

Shenzhen HTT Technology Co., Ltd.

Report No.: HTT202407368F01

TEST Report

Applicant: Guangdong WangJia Intelligent Robot Co., LTD.

Address of Applicant: Room 101, No. 9 Zhenxing Road, Houjie Qiaotou, Houjie

Town, Dongguan City, Guangdong, P.R. China

Manufacturer: Guangdong WangJia Intelligent Robot Co., LTD.

Address of Room 101, No. 9 Zhenxing Road, Houjie Qiaotou, Houjie

Manufacturer: Town, Dongguan City, Guangdong, P.R. China

Equipment Under Test (EUT)

Product Name: Robotic Vacuum Cleaner

Model No.: S803

Series model: DL30 Pro

Trade Mark: N/A

FCC ID: 2AVYJ-S810

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: Jul. 16, 2024

Date of Test: Jul. 16, 2024 ~ Jul. 22, 2024

Date of report issued: Jul. 22, 2024

Test Result: PASS *

^{*} In the configuration tested, the EUT complied with the standards specified above.

1. Version

Version No.	Date	Description		
00	Jul. 22, 2024	Original		

Tested/ Prepared By	Heber He	Date:	Jul. 22, 2024
	Project Engineer		
Check By:	Bruce Zhu	Date:	Jul. 22, 2024
	Reviewer		
Approved By :	Kevin Yang HT	TDate:	Jul. 22, 2024
	Authorized Signature		

2. Contents

	Page
1. VERSION	2
2. CONTENTS	3
3. TEST SUMMARY	4
4. GENERAL INFORMATION	
4.1. GENERAL DESCRIPTION OF EUT 4.2. TEST MODE 4.3. DESCRIPTION OF SUPPORT UNITS 4.4. DEVIATION FROM STANDARDS 4.5. ABNORMALITIES FROM STANDARD CONDITIONS 4.6. TEST FACILITY 4.7. TEST LOCATION 4.8. ADDITIONAL INSTRUCTIONS 5. TEST INSTRUMENTS LIST	
6.1. CONDUCTED EMISSIONS 6.2. CONDUCTED PEAK OUTPUT POWER 6.3. CHANNEL BANDWIDTH. 6.4. POWER SPECTRAL DENSITY 6.5. BAND EDGE 6.5.1. Conducted Emission Method 6.5.2. Radiated Emission Method 6.6. SPURIOUS EMISSION. 6.6.1. Conducted Emission Method 6.6.2. Radiated Emission Method 6.6.2. Radiated Emission Method 6.6.3. RADIENNA REQUIREMENT	
7. TEST SETUP PHOTO	37
8. EUT CONSTRUCTIONAL DETAILS	37

3. Test Summary

Test Item	Section	Result
Antenna requirement	FCC part 15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	FCC part 15.207	Pass
Conducted Peak Output Power	FCC part 15.247 (b)(3)	Pass
6dB Bandwidth	FCC part 15.247 (a)(2)	Pass
Power Spectral Density	FCC part 15.247 (e)	Pass
Band Edge	FCC part 15.247(d)	Pass
Spurious Emission	FCC part 15.205/15.209	Pass

Remark: Test according to ANSI C63.10:2013 and RSS-Gen

Pass: The EUT complies with the essential requirements in the standard.

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes			
Radiated Emission	30~1000MHz	3.45 dB	(1)			
Radiated Emission	1~18GHz	3.54 dB	(1)			
Radiated Emission	18-40GHz	5.38 dB	(1)			
Conducted Disturbance 0.15~30MHz 2.66 dB						
Note (1): The measurement unce	Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.					

4. General Information

4.1. General Description of EUT

Product Name:	Robotic Vacuum Cleaner
Model No.:	S803
Series model:	DL30 Pro
Test sample(s) ID:	HTT202407368-1(Engineer sample) HTT202407368-2(Normal sample)
Channel numbers:	802.11b/802.11g /802.11n(HT20): 11 802.11n(HT40):7
Channel separation:	5MHz
Modulation technology:	802.11b: Direct Sequence Spread Spectrum (DSSS) 802.11g/802.11n(H20)/802.11n(HT40): Orthogonal Frequency Division Multiplexing (OFDM)
Antenna Type:	FPC Antenna
Antenna gain:	2.25 dBi
Power supply:	DC 20V
Adapter 1:	Mode: CZH024200090USWM Input: AC 100-240V 50/60Hz 0.8AMAX Output: DC 20V 900mA
Adapter 2:	Mode: SA182H-200090U Input: AC 100-240V 50/60Hz 0.4A Output: DC 20V 0.9A

NOTE: Additional models of adapters, batteries, and motor parameters differ from the main model.

Operation Frequency each of channel							
Channel Frequency Channel Frequency Channel Frequency							
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

	Frequency (MHz)			
Test channel	802.11b/802.11g/802.11n(HT20)	802.11n(HT40)		
Lowest channel	2412MHz	2422MHz		
Middle channel	2437MHz	2437MHz		
Highest channel	2462MHz	2452MHz		

4.2. Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, the dutycycle >98%, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Pre-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)
Data rate	1Mbps	6Mbps	6.5Mbps	13Mbps

4.3. Description of Support Units

None.

4.4. Deviation from Standards

None.

4.5. Abnormalities from Standard Conditions

None.

4.6. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 779513 Designation Number: CN1319

Shenzhen HTT Technology Co.,Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6435.01

Shenzhen HTT Technology Co.,Ltd. has been accredited by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

4.7. Test Location

All tests were performed at:

Shenzhen HTT Technology Co.,Ltd.

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Tel: 0755-23595200 Fax: 0755-23595201

4.8. Additional Instructions

Test Software	Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode
Power level setup	Default

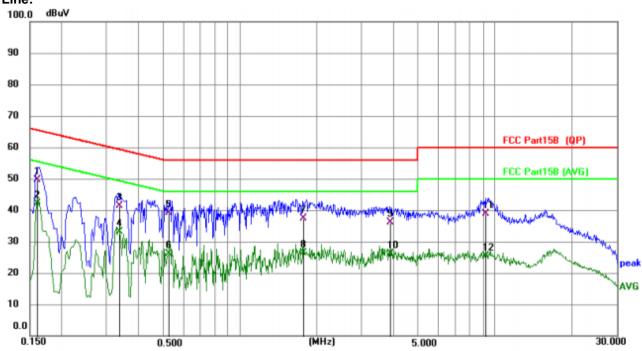
5. Test Instruments list

140000	Tool Equipment	Manufacturer	Madal Na	Inventory	Cal Data	Cal Dua data
Item	Test Equipment	Manufacturer	Model No.	Inventory	Cal.Date	Cal.Due date

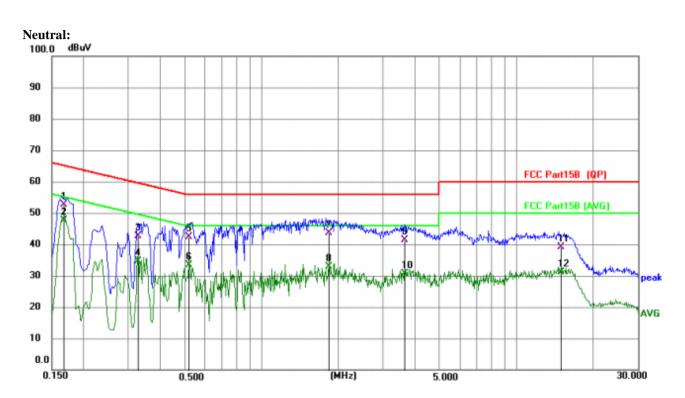
				Kebu)IT NO.: H11202	407300001
				No.	(mm-dd-yy)	(mm-dd-yy)
1	3m Semi- Anechoic Chamber	Shenzhen C.R.T technology co., LTD	9*6*6	HTT-E028	Aug. 10 2021	Aug. 09 2024
2	Control Room	Shenzhen C.R.T technology co., LTD	4.8*3.5*3.0	HTT-E030	Aug. 10 2021	Aug. 09 2024
3	EMI Test Receiver	Rohde&Schwar	ESCI7	HTT-E022	Apr. 26 2024	Apr. 25 2025
4	Spectrum Analyzer	Rohde&Schwar	FSP	HTT-E037	Apr. 26 2024	Apr. 25 2025
5	Coaxial Cable	ZDecl	ZT26-NJ-NJ-0.6M	HTT-E018	Apr. 26 2024	Apr. 25 2025
6	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-2M	HTT-E019	Apr. 26 2024	Apr. 25 2025
7	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-0.6M	HTT-E020	Apr. 26 2024	Apr. 25 2025
8	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-8.5M	HTT-E021	Apr. 26 2024	Apr. 25 2025
9	Composite logarithmic antenna	Schwarzbeck	VULB 9168	HTT-E017	May. 21 2024	May. 20 2025
10	Horn Antenna	Schwarzbeck	BBHA9120D	HTT-E016	May. 20 2024	May. 19 2025
11	Loop Antenna	Zhinan	ZN30900C	HTT-E039	Apr. 26 2024	Apr. 25 2025
12	Horn Antenna	Beijing Hangwei Dayang	OBH100400	HTT-E040	Apr. 26 2024	Apr. 25 2025
13	low frequency Amplifier	Sonoma Instrument	310	HTT-E015	Apr. 26 2024	Apr. 25 2025
14	high-frequency Amplifier	HP	8449B	HTT-E014	Apr. 26 2024	Apr. 25 2025
15	Variable frequency power supply	Shenzhen Anbiao Instrument Co., Ltd	ANB-10VA	HTT-082	Apr. 26 2024	Apr. 25 2025
16	EMI Test Receiver	Rohde & Schwarz	ESCS30	HTT-E004	Apr. 26 2024	Apr. 25 2025
17	Artificial Mains	Rohde & Schwarz	ESH3-Z5	HTT-E006	May. 23 2024	May. 22 2025
18	Artificial Mains	Rohde & Schwarz	ENV-216	HTT-E038	May. 23 2024	May. 22 2025
19	Cable Line	Robinson	Z302S-NJ-BNCJ-1.5M	HTT-E001	Apr. 26 2024	Apr. 25 2025
20	Attenuator	Robinson	6810.17A	HTT-E007	Apr. 26 2024	Apr. 25 2025
21	Variable frequency power supply	Shenzhen Yanghong Electric Co., Ltd	YF-650 (5KVA)	HTT-E032	Apr. 26 2024	Apr. 25 2025
22	Control Room	Shenzhen C.R.T technology co., LTD	8*4*3.5	HTT-E029	Aug. 10 2021	Aug. 09 2024
23	DC power supply	Agilent	E3632A	HTT-E023	Apr. 26 2024	Apr. 25 2025
24	EMI Test Receiver	Agilent	N9020A	HTT-E024	Apr. 26 2024	Apr. 25 2025
25	Analog signal generator	Agilent	N5181A	HTT-E025	Apr. 26 2024	Apr. 25 2025
26	Vector signal generator	Agilent	N5182A	HTT-E026	Apr. 26 2024	Apr. 25 2025
27	Power sensor	Keysight	U2021XA	HTT-E027	Apr. 26 2024	Apr. 25 2025
28	Temperature and humidity meter	Shenzhen Anbiao Instrument Co., Ltd	TH10R	HTT-074	Apr. 28 2024	Apr. 27 2025
29	Radiated Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
30	Conducted Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
31	RF Test Software	panshanrf	TST	N/A	N/A	N/A

6. Test results and Measurement Data

6.1. Conducted Emissions


o.i. Oonducted Ennission.	3							
Test Requirement:	FCC Part15 C Section 15.20	7						
Test Method:	ANSI C63.10:2013							
Test Frequency Range:	150KHz to 30MHz							
Class / Severity:	Class B							
Receiver setup:	RBW=9KHz, VBW=30KHz, S	Sweep time=auto						
Limit:	Fraguera virga da (MIII-)	Limit	(dBuV)					
	Frequency range (MHz)	Quasi-peak		rage				
	0.15-0.5	66 to 56*		o 46*				
	0.5-5	56	_	16				
	5-30	60	5	50				
Test setup:	* Decreases with the logarith							
Test procedure:	AUX Equipment E.U.T Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators line impedance stabilizatio 50ohm/50uH coupling imp 2. The peripheral devices are LISN that provides a 50oh termination. (Please refer in photographs).	Filter — AC p EMI Receiver are connected to the on network (L.I.S.N.). edance for the mease also connected to the m/50uH coupling imp	This provide uring equipmose main power that the main power that the main power than the main power than the main power than the main power than the main provide the main power than the main provide the main pr	s a nent. er through a 50ohm				
3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be chang according to ANSI C63.10:2013 on conducted measurement.								
Test Instruments:	Refer to section 6.0 for detail							
Test mode:	Refer to section 5.2 for details	1	1_	1010				
Test environment:	· · · · · · · · · · · · · · · · · · ·	mid.: 52%	Press.:	1012mbar				
Test voltage:	AC 120V, 60Hz							
Test results:	PASS							

Remark: The high and low voltages of the main and additional models have been tested, and only the worst low voltage test data is displayed


Measurement data:

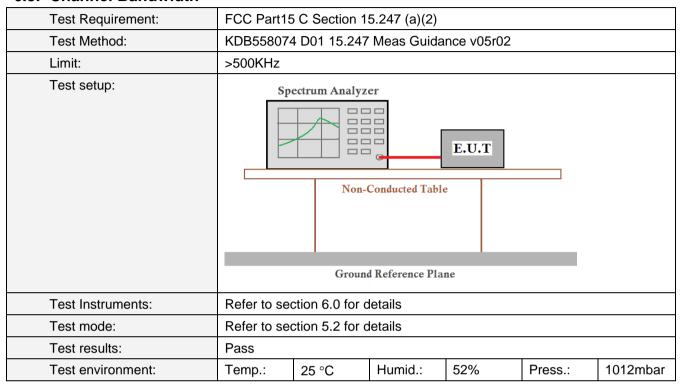
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz		dB	dBuV	dBuV	dB	Detector
1	0.1604	39.39	10.17	49.56	65.44	-15.88	QP
2 *	0.1604	31.91	10.17	42.08	55.44	-13.36	AVG
3	0.3345	31.02	10.25	41.27	59.34	-18.07	QP
4	0.3345	22.98	10.25	33.23	49.34	-16.11	AVG
5	0.5264	28.89	10.29	39.18	56.00	-16.82	QP
6	0.5264	15.73	10.29	26.02	46.00	-19.98	AVG
7	1.7790	27.02	10.40	37.42	56.00	-18.58	QP
8	1.7790	16.10	10.40	26.50	46.00	-19.50	AVG
9	3.8894	25.58	10.59	36.17	56.00	-19.83	QP
10	3.8894	15.57	10.59	26.16	46.00	-19.84	AVG
11	9.2173	28.27	10.68	38.95	60.00	-21.05	QP
12	9.2173	14.68	10.68	25.36	50.00	-24.64	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz		dB	dBuV	dBuV	dB	Detector
1		0.1666	42.38	10.18	52.56	65.13	-12.57	QP
2	*	0.1666	37.51	10.18	47.69	55.13	-7.44	AVG
3		0.3267	32.49	10.24	42.73	59.53	-16.80	QP
4		0.3267	24.47	10.24	34.71	49.53	-14.82	AVG
5		0.5181	32.01	10.29	42.30	56.00	-13.70	QP
6		0.5181	23.09	10.29	33.38	46.00	-12.62	AVG
7		1.8385	33.28	10.39	43.67	56.00	-12.33	QP
8		1.8385	22.42	10.39	32.81	46.00	-13.19	AVG
9		3.6417	30.96	10.49	41.45	56.00	-14.55	QP
10		3.6417	20.24	10.49	30.73	46.00	-15.27	AVG
11		14.9068	28.01	11.16	39.17	60.00	-20.83	QP
12		14.9068	19.89	11.16	31.05	50.00	-18.95	AVG

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Los

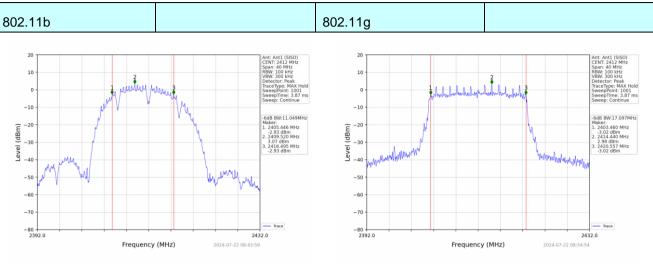
6.2. Conducted Peak Output Power


Test Requirement:	FCC Part15	5 C Section 1	5.247 (b)(3)							
Test Method:	KDB558074	4 D01 15.247	' Meas Guida	ance v05r02						
Limit:	30dBm									
Test setup:	Power sensor and Spectrum analyzer E.U.T Non-Conducted Table Ground Reference Plane									
		Ground Reference Pl	ane							
Test Instruments:	Refer to se	ction 6.0 for o	details							
Test mode:	Refer to se	ction 5.2 for o	details							
Test results:	Pass									
Test environment:	Temp.:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar								

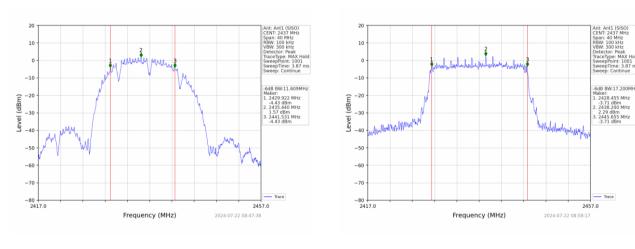
Measurement Data

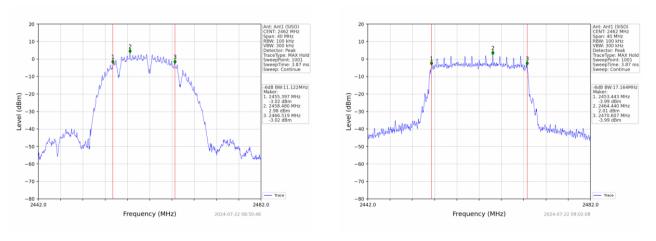
		Peak Outp	ut Power (dBm)									
Test CH	802.11b 802.11g 802.11n(HT20) 802.11n(HT40)		Limit(dBm)	Result								
Lowest	15.66	20.22	19.53	18.36								
Middle	15.05	19.79	19.53	18.01	30.00	Pass						
Highest	15.59	19.48	19.30	17.85								

6.3. Channel Bandwidth

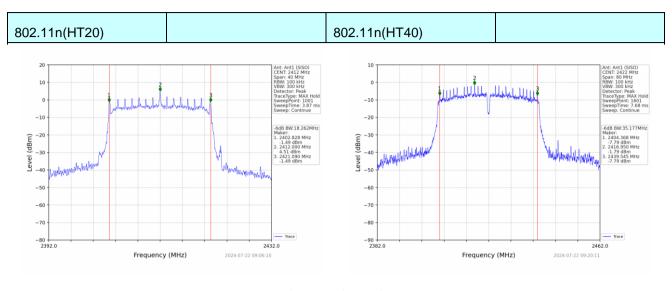


Measurement Data

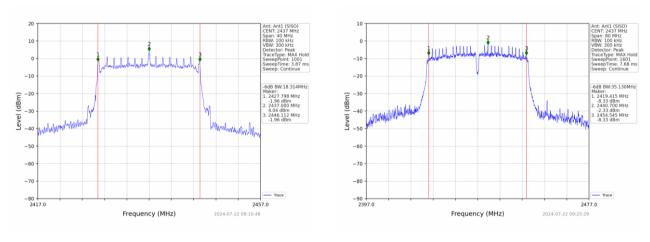

		Channel E	Bandwidth (MHz)				
Test CH	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	Limit(KHz)	Result	
Lowest	11.049	17.097	18.262	35.177			
Middle	11.609	17.200 18.314 35.130		35.130	>500	Pass	
Highest	11.122	17.164	18.191	35.120			


Test plot as follows:

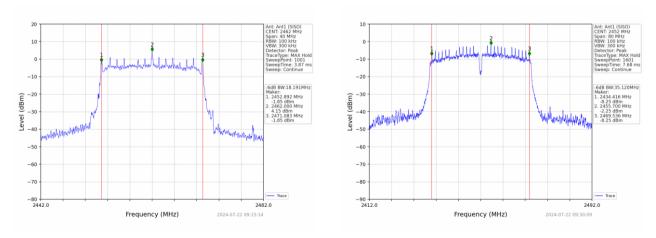
Lowest channel



Middle channel



Highest channel



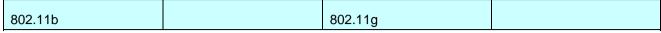
Lowest channel

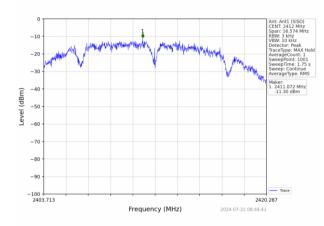
Middle channel

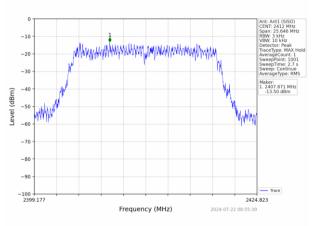
Highest channel

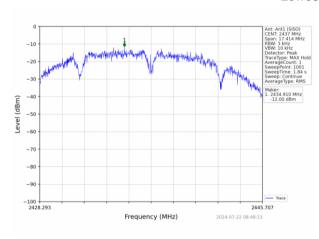
6.4. Power Spectral Density

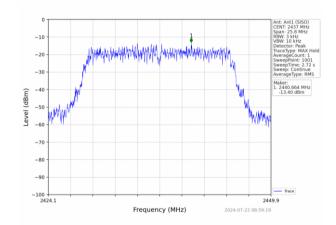
Test Requirement:	FCC Part1	FCC Part15 C Section 15.247 (e)								
Test Method:	KDB55807	'4 D01 15.24	7 Meas Guid	ance v05r02						
Limit:	8dBm/3kH	Z								
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane									
Test Instruments:	Refer to se	ection 6.0 for	dataile							
Test mode:		ection 5.2 for	uetalis							
Test results:	Pass									
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar				

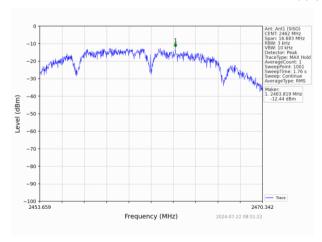

Measurement Data

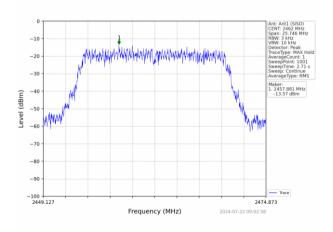

Weasurenier	i Dala					
T . O.		Power Spectra	Hz)	Limit	5 "	
Test CH	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	(dBm/3kHz)	Result
Lowest	-11.30	-13.50	-13.56	-18.30		
Middle	-12.00	-13.40	-13.68	-17.94	8.00	Pass
Highest	-12.44	-13.57	-14.35	-19.23		

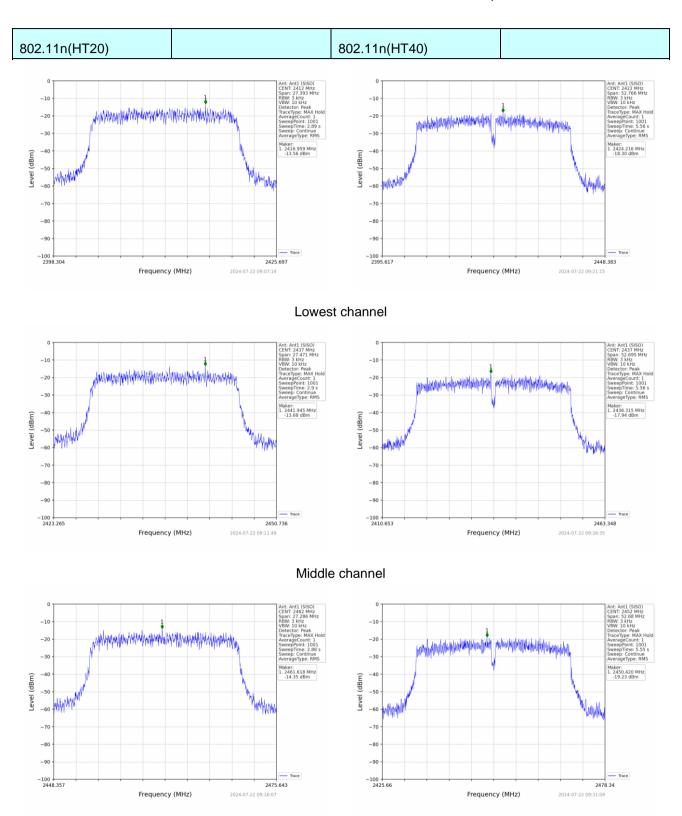

Remark: We have tested all mode at high, middle and low channel, and recorded worst case at middle


Test plot as follows:






Lowest channel

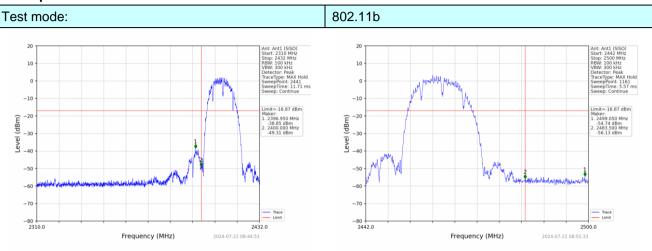

Middle channel

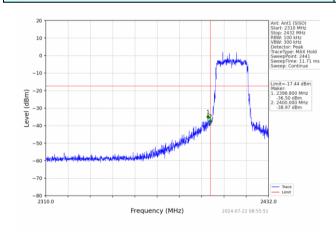
Highest channel

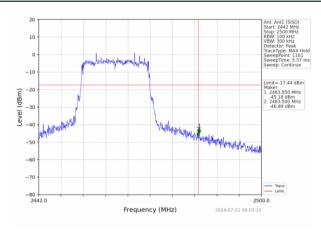
Highest channel

6.5. Band Edge

6.5.1. Conducted Emission Method


Test Requirement:	FCC Part15	C Section 1	5.247 (d)					
Test Method:	KDB558074	1 D01 15.247	Meas Guida	nce v05r02				
Limit:	spectrum in is produced the 100 kH the desired							
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to sec	ction 6.0 for c	letails					
Test mode:	Refer to sec	ction 5.2 for c	letails					
Test results:	Pass							
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		

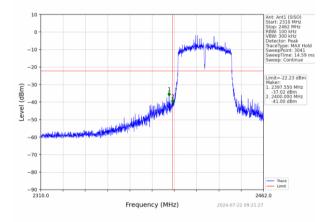

Test mode:


Report No.: HTT202407368F01

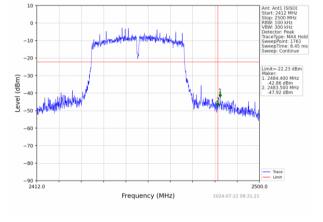
Test plot as follows:

Lowest channel 802.11g

Highest channel


Lowest channel

Highest channel



Test mode: 802.11n(HT20) Sout: 2210 MHz Sout: 221

Test mode: 802.11n(HT40)

Lowest channel

Highest channel

Lowest channel

Highest channel

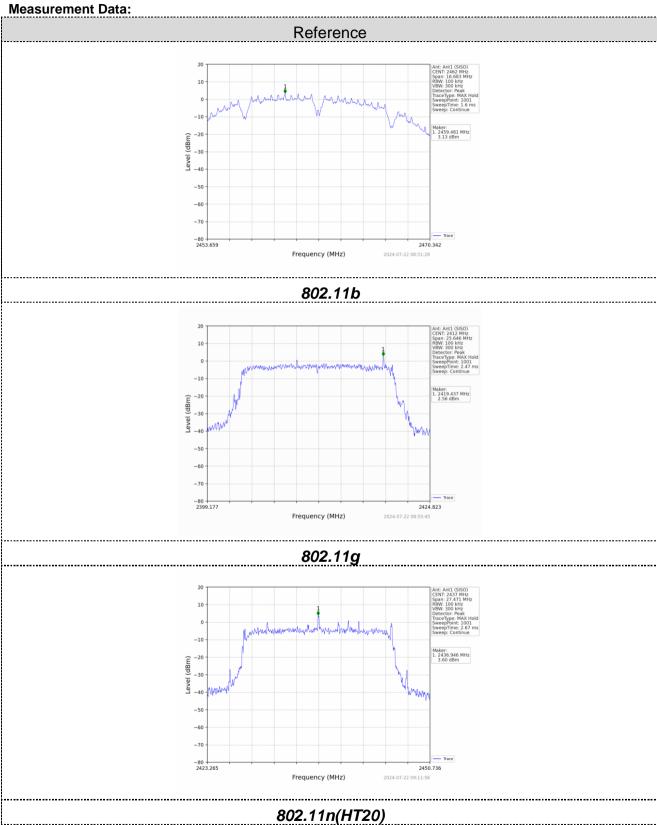
6.5.2. Radiated Emission Method

	iiii33i0ii i v ic								
Test Requirement:	FCC Part15	C Section 1	5.209 a	and 15.20	05				
Test Method:	ANSI C63.1	0: 2013							
Test Frequency Range:		estrict bands data was sho		tested, o	only the wo	orst band's (2	2310MHz to		
Test site:	Measureme	nt Distance:	3m						
Receiver setup:	Frequenc	•		RBW			mark		
	Above 1GI	Hz Pea		1MHz			k Value		
1.1.1		Pea	-	1MHz			ge Value		
Limit:		equency	<u>_</u>		uV/m @3m 4.00		mark ge Value		
	Abo	ve 1GHz			4.00		k Value		
Test setup:	Test Antennador (150 cm > 4) Receiverd Preamplifierd								
Total Brook Land	4 TI - FUT					L. 4.5			
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or 								
Test Instruments:		ction 6.0 for c							
Test mode:	Refer to section 5.2 for details								
Test results:	Pass								
Test environment:	Temp.:	25 °C	Humid	d.: 5	52%	Press.:	1012mbar		

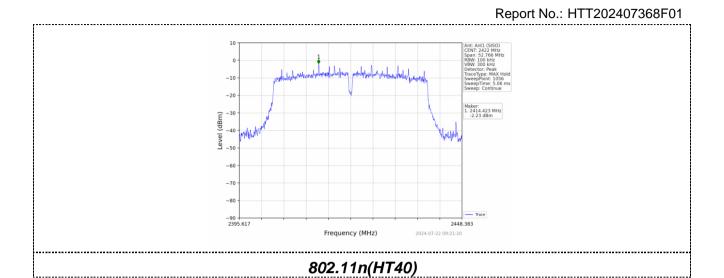
Measurement Data

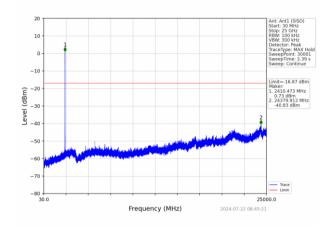
Remark: During the test, pre-scan the 802.11b/802.11g/802.11n (H20)/802.11n (H40) modulation, and found the 802.11b modulation which it is worse case.

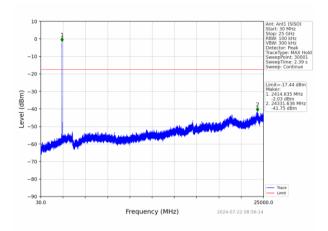
Freque	ncy(MHz)	:	24	12	Pola	arity:		HORIZONT	ĀL
Frequency (MHz)	Emis Le [,] (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	60.69	PK	74	13.31	62.08	27.2	4.31	32.9	-1.39
2390.00	44.55	AV	54	9.45	45.94	27.2	4.31	32.9	-1.39
Freque	ncy(MHz)	:	24	12	Pola	rity:	VERTICAL		
Frequency (MHz)	Emis Le ^s (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	58.85	PK	74	15.15	60.24	27.2	4.31	32.9	-1.39
2390.00	45.24	AV	54	8.76	46.63	27.2	4.31	32.9	-1.39
Freque	ncy(MHz)	:	24	62	Pola	rity:		HORIZONT	AL
Frequency (MHz)	Emis Le [,] (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	56.38	PK	74	17.62	57.31	27.4	4.47	32.8	-0.93
2483.50	44.80	AV	54	9.20	45.73	27.4	4.47	32.8	-0.93
Freque	ncy(MHz)	:	24	62	Pola	rity:		VERTICA	L
Frequency (MHz)	Emis Le [,] (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	55.21	PK	74	18.79	56.14	27.4	4.47	32.8	-0.93
2483.50	43.38	AV	54	10.62	44.31	27.4	4.47	32.8	-0.93


6.6. Spurious Emission

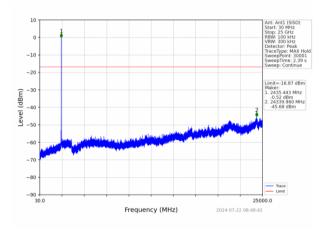
6.6.1. Conducted Emission Method

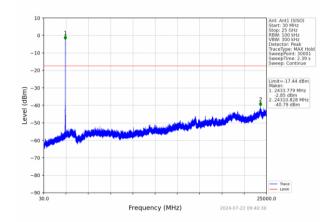

Test Requirement:	FCC Part15	FCC Part15 C Section 15.247 (d)									
Test Method:	KDB558074	D01 15.247	Meas Guida	nce v05r02							
Limit:	spectrum in is produced the 100 kH: the desired	tentional rac by the inten z bandwidth I power, ba	th outside the liator is opera tional radiato within the ba sed on eithe	ating, the rac r shall be at l and that cont	lio frequency east 20 dB b ains the high	power that below that in nest level of					
Test setup:	Spo	the desired power, based on either an RF conducted or a radiated measurement. Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane									
Test Instruments:	Refer to sec	ction 6.0 for o	letails								
Test mode:	Refer to sec	ction 5.2 for o	letails								
Test results:	Pass										
Test environment:	Temp.:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar									



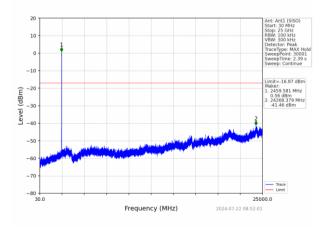


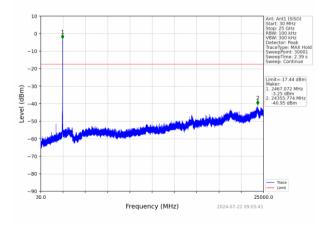
802.11b 802.11g


Lowest channel



30MHz~25GHz

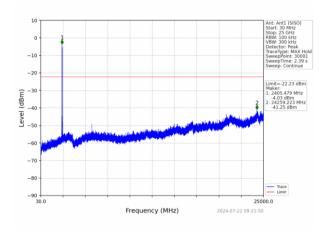

Middle channel



30MHz~25GHz

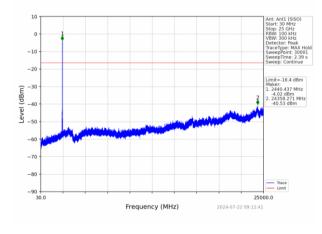
Highest channel

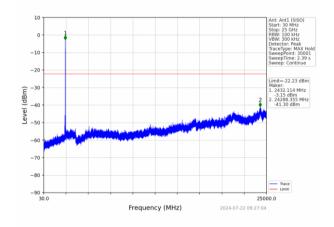

30MHz~25GHz



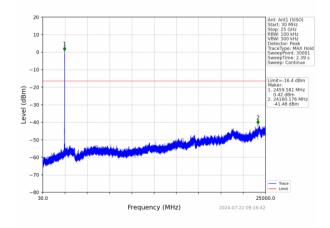
802.11n(HT20)

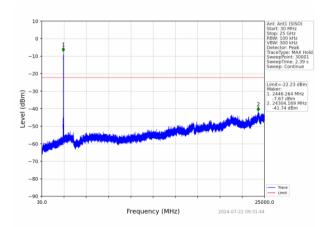
802.11n(HT40)


Lowest channel



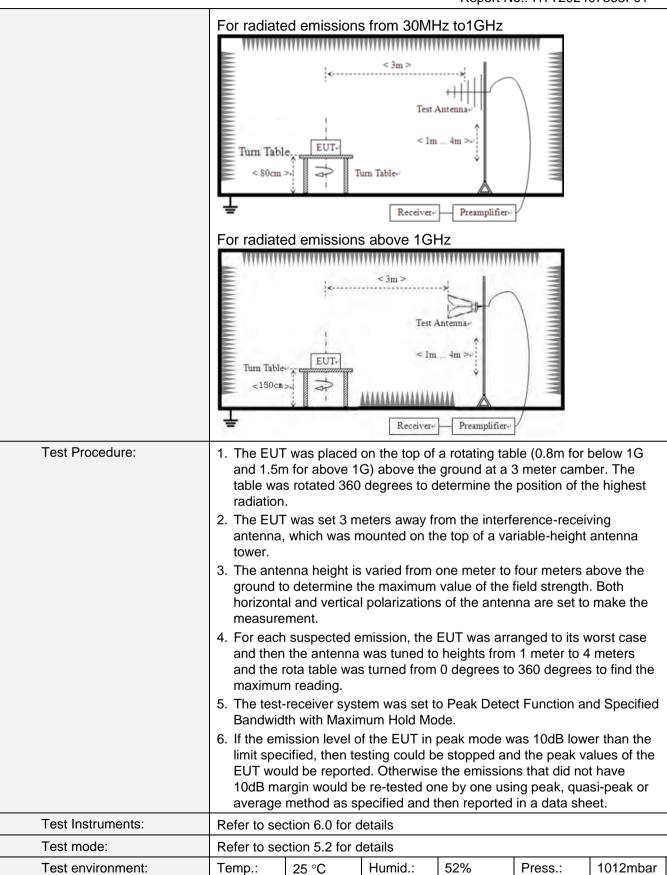
30MHz~25GHz


Middle channel



30MHz~25GHz

Highest channel


30MHz~25GHz

6.6.2. Radiated Emission Method

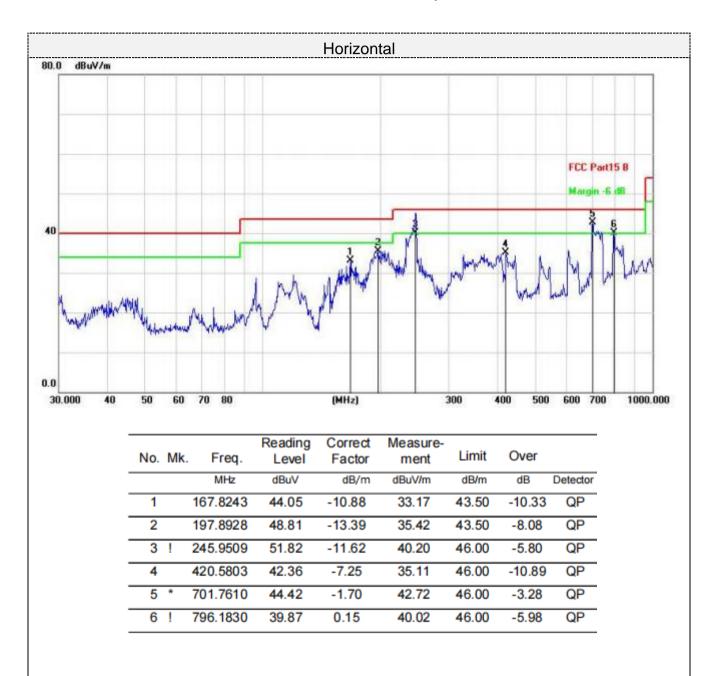
0.0.2. Radiated Li	ilission wethou								
Test Requirement:	FCC Part15 C Section 15.209								
Test Method:	ANSI C63.10:2013								
Test Frequency Range:	9kHz to 25GHz								
Test site:	Measurement Distar	nce: 3	3m						
Receiver setup:	Frequency		Detector	RBW		VBW		Value	
	9KHz-150KHz	Qi	ıasi-peak	200H	Ηz	600Hz	Z	Quasi-peak	
	150KHz-30MHz	Qι	ıasi-peak	9KH	lz	30KH	Z	Quasi-peak	
	30MHz-1GHz	Qι	ıasi-peak	120K	Hz	300KH	lz	Quasi-peak	
	Above 1GHz		Peak	1MF	łz	3MHz	<u>z</u>	Peak	
	Above 10112		Peak 1MI		łz	10Hz		Average	
Limit:	Frequency		Limit (u\	//m)	V	alue	N	Measurement Distance	
	0.009MHz-0.490MHz		2400/F(k	(Hz)	(QP		300m	
	0.490MHz-1.705M	24000/F(KHz)	(QP		30m		
	1.705MHz-30MH	30	30		QP		30m		
	30MHz-88MHz	100	100		QP				
	88MHz-216MHz	150		(QP				
	216MHz-960MH	200	200		QP		3m		
	960MHz-1GHz		500		QP			Sili	
	Above 1GHz		500		Average				
	7.5576 151.12		5000		Peak				
Test setup:	For radiated emiss	sions	from 9kH	z to 30	MH	Z			
	***********	11111	(1111111111111111	******	11111	(1)			
	Tum Table Tum Table Im Receiver Receiver								

Test voltage:	AC 120V, 60Hz
Test results:	Pass

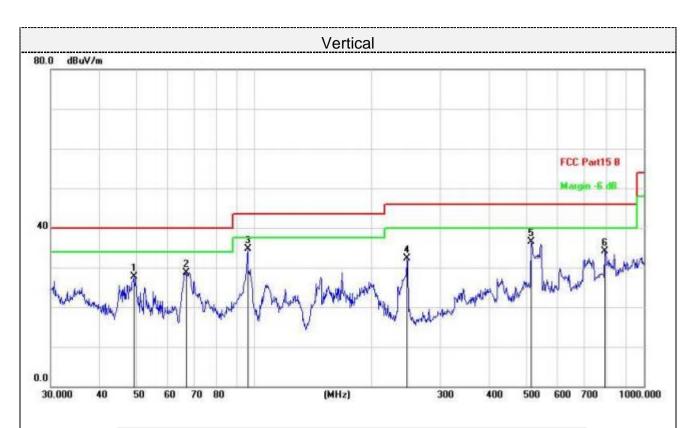
Remarks:

- 1. Only the worst case Main Antenna test data.
- 2.Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Measurement data:


■ 9kHz~30MHz

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.


■ Below 1GHz

Pre-scan all test modes, found worst case at 802.11b 2437MHz, and so only show the test result of 802.11b 2437MHz

Final Level = Receiver Read level + Correct Factor

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dB/m	dB	Detector
1		49.0145	38.75	-11.14	27.61	40.00	-12.39	QP
2		66.9669	41.52	-12.81	28.71	40.00	-11.29	QP
3	*	96.0986	49.81	-15.18	34.63	43.50	-8.87	QP
4		246.8149	43.81	-11.59	32.22	46.00	-13.78	QP
5		513.6331	41.44	-4.87	36.57	46.00	-9.43	QP
6		793.3960	33.97	0.10	34.07	46.00	-11.93	QP

Final Level =Receiver Read level + Correct Factor

■ Above 1-25GHz

Note: During the test, pre-scan the 802.11b/802.11g/802.11n (H20)/802.11n (H40) modulation, and found the 802.11b modulation which it is worse case.

802.11b:

Frequency(MHz):			2412		Polarity:		HORIZONTAL		
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4824.00	58.62	PK	74	15.38	52.80	31.05	6.52	31.75	5.82
4824.00	42.80	AV	54	11.20	36.98	31.05	6.52	31.75	5.82
7236.00	57.06	PK	74	16.94	44.25	36.08	8.18	31.45	12.81
7236.00	47.12	AV	54	6.88	34.31	36.08	8.18	31.45	12.81

Frequency(MHz):			24	12	Pola	rity:	VERTICAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4824.00	60.54	PK	74	13.46	54.72	31.05	6.52	31.75	5.82
4824.00	43.96	AV	54	10.04	38.14	31.05	6.52	31.75	5.82
7236.00	57.54	PK	74	16.46	44.73	36.08	8.18	31.45	12.81
7236.00	47.19	AV	54	6.81	34.38	36.08	8.18	31.45	12.81

Freq	uency(MH	z):	24	37	Pola	rity:	HORIZONTAL		
Frequency (MHz)	Emis: Lev (dBu\	rel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4874.00	60.73	PK	74	13.27	54.29	31.25	6.7	31.51	6.44
4874.00	44.64	AV	54	9.36	38.20	31.25	6.7	31.51	6.44
7311.00	55.02	PK	74	18.98	41.88	36.25	8.31	31.42	13.14
7311.00	47.08	AV	54	6.92	33.94	36.25	8.31	31.42	13.14

Frequency(MHz):			2437		Polarity:		VERTICAL		
Frequency (MHz)	Emiss Lev (dBu\	rel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4874.00	60.37	PK	74	13.63	53.93	31.25	6.7	31.51	6.44
4874.00	46.40	AV	54	7.60	39.96	31.25	6.7	31.51	6.44
7311.00	56.39	PK	74	17.61	43.25	36.25	8.31	31.42	13.14
7311.00	46.26	AV	54	7.74	33.12	36.25	8.31	31.42	13.14

Freq	uency(MH	lz):	24	62	Polarity:		HORIZONTAL			
Frequency (MHz)	Emis: Lev (dBu\	⁄el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4924.00	59.75	PK	74	14.25	52.88	31.52	6.8	31.45	6.87	
4924.00	45.43	AV	54	8.57	38.56	31.52	6.8	31.45	6.87	
7386.00	56.43	PK	74	17.57	42.87	36.51	8.4	31.35	13.56	
7386.00	45.72	AV	54	8.28	32.16	36.51	8.4	31.35	13.56	

Frequency(MHz):			24	62	Polarity:		VERTICAL			
Frequency (MHz)	Emiss Lev (dBu\	el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4924.00	60.58	PK	74	13.42	53.71	31.52	6.8	31.45	6.87	
4924.00	43.89	AV	54	10.11	37.02	31.52	6.8	31.45	6.87	
7386.00	56.57	PK	74	17.43	43.01	36.51	8.4	31.35	13.56	
7386.00	46.25	AV	54	7.75	32.69	36.51	8.4	31.35	13.56	

Remark:

⁽¹⁾ Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

⁽²⁾ When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

6.7. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Antenna Connected Construction

The maximum gain of antenna was 2.25 dBi.

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen HTT Technology Co., Ltd. does not assume any responsibility.

7. Test Setup Photo

Reference to the appendix I for details.

8. EUT Constructional Details

Reference to the appendix II for details.

-----End-----