

EMC TEST REPORT

Applicant Smawave Technology Co. ,Ltd

FCC ID 2AU8HSRG821

Product Ruggedized Router

Brand Smawave

Model SRG821

Report No. R2409A1327-E1

Issue Date January 16, 2025

Eurofins TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in FCC Code CFR47 Part15B (2023)/ ANSI C63.4-2014. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Prepared by: Liu Wei

Approved by: Xu Kai

Eurofins TA Technology (Shanghai) Co., Ltd.

Building 3, No.145, Jintang Rd, Pudong Shanghai, P.R.China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000

Table of Contents

1	Test	Laboratory	4
	1.1	Notes of the Test Report	4
	1.2	Test Facility	4
	1.3	Testing Location	4
2	Gen	eral Description of Equipment Under Test	5
	2.1	Applicant and Manufacturer Information	5
	2.2	General Information	5
	2.3	Applied Standards	7
	2.4	Test Mode	8
3	Test	Case Results	9
	3.1	Radiated Emission	9
	3.2	Conducted Emission	14
4		ertainty Measurement	
5	Maii	n Test Instruments	18
Α	NNEX.	A: The EUT Appearance	19
Δ	NNEY	R: Tast Satur Photos	20

Report No.: R2409A1327-E1

Summary of measurement results

Number	Test Case	Clause in FCC Rules	Conclusion
1	Radiated Emission	FCC Part15.109, ANSI C63.4-2014	PASS
2	Conducted Emission	FCC Part15.107, ANSI C63.4-2014	PASS

Date of Testing: September 27, 2024 ~ November 10, 2024

Date of Sample Received: September 12, 2024

Note:

 All indications of Pass/Fail in this report are opinions expressed by Eurofins TA Technology (Shanghai) Co., Ltd. based on interpretations and/or observations of test results.
Measurement Uncertainties were not taken into account and are published for informational purposes only.

1 Test Laboratory

1.1 Notes of the Test Report

This report shall not be reproduced in full or partial, without the written approval of **Eurofins TA Technology (Shanghai) Co., Ltd.** The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above.

1.2 Test Facility

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

Eurofins TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform measurements.

A2LA (Certificate Number: 3857.01)

Eurofins TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform measurement.

1.3 Testing Location

Company: Eurofins TA Technology (Shanghai) Co., Ltd.

Address: Building 3, No.145, Jintang Rd, Pudong Shanghai, P.R.China

City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Xu Kai

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000

Website: https://www.eurofins.com/electrical-and-electronics

E-mail: Kain.Xu@cpt.eurofinscn.com

General Description of Equipment Under Test

2.1 Applicant and Manufacturer Information

Applicant	Smawave Technology Co. ,Ltd.
Applicant address	2/F, Building 8, 1001 North Qinzhou Road, Xuhui District, Shanghai, China
Manufacturer	Smawave Technology Co. ,Ltd.
Manufacturer address	2/F, Building 8, 1001 North Qinzhou Road, Xuhui District, Shanghai, China

2.2 General Information

EUT Description								
Device Type	Fixed Device							
Model	SRG821							
Lab internal SN	R2409A1327/S01							
HW Version	V1.0							
SW Version	SQX5040_V1.1.4							
Power Rating	DC 24V							
Connecting I/O Port(s)	Please refer to the Us	ser's Manual.						
Antenna Type	External Antenna							
	Band	Tx (MHz)	Rx (MHz)					
	LTE Band 2	1850 ~ 1910	1930 ~ 1990					
	LTE Band 4	1710 ~ 1755	2110 ~ 2155					
	LTE Band 5	824 ~ 849	869 ~ 894					
	LTE Band 7	2500 ~ 2570	2620 ~ 2690					
	LTE Band 12	699 ~ 716	729 ~ 746					
	LTE Band 13	777 ~ 787	746 ~ 756					
F	LTE Band 14	788 ~ 798	758 ~ 768					
Frequency	LTE Band 17	704 ~ 716	734 ~ 746					
	LTE Band 25	1850 ~ 1915	1930 ~ 1995					
	LTE Band 26	814 ~ 849	859 ~ 894					
	LTE Band 30	2305 ~ 2315	2350 ~ 2360					
	LTE Band 38	2570 ~ 2620	2570 ~ 2620					
	LTE Band 41	2496 ~ 2690	2496 ~ 2690					
	LTE Band 42	3450 ~ 3550	3450 ~ 3550					
	LTE Band 43	3700 ~ 3800	3700 ~ 3800					

Page 5 of 20

Report No.: R2409A1327-E1

Lino rest report			Report No.: NZ+03A13Z1-L1			
	LTE Band 48	3550 ~ 3700	3550 ~ 3700			
	LTE Band 66	1710 ~ 1780	2110 ~ 2180			
	LTE Band 71	663 ~ 698	617 ~ 652			
	NR Band n2	1850 ~ 1910	1930 ~ 1990			
	NR Band n5	824 ~ 849	869 ~ 894			
	NR Band n7	2500 ~ 2570	2620 ~ 2690			
	NR Band n12	699 ~ 716	729 ~ 746			
	NR Band n13	777 ~ 787	746 ~ 756			
	NR Band n14	788 ~ 798	758 ~ 768			
	NR Band n25	1850 ~ 1915	1930 ~ 1995			
	NR Band n26	814 ~ 849	859 ~ 894			
	NR Band n30	2305 ~ 2315	2350 ~ 2360			
	NR Band n38	2570 ~ 2620	2570 ~ 2620			
	NR Band n41	2496 ~ 2690	2496 ~ 2690			
	NR Band n48	3550 ~ 3700	3550 ~ 3700			
	NR Band n66	1710 ~ 1780	2110 ~ 2180			
	NR Band n70	1695 ~ 1710	1995 ~ 2020			
	NR Band n71	663 ~ 698	617 ~ 652			
	NR Band n77	3300 ~ 4200	3300 ~ 4200			
	NR Band n78	3450 ~ 3800	3450 ~ 3800			
	Wi-Fi 2.4G	2400 ~ 2483.5	2400 ~ 2483.5			
	Wi-Fi 5G (U-NII-1)	5150 ~ 5250	5150 ~ 5250			
	Wi-Fi 5G (U-NII-2A)	5250 ~ 5350	5250 ~ 5350			
	Wi-Fi 5G (U-NII-2C)	5470 ~ 5725	5470 ~ 5725			
	Wi-Fi 5G (U-NII-3)	5725 ~ 5850	5725 ~ 5850			
	EUT /	Accessory				
Adaptor 1	Manufacturer: SHEN	ZHEN TOPOW ELECTRO	ONICS CO., LTD			
Adapter 1	Model: TPA309-2924	TPA309-29240-US				
Adaptor 2	Manufacturer: Dongg	uan Sunun Power Co., Lt	d			
Adapter 2	Model: SA361V-240150U					
NI. c.						

Note:

- 1. The EUT is sent from the applicant to Eurofins TA and the information of the EUT is declared by the applicant.
- 2. Radio equipment in band 28 is only allowed to operate from 703 MHz to 716 MHz for Subset 1; 728 MHz to 746 MHz for Subset 2 for the transmitter. 758 MHz to 771 MHz for Subset 1; 783 MHz to 801 MHz for Subset 2 for the receiver.

Radio equipment in band n77 is only allowed to operate from 3450 MHz to 3550 MHz for Subset 1; 3700 MHz to 3980 MHz for Subset 2 for the transmitter and receiver.

Radio equipment in band n78 is only allowed to operate from 3450 MHz to 3550 MHz for Subset 1; 3700 MHz to 3800 MHz for Subset 2 for the transmitter and receiver.

2.3 Applied Standards

According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

Test standards FCC Code CFR47 Part15B (2023) ANSI C63.4-2014

2.4 Test Mode

Test Mode	
Mode 1	Adapter + EUT + LAN/WAN Port +LTE/5G NR RX +WIFI2.4G/5G Streaming

Test Type	Test Mode	Worst Mode
Radiated Emission	Mode 1	1
Conducted Emission	Mode 1	1

After technical evaluation or/and preliminary test, the test data of the worst-case condition was recorded in this report.

3 Test Case Results

3.1 Radiated Emission

Ambient Condition

Temperature	Relative humidity
15°C ~ 35°C	30% ~ 60%

Methods of Measurement

The EUT is placed on a non-metallic table 0.8m above the horizontal metal reference ground plane. The distance between EUT and receive antenna should be 3 meters. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.4-2014. Sweep the whole frequency band through the range from 30MHz to the 5th harmonic of the carrier. During the test, the height of receive antenna shall be moved from 1 to 4 meters, and the antenna shall be performed under horizontal and vertical polarization. The turn table shall be rotated from 0 to 360 degrees for detecting the maximum of radiated signal level.

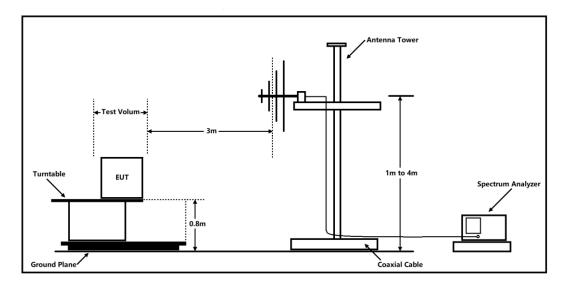
The data of cable loss and antenna factor has been calibrated in full testing frequency range before the testing. During the test, the EUT is worked at maximum output power.

Set the spectrum analyzer in the following:

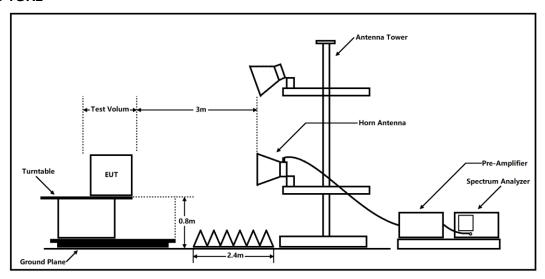
Below 1GHz:

RBW=100 kHz / VBW=300 kHz / Sweep=AUTO

Above 1GHz:


- (a) PEAK Detector: RBW=1MHz / VBW=3MHz/ Sweep=AUTO
- (b) AVERAGE Detector: RBW=1MHz / VBW=3MHz / Sweep=AUTO

The radiated emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in lie-down position (X axis) and the worst case was recorded.



Test Setup

Below 1GHz

Above 1GHz

Note: Area side: 2.4mX3.6m

Antenna Tower meets ANSI C63.4 requirements for measurements above 1 GHz by keeping the antenna aimed at the EUT during the antenna's ascent/ descent along the antenna mast.

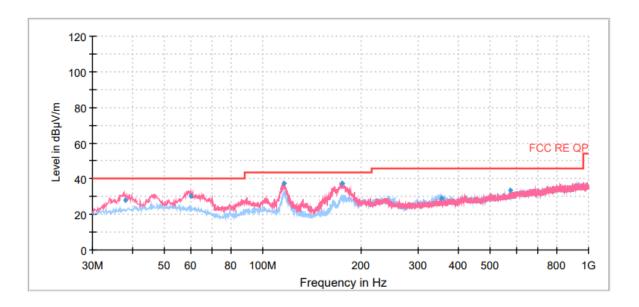
Report No.: R2409A1327-E1

Limits

Class B

Frequency (MHz)	Field Strength (dBµV/m)	Detector
30 -88	40.0	Quasi-peak
88-216	43.5	Quasi-peak
216 – 960	46.0	Quasi-peak
960-1000	54.0	Quasi-peak
1000-5 th harmonic of the highest	54	Average
frequency or 40GHz, which is lower	74	Peak

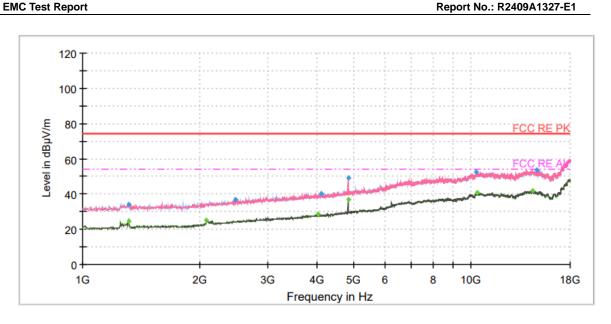
Frequency range of radiated measurements


Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measurement range (MHz)
Below 1.705	30
1.705-108	1000
108-500	2000
500-1000	5000
Above 1000	5th harmonic of the highest frequency or 40 GHz, whichever is lower.

Test Results

Sweep the whole frequency band through the range from 30 MHz to the 5th harmonic of the carrier. The Emissions in the frequency band 18 GHz - 26.5 GHz is more than 20 dB below the limit are not reported.

The following graphs display the maximum values of horizontal and vertical by software. For above 1GHz, Blue trace uses the peak detection, Green trace uses the average detection.


Final Result

I III al _ I too alt									
Frequency	QuasiPea	Limit	Margin	Meas.	Height	Pol	Azimuth	Corr.	
(MHz)	k	(dBµV/m)	(dB)	Time	(cm)		(deg)	(dB/m)	
	(dBµV/m)			(ms)					
37.85	27.90	40.00	12.10	1000.00	101.0	V	114.00	19	
60.20	29.91	40.00	10.09	1000.00	101.0	V	22.00	19	
115.92	37.65	43.50	5.85	1000.00	101.0	V	244.00	18	
174.59	37.33	43.50	6.17	1000.00	104.0	V	226.00	16	
354.05	29.10	46.00	16.90	1000.00	101.0	Н	290.00	22	
576.01	33.34	46.00	12.66	1000.00	101.0	V	170.00	27	

Radiated Emission from 30MHz to 1GHz

Remark: 1. Correction Factor = Antenna factor + Insertion loss(cable loss+amplifier gain)

2. Margin = Limit - Quasi-Peak

Final Result

i mai_rcoarc									
Frequency	MaxPeak	Average	Limit	Margin	Meas.	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	Time	(cm)		(deg)	(dB/m)
					(ms)				
1310.25		24.30	54.00	29.70	500.00	100.0	V	50.00	-14
1310.25	33.98		74.00	40.02	500.00	100.0	V	50.00	-14
2083.75		25.19	54.00	28.81	500.00	100.0	V	43.00	-11
2470.50	36.61		74.00	37.39	500.00	100.0	V	90.00	-9
4026.00		28.32	54.00	25.68	500.00	200.0	V	170.00	-5
4115.25	40.26		74.00	33.74	500.00	100.0	V	12.00	-5
4820.75	49.26		74.00	24.74	500.00	100.0	V	193.00	-2
4820.75		36.81	54.00	17.19	500.00	100.0	V	193.00	-2
10316.00	52.28		74.00	21.72	500.00	100.0	V	172.00	8
10358.50		40.64	54.00	13.36	500.00	100.0	V	4.00	8
14413.00		42.02	54.00	11.98	500.00	200.0	V	353.00	10
14799.75	53.41		74.00	20.59	500.00	200.0	V	0.00	10

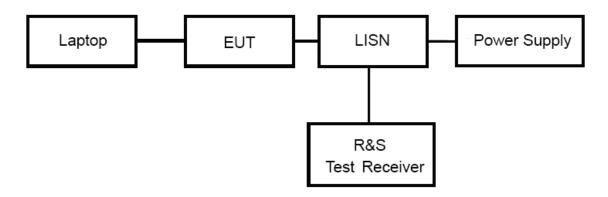
Radiated Emission from 1GHz to 18GHz

Remark: 1. Correction Factor = Antenna factor + Insertion loss (cable loss + amplifier gain)

2. Margin = Limit - MaxPeak / Average

3.2 Conducted Emission

Ambient Condition


Temperature	Relative humidity		
15°C ~ 35°C	30% ~ 60%		

Methods of Measurement

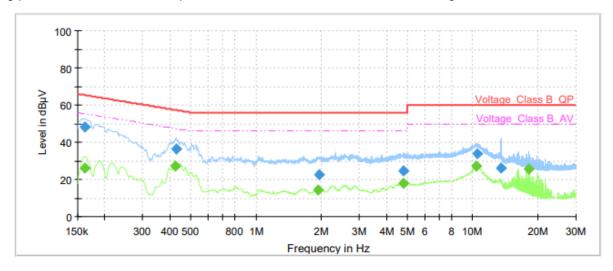
The EUT is placed on a non-metallic table of 80cm height above the horizontal metal reference ground plane. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.4-2014. Connect the AC power line of the EUT to the L.I.S.N. Use EMI receiver to detect the average and Quasi-peak value. RBW is set to 9 kHz, VBW is set to 30kHz. The measurement result should include both L line and N line.

During the test, EUT is connected to a laptop via a USB cable in the case of Transfer Data mode. The EUT is used as the peripheral equipment of the PC. The data is transferred from EUT to PC; PC is connected to server via a long LAN cable.

Test Setup

Note: Power Supply is AC Power source and it is used to change the voltage 120V/60Hz.

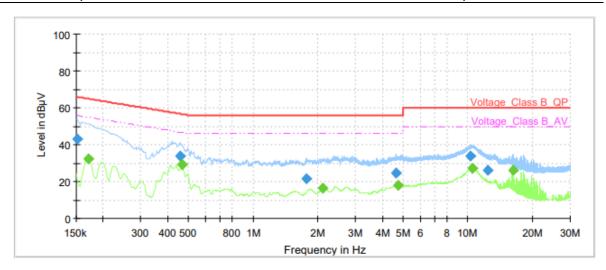
Limits


Frequency	Class A	(dBµV)	Class B (dBμV)		
(MHz)	Quasi-peak	Average	Quasi-peak	Average	
0.15 - 0.5	79	66	66 to 56 *	56 to 46*	
0.5 - 5	73	60	56	46	
5 - 30	73	60	60	50	
* Decreases with the logarithm of the frequency.					

Note: The EUT should meet CLASS B limit.

Test Results

Following plots, Blue trace uses the peak detection; Green trace uses the average detection.


Final Result

Frequency	QuasiPeak	Average	Limit	Margin	Meas.	Bandwidth	Line	Filter	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	Time	(kHz)			(dB)
					(ms)				
0.16		25.91	55.40	29.49	1000.0	9.000	L1	ON	21.0
0.16	47.96		65.40	17.44	1000.0	9.000	L1	ON	21.0
0.42		27.18	47.40	20.22	1000.0	9.000	L1	ON	20.9
0.43	36.51		57.32	20.81	1000.0	9.000	L1	ON	20.9
1.93		14.47	46.00	31.53	1000.0	9.000	L1	ON	19.7
1.95	22.47		56.00	33.53	1000.0	9.000	L1	ON	19.7
4.79		18.06	46.00	27.94	1000.0	9.000	L1	ON	19.5
4.81	24.64		56.00	31.36	1000.0	9.000	L1	ON	19.5
10.40		27.26	50.00	22.74	1000.0	9.000	L1	ON	19.6
10.55	33.68		60.00	26.32	1000.0	9.000	L1	ON	19.6
13.56	26.09		60.00	33.91	1000.0	9.000	L1	ON	19.6
18.24		25.84	50.00	24.16	1000.0	9.000	L1	ON	19.7

Remark: Correct factor=cable loss + LISN factor

L line

Conducted Emission from 150 kHz to 30 MHz

Final Result

Frequency	QuasiPeak	Average	Limit	Margin	Meas.	Bandwidth	Line	Filter	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	Time	(kHz)			(dB)
					(ms)				
0.15	43.24		65.88	22.64	1000.0	9.000	N	ON	21.0
0.17		32.16	54.95	22.79	1000.0	9.000	N	ON	21.0
0.46	33.79	-	56.77	22.98	1000.0	9.000	N	ON	20.9
0.47		29.06	46.56	17.50	1000.0	9.000	N	ON	20.9
1.78	21.70		56.00	34.30	1000.0	9.000	N	ON	19.8
2.12		16.52	46.00	29.48	1000.0	9.000	N	ON	19.7
4.63	24.39	-	56.00	31.61	1000.0	9.000	N	ON	19.5
4.74		18.10	46.00	27.90	1000.0	9.000	N	ON	19.5
10.28	33.69		60.00	26.31	1000.0	9.000	N	ON	19.6
10.50		27.24	50.00	22.76	1000.0	9.000	N	ON	19.6
12.41	25.97		60.00	34.03	1000.0	9.000	N	ON	19.6
16.23		26.00	50.00	24.00	1000.0	9.000	N	ON	19.7

Remark: Correct factor=cable loss + LISN factor

N line

Conducted Emission from 150 kHz to 30 MHz

Uncertainty Measurement

Case	Uncertainty	Factor k	
Radiated Emission 30MHz – 200MHz	4.17 dB	1.96	
Radiated Emission 200MHz – 1GHz	4.84 dB	1.96	
Radiated Emission 1GHz – 18GHz	4.35 dB	1.96	
Conducted Emission	2.57 dB	2	

Main Test Instruments 5

Name of Equipment	Manufacturer	Type/Model	Serial Number	Calibration Date	Expiration Time			
Radiated Emission								
EMI Test Receiver	R&S	ESCI3	100948	2024-05-07	2025-05-06			
Signal Analyzer	R&S	FSV40	101186	2024-05-07	2025-05-06			
Loop Antenna	SCHWARZBECK	FMZB1519	1519-047	2023-04-16	2026-04-15			
TRILOG Broadband Antenna	SCHWARZBECK	VULB 9163	1023	2023-07-14	2026-07-13			
Horn Antenna	SCHWARZBECK	BBHA 9120D	430	2024-07-18	2027-07-17			
Amplifier	MWPA.CN	MWLA-010200G 40	YQ2103039B0 1	2024-05-07	2025-05-06			
Software	R&S	EMC32	9.26.01	/	/			
Conducted Emission								
Artificial main network	R&S	ENV216	102191	2022-12-10	2024-12-09			
EMI Test Receiver	R&S	ESR	101667	2024-05-07	2025-05-06			
Software	R&S	EMC32	10.35.10	/	/			

ANNEX A: The EUT Appearance

The EUT Appearance are submitted separately.

ANNEX B: Test Setup Photos

The Test Setup Photos are submitted separately.

***** END OF REPORT *****