

Page 1 of 42

JQA File No.: KL80150043 Issue Date: May 19, 2015

TEST REPORT

Applicant : Sharp Corporation, Communication Systems Division

Address : 2-13-1, Iida Hachihonmatsu, Higashi-Hiroshima City, Hiroshima,

739-0192, Japan

Products : Smart Phone

Model No. : 404SH

Serial No. : 004401/11/549690/9

004401/11/549842/6

FCC ID : APYHRO00220

Test Standard : CFR 47 FCC Rules and Regulations Part 24

Test Results : Passed

Date of Test : April 24 ~ May 8, 2015

Assu

Kousei Shibata

Manager

Japan Quality Assurance Organization

KITA-KANSAI Testing Center

SAITO EMC Branch

7-3-10, Saito-asagi, Ibaraki-shi, Osaka 567-0085, Japan

- The measurement values stated in Test Report was made with traceable to National Institute of Advanced Industrial Science and Technology (AIST) of Japan and National Institute of Information and Communications Technology (NICT) of Japan.
- The applicable standard, testing condition and testing method which were used for the tests are based on the request of the applicant.
- The test results presented in this report relate only to the offered test sample.
- The contents of this test report cannot be used for the purposes, such as advertisement for consumers.
- This test report shall not be reproduced except in full without the written approval of JQA.
- VLAC does not approve, certify or warrant the product by this test report.

Standard : CFR 47 FCC Rules and Regulations Part 24

Page 2 of 42

TABLE OF CONTENTS

		Page
1	Description of the Equipment Under Test	3
2	Summary of Test Results	4
3	Test Procedure	
4	Test Location	5
5	Recognition of Test Laboratory	5
6	Description of Test Setup	6
7	Test Requirements	
	-	

DEFINITIONS FOR ABBREVIATION AND SYMBOLS USED IN THIS TEST REPORT

EUT EMC : Electromagnetic Compatibility : Equipment Under Test \mathbf{AE} \mathbf{EMI} : Electromagnetic Interference : Associated Equipment N/A : Not Applicable **EMS** : Electromagnetic Susceptibility N/T : Not Tested □ indicates that the listed condition, standard or equipment is applicable for this report. indicates that the listed condition, standard or equipment is not applicable for this report.

Standard : CFR 47 FCC Rules and Regulations Part 24

Page 3 of 42

1 Description of the Equipment Under Test

1. Manufacturer : Sharp Corporation, Communication Systems Division

2-13-1, Iida Hachihonmatsu, Higashi-Hiroshima City, Hiroshima,

739-0192, Japan

2. Products : Smart Phone

3. Model No. : 404SH

4. Serial No. : 004401/11/549690/9

: 004401/11/549842/6

5. Product Type : Pre-production6. Date of Manufacture : February, 2015

7. Power Rating : 4.0VDC (Lithium-ion Battery UBATIA258AFN1 3000mAh)

8. Grounding : None

9. Transmitting Frequency : 1850.2 MHz(512CH) – 1909.8MHz(810CH)
 10. Receiving Frequency : 1930.2 MHz(512CH) – 1989.8MHz(810CH)

Emission Designations : 245KGXW
 Max. RF Output Power : 0.794 W(EIRP)
 Category : Broadband PCS
 EUT Authorization : Certification

15. Received Date of EUT : April 20, 2015

16. Channel Plan

The carrier spacing is 200 kHz.

The carrier frequency is designated by the absolute frequency channel number (ARFCN).

The carrier frequency is expressed in the equation shown as follows:

Transmitting Frequency (in MHz) = $1850.2 + 0.2 \times (n - 512)$ Receiving Frequency (in MHz) = $1930.2 + 0.2 \times (n - 512)$

where, n : channel number $(512 \le n \le 810)$

Standard : CFR 47 FCC Rules and Regulations Part 24

Page 4 of 42

2 Summary of Test Results

Applied Standard: CFR 47 FCC Rules and Regulations Part 24 Subpart E - Broadband PCS

The EUT described in clause 1 was tested according to the applied standard shown above.

Details of the test configuration is shown in clause 6.

The conclusion for the test items of which are required by the applied standard is indicated under the test result.

\boxtimes	- T	he test	result	was r	oassed fo	or the te	st requ	irement	s of the	applie	d standar	·d.
	- T]	he test	result	was f	ailed for	the tes	t requii	rements	of the a	applied	standard	l.
	- T	he test	result	was r	not iudge	ed the te	est requ	iremen	ts of the	applie	d standa	rd.

In the approval of test results,

- Determining compliance with the limits in this report was based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.
- No deviations were employed from the applied standard.

- No modifications were conducted by JQA to achieve compliance to the limitations.

Reviewed by:

Shigeru Kinoshita Assistant Manager

JQA KITA-KANSAI Testing Center

SAITO EMC Branch

Tested by:

Shigeru Osawa

Deputy Manager

JQA KITA-KANSAI Testing Center

nigen Osawa

SAITO EMC Branch

Standard : CFR 47 FCC Rules and Regulations Part 24

Page 5 of 42

3 Test Procedure

Test Requirements : CFR 47 FCC Rules and Regulations Part 2

§2.1046, §2.1047, §2.1049, §2.1051, §2.1053, §2.1055 and §2.1057

Test Procedure : ANSI C63.4–2003, TIA/EIA–603-C-2004

FCC KDB 971168 D01 Power Meas License Digital Systems v02r02,

released October 17, 2014

4 Test Location

Japan Quality Assurance Organization (JQA) KITA-KANSAI Testing Center 7-7, Ishimaru, 1-chome, Minoh-shi, Osaka, 562-0027, Japan SAITO EMC Branch 7-3-10, Saito-asagi, Ibaraki-shi, Osaka 567-0085, Japan

5 Recognition of Test Laboratory

JQA KITA-KANSAI Testing Center SAITO EMC Branch is accredited under ISO/IEC 17025 by following accreditation bodies and the test facility is registered by the following bodies.

VLAC Accreditation No. : VLAC-001-2 (Expiry date : March 30, 2016) VCCI Registration No. : A-0002 (Expiry date : March 30, 2016)

BSMI Registration No. : SL2-IS-E-6006, SL2-IN-E-6006, SL2-R1/R2-E-6006, SL2-A1-E-6006

(Expiry date: September 14, 2016)

IC Registration No. : 2079E-3, 2079E-4 (Expiry date: July 16, 2017)

Accredited as conformity assessment body for Japan electrical appliances and material law by METI. (Expiry date: February 22, 2016)

Standard : CFR 47 FCC Rules and Regulations Part 24

Page 6 of 42

6 Description of Test Setup

6.1 Test Configuration

The equipment under test (EUT) consists of:

	Item	Manufacturer	Model	Serial No.	FCC ID
			No.		
A	Smart Phone	Sharp	404SH	004401/11/549690/9 *1) 004401/11/549842/6 *2)	APYHRO00220
В	AC Adapter	Sharp	SHCEJ1		N/A
C	Earphone	Softbank Mobile	ZTCAA1		N/A
D	DTV Antenna	Sharp			N/A

^{*1)} Used for Field Strength of Spurious Emission

The auxiliary equipment used for testing:

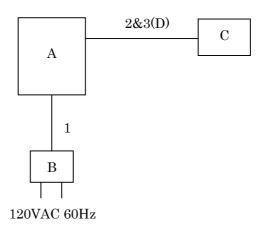
None

Type of Cable:

No.	Description	Identification	Connector	Cable	Ferrite	Length
INO.	Description	(Manu. etc.)	Shielded	Shielded	Core	(m)
1	DC Power Cord			NO	NO	1.5
2	Earphone Cable	-		NO	NO	0.5
3	DTV Antenna Cable			NO	NO	0.1

^{*2)} Used for Antenna Conducted Emission and Frequency Stability

Standard : CFR 47 FCC Rules and Regulations Part 24


Page 7 of 42

6.2 Test Arrangement (Drawings)

a) Single Unit

b) AC Adapter used

c) Earphone used

Standard : CFR 47 FCC Rules and Regulations Part 24

Page 8 of 42

6.3 Operating Condition

The test were carried under one modulation type shown as follows:

Modulation Burst Signal: DATA TSC 5 in accordance with GSM 05.02.

(Maximum Power Setting)

The Radiated Emission test were carried under 3 test configurations shown in clause 6.2. In all tests, the fully charged battery is used for the EUT.

Other Clock Frequency 19.2MHz, 48MHz, 12MHz, 27.12MHz

The EUT was rotated through three orthogonal axis (X, Y and Z axis) in radiated measurement. The EUT with temporary antenna port was used in conducted measurement.

Standard : CFR 47 FCC Rules and Regulations Part 24

Page 9 of 42

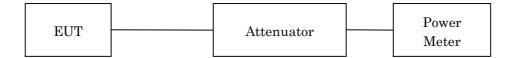
7 Test Requirements

7.0 Summary of the Test Results

Test Item	FCC Specification	Reference of the	Results	Remarks
		Test Report		
RF Power Output	Section 24.232(c)	Section 7.1 Passed		-
ERP / EIRP RF Power	Section 24.232(c)	Section 7.2	Passed	-
Output				
Modulation Characteristics	-	-	-	-
Occupied Bandwidth	Section 24.238	Section 7.4	Passed	-
Spurious Emissions at	Section 24.238	Section 7.5	Passed	-
Antenna Terminals				
Band-Edge Emission	Section 24.238	Section 7.6	Passed	-
Field Strength of Spurious	Section 24.238	Section 7.7	Passed	-
Radiation				
Frequency Stability	Section 22.235	Section 7.8	Passed	-

7.1	RF Power Output	(§2.1046)					
For	r the requirements,	 ☐ - Applicable ☐ - Not Applicable	- Tested.	☐ - Not tested by	у арр	licant reques	t.]
7.1.1	Worst Point and	Measurement Uncerta	ainty				
Tra	ansmitter Power is		_	977.2 mW	at	1850.200	MHz
Un	certainty of Measur	rement Results at Am	plitude			+/-0.9	$dB(2\sigma)$
Re	marks:						

Standard : CFR 47 FCC Rules and Regulations Part 24


Page 10 of 42

7.1.2 Test Instruments

Shielded Room S4										
Туре	Model	Manufacturer	ID No.	Last Cal.	Interval					
Power Meter	N1911A	Agilent	B-63	2014/7	1 Year					
Power Sensor	N1921A	Agilent	B-64	2014/7	1 Year					
Attenuator	43KC-20	Anritsu	D-41	2014/6	1 Year					
RF Cable	SUCOFLEX102	SUHNER	C-52	2014/8	1 Year					

7.1.3 Test Method and Test Setup (Diagrammatic illustration)

The Conducted RF Power Output was measured with a power meter, one attenuator and a short, low loss cable.

Standard : CFR 47 FCC Rules and Regulations Part 24

Page 11 of 42

7.1.4 Test Data

(GSM-PCS1900)

<u>Test Date: May 7, 2015</u> Temp.: 23 °C, Humi: 48 %

Transmitting Frequency		Correction Factor	Meter Reading (Peak)	Results	s (Peak)
СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]
512	1850.200	20.23	9.67	29.90	977.2
661	1880.000	20.23	9.30	29.53	897.4
810	1909.800	20.23	9.37	29.60	912.0

Calculated result at 1850.200 MHz, as the maximum level point shown on underline:

NOTE: The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.

Standard : CFR 47 FCC Rules and Regulations Part 24

Page 12 of 42

7.2 ERP / E	IRP RF Pov	ver Output						
For the requ	uirements,	☑ - Applicab☑ - Not Appl	le [⊠ - Tested licable	d. 🗌 - Not	tested by	appli	icant reques	st.]
For the limi	its,	$oxed{oxed}$ - Passed	\square - Failed	☐ - Not jud	ged			
7.2.1 Worst	Point and N	Measurement	Uncertainty					
Min. Limit I	Margin			4.0	_ dB	at _	1909.800	MHz
Uncertainty	of Measure	ement Results	i			_	+/-1.8	$dB(2\sigma)$
Romarks:	Y-avie noci	tion The may	imum FIRP is 0	1794 W at 19	00 800 M	Н7		

7.2.2 Test Instruments

	Anechoic Chamber A2										
Type	Manufacturer	ID No.	Last Cal.	Interval							
Test Receiver	ESU 26	Rohde & Schwarz	A-6	2015/4	1 Year						
Signal Generator	E8257D	Agilent	B-39	2014/8	1 Year						
Power Meter	N1911A	Agilent	B-63	2014/7	1 Year						
Power Sensor	N1921A	Agilent	B-64	2014/7	1 Year						
Attenuator(RX)	2-10	Weinschel	D-79	2014/11	1 Year						
Attenuator(TX)	2-10	Weinschel	D-80	2014/11	1 Year						
RF Cable(RX)	SUCOFLEX104	SUHNER	C-66	2015/1	1 Year						
RF Cable(TX)	SUCOFLEX 102/E	SUHNER	C-70	2014/11	1 Year						
Horn Antenna(TX)	91889-2	EATON	C-40-2	2014/6	1 Year						
Horn Antenna(RX)	91889-2	EATON	C-41-2	2014/7	1 Year						

Standard : CFR 47 FCC Rules and Regulations Part 24

Page 13 of 42

7.2.3 Test Method and Test Setup (Diagrammatic illustration)

Step 1:

In order to obtain the maximum emission, the EUT was placed at the height 1.5 m on the non-conducted support and was varying at three orthogonal axes, at the distance 3 m from the receiving antenna and rotated around 360 degrees.

The receiving antenna height was varied from 1 m to 4 m.

The EUT on the table was placed to be maximum emission against at the receiving antenna polarized (vertical and horizontal).

Then the meter reading of the spectrum analyzer at the maximum emission was A dB(μ V).

Step 2:

The EUT was replaced to substitution antenna at the same polarized under the same condition as step 1.

The RF power was fed to the transmitting antenna through the RF amplifier from the signal generator.

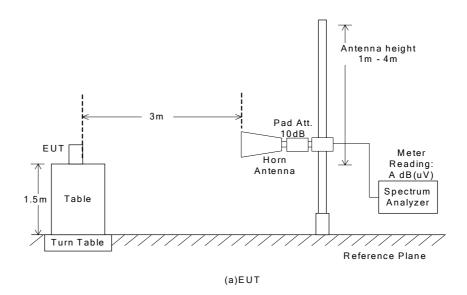
In order to obtain the maximum emission level, the height of the receiving antenna was varied from 1 m to 4 m.

The level of maximum emission was A $dB(\mu V)$, same as the recorded level in the step 1.

Then the RF power into the substitution horn antenna was P (dBm).

The ERP/EIRP output power was calculated in the following equation.

ERP (dBm) = P (dBm) - Balun loss of the tuned dipole antenna (dB) + Cable loss (dB)EIRP (dBm) = P (dBm) + Gh (dBi)


where, Gh (dBi): Gain of the substitution horn antenna.

Standard : CFR 47 FCC Rules and Regulations Part 24

Page 14 of 42

- Side View -

Antenna height 1 m - 4 m Meter Reading: B dBm 3 m Pad Att Power 10 d B Horn Meter Antenna Horn Meter Antenna Reading A dB(uV) Sⁱgnal Generator 1.5m Spectrum Analyzer Turn Table

(b) Substitution Horn Antenna

Reference Plane

Standard : CFR 47 FCC Rules and Regulations Part 24

Page 15 of 42

7.2.4 Test Data

(GSM-PCS1900)

<u>Test Date</u>: April 24, 2015 <u>Temp</u>.: 24 °C, Humi: 45 %

1. Measurement Results

Transmitting Frequency		Emission M [dB(easurement [uV)]	Substitution Measurement [dB(uV)]		Supplied Power to Substitution Antenna	Gain of Substitution Antenna
СН	[MHz]	Hori. (Mh)	Vert. (Mv)	Hori. (Msh)	Vert. (Msv)	[dBm]	[dB]
512	1850.200	90.2	90.0	72.1	72.4	- 5.0	14.4
661	1880.000	91.4	91.5	72.3	72.6	- 5.0	14.3
810	1909.800	92.2	91.4	72.5	72.6	- 5.0	14.3

2. Calculation Results

Transmitting Frequency		Peak EIRP [dBm]		Maximum Peak EIRP	Limits	Margin
CH	[MHz]	Hori. (EIRPh)	Vert. (EIRPv)	[W]	[dBm]	[dB]
512	1850.200	27.5	27.0	0.562	33.0	+ 5.5
661	1880.000	28.4	28.2	0.692	33.0	+ 4.6
810	1909.800	29.0	28.1	0.794	33.0	+ 4.0

Calculated result at 1909.800 MHz, as the worst point shown on underline:

Emission Measurment (Mh) = 92.2 dB(uV)
Substitution Measurement (Msh) = -72.5 dB(uV)
Supplied Power to Substitution Antenna = -5.0 dBm
+) Gain of Substitution Antenna = 14.3 dB
Result (EIRPh) = 29.0 dBm = 0.794 W

Minimum Margin: 33.0 - 29.0 = 4.0 (dB)

NOTE: Setting of measuring instrument(s):

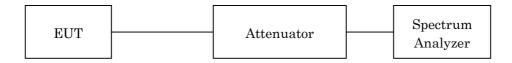
Detector Function	Resolution B.W.	V.B.W.	Sweep Time
Peak	$1\mathrm{MHz}$	$3\mathrm{MHz}$	20 msec.

Standard : CFR 47 FCC Rules and Regulations Part 24

Page 16 of 42

7.3 Modulation Characteristics (§2.1047)
For the requirements, - Applicable - Tested. - Not tested by applicant request. Not Applicable
For the limits,
7.4 Occupied Bandwidth (§2.1049)
For the requirements, \boxtimes - Applicable $[\boxtimes$ - Tested. \square - Not tested by applicant request.] \square - Not Applicable
For the limits, \boxtimes - Passed \square - Failed \square - Not judged
7.4.1 Worst Point and Measurement Uncertainty
The 99% Bandwidth is 244.8 kHz at 1880.000 MHz The 26dB Bandwidth is 317.4 kHz at 1909.800 MHz
Uncertainty of Measurement Results %(2o)
Remarks:

Standard : CFR 47 FCC Rules and Regulations Part 24


Page 17 of 42

7.4.2 Test Instruments

Shielded Room S4							
Type Model Manufacturer ID No. Last Cal. Interval							
Spectrum Analyzer	E4446A	Agilent	A-39	2014/9	1 Year		
Attenuator	43KC-20	Anritsu	D-41	2014/7	1 Year		
RF Cable	SUCOFLEX102	SUHNER	C-52	2014/8	1 Year		

7.4.3 Test Method and Test Setup (Diagrammatic illustration)

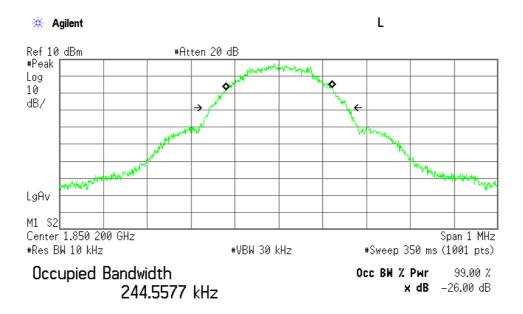
The test system is shown as follows:

The setting of the spectrum analyzer are shown as follows:

Res. Bandwidth	$10~\mathrm{kHz}$
Video Bandwidth	$30~\mathrm{kHz}$
Span	1 MHz
Sweep Time	AUTO
Trace	Maxhold

Standard : CFR 47 FCC Rules and Regulations Part 24

Page 18 of 42


7.4.4 Test Data

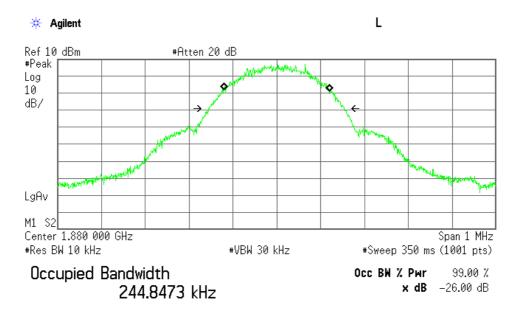
The resolution bandwidth was set to about 1% of emission bandwidth, -26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

<u>Test Date</u>: May 7, 2015 <u>Temp.:23°C, Humi:48%</u>

Channel	Frequency (MHz)	99% Bandwidth (kHz)	-26dBc Bandwidth (kHz)
512	1850.200	244.6	317.2
661	1880.000	244.8	313.5
810	1909.800	244.1	317.4

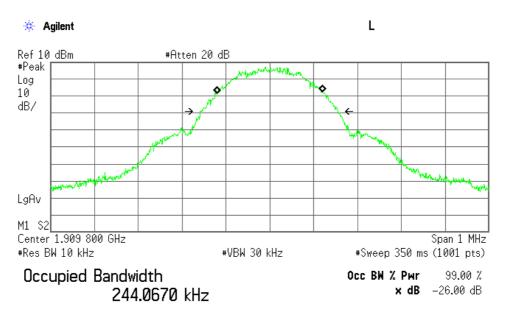
Low Channel

Transmit Freq Error 1.030 kHz Occupied Bandwidth 317.236 kHz



JQA File No. : KL80150043 Issue Date : May 19, 2015 Model No. : 404SH FCC ID : APYHRO00220

Standard : CFR 47 FCC Rules and Regulations Part 24


Page 19 of 42

Middle Channel

Transmit Freq Error -181.796 Hz Occupied Bandwidth 313.480 kHz

High Channel

Transmit Freq Error 801.769 Hz Occupied Bandwidth 317.378 kHz

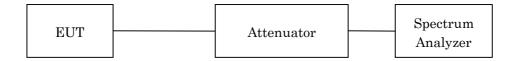
Standard : CFR 47 FCC Rules and Regulations Part 24

Page 20 of 42

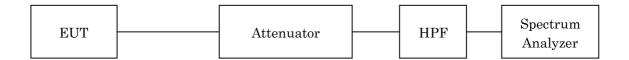
7.5 Spurious Emissions at Antenna Terminals (§2.1	1051)
For the requirements, \boxtimes - Applicable $[\boxtimes$ - Teste \square - Not Applicable	ed. - Not tested by applicant request.]
For the limits, \square - Passed \square - Failed	- Not judged
7.5.1 Worst Point and Measurement Uncertainty	
Min. Limit Margin	<u>32.4</u> dB at <u>14801.6/15278.4</u> MHz
Uncertainty of Measurement Results	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Remarks:	

Standard : CFR 47 FCC Rules and Regulations Part 24

Page 21 of 42


7.5.2 Test Instruments

Shielded Room S4							
Type Model Manufacturer ID No. Last Cal. Inter-							
Spectrum Analyzer	E4446A	Agilent	A-39	2014/9	1 Year		
Attenuator	43KC-20	Anritsu	D-41	2014/7	1 Year		
RF Cable	SUCOFLEX102	SUHNER	C-52	2014/8	1 Year		
HPF	HPM13899	MICRO-TRONICS	D-96	2015/2	1 Year		


7.5.3 Test Method and Test Setup (Diagrammatic illustration)

The Antenna Conducted Emission was with a spectrum analyzer. The test system is shown as follows:

a) Frequency Range: 9 kHz - 2 GHz

b) Frequency Range: 2 GHz – 20 GHz

The setting of the spectrum analyzer are shown as follows:

Frequency Range	9 kHz - 150 kHz	150 kHz - 30 MHz	30 MHz - 20 GHz
Res. Bandwidth	200 Hz	$10\mathrm{kHz}$	$1~\mathrm{MHz}$
Video Bandwidth	1 kHz	$30~\mathrm{kHz}$	3 MHz
Sweep Time	AUTO	AUTO	AUTO
Trace	Maxhold	Maxhold	Maxhold

Standard : CFR 47 FCC Rules and Regulations Part 24

Page 22 of 42

7.5.4 Test Data

(GSM-PCS1900)

<u>Test Date: May 7, 2015</u> <u>Temp.: 23 °C, Humi: 48 %</u>

	ransmitting Fre que ncy [MHz]	Measured Frequency [MHz]	Corr. Factor [dB]	Meter Readings [dBm]	Limits [dBm]	Results [dBm]	Margin [dB]	Remarks
512	1850.200	3700.400	21.3	< -70.0	-13.0	< -48.7	> +35.7	С
312	1030.200	5550.600	21.5	< -70.0	-13.0	< -48.5	> +35.5	C
		7400.800	21.5	< -70.0	-13.0	< -48.5	> +35.5	C
		9251.000	21.7	< -70.0	-13.0	< -48.3	> +35.3	C
		11101.200	22.0	< -70.0	-13.0	< -48.0	> +35.0	C
		12951.400	22.2	< -70.0	-13.0	< -47.8	> +34.8	C
		14801.600	22.6	-68.0	-13.0	-45.4	+32.4	C
		16651.800	22.9	< -70.0	-13.0	< -47.1	> +34.1	С
		18502.000	23.3	< -70.0	-13.0	< -46.7	> +33.7	C
		10302.000	23.3	70.0	13.0	· 40.7	7 133.7	C
661	1880.000	3760.000	21.3	< -70.0	-13.0	< -48.7	> +35.7	С
001	1000.000	5640.000	21.5	< -70.0	-13.0	< -48.5	> +35.5	C
		7520.000	21.6	< -70.0	-13.0	< -48.4	> +35.4	C
		9400.000	21.7	< -70.0	-13.0	< -48.3	> +35.3	C
		11280.000	22.0	< -70.0	-13.0	< -48.0	> +35.0	C
		13160.000	22.3	< -70.0	-13.0	< -47.7	> +34.7	C
		15040.000	22.6	-69.1	-13.0	-46.5	+33.5	C
		16920.000	22.9	< -70.0	-13.0	< -47.1	> +34.1	C
		18800.000	23.4	< -70.0	-13.0	< -46.6	> +33.6	C
810	1909.800	3819.600	21.4	< -70.0	-13.0	< -48.6	> +35.6	С
		5729.400	21.5	< -70.0	-13.0	< -48.5	> +35.5	C
		7639.200	21.6	< -70.0	-13.0	< -48.4	> +35.4	C
		9549.000	21.8	< -70.0	-13.0	< -48.2	> +35.2	C
		11458.800	22.0	< -70.0	-13.0	< -48.0	> +35.0	C
		13368.600	22.3	< -70.0	-13.0	< -47.7	> +34.7	C
		15278.400	22.7	-68.1	-13.0	-45.4	+32.4	С
		17188.200	23.1	< -70.0	-13.0	< -46.9	> +33.9	С
		19098.000	23.4	< -70.0	-13.0	< -46.6	> +33.6	C

Standard : CFR 47 FCC Rules and Regulations Part 24

Page 23 of 42

Calculated result at $15278.4\,\mathrm{MHz}$, as the worst point shown on underline:

 $\begin{array}{ccccc} \text{Corr. Factor} & = & 22.7 \text{ dB} \\ +) & \underline{\text{Meter Reading}} & = & -68.1 \text{ dBm} \\ \hline \text{Result} & = & -45.4 \text{ dBm} \end{array}$

Minimum Margin: -13.0 - (-45.4) = 32.4 (dB)

NOTES

1. The spectrum was checked from 9 kHz to 20 GHz.

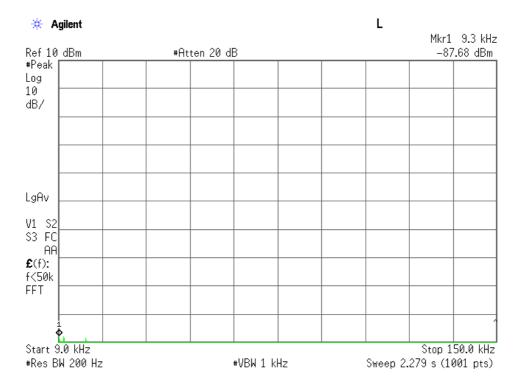
 $2. \ Applied \ limits : -13.0 \ [dBm] = 10 log(TP[mW]) - (43 + 10 log(tp[W])) = 10 log(TP[mW]) - (43 + (10 log(TP[mW]) - 30)) \\ where, \ tp[W] = TP[mW] / 1000 : Transmitter power at anttena terminal$

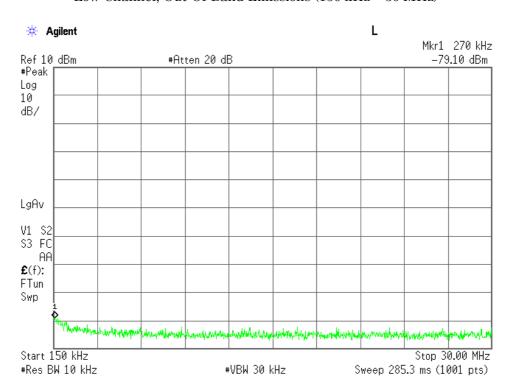
3. The correction factor is shown as follows:

Corr. Factor [dB] = Cable Loss + 10dB Pad Att. [dB] (9 kHz - 2 GHz)

 $Corr.\ Factor\ [dB] = Cable\ Loss + 10dB\ Pad\ Att. + High\ Pass\ Filter\ Loss\ (D-96)\ [dB]\ (over\ 2\ GHz)$

- 4. The symbol of "<" means "or less".
- 5. The symbol of ">" means "more than".
- 6. Setting of measuring instrument(s):

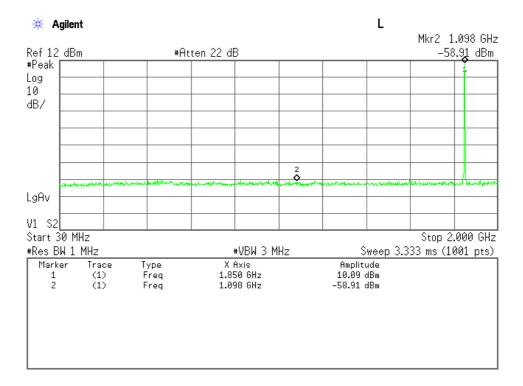

	Detector Function	RES B.W.	V.B.W.	Sweep Time
A	Peak	200 Hz	1 kHz	AUTO
В	Peak	10 kHz	30 kHz	AUTO
С	Peak	1 MHz	3 MHz	AUTO

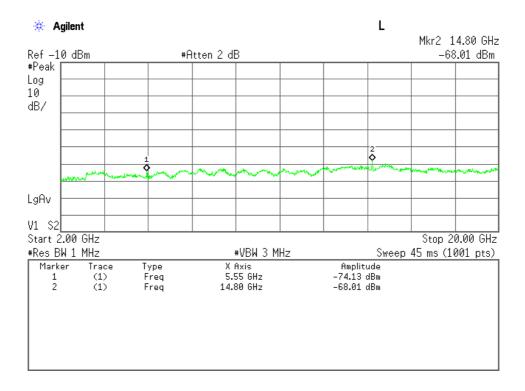

Standard : CFR 47 FCC Rules and Regulations Part 24

Page 24 of 42

Low Channel, Out-Of-Band Emissions (9 kHz - 150 kHz)

Low Channel, Out-Of-Band Emissions (150 kHz - 30 MHz)

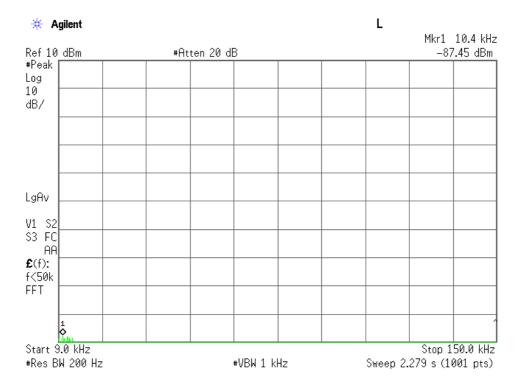


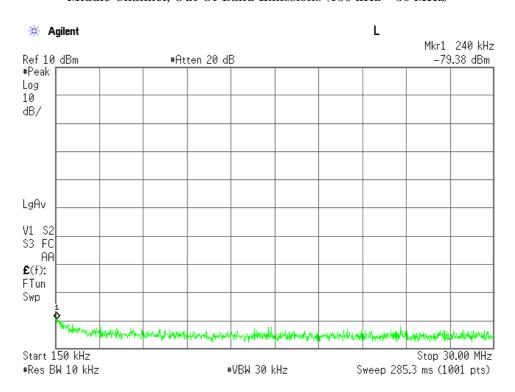

Standard : CFR 47 FCC Rules and Regulations Part 24

Page 25 of 42

Low Channel, Out-Of-Band Emissions (30 MHz - 2 GHz)

Low Channel, Out-Of-Band Emissions (2 GHz – 20 GHz)

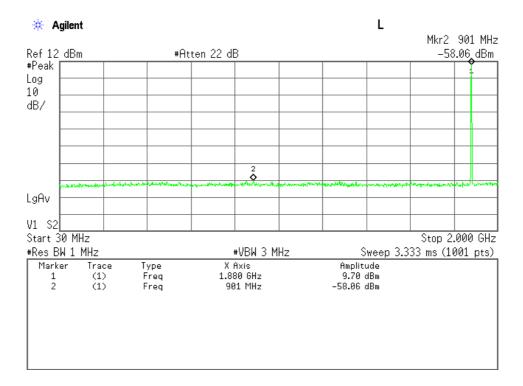



Standard : CFR 47 FCC Rules and Regulations Part 24

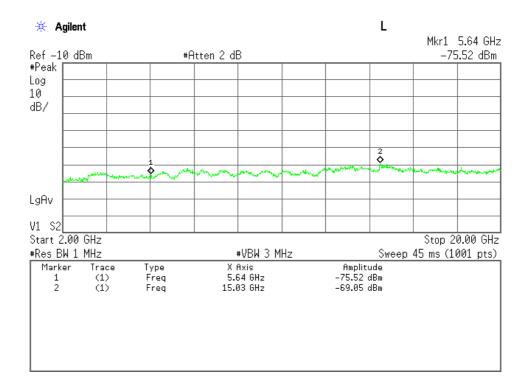
Page 26 of 42

Middle Channel, Out-Of-Band Emissions (9 kHz - 150 kHz)

Middle Channel, Out-Of-Band Emissions (150 kHz - 30 MHz)



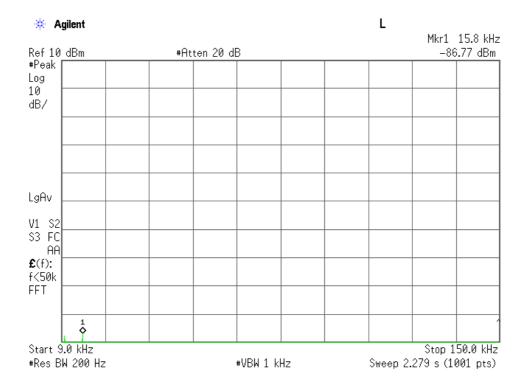
JQA File No. : KL80150043 Issue Date : May 19, 2015 Model No. : 404SH FCC ID : APYHRO00220

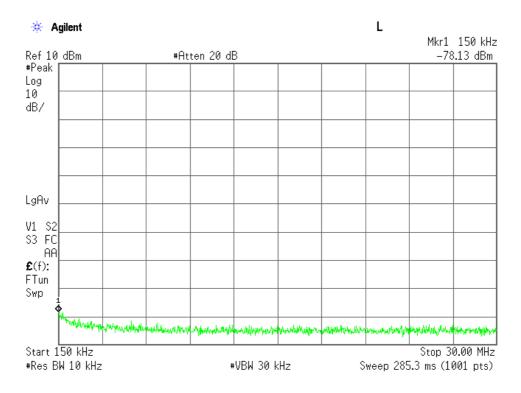

Standard : CFR 47 FCC Rules and Regulations Part 24

Page 27 of 42

Middle Channel, Out-Of-Band Emissions (30 MHz – 2 GHz)

Middle Channel, Out-Of-Band Emissions (2 GHz - 20 GHz)

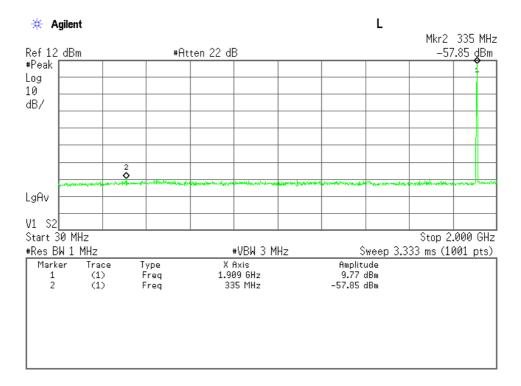



Standard : CFR 47 FCC Rules and Regulations Part 24

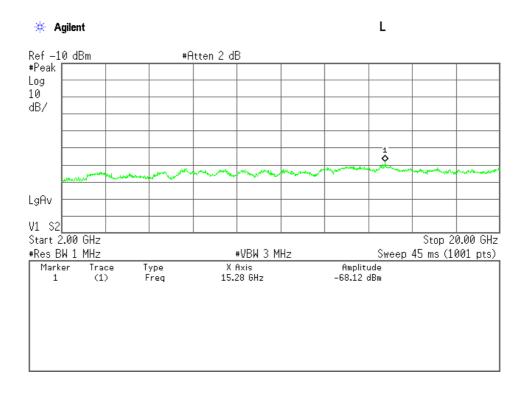
Page 28 of 42

High Channel, Out-Of-Band Emissions (9 kHz – 150 kHz)

High Channel, Out-Of-Band Emissions (150 kHz - 30 MHz)



JQA File No. : KL80150043 Issue Date : May 19, 2015 Model No. : 404SH FCC ID : APYHRO00220


Standard : CFR 47 FCC Rules and Regulations Part 24

Page 29 of 42

High Channel, Out-Of-Band Emissions (30 MHz – 2 GHz)

High Channel, Out-Of-Band Emissions (2 GHz - 20 GHz)

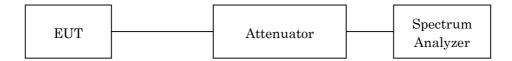
Standard : CFR 47 FCC Rules and Regulations Part 24

Page 30 of 42

7.6 Band-Edge Emission (§2.1051)	
For the requirements, \boxtimes - Applicable $[\boxtimes$ - Testa \square - Not Applicable	ed. - Not tested by applicant request.
For the limits, \square - Passed \square - Failed	☐ - Not judged
7.6.1 Worst Point and Measurement Uncertainty	
Min. Limit Margin	1.5 dB at <u>1850.0</u> MHz
The Band-Edge level is	<u>-14.5</u> dBm at <u>1850.0</u> MHz
Uncertainty of Measurement Results	<u>+/-1.7</u> dB(2σ)
Remarks: The measurement result is within the r	ange of measurement uncertainty.

7.6.2 Test Instruments

Shielded Room S4							
Type Model Manufacturer ID No. Last Cal. Interval							
Spectrum Analyzer	E4446A	Agilent	A-39	2014/9	1 Year		
Attenuator	43KC-20	Anritsu	D-41	2014/7	1 Year		
RF Cable	SUCOFLEX102	SUHNER	C-52	2014/8	1 Year		



Standard : CFR 47 FCC Rules and Regulations Part 24

Page 31 of 42

7.6.3 Test Method and Test Setup (Diagrammatic illustration)

The test system is shown as follows:

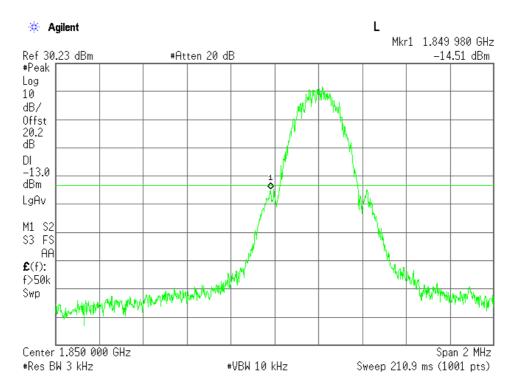
The setting of the spectrum analyzer are shown as follows:

TX Frequency	1850.20 MHz / 1909.80 MHz
Band-Edge Frequency	1850.00 MHz / 1910.00 MHz
Res. Bandwidth	$3~\mathrm{kHz}$
Video Bandwidth	10 kHz
Span	$2~\mathrm{MHz}$
Sweep Time	AUTO
Trace	Maxhold

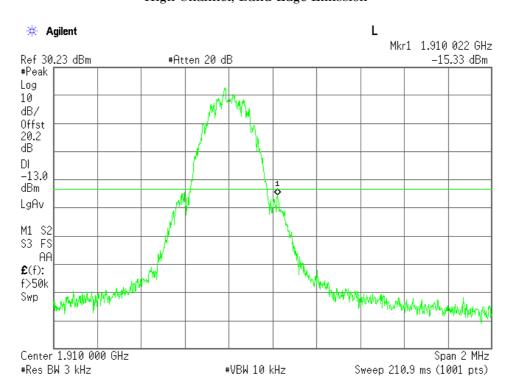
7.6.4 Test Data

<u>Test Date</u>: May 7, 2015 <u>Temp.:23°C, Humi:48%</u>

Channel	Frequency (MHz)	Band-Edge Frequency (MHz)	Band-Edge Level (dBm)	Limits (dBm)	Margin (dB)
512	1850.200	1850.00	-14.5	-13.0	+1.5
810	1909.800	1910.00	-15.3	-13.0	+2.3



JQA File No. : KL80150043 Issue Date : May 19, 2015 Model No. : 404SH FCC ID : APYHRO00220


Standard : CFR 47 FCC Rules and Regulations Part 24

Page 32 of 42

Low Channel, Band-Edge Emission

High Channel, Band-Edge Emission

Standard : CFR 47 FCC Rules and Regulations Part 24

Page 33 of 42

7.7 Field Strength of Spurio	ous Radiation (§2.1053)	
· _	Applicable $[\boxtimes \ \text{-Tested.} \ \Box \ \text{-Not}$ Not Applicable	tested by applicant request.]
For the limits, \square -	Passed - Failed - Not jud	ged
7.7.1 Worst Point and Meas	urement Uncertainty	
Min. Limit Margin	>20.7	_ dB_ at <u>17188.200</u> MHz
Uncertainty of Measuremen	1 GH	1000 MHz
Remarks:		

7.7.2 Test Instruments

Anechoic Chamber A2						
Туре	Model	Manufacturer	ID No.	Last Cal.	Interval	
Test Receiver	ESU26	Rohde & Schwarz	A-6	2015/4	1 Year	
Signal Generator	E8257D	Agilent	B-39	2014/8	1 Year	
Power Meter	N1911A	Agilent	B-63	2014/7	1 Year	
Power Sensor	N1921A	Agilent	B-64	2014/7	1 Year	
Horn Antenna(TX)	91889-2	EATON	C-40-2	2014/6	1 Year	
Horn Antenna	91888-2	EATON	C-41-1	2014/7	1 Year	
Horn Antenna(RX)	91889-2	EATON	C-41-2	2014/7	1 Year	
Horn Antenna	3160-04	EMCO	C-55	2014/6	1 Year	
Horn Antenna	3160-05	EMCO	C-56	2014/6	1 Year	
Horn Antenna	3160-06	EMCO	C-57	2014/6	1 Year	
Horn Antenna	3160-07	EMCO	C-58	2014/6	1 Year	
Horn Antenna	3160-08	EMCO	C-59	2014/6	1 Year	
Horn Antenna)	3160-09	EMCO	C-48	2014/7	1 Year	
RF Cable(TX)	SUCOFLEX102E	SUHNER	C-70	2014/11	1 Year	
RF Cable(RX)	SUCOFLEX102E	SUHNER	C-75	2015/2	1 Year	
RF Cable(RX)	SUCOFLEX104	SUHNER	C-66	2015/1	1 Year	
RF Cable(RX)	SUCOFLEX104	SUHNER	C-67	2015/1	1 Year	
RF Cable(RX)	SUCOFLEX102EA	SUHNER	C-69	2015/1	1 Year	
Attenuator(TX)	2-10	Weinschel	D-40	2014/10	1 Year	
Attenuator(RX)	2-10	Weinschel	D-79	2014/11	1 Year	
Attenuator(RX)	54-10	Weinschel	D-29	2014/9	1 Year	
Pre-Amplifier	TPA0118-36	TOYO	A-37	2014/5	1 Year	
Pre-Amplifier	RP1826G-45H	EMCS	A-53	2014/7	1 Year	
HPF	HPM13899	MICRO-TRONICS	D-96	2015/2	1 Year	

Standard : CFR 47 FCC Rules and Regulations Part 24

Page 34 of 42

7.7.3 Test Method and Test Setup (Diagrammatic illustration)

Step 1) The spurious radiation for transmitter were measured at the distance 3 m away from the EUT which was placed on a non-conducted support 1.0 m in height and was varying at three orthogonal axes. The receiving antenna was oriented for vertical polarization and varied from 1 m to 4 m until the maximum emission level was detected on the measuring instrument. The EUT was rotated 360 degrees until the maximum emission was received. The measurement was also repeated with the receiving antenna in the horizontal polarization.

This test was carried out using the half-wave dipole antenna for up to 1GHz and using the horn antenna for above 1 GHz.

Step 2)

A) Up to 1 GHz

The ERP measurement was carried out with according to Step 2 in Clause 7.2.4. Then the RF power in the substitution antenna half-wave dipole antenna for up to 1 GHz and the substitution horn antenna for above 1 GHz.

The ERP is calculated in the following equation.

ERP(dBm) = P (dBm) - (Balun Loss of the half-wave dipole Ant. (dB)) + Cable Loss(dB)

B) Above 1 GHz

The ERP is calculated from the maximum emission level by the following formula.

$$\frac{e^2}{120\pi} = \frac{eirp}{4\pi d^2} \quad \cdots \text{(Eq. 1)}$$

$$erp = eirp - Gd - (Eq. 2)$$

Where, e[V/m]:: Field Strength at measuring distance(d=3m)

eirp[W]: Equivalent Isotropic Radiated Power

erp[W]: Effective Radiated Power

Gd(dBi): Gain of the substitution half-wave dipole antenna(2.15dBi)

$$eirp = \frac{(de)^2}{30} = \frac{3}{10}e^2$$

$$\therefore 10 \log(eirp) = 20 \log(e) + 10 \log(3/10) = 20 \log(e) - 5.23$$

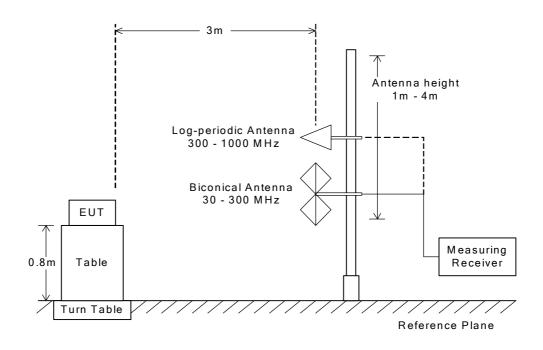
$$10 \log(eirp) = EIRP[dBm] - 30$$

$$20 \log(e) = E[dB(\mu V / m)] - 120$$

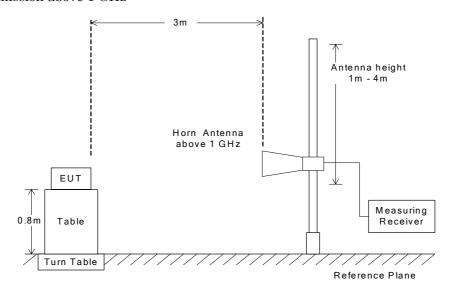
$$\therefore EIRP = E - 120 + 30 - 5.23 = E - 95.23$$

$$ERP[dBm] = EIRP - 2.15 = E - 97.38$$

The respective calculated ERP of the spurious and harmonics were compared with the ERP of fundamental frequency by specified attenuation limits, 43+10log₁₀ (TP in watt)[dB]. Where, TP = Transmitter power at the ANT OUT under test configuration as the hands free unit used.



JQA File No. : KL80150043 Issue Date : May 19, 2015 Model No. : 404SH FCC ID : APYHRO00220

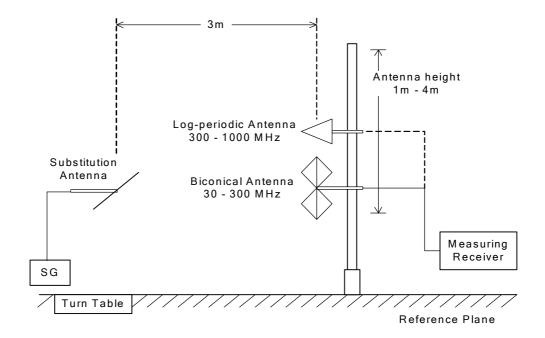

Standard : CFR 47 FCC Rules and Regulations Part 24

Page 35 of 42

Radiated Emission 30 MHz to 1000 MHz

Radiated Emission above 1 GHz

NOTE


The antenna height is scanned depending on the EUT's size and mounting height.

Standard : CFR 47 FCC Rules and Regulations Part 24

Page 36 of 42

Radiated Emission 30 to 1000 MHz - Substitution Method

Standard : CFR 47 FCC Rules and Regulations Part 24

Page 37 of 42

Test Date: April 24, 2015

7.7.4 Test Data

(GSM-PCS1900)

Test Config	guration: Single Unit	t				<u>Temp.</u> : 24 °C,	Humi: 45 %
	Frans mitting	Measured		ERP	Limits	Margin	Remarks
	Frequency	Fre que ncy	[d	Bm]	[dBm]	[dB]	
СН	[MHz]	[MHz]	Hori.	Vert.			
512	1850.200	3700.400	< -52.3	< -52.3	-13.0	> +39.3	С
		5550.600	< -47.4	< -47.4	-13.0	> +34.4	C
		7400.800	< -45.8	< -45.8	-13.0	> +32.8	С
		9251.000	< -42.0	< -42.0	-13.0	> +29.0	С
		11101.200	< -40.5	< -40.5	-13.0	> +27.5	С
		12951.400	< -38.9	< -38.9	-13.0	> +25.9	С
		14801.600	< -37.8	< -37.8	-13.0	> +24.8	С
		16651.800	< -36.0	< -36.0	-13.0	> +23.0	С
		18502.000	< -39.9	< -39.9	-13.0	> +26.9	C
661	1880.000	3760.000	< -52.1	< -52.1	-13.0	> +39.1	С
		5640.000	< -47.2	< -47.2	-13.0	> +34.2	С
		7520.000	< -45.8	< -45.8	-13.0	> +32.8	С
		9400.000	< -41.9	< -41.9	-13.0	> +28.9	С
		11280.000	< -40.5	< -40.5	-13.0	> +27.5	С
		13160.000	< -39.0	< -39.0	-13.0	> +26.0	С
		15040.000	< -37.8	< -37.8	-13.0	> +24.8	С
		16920.000	< -34.8	< -34.8	-13.0	> +21.8	С
		18800.000	< -39.9	< -39.9	-13.0	> +26.9	С
810	1909.800	3819.600	< -52.0	< -52.0	-13.0	> +39.0	С
		5729.400	< -47.3	< -47.3	-13.0	> +34.3	С
		7639.200	< -45.8	< -45.8	-13.0	> +32.8	С
		9549.000	< -41.9	< -41.9	-13.0	> +28.9	С
		11458.800	< -40.5	< -40.5	-13.0	> +27.5	С
		13368.600	< -38.9	< -38.9	-13.0	> +25.9	С
		15278.400	< -37.8	< -37.8	-13.0	> +24.8	С
		17188.200	< -33.7	< -33.7	-13.0	> +20.7	С

< -39.8

< -39.8

-13.0

> +26.8

C

19098.000

JQA File No. : KL80150043 Issue Date: May 19, 2015 Model No. : 404SH FCC ID : APYHRO00220

Standard : CFR 47 FCC Rules and Regulations Part 24

Page 38 of 42

Minimum Margin: -13.0 - (<-33.7) = >20.7 (dB)	(1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	
Minimum Margin: $-13.0 - (<-33.7) = >20.7 \text{ (dB)}$	Calculated result at 17188.2 MHz, as the worst point shown on underline:	
	Minimum Margin: $-13.0 - (<-33.7) = >20.7 \text{ (dB)}$	

NOTES

7.8

- 1. Test Distance: 3 m
- 2. The spectrum was checked from 30 MHz to 20 GHz.
- 3. All emissions not reported were more than 20 dB below the applied limits.
- $4. \ Applied \ limits : -13.0 \ [dBm] = 10 log(TP[mW]) \cdot (43 + 10 log(tp[W])) = 10 log(TP[mW]) \cdot (43 + (10 log(TP[mW]) \cdot 30)) + (43 + (10 log(TP[mW]) \cdot 3$ where, tp[W] = TP[mW] / 1000: Transmitter power at anttena terminal
- 5. The symbol of "<" means "or less".
- 6. The symbol of ">" means "more than".
- 7. Setting of measuring instrument(s):

	Detector Function	RES B.W.	V.B.W.	Sweep Time
A	Peak	$10\mathrm{kHz}$	$30~\mathrm{kHz}$	20 msec.
В	Peak	$100\mathrm{kHz}$	$300\mathrm{kHz}$	20 msec.
C	Peak	$1\mathrm{MHz}$	$3\mathrm{MHz}$	20 msec.

7.8 Frequency Stability(§2.1055)		
For the requirements, \boxtimes - Applicable $[\boxtimes$ - Tested. \square - Not Applicable	☐ - Not tested by applicant request.]	
7.8.1 Worst Point and Measurement Uncertainty		
The Frequency Stability level is	<u>+0.04</u> ppm at <u>1880.000</u> MF	Ηz
Uncertainty of Measurement Results	<u>+/-0.03</u> ppr	m(2σ)
Remarks:		

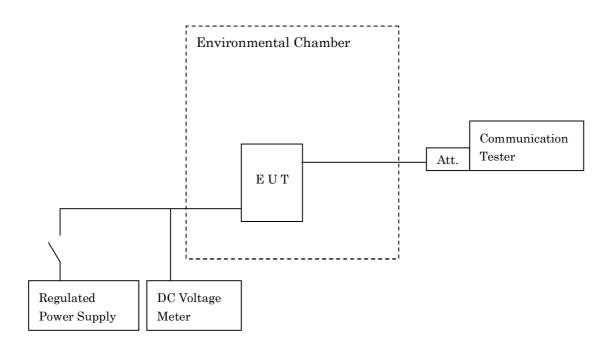
7.8.2 **Test Instruments**

Туре	Model	Manufacturer	ID No.	Last Cal.	Interval
Universal Radio Communication Tester	CMU200	Rohde & Schwarz	B-21	2014/5	1 Year
DC Voltage Meter	2011-39	YEW	B-33	2014/6	1 Year
Environmental Chamber	SH-641	ESPEC	F-32	2014/7	1 Year
DC Power Supply	NL035-10	TAKASAGO	F-4	N/A	N/A

JQA File No. : KL80150043 Issue Date : May 19, 2015 Model No. : 404SH FCC ID : APYHRO00220

Standard : CFR 47 FCC Rules and Regulations Part 24

Page 39 of 42


7.8.3 Test Method and Test Setup (Diagrammatic illustration)

Frequency Stability versus Temperature

The EUT was placed in an environmental chamber and was tested in the range from -30 to +50 degrees Celsius. The EUT was stabilized at each temperature. The power (4.0VDC) supplied was applied to the transmitter and allowed to stabilize for 10 minutes. The transmitting frequency was measured at startup and 2 minutes, 5 minutes and 10 minutes after startup. This procedure was repeated from -30 to +50 degrees Celsius at the interval of 10 degrees.

Frequency Stability versus Power Supply Voltage

The EUT was placed in an environmental chamber and was tested at the temperature of +20 degrees Celsius. The EUT was stabilized at the temperature. The power (4.0VDC) and the power (3.7VDC, the ending voltage) was applied to the EUT allowed to stabilize for 10 minutes. The transmitting frequency was measured at startup and 2 minutes, 5 minutes and 10 minutes after startup.

Standard : CFR 47 FCC Rules and Regulations Part 24

Page 40 of 42

7.8.4 Test Data

(GSM-PCS1900)

Test Date: May 8, 2015

1. Frequency Stability Measurement versus Temperature

Transmitting Frequency : 1880.000 MHz (661 ch)

DC Supply Voltage : 4.0 VDC

Ambient		Devia	tion [ppm]		Limits	Margin
Temperature [°C]	Startup	2 minutes	5 minutes	10 minutes	[ppm]	[ppm]
-30	+ 0.03	+ 0.03	+ 0.03	+ 0.03	N/A	N/A
-20	+ 0.03	+ 0.04	+ 0.03	+ 0.03	N/A	N/A
-10	+ 0.03	+ 0.03	+ 0.03	+ 0.03	N/A	N/A
0	+ 0.03	+ 0.03	+ 0.03	+ 0.03	N/A	N/A
10	+ 0.03	+ 0.02	+ 0.02	+ 0.02	N/A	N/A
20	+ 0.04	+ 0.03	+ 0.03	+ 0.02	N/A	N/A
30	+ 0.03	+ 0.03	+ 0.03	+ 0.03	N/A	N/A
40	+ 0.03	+ 0.03	+ 0.03	+ 0.03	N/A	N/A
50	+ 0.03	+ 0.03	+ 0.03	+ 0.03	N/A	N/A

2. Frequency Stability Measurement versus Power Supply Voltage

Transmitting Frequency : 1880.000 MHz (661 ch)

Ambient Temperature: : $20 \, ^{\circ}\text{C}$

DC Supply		Deviat	tion [ppm]		Limits	Margin
Voltage [V]	Startup	2 minutes	5 minutes	10 minutes	[ppm]	[ppm]
4.0	+ 0.04	+ 0.03	+ 0.03	+ 0.02	N/A	N/A
3.7(Ending)	+ 0.03	+ 0.03	+ 0.02	+ 0.03	N/A	N/A

 $Test\ condition\ example\ as\ the\ maximum\ deviation\ point\ shown\ on\ underline:$

Ambient Temperature : -20 °C / 2 minutes

DC Supply Voltage : 4 VDC

NOTE: The measurement were made after all of components of the oscillator sufficiently stabilized at each temperature.