Shenzhen Huaxia Testing Technology Co., Ltd.

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

 Telephone:
 +86-755-26648640

 Fax:
 +86-755-26648637

 Website:
 www.cqa-cert.com

Report Template Version: V05 Report Template Revision Date: 2021-11-03

Test Report

Report No. : Applicant: Address of Applicant:	CQASZ20250300591E-01 ARKON ELECTRONICS (HUIZHOU) CO., LIMITED NO.4 Taihao Road, High-tech Industrial Park,Sandong Town, Huicheng District, Huizhou, Guangdong, China
Equipment Under Test (E	UT):
Product:	Digital Wireless Headphone System
Model No.:	DH170J, DH170, EASY AUDIO PJN240098, E2
Test Model No.:	DH170J
Brand Name:	ARKON, ARTISTE, DAYSNEW
FCC ID:	2APBSDH171J-001T
Standards:	47 CFR Part 15, Subpart C
	KDB558074 D01 15.247 Meas Guidance v05r02
	ANSI C63.10:2013
Date of Receipt:	2025-03-20
Date of Test:	2025-03-20 to 2025-03-31
Date of Issue:	2025-04-10
Test Result :	PASS*

*In the configuration tested, the EUT complied with the standards specified above.

Tested By:	lewis zhou	TESTING TES
	(Lewis Zhou)	
Reviewed By: _	Timo Lej	华夏准测
	(Timo Lei) 了	APPROVED
Approved By:	Janess	_
	(Jack Ai)	

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CQA, this report can't be reproduced except in full.

1 Version

Revision History Of Report

Report No.	Version	Description	Issue Date
CQASZ20250300591E-01	Rev.01	Initial report	2025-04-10

2 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15.203	/	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15.247	ANSI C63.10-2013	PASS
20dB Occupied Bandwidth	47 CFR Part 15.247	ANSI C63.10-2013	PASS
Carrier Frequencies Separation	47 CFR Part 15.247	ANSI C63.10-2013	PASS
Hopping Channel Number	47 CFR Part 15.247	ANSI C63.10-2013	PASS
Dwell Time	47 CFR Part 15.247	ANSI C63.10-2013	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15.247	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15.247	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15.247	ANSI C63.10-2013	PASS
Radiated Spurious emissions	47 CFR Part 15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

The tested sample(s) and the sample information are provided by the client.

Tx: In this whole report Tx (or tx) means Transmitter.

Rx: In this whole report Rx (or rx) means Receiver.

RF: In this whole report RF means Radiated Frequency.

CH: In this whole report CH means channel.

Volt: In this whole report Volt means Voltage.

Temp: In this whole report Temp means Temperature.

Humid: In this whole report Humid means humidity.

Press: In this whole report Press means Pressure.

N/A: In this whole report not application

3 Contents

1 VERSION	2
2 TEST SUMMARY	3
3 CONTENTS	4
4 GENERAL INFORMATION	5
4.1 CLIENT INFORMATION	
4.2 GENERAL DESCRIPTION OF EUT	
4.3 Additional Instructions	
4.4 Test Environment	
4.5 DESCRIPTION OF SUPPORT UNITS	
4.6 STATEMENT OF THE MEASUREMENT UNCERTAINTY	
4.7 TEST LOCATION	
4.8 TEST FACILITY	
4.9 ABNORMALITIES FROM STANDARD CONDITIONS	
4.10 OTHER INFORMATION REQUESTED BY THE CUSTOMER	
4.11 Equipment List	
5 TEST RESULTS AND MEASUREMENT DATA	
5.1 ANTENNA REQUIREMENT	
5.2 Conducted Emissions	13
5.3 CONDUCTED PEAK OUTPUT POWER	
5.4 20DB Occupied Bandwidth	
5.5 CARRIER FREQUENCIES SEPARATION	
5.6 HOPPING CHANNEL NUMBER	
5.7 DWELL TIME	
5.8 BAND-EDGE FOR RF CONDUCTED EMISSIONS	
5.9 Spurious RF Conducted Emissions	
5.10 OTHER REQUIREMENTS FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM	
5.11 RADIATED SPURIOUS EMISSION & RESTRICTED BANDS	
5.11.1 Radiated Emission below 1GHz	
5.11.2 Transmitter Emission above 1GHz	
6 PHOTOGRAPHS - EUT TEST SETUP	51
6.1 RADIATED EMISSION	
6.2 CONDUCTED EMISSION	
7 PHOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	53

4 General Information

4.1 Client Information

Applicant:	ARKON ELECTRONICS (HUIZHOU) CO., LIMITED
Address of Applicant:	NO.4 Taihao Road, High-tech Industrial Park,Sandong Town, Huicheng District, Huizhou, Guangdong, China
Manufacturer:	ARKON ELECTRONICS (HUIZHOU) CO., LIMITED
Address of Manufacturer:	NO.4 Taihao Road, High-tech Industrial Park,Sandong Town, Huicheng District, Huizhou, Guangdong, China
Factory:	ARKON ELECTRONICS (HUIZHOU) CO., LIMITED
Address of Factory:	NO.4 Taihao Road, High-tech Industrial Park,Sandong Town, Huicheng District, Huizhou, Guangdong, China

4.2 General Description of EUT

Product Name:	Digital Wireless Headphone System
Model No.:	DH170J, DH170, EASY AUDIO PJN240098, E2
Test Model No.:	DH170J
Trade Mark:	ARKON, ARTISTE, DAYSNEW
Software Version:	V1.0
Hardware Version:	V1.0
Operation Frequency:	2400MHz~2483.5MHz
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Modulation Type:	GFSK
Transfer Rate:	1Mbps
Number of Channel:	40
Hopping Channel Type:	Adaptive Frequency Hopping systems
Product Type:	⊠ Mobile □ Portable
Test Software of EUT:	FCC
Antenna Type:	PCB antenna
Antenna Gain:	0dBi
Power Supply:	Power supply DC5V form adapter
	Adapter:
	Model:YLJXA-T050055
	Input:100-240V~50/60Hz 0.5A MAX
	Output:5V 0.55A
Simultaneous Transmission	□ Simultaneous TX is supported and evaluated in this report.
	Simultaneous TX is not supported.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
(CH0)	
The middle channel	2440MHz
(CH19)	
The highest channel	2480MHz
(CH39)	

4.3 Additional Instructions

EUT Test Software Settings:			
Mode:	Special software is used.		
	☐ Through engineering command into	the engineering mode.	
	engineering command: *#*#3646633#	*#*	
EUT Power level:	Class 0		
Use test software to set the lowest frequency, the middle frequency and the highest frequency keep transmitting of the EUT.			
Mode	Channel Frequency(MHz)		
	CH0 2402		
GFSK	CH19	2440	
	СН39	2480	

Run Software:

CACTIONS BT FCC Tool	V2. 24	? ×
SOLUTION ATS283XP - COM	СОМ2 👻 115200 👻	BQB Mode
RF Channel 0	Hopping Mode 🗹 Normal_F	• random •
Packet Type BLE_1M	Payload Type P	RBS9 -
TX Gain Index 0 🗸	RX Gain Index 🛛	*
Access Code Ox AbDdE341	AGC Mode	
Continue IX Single Ione	Packet IX Packet RX	Stop
1TX GAIN设置失败! 1开始ContinueTX测试(Chan: 0 Packet:]	DH5 Payload:PRBS9 TxGain:0)	
	t:BLE_1M Payload:PRES9 TxGain:0)	
1结束ContinueTX测试,持续0.8秒 1开始ContinueTX测试(Chan:AFH Packet	t:BLE_1M Payload:PRBS9 TxGain:0)	

4.4 Test Environment

Operating Environment	Operating Environment:	
Temperature:	25 °C	
Humidity:	54% RH	
Atmospheric Pressure:	1009mbar	
Test Mode:	Use test software to set the lowest frequency, the middle frequency and the highest frequency keep transmitting of the EUT.	

4.5 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.	Remark	Supplied
/	/	/	/	/

4.6 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate.

The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities.

The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the **Shenzhen Huaxia Testing Technology Co., Ltd.** quality system acc. to DIN EN ISO/IEC 17025.

Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

No.	Item	Uncertainty
1	Radiated Emission (Below 1GHz)	5.12dB
2	Radiated Emission (Above 1GHz)	4.60dB
3	Conducted Disturbance (0.15~30MHz)	3.34dB
4	Radio Frequency	3×10 ⁻⁸
5	Duty cycle	0.6 %
6	Occupied Bandwidth	1.1%
7	RF conducted power	0.86dB
8	RF power density	0.74
9	Conducted Spurious emissions	0.86dB
10	Temperature test	0.8°C
11	Humidity test	2.0%
12	Supply voltages	0.5 %
13	Frequency Error	5.5 Hz

Hereafter the best measurement capability for CQA laboratory is reported:

4.7 Test Location

All tests were performed at:

Shenzhen Huaxia Testing Technology Co., Ltd.

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

4.8 Test Facility

The test facility is recognized, certified, or accredited by the following organizations: **IC Registration No.: 22984-1**

The 3m Semi-anechoic chamber of Shenzhen Huaxia Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L5785)

CNAS has accredited Shenzhen Huaxia Testing Technology Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• A2LA (Certificate No. 4742.01)

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 4742.01.

• FCC Registration No.: 522263

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.:522263

4.9 Abnormalities from Standard Conditions

None.

4.10 Other Information Requested by the Customer

None.

4.11 Equipment List

Test Equipment	Manufacturar	Madal Na	Instrument	Calibration	Calibration
Test Equipment EMI Test Receiver	Manufacturer R&S	Model No. ESR7	No. CQA-005	Date 2024/9/2	Due Date 2025/9/1
	R&S	FSU26	CQA-005 CQA-038	2024/9/2	2025/9/1
Spectrum analyzer					
Spectrum analyzer	R&S	FSU40 AFS4-00010300-18-	CQA-075	2024/9/2	2025/9/1
Preamplifier	MITEQ	10P-4	CQA-035	2024/9/2	2025/9/1
		AMF-6D-02001800-			
Preamplifier	MITEQ	29-20P	CQA-036	2024/9/2	2025/9/1
Preamplifier	EMCI	EMC184055SE	CQA-089	2024/9/2	2025/9/1
Loop antenna	Schwarzbeck	FMZB1516	CQA-060	2023/9/8	2026/9/7
Bilog Antenna	R&S	HL562	CQA-011	2023/11/01	2026/10/31
Horn Antenna	R&S	HF906	CQA-012	2023/11/01	2026/10/31
Horn Antenna	Schwarzbeck	BBHA 9170	CQA-088	2023/9/7	2026/9/6
Coaxial Cable (Above 1GHz)	CQA	N/A	C007	2024/9/2	2025/9/1
Coaxial Cable (Below 1GHz)	CQA	N/A	C013	2024/9/2	2025/9/1
Antenna Connector	CQA	RFC-01	CQA-080	2024/9/2	2025/9/1
RF cable(9KHz~40GHz)	CQA	RF-01	CQA-079	2024/9/2	2025/9/1
Power meter	R&S	NRVD	CQA-029	2024/9/2	2025/9/1
		PWD-2533-02-SMA-			
Power divider	MIDWEST	79	CQA-067	2024/9/2	2025/9/1
EMI Test Receiver	R&S	ESR7	CQA-005	2024/9/2	2025/9/1
LISN	R&S	ENV216	CQA-003	2024/9/2	2025/9/1
Coaxial cable	CQA	N/A	CQA-C009	2024/9/2	2025/9/1
DC power	KEYSIGHT	E3631A	CQA-028	2024/9/2	2025/9/1

Test software:

	Manufacturer	Software brand	Software version
Radiated Emissions test software	Tonscend	JS1120-3	Version:8
Conducted Emissions test software	Audix	e3	Version:9
RF Conducted test software	Audix	e3	V3.5.39

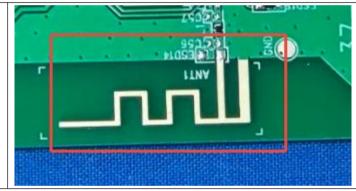
Note:

The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement:	47 CFR Part 15C Section 15.203 /247(c)
-----------------------	--


15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

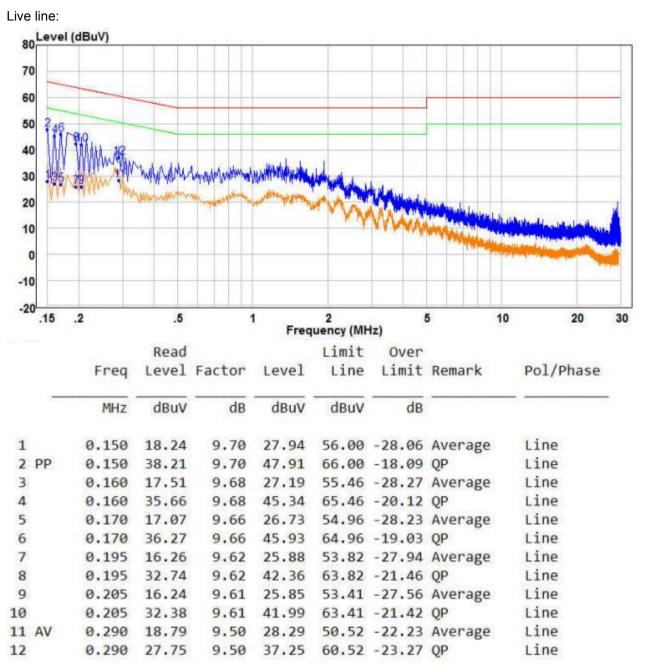
EUT Antenna:

The antenna is pcb antenna.

The connection/connection type between the antenna to the EUT's antenna port is: permanently attachment.

This is either permanently attachment or a unique coupling that satisfies the requirement.

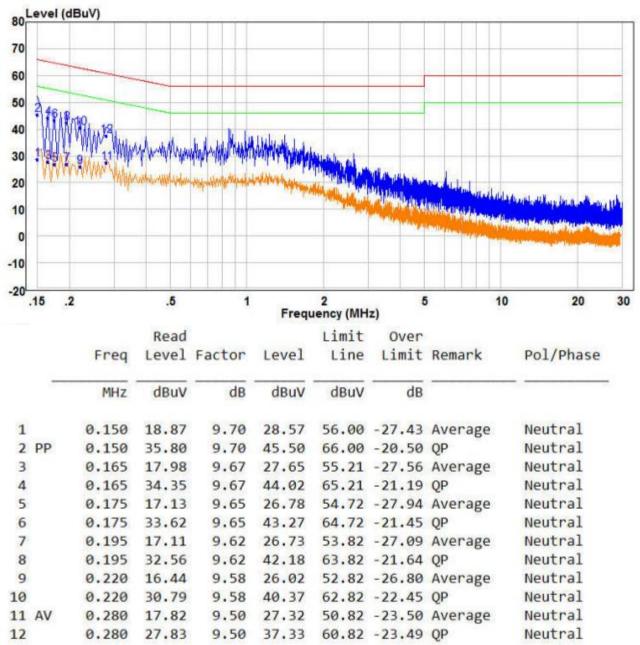
5.2 Conducted Emissions


 Conducted Emissio						
Test Requirement:	47 CFR Part 15C Section 15.2	207				
Test Method:	ANSI C63.10: 2013					
Test Frequency Range:	150kHz to 30MHz					
Limit:		Limit (c	lBuV)			
	Frequency range (MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	* Decreases with the logarithm	n of the frequency.				
Test Procedure:	 The mains terminal disturbution. The EUT was connected to Impedance Stabilization Nation impedance. The power calls connected to a second LIS reference plane in the same measured. A multiple sock power cables to a single LI exceeded. The tabletop EUT was place ground reference plane. An placed on the horizontal grade on the closest points the EUT shall be 0.4 m for the grade on the closest points the EUT and associated exception of the grade on the closest points the EUT and associated exceptions the EUT and associated exceptions the EUT and all of the im ANSI C63.10: 2013 on control on the closest points of the formation of the grade on the formation of the f	b AC power source thro etwork) which provides oles of all other units of SN 2, which was bonde in way as the LISN 1 for et outlet strip was used ISN provided the rating ced upon a non-metalling of floor-standing ar round reference plane, th a vertical ground ref from the vertical ground ref from the vertical ground ref from the vertical ground blane was bonded to the 1 was placed 0.8 m fro to a ground reference and reference plane. The of the LISN 1 and the quipment was at least 0 in emission, the relativi- terface cables must be	bugh a LISN 1 (Line a $50\Omega/50\mu$ H + 5Ω line f the EUT were d to the ground or the unit being d to connect multiple g of the LISN was not c table 0.8m above the rangement, the EUT w ference plane. The read d reference plane. The read d reference plane. The read reference plane. The se horizontal ground om the boundary of the se plane for LISNs his distance was EUT. All other units of 0.8 m from the LISN 2. we positions of			
Test Setup:	Shielding Room	AE UISN2 + AC Ma Ground Reference Plane	Test Receiver			

Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of
	data type at the lowest, middle, high channel.
Final Test Mode:	Through Pre-scan, find the GFSK modulation at the lowest channel is the worst case.
	Only the worst case is recorded in the report.
Test Voltage:	AC 120V/60Hz
Test Results:	Pass

Measurement Data

Remark:


1. The following Quasi-Peak and Average measurements were performed on the EUT:

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

3. If the Peak value under Average limit, the Average value is not recorded in the report.

Neutral line:

Remark:

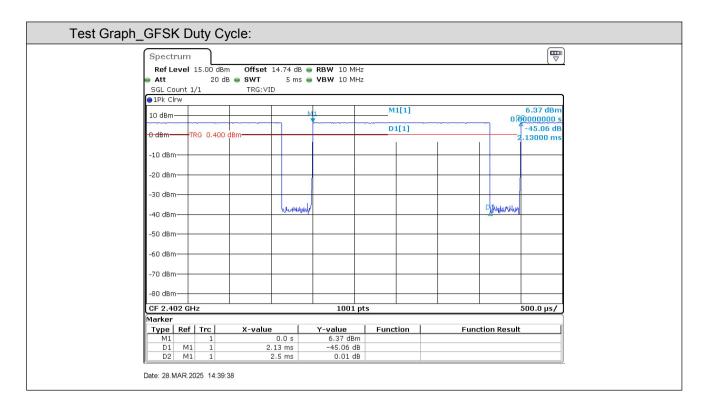
1. The following Quasi-Peak and Average measurements were performed on the EUT:

- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

5.3 Conducted Peak Output Power

	•
Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)
Test Method:	ANSI C63.10:2013
Test Setup:	Setup for Power meter measurement method
	EUT Power Meter
	Setup for Spectrum analyser measurement method
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
	Remark: Offset=Cable loss+ attenuation factor.
Limit:	21dBm
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
Final Test Mode:	Only the worst case is recorded in the report.
Test Results:	Pass

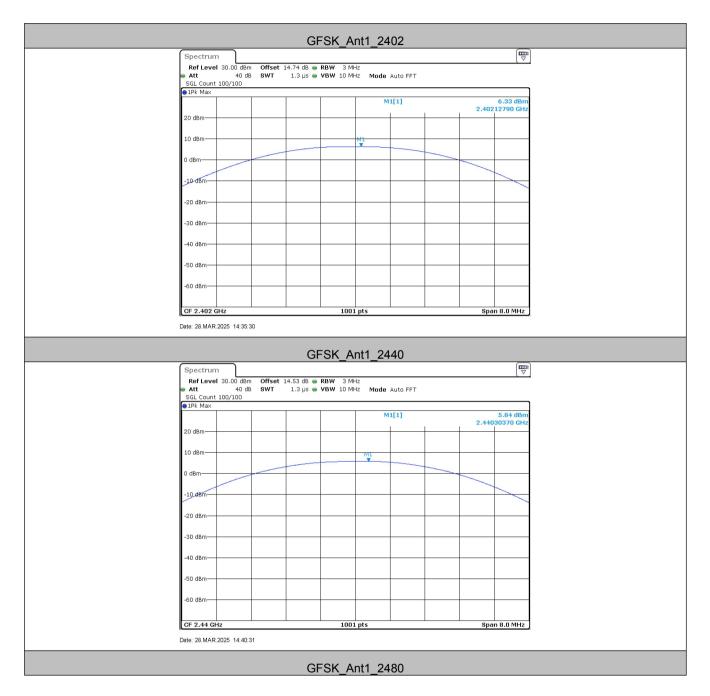
Operated Mode for	r Worst Duty Cycle:
eponatoa moao io.	


•		
Test Mode	Duty Cycle(%)	Average correction factor(dB)
GFSK	85.2	0.695

Remark:

1) Duty cycle= On Time/ Period;

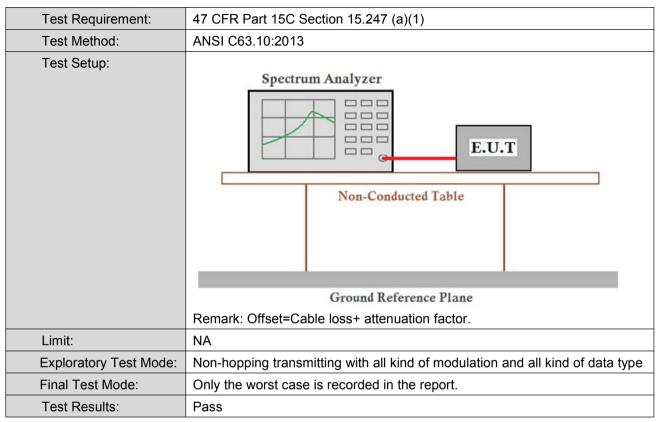
2) Duty Cycle factor = 10 * log(1/ Duty cycle);



Measurement Data

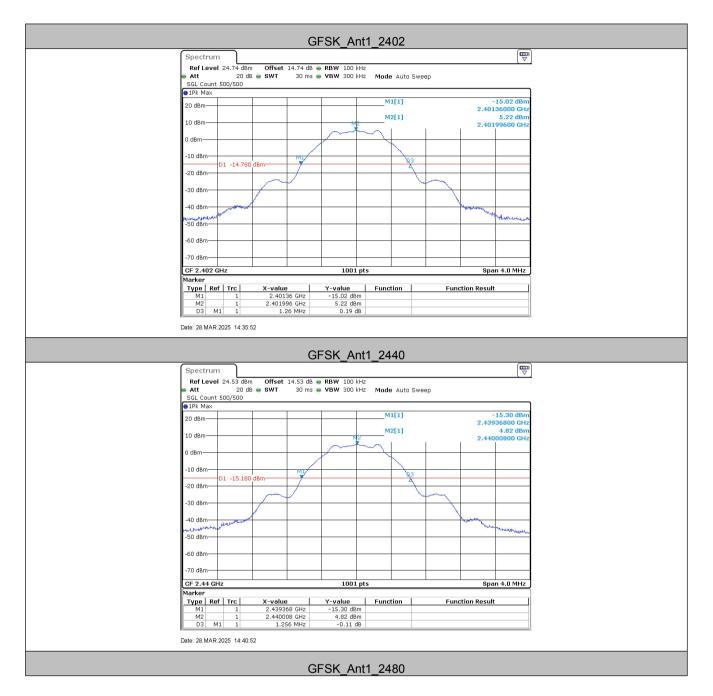
	GFSK mode	9	
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
Lowest	6.33	21.00	Pass
Middle	5.84	21.00	Pass
Highest	5.96	21.00	Pass

Test plot as follows:



Spectrum								▼
Ref Level 3 Att SGL Count 1	40 dB	Offset 1 SWT	RBW 3 MI VBW 10 MI		Auto FFT			
1Pk Max								
				м	1[1]	1	2.480	5.96 dBm 331970 GHz
20 dBm-								
10 dBm				MI				
0 dBm								
-10 d8m								
-20 dBm								
-30 dBm								
-40 dBm								
-50 dBm								
-60 dBm								
CF 2.48 GHz	-		100:	l pts	I		Spa	an 8.0 MHz
Date: 28.MAR.20	025 14:42:50							

5.4 20dB Occupied Bandwidth

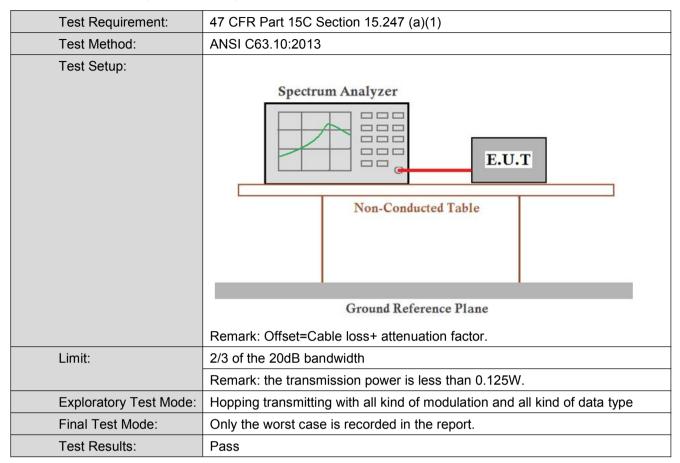


Measurement Data

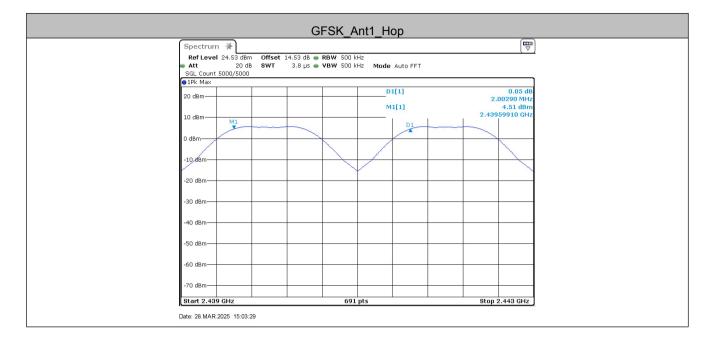
Test channel	20dB Occupy Bandwidth (MHz)
	GFSK
Lowest	1.26
Middle	1.26
Highest	1.26



Test plot as follows:



5.5 Carrier Frequencies Separation

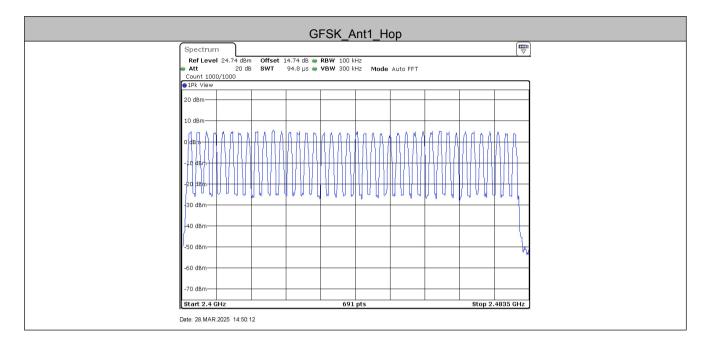

Measurement Data

TestMode	Freq(MHz)	Result[MHz]	Limit[MHz]	Verdict
GFSK	Нор	2.002	≥0.84	PASS

Mode	20dB bandwidth (MHz)	Limit (MHz)	
Mode	(worse case)	(Carrier Frequencies Separation)	
GFSK	1.26	≥0.84	

Test plot as follows:

5.6 Hopping Channel Number


Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013		
Test Setup:	ANSI C63.10:2013 Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset=Cable loss+ attenuation factor.		
Limit:	At least 15 channels		
Exploratory Test Mode:	hopping transmitting with all kind of modulation and all kind of data type		
Final Test Mode:	Only the worst case is recorded in the report.		
Test Results:	Pass		

Measurement Data

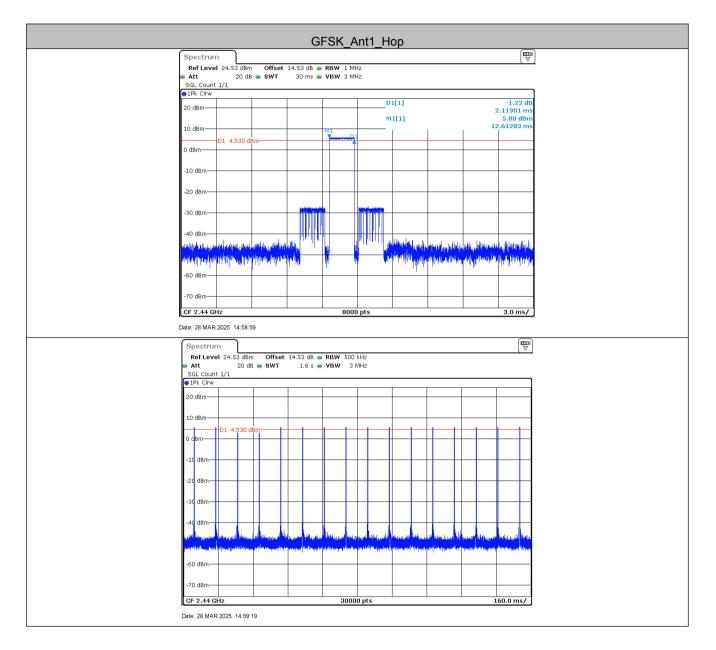
Mode	Hopping channel numbers	Limit
GFSK	40	≥15

Test plot as follows:

5.7 Dwell Time

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table		
	Ground Reference Plane		
	Remark: Offset=Cable loss+ attenuation factor.		
Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.		
Limit:	0.4 Second		
Test Results:	Pass		

Measurement Data


TestMode	Freq(MHz)	BurstWidth [ms]	TotalHops [Num]	Result[s]	Limit[s]	Verdict
GFSK	Нор	2.115	152	0.321	≤0.4	PASS

Remark:

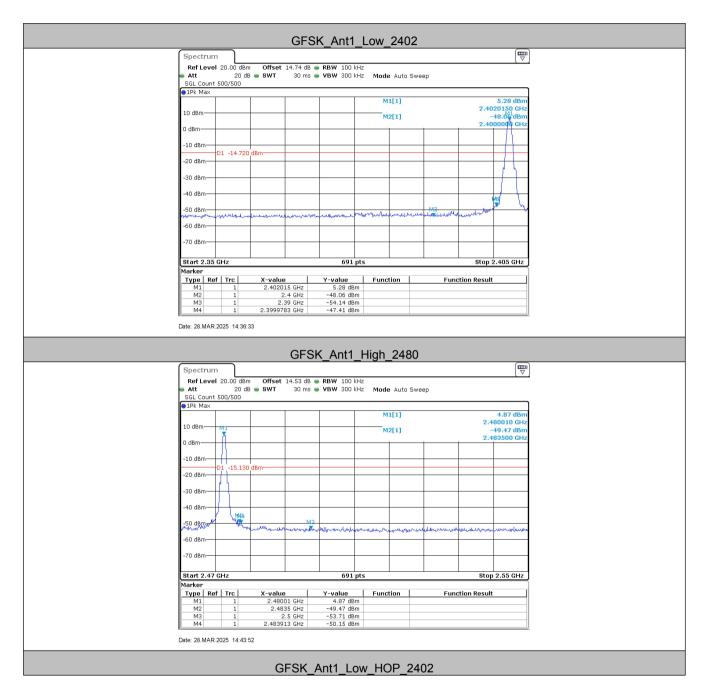
The test period: T= 0.4 Second/Channel x 40 Channel = 16 s

Test plot as follows:

5.8 Band-edge for RF Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)		
Test Method:	ANSI C63.10:2013		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset=cable loss+ attenuation factor.		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Exploratory Test Mode:	Hopping and Non-hopping transmitting with all kind of modulation and all kind of data type		
Final Test Mode:	Only the worst case is recorded in the report.		
Test Results:	Pass		

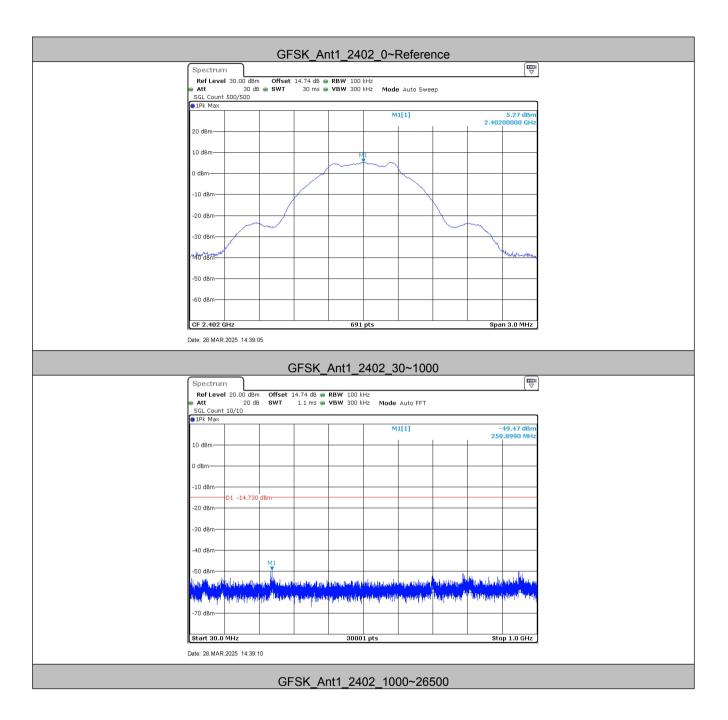
Shenzhen Huaxia Testing Technology Co., Ltd.


Report No.: CQASZ20250300591E-01

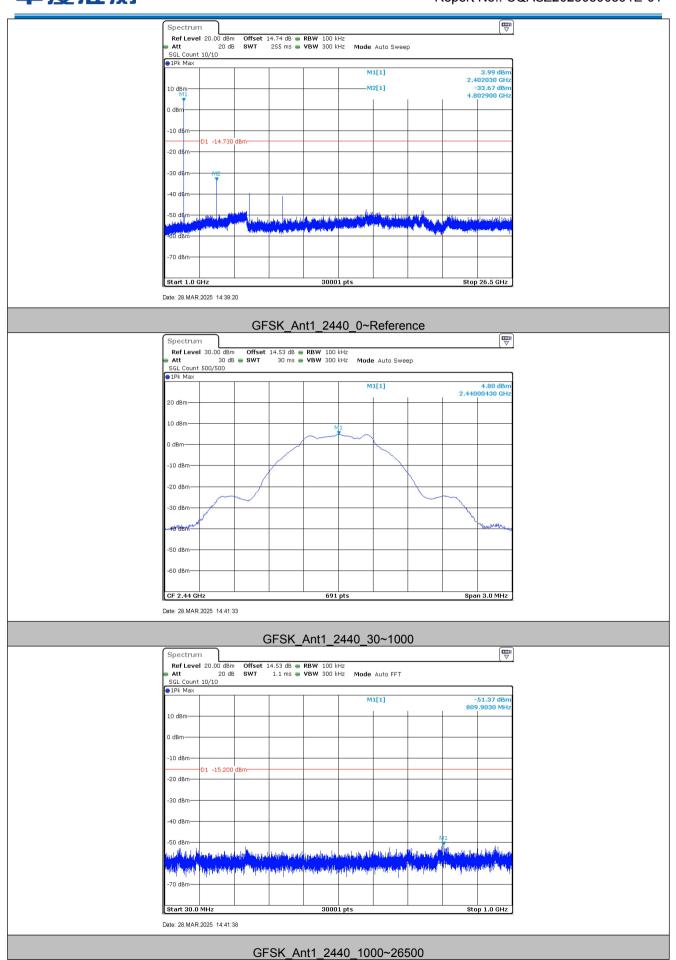
Measurement Data

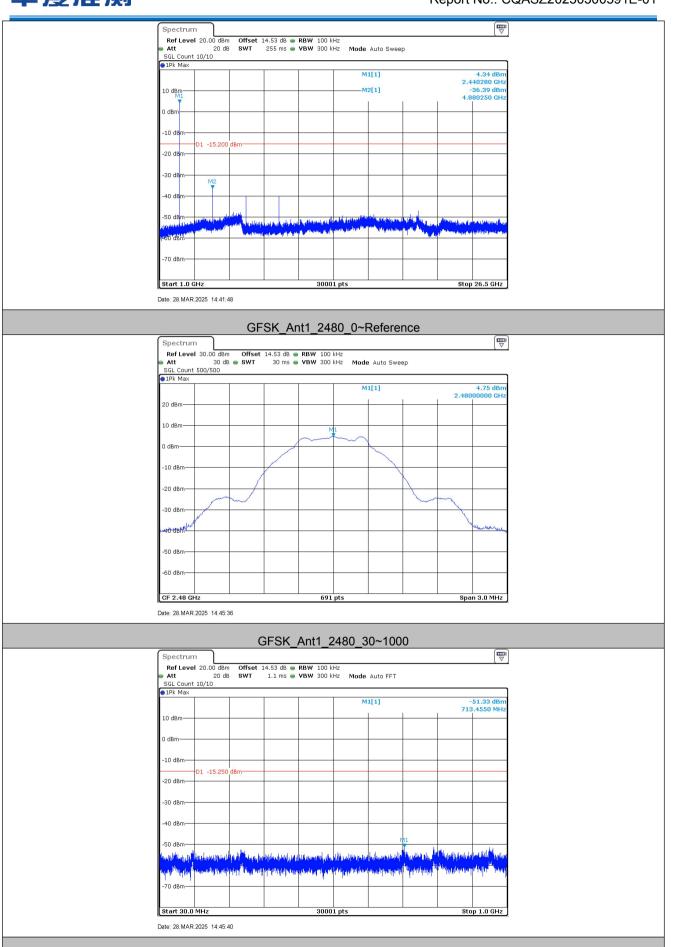
TestMode	ChName	Freq(MHz)	RefLevel [dBm]	Result [dBm]	Limit [dBm]	Verdict
	Low	2402	5.28	-47.41	≤-14.72	PASS
OFOK	High	2480	4.87	-50.15	≤-15.13	PASS
GFSK	Low	HOP_2402	4.97	-48.33	≤-15.03	PASS
	High	HOP_2480	4.73	-51.85	≤-15.27	PASS

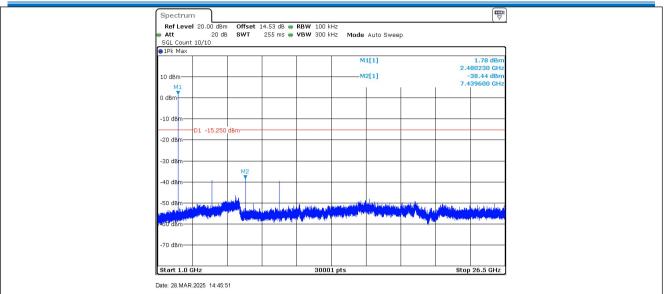
Test plot as follows:



5.9 Spurious RF Conducted Emissions


Test Requirement:	47 CFR Part 15C Section 15.247 (d)				
Test Method:	ANSI C63.10:2013				
Test Setup:	Spectrum Analyzer E-U.T Non-Conducted Table Ground Reference Plane Remark: Offset=cable loss+ attenuation factor.				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type				
Final Test Mode:	Through Pre-scan, find the data type is the worst case of GFSK modulation type.				
Test Results:	Pass				





GFSK_Ant1_2480_1000~26500

Shenzhen Huaxia Testing Technology Co., Ltd.

Report No.: CQASZ20250300591E-01

Remark:

Pre test 9kHz to 25GHz, find the highest point when testing, so only the worst data were shown in the test report. Per FCC Part 15.33 (a) and 15.31 (o) ,The amplitude of spurious emissions from intentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this part.

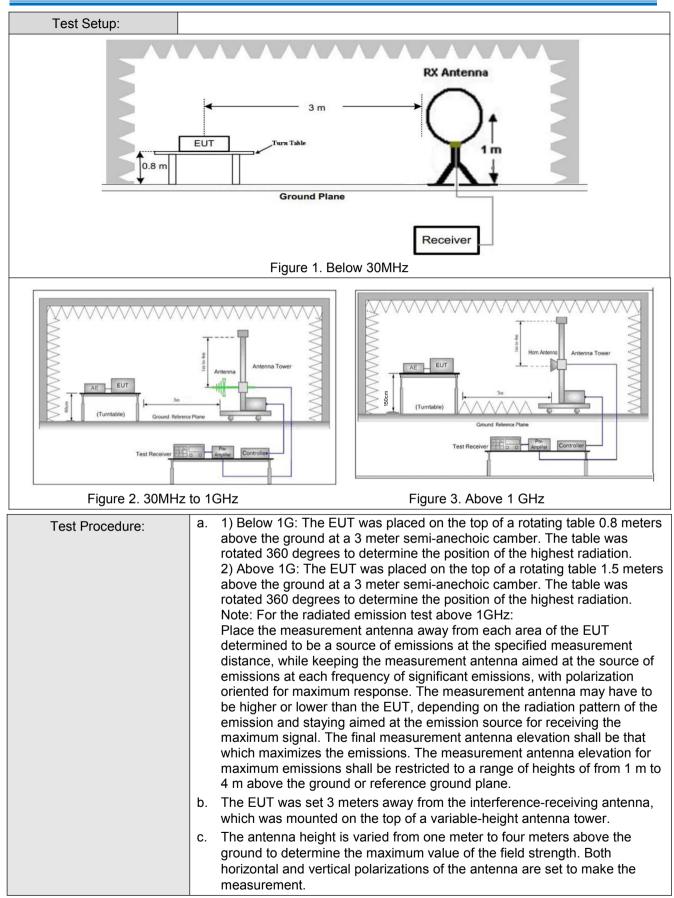
5.10Other requirements Frequency Hopping Spread Spectrum System

5.100ther requirements Fi	requency Hopping Spread Spectrum System
Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1), (h) requirement:
rate from a Pseudorandom on the average by each tran	nnel frequencies that are selected at the system hopping ordered list of hopping frequencies. Each frequency must be used equally smitter. The system receivers shall have input bandwidths that match the s of their corresponding transmitters and shall shift frequencies in asmitted signals.
channels during each transr receiver, must be designed transmitter be presented wit employing short transmissio	spectrum systems are not required to employ all available hopping nission. However, the system, consisting of both the transmitter and the to comply with all of the regulations in this section should the h a continuous data (or information) stream. In addition, a system n bursts must comply with the definition of a frequency hopping system missions over the minimum number of hopping channels specified in
the system to recognize oth independently chooses and The coordination of frequen	ence within a frequency hopping spread spectrum system that permits er users within the spectrum band so that it individually and adapts its hopsets to avoid hopping on occupied channels is permitted. cy hopping systems in any other manner for the express purpose of occupancy of individual hopping frequencies by multiple transmitters is
Compliance for section 15	.247(a)(1)
•	ulo-two addition stage. And the result is fed back to the input of the first with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized ages: 9 sequence: 2 ⁹ -1 = 511 bits
	hift Register for Generation of the PRBS sequence
20 62 46 77	om Frequency Hopping Sequence as follow: 7 64 8 73 16 75 1
Each frequency used equall	y on the average by each transmitter.
bandwidths that match the	e Specification, Bluetooth receivers are designed to have input and IF hopping channel bandwidths of any Bluetooth transmitters and shift on with the transmitted signals.
Compliance for section 15	.247(g)
pseudorandom hopping free	re Specification, the Bluetooth system transmits the packet with the quency with a continuous data and the short burst transmission from the ansmitted under the frequency hopping system with the pseudorandom
	Page: 43 of 50

Compliance for section 15.247(h)

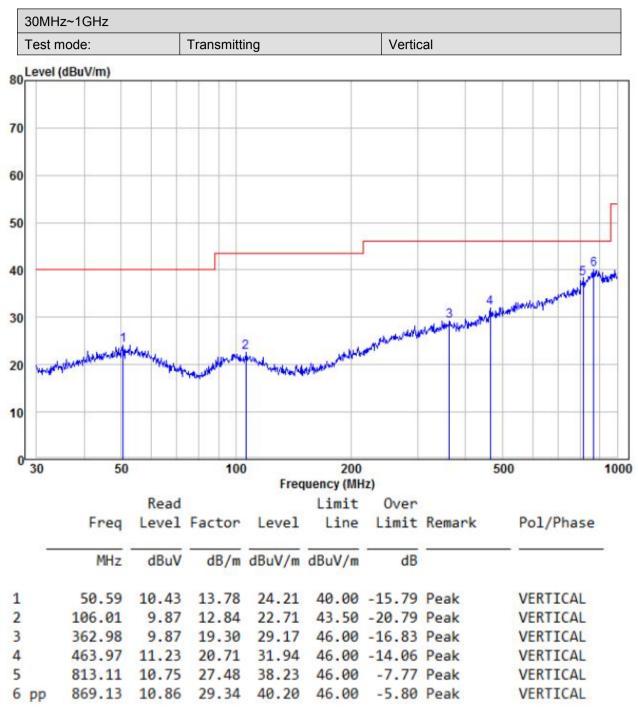
According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.



5.11 Radiated Spurious Emission & Restricted bands

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205							
Test Method:	ANSI C63.10: 2013							
Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)							
Receiver Setup:	Frequency Detector			RBW	VBW	Remark]	
	0.009MHz-0.090MH	z	Peak	10kHz	z 30kHz	Peak]	
	0.009MHz-0.090MH	z	Average	10kHz	z 30kHz	Average]	
	0.090MHz-0.110MH	z	Quasi-peak	10kHz	z 30kHz	Quasi-peak		
	0.110MHz-0.490MH	z	Peak	10kHz	z 30kHz	Peak		
	0.110MHz-0.490MH	z	Average	10kHz	z 30kHz	Average		
	0.490MHz -30MHz		Quasi-peak	10kHz	z 30kHz	Quasi-peak		
	30MHz-1GHz		Peak	120 k⊢	lz 300kHz	Peak		
	Above 1GHz		Peak	1MHz	: 3MHz	Peak		
			Peak	1MHz	: 10Hz	Average		
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measureme distance (n		
	0.009MHz-0.490MHz	2400/F(kHz)		-	-	300		
	0.490MHz-1.705MHz 240		1000/F(kHz)	-	-	30		
	1.705MHz-30MHz	.705MHz-30MHz		-	-	30		
	30MHz-88MHz		100	40.0	Quasi-peak	3		
	88MHz-216MHz	88MHz-216MHz 150		43.5	Quasi-peak	3		
	216MHz-960MHz		200	46.0	Quasi-peak 3			
	960MHz-1GHz 500		500	54.0	Quasi-peak	3		
	Above 1GHz	Above 1GHz		54.0	Average	3		
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission lin applicable to the equipment under test. This peak limit applies to the to peak emission level radiated by the device.							

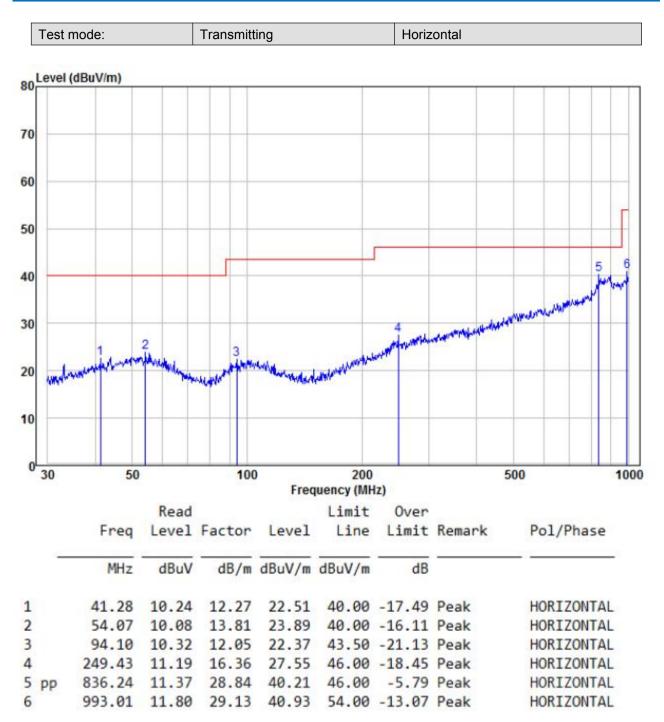


	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	 g. Test the EUT in the lowest channel (2402MHz), the middle channel (2441MHz), the Highest channel (2480MHz)
	 The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	i. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type Transmitting mode
Final Test Mode:	Through Pre-scan, find the GFSK modulation is the worst case. For below 1GHz part, through pre-scan, the worst case is the highest channel. Only the worst case is recorded in the report.
Test Results:	Pass

5.11.1 Radiated Emission below 1GHz

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:


Factor= Antenna Factor + Cable Factor – Preamplifier Factor,

Level = Read Level + Factor,

Over Limit=Level-Limit Line.

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor= Antenna Factor + Cable Factor – Preamplifier Factor,

Level = Read Level + Factor,

Over Limit=Level-Limit Line.

5.11.2 Transmitter Emission above 1GHz

Worse case mode:		GFSK		Test channel:		Lowest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
2390	56.23	-9.2	47.03	74	-26.97	Peak	н
2400	54.43	-9.39	45.04	74	-28.96	Peak	Н
4804	52.62	-4.33	48.29	74	-25.71	Peak	Н
7206	48.36	1.01	49.37	74	-24.63	Peak	Н
2390	54.28	-9.2	45.08	74	-28.92	Peak	v
2400	54.84	-9.39	45.45	74	-28.55	Peak	V
4804	52.78	-4.33	48.45	74	-25.55	Peak	V
7206	48.54	1.01	49.55	74	-24.45	Peak	V

Worse case mode:		GFSK		Test channel:		Middle	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
4880	51.88	-4.11	47.77	74	-26.23	peak	Н
7320	50.47	1.51	51.98	74	-22.02	peak	Н
4880	52.94	-4.11	48.83	74	-25.17	peak	V
7320	49.94	1.51	51.45	74	-22.55	peak	V

Worse case	orse case mode: GF		GFSK		Test channel:		Highest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V	
2483.5	55.39	-9.29	46.10	74	-27.90	Peak	н	
4960	52.59	-4.04	48.55	74	-25.45	Peak	Н	
7440	49.41	1.57	50.98	74	-23.02	Peak	Н	
2483.5	55.03	-9.29	45.74	74	-28.26	Peak	v	
4960	50.35	-4.04	46.31	74	-27.69	Peak	V	
7440	50.26	1.57	51.83	74	-22.17	Peak	V	

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.