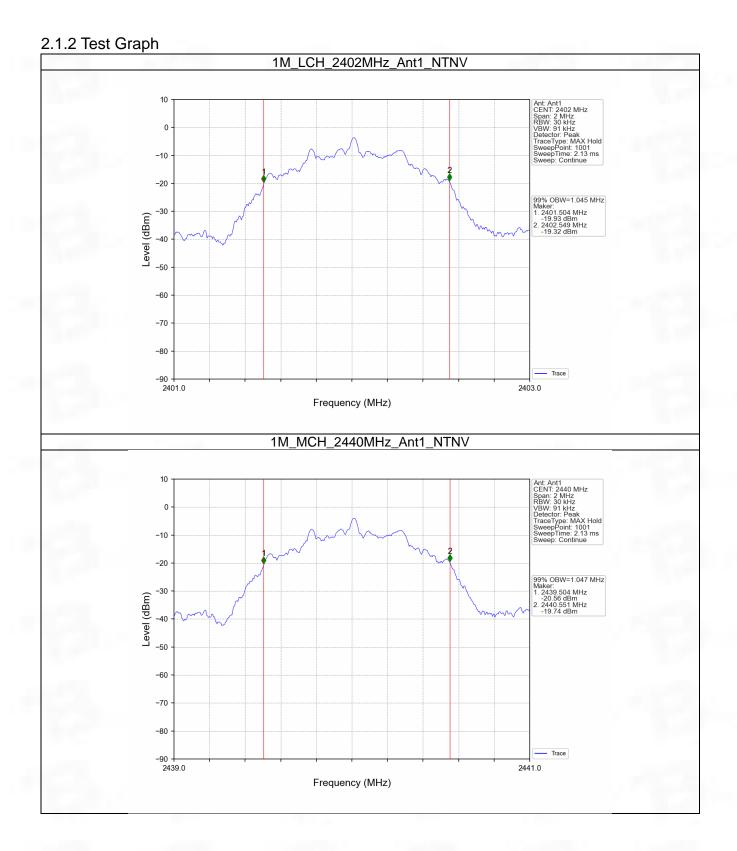

Ant1									
Mode	TX	Frequency	T_on	Period	Duty Cycle	Duty Cycle	Max. DC		
Mode	Type	(MHz)	(ms)	(ms)	(%)	Correction Factor (dB)	Variation (%)		
		2402	0.418	0.630	66.35	1.78	1.18		
1M	SISO	2440	0.418	0.631	66.24	1.79	1.21		
		2480	0.418	0.630	66.35	1.78	1.20		

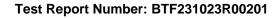



1.1.2 Test Graph

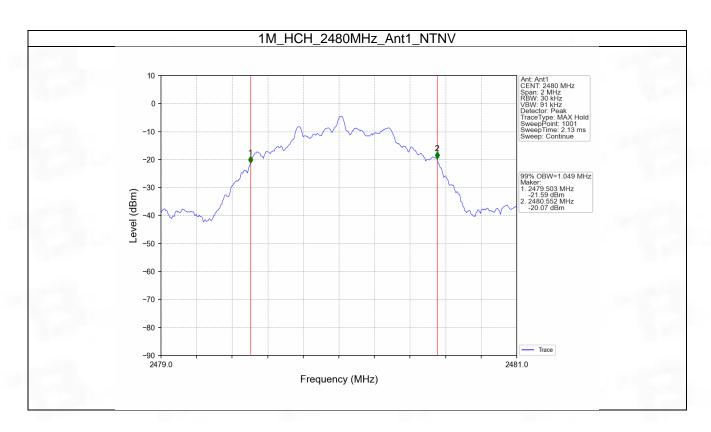


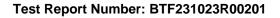
2. Bandwidth

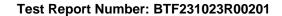

2.1 OBW


2.1.1 Test Result

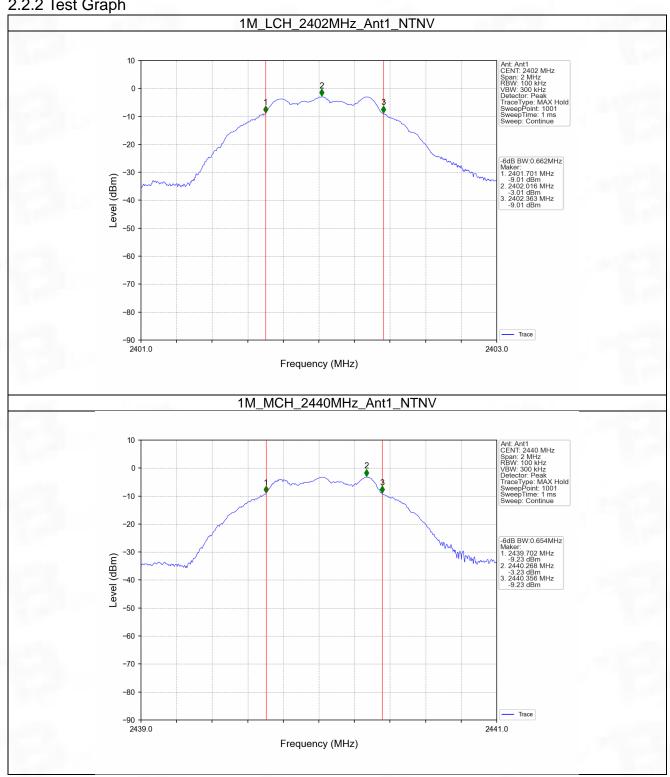
Mode	TX	Frequency	ANT	99% Occupied E	Verdict	
Mode	Type	(MHz)	AINT	Result	Limit	verdict
		2402	1	1.045	/	Pass
1M	SISO	2440	1	1.047	/	Pass
		2480	1	1.049	/	Pass

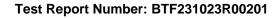


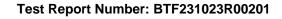


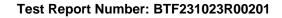


2.2 6dB BW


2.2.1 Test Result

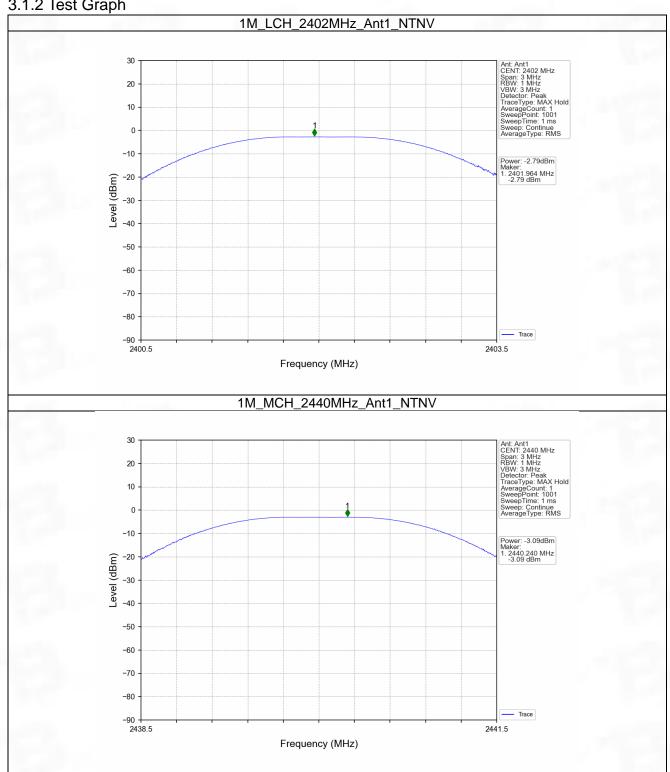

Mada	TX	Frequency	ANIT	6dB Bandwidth (MHz)		\/ovdiet
Mode	Type	(MHz)	ANT	Result	Limit	Verdict
1M	SISO	2402	1	0.662	>=0.5	Pass
		2440	1	0.654	>=0.5	Pass
		2480	1	0.696	>=0.5	Pass

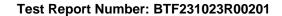

2.2.2 Test Graph

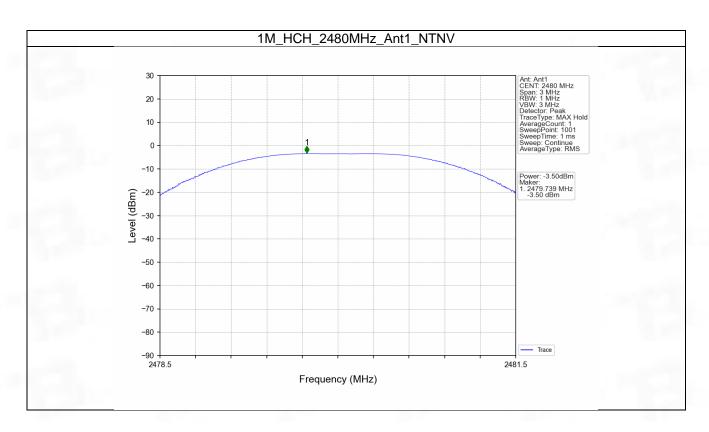


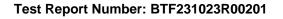
3. Maximum Conducted Output Power

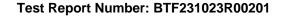
3.1 Power


3.1.1 Test Result


Mode	TX	Frequency	Maximum Peak Conducted Output Power (dBm)		Verdict
Mode	Type	(MHz)	ANT1	Limit	verdict
	SISO	2402	-2.79	<=30	Pass
1M		2440	-3.09	<=30	Pass
		2480	-3.50	<=30	Pass
Note1: Antenna Gain: Ant1: 3.00dBi;					

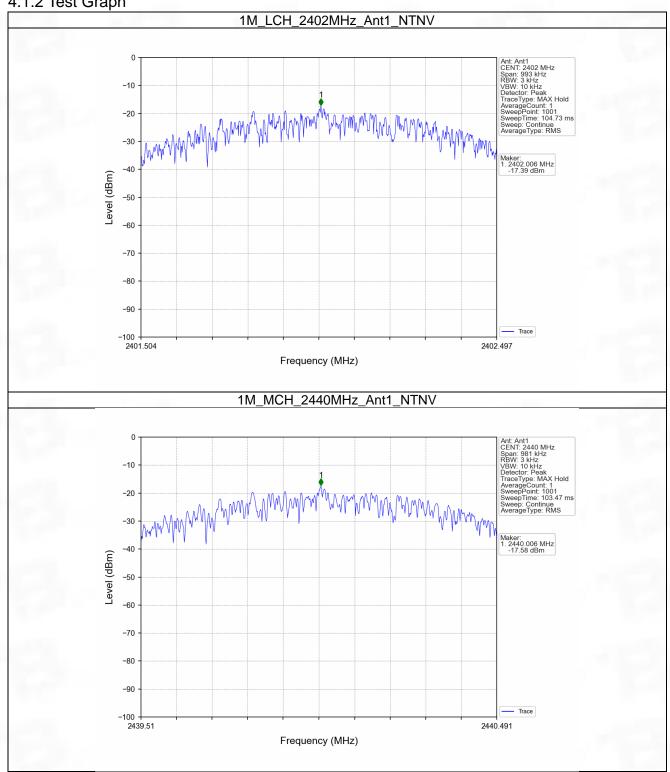


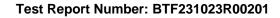

3.1.2 Test Graph

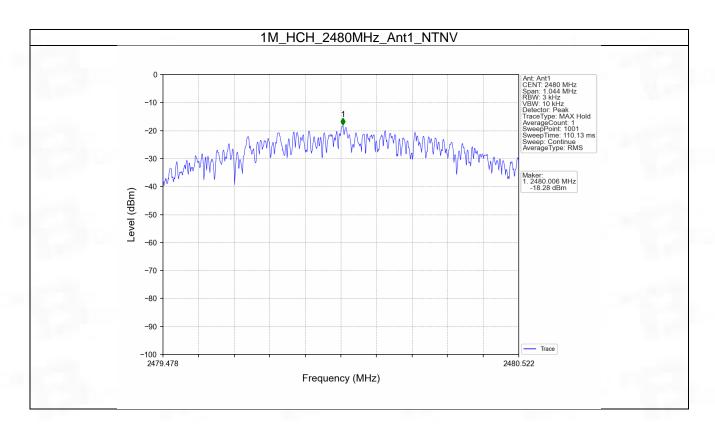


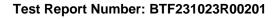
4. Maximum Power Spectral Density

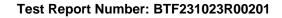
4.1 PSD


4.1.1 Test Result

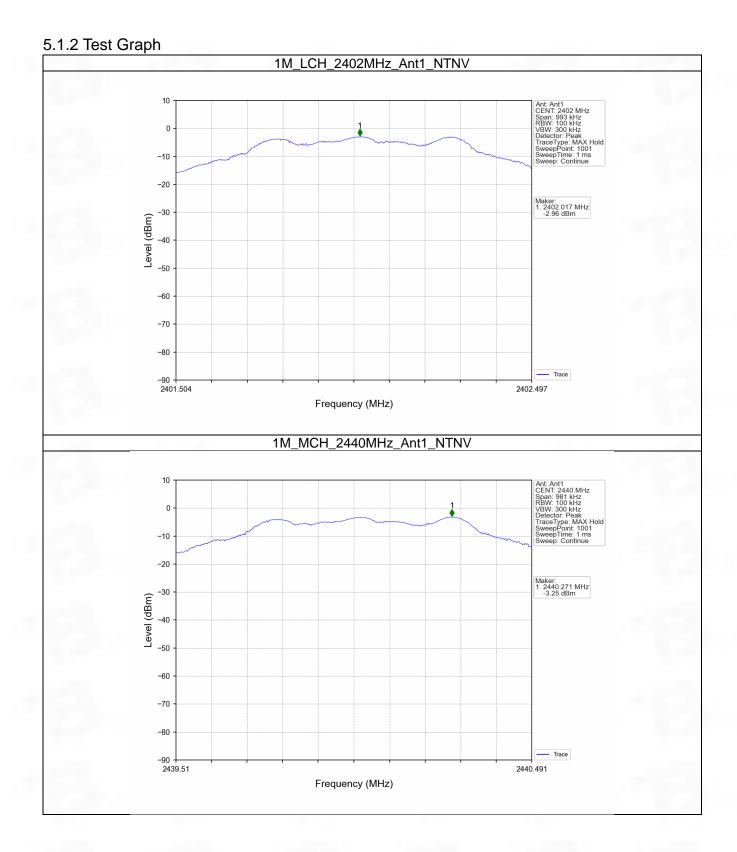

Mode	TX	Frequency	Maximum PSI	Verdict	
Mode	Type	(MHz)	ANT1	Limit	verdict
1M	SISO	2402	-17.39	<=8	Pass
		2440	-17.58	<=8	Pass
		2480	-18.28	<=8	Pass
Note1: Antenr	na Gain: Ant1: -3	.00dBi;			

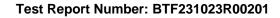



4.1.2 Test Graph

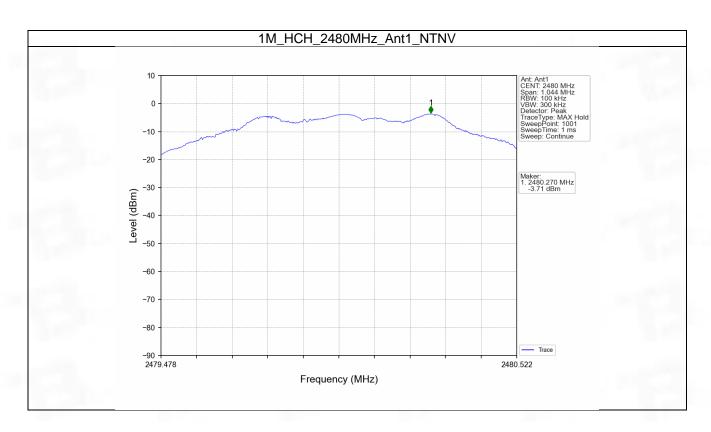

5. Unwanted Emissions In Non-restricted Frequency Bands

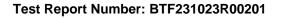
5.1 Ref

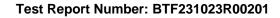

5.1.1 Test Result


Mode	TX Type	Frequency (MHz)	ANT	Level of Reference (dBm)
1M	SISO	2402	1	-2.96
		2440	1	-3.25
		2480	1	-3.71

Note1: Refer to FCC Part 15.247 (d) and ANSI C63.10-2013, the channel contains the maximum PSD level was used to establish the reference level.

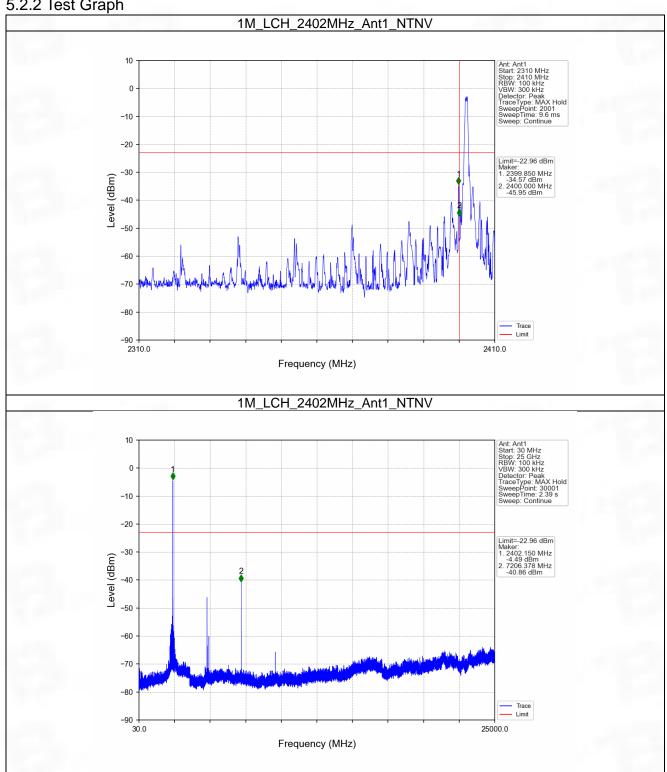


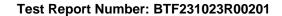


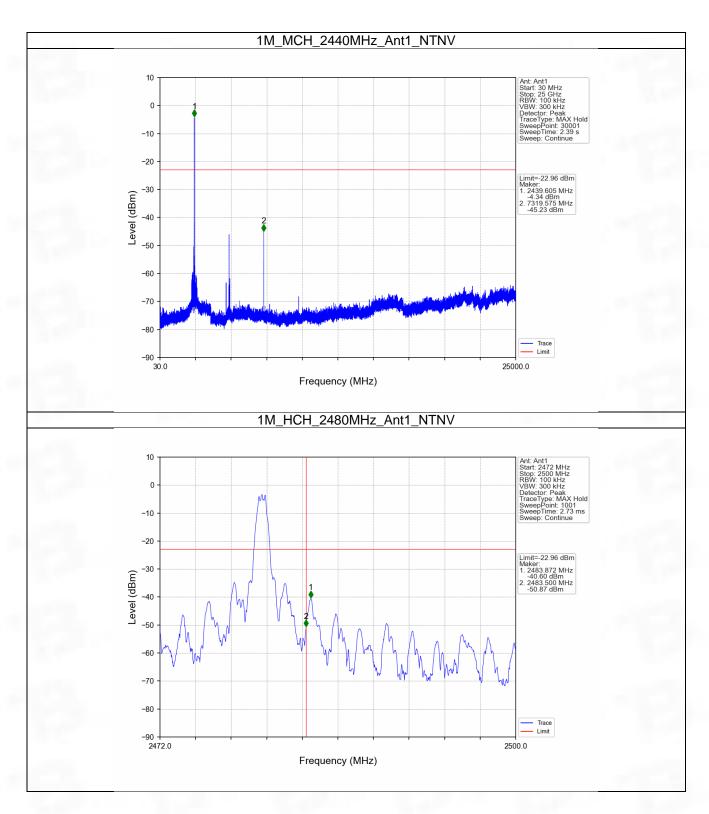


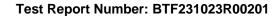
5.2 CSE

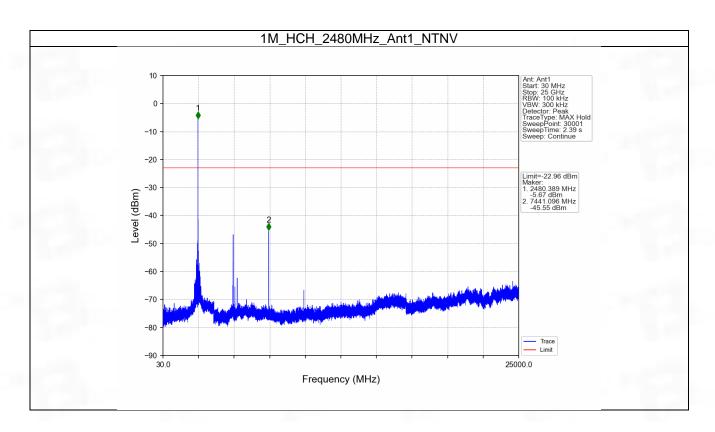
5.2.1 Test Result

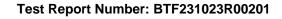

Mode	TX Type	Frequency (MHz)	ANT	Level of Reference (dBm)	Limit (dBm)	Verdict
1M	SISO	2402	1	-2.96	-22.96	Pass
		2440	1	-2.96	-22.96	Pass
		2480	1	-2.96	-22.96	Pass

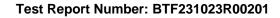

Note1: Refer to FCC Part 15.247 (d) and ANSI C63.10-2013, the channel contains the maximum PSD level was used to establish the reference level.




5.2.2 Test Graph







6. Form731

6.1 Form731

6.1.1 Test Result

Lower Freq (MHz)	High Freq (MHz)	MAX Power (W)	MAX Power (dBm)
2402	2480	0.0005	-2.79

BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

www.btf-lab.com

-- END OF REPORT --