Report No.: TCWA24070017901

TEST REPORT

Applicant: Fibocom Wireless Inc.

EUT Description: LTE Module

Model: MC610

Brand: Fibocom

FCC ID: ZMOMC610LA20

Standards: FCC CFR Title 47 Part 2

FCC CFR Title 47 Part 22

FCC CFR Title 47 Part 24

FCC CFR Title 47 Part 27

Date of Receipt: 2024/08/28

Date of Test: 2024/08/29 to 2024/09/11

Date of Issue: 2024/09/18

TOWE. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

the results documented in this report apply only the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility assure that additional production units of the model are manufactured with identical electrical and mechanical components. All sample tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise. without written approval of TOWE, the test report shall not be reproduced except in full.

Huangkun Approved By:

ChenChengfu Reviewed By:

Revision History

Rev.	Issue Date	Description	Revised by
01	2024/08/07	Original	ChenChengfu

Summary of Test Results

FCC Part	Test Band	Test Item	Test Result
§2.1046		Effective Radiated Power	Pass
§22.913(a)(5)	GSM 850/LTE Band 5	Effective Radiated Fower	Pass
§2.1046			
§24.232(c)	PCS 1900/LTE Band 2	Effective Isotropic Radiated	Pass
§27.50(d)(4)	LTE Band 4/66	Power	rass
§27.50(h)(2)	LTE Band 7/38/41		
§22.913(d)	GSM 850/LTE Band 5		
§24.232(d)	PCS 1900/LTE Band 2	Peak-Average Ratio	Pass
§27.50(d)(5)	Others Band		
§2.1049	All Band	Occupied Bandwidth	Pass
§2.1051			
§22.917(a)	GSM 850/LTE Band 5		
§24.238(a)	PCS 1900/LTE Band 2	Band Edge	Pass
§27.53(h)	LTE Band 4		
§27.53(m)	LTE Band 7/38/41		
§2.1051			
§22.917(a)	GSM 850/LTE Band 5z)	Caurious Emission at Antonno	
§24.238(a)	PCS 1900/LTE Band 2	Spurious Emission at Antenna Terminals	Pass
§27.53(h)	LTE Band 4/66	reminals	
§27.53(m)	LTE Band 7/38/41		
§2.1053			
§22.917(a)	GSM 850/LTE Band 5	Field Strength of Spurious	
§24.238(a)	PCS 1900/LTE Band 2	Field Strength of Spurious Radiation	Pass
§27.53(h)	LTE Band 4/66	Radiation	
§27.53(m)	LTE Band 7/38/41		
§2.1055			
§22.355	GSM 850/LTE Band 5	Fraguency Stability	Pass
§24.235	PCS 1900/LTE Band 2	Frequency Stability	F488
§27.54	Others Band		
Remark: Pass: Me	eet the requirement.		

Table of Contents

1	Gen	eral De	scription	5			
	1.1	La	b Information	<u>5</u>			
		1.1.1	Testing Location	<u>5</u>			
		1.1.2	Test Facility / Accreditations	<u>5</u>			
	1.2	Cli	ent Information	5			
		1.2.1	Applicant	<u>5</u>			
		1.2.2	Manufacturer	<u>5</u>			
	1.3	Pre	oduct Information	(
2	Test	Config	guration	7			
	2.1	Te	st Channel	7			
	2.2	Te	st Mode	10			
	2.3	Su	pport Unit used in test	10			
	2.4	Te	st Environment	11			
	2.5	Te	st RF Cable	11			
	2.6	Мс	odifications	11			
	2.7	Te	st Setup Diagramst	12			
		2.7.1	Conducted Configuration	12			
		2.7.2	Radiated Configuration	13			
3	Equi	ipment	and Measurement Uncertainty	14			
	3.1	Te	st Equipment List	14			
	3.2	Me	easurement Uncertainty	15			
4	Test	Result	ts	16			
	4.1	Ou	tput Power (ERP / EIRP / Conducted Power)	16			
	4.2						
	4.3	Occupied Bandwidth1					
	4.4	Band Edge1					
	4.5	Spurious Emission at Antenna Terminals20					
	4.6	Field Strength of Spurious Radiation2					
	4.7	Fre	equency Stability V.S. Temperature, Voltage	23			
	Δnr	endix		24			

Page 5 / 24 Report No.: TCWA24070017901

General Description

1.1 Lab Information

1.1.1 **Testing Location**

These measurements tests were conducted at the Sushi TOWE Wireless Testing(Shenzhen) Co., Ltd. facility located at F401 and F101, Building E, Hongwei Industrial Zone, Liuxian 3rd Road, Bao'an District, Shenzhen, China. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014 Tel.: +86-755-27212361

Contact Email: info@towewireless.com

1.1.2 **Test Facility / Accreditations**

A2LA (Certificate Number: 7088.01)

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

FCC Designation No.: CN1353

Sushi TOWE Wireless Testing (Shenzhen) Co., Ltd. has been recognized as an accredited testing laboratory. Designation Number: CN1353.

ISED CAB identifier: CN0152

Sushi TOWE Wireless Testing (Shenzhen) Co., Ltd. has been recognized by ISED as an accredited testing

laboratory.

CAB identifier: CN0152 Company Number: 31000

1.2 Client Information

1.2.1 **Applicant**

Applicant:	Fibocom Wire	eless Inc.					
Address:			6,Shenzhen	International	Innovation	Valley,Dashi	1st
Addicos.	Rd,Nanshan,Shenzhen,China						

1.2.2 Manufacturer

Manufacturer:	Fibocom Wire	eless Inc.					
^ ddrooo.	1101,Tower	A,Building	6,Shenzhen	International	Innovation	Valley,Dashi	1st
Address:	Rd,Nanshan,Shenzhen,China						

Page 6 / 24 Report No.: TCWA24070017901

1.3 Product Information

UT Description:	LTE Module					
lodel:	MC610					
rand:	Fibocom					
ardware Version:	V1.0					
oftware Version:	16000.1000.	00.10.02	.03			
451	RF:	868259	070002798			
ΛΕΙ:	Radiation:	868259	070002681			
evice Capabilities:						
lodulation Type:	GSM:	⊠ GPR	S: GMSK, 🗌 EGPRS: 8PS	SK		
oddiation Type.	LTE:	☑ QPS	K, ⊠ 16QAM, □ 64QAM,	☐ 256QAM		
TE category:	1bis					
<u>'</u>	Band		TX Frequency	RX Frequency		
<u></u>	GSM 850		824 ~ 849 MHz	869 ~ 894 MHz		
	PCS 1900		1850 ~ 1910 MHz	1930 ~ 1990 MHz		
	LTE Band 2		1850 ~ 1910 MHz	1930 ~ 1990 MHz		
poration Fraguency Banga:	LTE Band 4		1710 ~ 1755 MHz	2110 ~ 2155 MHz		
peration Frequency Range:	LTE Band 5		824 ~ 849 MHz	869 ~ 894 MHz		
1	LTE Band 7		2500 ~ 2570 MHz	2620 ~ 2690 MHz		
1	LTE Band 38		2570 ~ 2620 MHz	2570 ~ 2620 MHz		
!	LTE Band 41	1	2496 ~ 2690MHz	2496 ~ 2690MHz		
1	LTE Band 66	6	1710 ~ 1780 MHz	2110 ~ 2200 MHz		
ntenna Type:	\boxtimes External,	☐ Integr	rated			
	Band		ANT(dBi)			
	GSM 850		1.32			
<u>!</u>	PCS 1900		1.00			
<u>'</u>	LTE Band 2		1.00			
Antenna Gain:	LTE Band 4		2.98			
	LTE Band 5		1.32			
	LTE Band 7		2.21			
	LTE Band 38	3	1.71			
	LTE Band 41	1	2.21			
	LTE Band 66	6	2.98			
Remark: The above EUT's information was declared by applicant, please refer to the specifications or user						
	LTE Band 41 LTE Band 66 rmation was	6	2.21 2.98	o the spe		

Page 7 / 24 Report No.: TCWA24070017901

Test Configuration

2.1 Test Channel

Dond		TX Frequency		RX Frequency		
Band	Range	Channel	Frequency	Range	Channel	Frequency
	Low	128	824.2 MHz	Low	128	869.2 MHz
GSM 850	Middle	190	836.6 MHz	Middle	190	881.6 MHz
	High	251	848.8 MHz	High	251	893.8 MHz
	Low	512	1850.2MHz	Low	512	1930.2 MHz
PCS 1900	Middle	661	1880.0 MHz	Middle	661	1960.0 MHz
	High	810	1909.8 MHz	High	810	1989.8 MHz

Band	Bandwidth		TX Frequen	су		RX Frequen	су
Danu	Danawiath	Range	Channel	Frequency	Range	Channel	Frequency
		Low	18607	1850.7 MHz	Low	607	1930.7 MHz
	1.4MHz	Middle	18900	1880 MHz	Middle	900	1960 MHz
		High	19193	1909.3 MHz	High	1193	1989.3 MHz
		Low	18615	1851.5 MHz	Low	615	1931.5 MHz
	3MHz	Middle	18900	1880 MHz	Middle	900	1960 MHz
		High	19185	1908.5 MHz	High	1185	1988.5 MHz
		Low	18625	1852.5 MHz	Low	625	1932.5 MHz
	5MHz	Middle	18900	1880 MHz	Middle	900	1960 MHz
LTE band 2		High	19175	1907.5 MHz	High	1175	1987.5 MHz
LIE band 2		Low	18650	1855 MHz	Low	650	1935 MHz
	10MHz	Middle	18900	1880 MHz	Middle	900	1960 MHz
		High	19150	1935 MHz	High	1150	1985 MHz
		Low	18675	1857.5 MHz	Low	675	1937.5 MHz
	15MHz	Middle	18900	1880 MHz	Middle	900	1960 MHz
		High	19125	1902.5 MHz	High	1125	1982.5 MHz
	20MHz	Low	18700	1860 MHz	Low	700	1940 MHz
		Middle	18900	1880 MHz	Middle	900	1960 MHz
		High	19100	1900 MHz	High	1100	1980 MHz
	1.4MHz	Low	19957	1710.7 MHz	Low	1975	2110.7 MHz
		Middle	20175	1732.5 MHz	Middle	2175	2132.5MHz
		High	20393	1754.3 MHz	High	2375	2154.3 MHz
	3MHz	Low	19965	1711.5 MHz	Low	2000	2115 MHz
		Middle	20175	1732.5 MHz	Middle	2175	2132.5MHz
		High	20385	1753.5 MHz	High	2350	2150 MHz
		Low	19975	1712.5 MHz	Low	1975	2112.5 MHz
	5MHz	Middle	20175	1732.5 MHz	Middle	2175	2132.5MHz
LTE band 4		High	20375	1752.5 MHz	High	2375	2152.5 MHz
LIE band 4		Low	20000	1715 MHz	Low	2115	2115 MHz
	10MHz	Middle	20175	1732.5 MHz	Middle	2175	2132.5MHz
		High	20350	1750 MHz	High	2350	2150 MHz
		Low	20025	1717.5 MHz	Low	2025	2117.5 MHz
	15MHz	Middle	20175	1732.5 MHz	Middle	2175	2132.5MHz
		High	20325	1747.5 MHz	High	2325	2147.5 MHz
		Low	20050	1720 MHz	Low	2050	2120 MHz
	20MHz	Middle	20175	1732.5 MHz	Middle	2175	2132.5MHz
		High	20300	1745 MHz	High	2300	2145 MHz

20407 824.7 MHz 2407 Low Low 869.7 MHz 1.4MHz Middle 20525 836.5 MHz Middle 2525 881.5 MHz High 20643 848.3 MHz High 893.3 MHz 2643 Low 20415 825.5 MHz Low 2415 870.5 MHz 3MHz Middle 20525 836.5 MHz Middle 2525 881.5 MHz High 20635 847.5 MHz High 2635 892.5 MHz LTE band 5 Low 20425 826.5 MHz Low 2425 871.5 MHz Middle 20525 836.5 MHz Middle 2525 881.5 MHz 5MHz 846.5 MHz High 20625 High 2625 891.5 MHz Low 20450 829 MHz Low 2450 874 MHz 10MHz Middle 20525 836.5 MHz Middle 881.5 MHz 2525 889 MHz High 20600 844 MHz High 2600 Low 20775 2502.5 MHz Low 2775 2622.5 MHz 5MHz Middle 21100 2535 MHz Middle 3100 2655 MHz High 21425 2567.5 MHz High 3425 2687.5 MHz Low 20800 2505 MHz Low 2800 2625 MHz Middle Middle 10MHz 21100 2535 MHz 3100 2655 MHz High 21400 2565 MHz High 3400 2685 MHz LTE band 7 Low 20825 2507.5 MHz Low 2825 2627.5 MHz Middle 2655 MHz 15MHz Middle 21100 2535 MHz 3100 21375 2562.5 MHz 2682.5 MHz High High 3375 Low 20850 2510 MHz Low 2850 2630 MHz 20MHz Middle 21100 2535 MHz Middle 3100 2655 MHz High 21350 2560 MHz High 3350 2680 MHz Low 37775 2572.5 MHz Low 37775 2572.5 MHz 5MHz Middle 38000 2595 MHz Middle 38000 2595 MHz High 38225 2617.5 MHz High 38225 2617.5 MHz Low 37800 2575 MHz Low 37800 2575 MHz 10MHz Middle 38000 2595 MHz Middle 38000 2595 MHz 38200 2615 MHz High 38200 2615 MHz High LTE band 38 Low 37825 2577.5 MHz Low 37825 2577.5 MHz Middle Middle 38000 15MHz 38000 2595 MHz 2595 MHz High 38175 2612.5 MHz High 38175 2612.5 MHz 37850 2580 MHz 37850 2580 MHz Low Low 20MHz Middle 38000 2595 MHz Middle 38000 2595 MHz 2610 MHz High 38150 2610 MHz High 38150 Low 39675 2498.5 MHz Low 39675 2498.5 MHz 5MHz Middle 40620 2593 MHz Middle 40620 2593 MHz 41565 41565 High 2687.5 MHz High 2687.5 MHz Low 39700 2501 MHz Low 39700 2501 MHz Middle Middle 40620 2593 MHz 40620 2593 MHz 10MHz 41540 41540 High 2685 MHz High 2685 MHz LTE band 41 39725 Low 39725 2503.5 MHz Low 2503.5 MHz 2593 MHz 15MHz Middle Middle 40620 40620 2593 MHz High 2682.5 MHz High 41515 2682.5 MHz 41515 Low 39750 2506 MHz Low 39750 2506 MHz 20MHz Middle 40620 2593 MHz Middle 40620 2593 MHz High 41490 2680 MHz High 41490 2680 MHz Low 131979 1710.7 MHz Low 66443 2110.7 MHz Middle Middle 1.4MHz 132322 1745 MHz 66786 2145MHz High 132665 1779.3 MHz High 67329 2199.3 MHz 131987 1711.5 MHz 66451 2111.5 MHz Low Low 3MHz Middle 132322 1745 MHz Middle 66786 2145MHz LTE band 66 High 132657 1778.5MHz High 67321 2198.5MHz Low 131997 1712.5 MHz Low 66461 2112.5 MHz 132322 1745 MHz Middle 66786 Middle 2145MHz 5MHz High 132647 1777.5 MHz High 67311 2197.5 MHz 10MHz 132022 1715 MHz Low 66486 2115 MHz Low

Page 9 / 24 Report No.: TCWA24070017901

	Middle	132322	1745 MHz	Middle	66786	2145MHz
	High	132622	1775 MHz	High	67286	2195 MHz
	Low	132047	1717.5 MHz	Low	66511	2117.5 MHz
15MHz	Middle	132322	1745 MHz	Middle	66786	2145MHz
	High	132597	1772.5 MHz	High	67261	2192.5 MHz
	Low	132072	1720 MHz	Low	66536	2120 MHz
20MHz	Middle	132322	1745 MHz	Middle	66786	2145MHz
	High	132572	1770 MHz	High	67236	2190 MHz

2.2 Test Mode

Test Mode	Description
TM 1	EUT communication with simulated station in LTE/QPSK mode
TM 2	EUT communication with simulated station in LTE/16QAM mode

2.3 Support Unit used in test

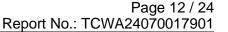
Description	Manufacturer	Model	Serial Number		
Laptop	Apple	MacBook Pro 13	C02SPBESFVH3		
Adapter	Apple	A1435	/		
Development Board *	Fibocom	ADP-MC615-CN-00-00	/		
Remark: * the information of table is provided by client.					

Page 11 / 24 Report No.: TCWA24070017901

2.4 Test Environment

Temperature:	Normal: 15° C ~ 35° C Extreme: Low -30 $^{\circ}$ C, High 50 $^{\circ}$ C
Relative Humidity	45-56 %RH Ambient
Voltage:	Nominal: 3.80 Vdc Extreme: Low 3.4 Vdc, High 4.3 Vdc

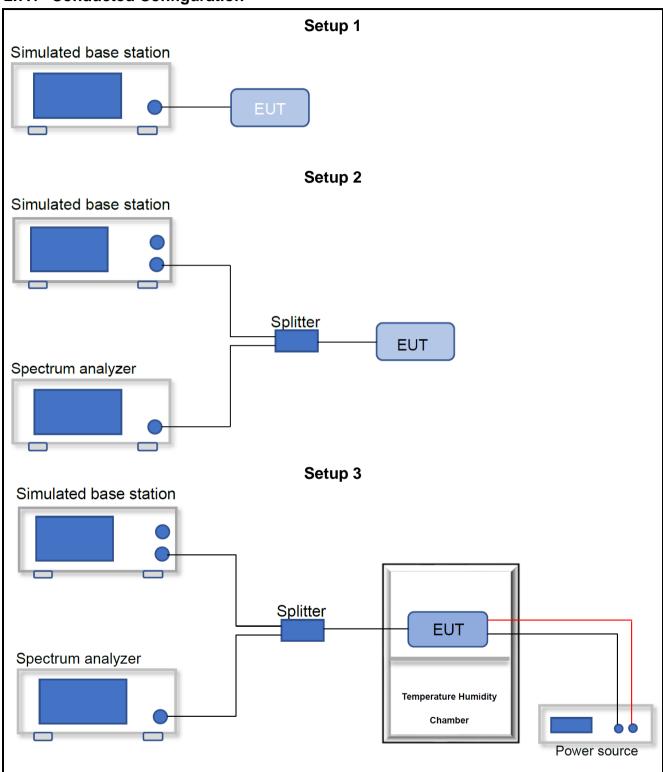
2.5 Test RF Cable


For all conducted test items: The offset level is set spectrum analyzer to compensate the RF cable loss and attenuator factor between RF conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level will be exactly the RF output level.

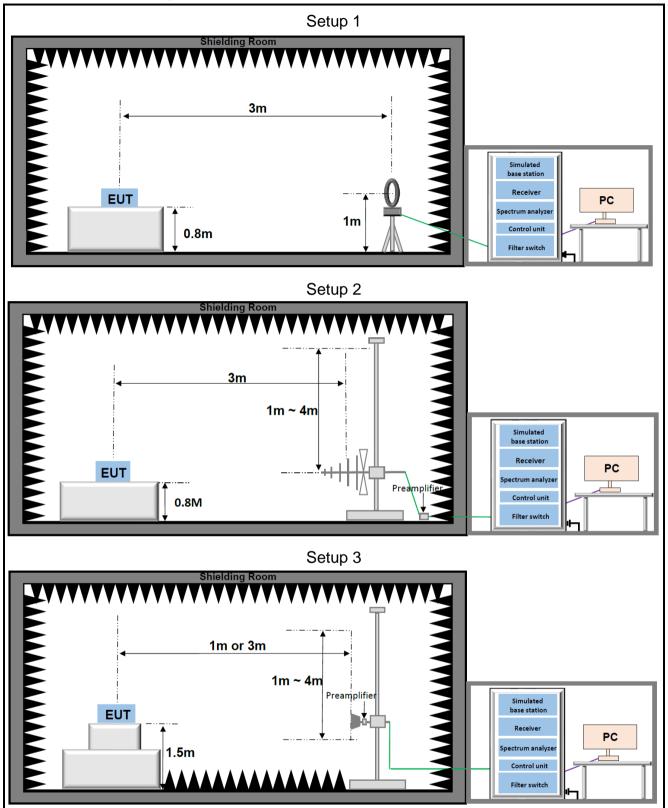
The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

2.6 Modifications


No modifications were made during testing.

2.7 Test Setup Diagram


2.7.1 Conducted Configuration

2.7.2 Radiated Configuration

Page 14 / 24 Report No.: TCWA24070017901

Equipment and Measurement Uncertainty

All test and measuring equipment utilized to perform the tests documented in this report are calibrated on a regular basis, whichever is less, and where applicable is traceable recognized national standards.

3.1 Test Equipment List

		RF05			
Description	Manufacturer	Model	SN	Last Due	Cal Due
Wideband Radio Communication Tester	R&S	CMW500	151064	2024/3/25	2025/3/24
Signal Analyzer	Keysight	N9020A	US46470468	2024/3/25	2025/3/24
EXA Signal Analyzer, Multi- touch	Keysight	N9010B	MY63440541	2024/05/30	2025/05/29
Signal Generator	Keysight	N5182A	MY50144316	2024/3/25	2025/3/24
Signal Generator	R&S	SMR20	100621	2024/3/25	2025/3/24
Hygrometer	BingYu	HTC-1	N/A	2023/6/1	2025/5/31
Band Reject Filter Group	Tonscend	JS0806-F	23A806F0647	N/A	N/A
RF Control Unit	Tonscend	JS0806-1	22L8060639	N/A	N/A
Measurement Software	Tonscend	TS1120 V3.1.46	10636	N/A	N/A

966					
Description	Manufacturer	Model	SN	Last Due	Cal Due
Biconic Logarithmic Periodic Antennas	Schwarzbeck	VULB9163	1643	2023/06/25	2025/06/24
Double-Ridged Horn Antennas	Schwarzbeck	BBHA 9120D	2809	2023/06/25	2025/06/24
Broad-Band Horn Antenna	Schwarzbeck	BBHA 9170	1290	2023/06/25	2025/06/24
Loop Antenna	Schwarzbeck	FMZB 1519C	1519C-028	2023/06/29	2025/06/28
Signal Analyzer	Keysight	N9020A	MY49100252	2024/03/25	2025/03/24
EXA Signal Analyzer, Multi- touch	Keysight	N9010B	MY63440541	2024/05/30	2025/05/29
Wideband Radio Communication Tester	R&S	CMW500	150645	2024/03/25	2025/03/24
Low Noise Amplifier	Tonscend	TAP9K3G40	AP23A8060273	2023/04/08	2025/04/07
Low Noise Amplifier	Tonscend	TAP01018050	AP22G806258	2023/04/08	2025/04/07
Low Noise Amplifier	Tonscend	TAP18040048	AP22G806247	2023/04/08	2025/04/07
Hygrometer	BINGYU	HTC-1	N/A	2023/06/01	2025/05/31
Test Software	Tonscend	TS+ V5.0.0	N/A	N/A	N/A

Page 15 / 24 Report No.: TCWA24070017901

3.2 Measurement Uncertainty

Parameter	U_lab
Frequency error	50.30Hz
Output power	0.74dB
Conducted spurious emissions	2.22dB
Radiated Emissions(9kHz~30MHz)	2.40dB
Radiated Emissions(30MHz~1000MHz)	4.66dB
Radiated Emissions(1GHz~18GHHz)	5.42dB
Radiated Emissions(18GHz~40GHHz)	5.46dB

Uncertainty figures are valid to a confidence level of 95%

Page 16 / 24 Report No.: TCWA24070017901

Test Results

4.1 Output Power (ERP / EIRP)

Limits

FCC Part	Test Band	Limit
§22.913(a)(5)	GSM 850/TE Band 5	The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7watts.
§24.232(c)	PCS 1900/LTE Band 2	Mobile and portable stations are limited to 2 watts EIRP and the equipment must employ a means for limiting power to the minimum necessary for successful communications.
§27.50(h)(2)	LTE Band 7/38/41	Mobile and other user stations. Mobile stations are limited to 2.0 watts EIRP. All user stations are limited to 2.0 watts transmitter output power
§27.50(d)(4)	LTE Band 4/66	Fixed, mobile, and portable (hand-held) stations operating in the 1710-1755MHz band and mobile and portable stations operating in the 1695-1710 MHz and 1755-1780MHz bands are limited to 1watt EIRP. Fixed stations operating in the 1710-1755MHz band are limited to a maximum antenna height of 10 meters above ground. Mobile and portable stations operating in these bands must employ a means for limiting power to the minimum necessary for successful communications.

Test Procedure

KDB 971168 D01 V03r01 Section 5.2.1, for Conducted Output Power KDB 971168 D01 V03r01 Section 5.2, for Effective (Isotropic) Radiated Power

Test Settings

Conducted Output Power:

The transmitter output was connected to a calibrated attenuator, the other end of which was connected to the simulated base station. The simulated station was set to force the EUT to its maximum power setting. Transmitter output power was read off in dBm, read values have added cable loss and attenuation.

Radiated Power:

The formula for calculating ERP/EIRP based on conduction power is as follows: EIRP (dBm) = Conducted Power (dBm) + antenna gain (dBi) ERP=EIRP - 2.15dB

Test Setup

Refer to section 2.7.1 Setup 1

Measuring Instruments

The measuring equipment is listed in the section 3.1 of this test report.

Test Results

Page 17 / 24 Report No.: TCWA24070017901

4.2 Peak-Average Ratio

Limits

§22.913(d): The peak-to-average ratio (PAR) of the transmission must not exceed 13 dB.

§24.232(d): The peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

§27.50(d)(5): The peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

Test Procedure

KDB 971168 D01 V03r01 Section 5.7.1

Test Settings

The following guidelines are offered for performing a CCDF measurement.

- 1. Set resolution/measurement bandwidth ≥ OBW or specified reference bandwidth.
- 2. Set the number of counts to a value that stabilizes the measured CCDF curve.
- Set the measurement interval as follows:
 - For continuous transmissions, set to the greater of [10 x (number of points in sweep) x (transmission symbol period)] or 1 ms.
 - For burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize. Set the measurement interval to a time that is less than or equal to the burst duration.
 - If there are several carriers in a single antenna port, the peak power shall be determined for each individual carrier (by disabling the other carriers while measuring the required carrier) and the total peak power calculated from the sum of the individual carrier peak powers.
- 4. Record the maximum PAPR level associated with a probability of 0.1%.
- 5. The peak power level is calculated form the sum of the PAPR value from step d) to the measured average power.

Test Setup

Refer to section 2.7.1 Setup 2

Measuring Instruments

The measuring equipment is listed in the section 3.1 of this test report.

Test Result

Page 18 / 24 Report No.: TCWA24070017901

4.3 Occupied Bandwidth

Limits

For Reporting Purposes only

Test Procedure

KDB 971168 D01 V03r01 Section 4.2 & 4.3

Test Settings

- 1. The transmitter output was connected to a calibrated coaxial cable and coupler, The other end is connected to the spectrum analyzer and simulated station.
- 2. The signal analyzer automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by ant intermediate power nulls in the fundamental emission.
- 3. The simulated base station was set to force the EUT to its maximum transmitting power.
- 4. RBW = 1 5% of the expected OBW
- 5. VBW ≥ 3 times the RBW
- 6. Sweep = Auto
- 7. Detector = Peak
- 8. Trace = Max hold
- 9. The trace was allowed to stabilize

Test Setup

Refer to section 2.7.1 Setup 2

Measuring Instruments

The measuring equipment is listed in the section 3.1 of this test report.

Test Result

Page 19 / 24 Report No.: TCWA24070017901

4.4 Band Edge

Limits

FCC part	Test Band	Limit
§22.917(a) §24.238(a) §27.53(h)	GSM 850/ PCS 1900 LTE Band 2/4/566	The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.
§27.53(m)	LTE Band 7/38/41	For mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 MHz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 MHz and X MHz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X MHz from the channel edge, where X is the greater of 6 MHz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz.

Test Procedure

KDB 971168 D01 V03r01 Section 6.0

Test Settings

- 1. The transmitter output was connected to a calibrated coaxial cable and coupler, The other end is connected to the spectrum analyzer and simulated station.
- 2. The simulated base station was set to force the EUT to its maximum transmitting power.
- 3. Start and stop frequency were set such that the band edge would be placed in the center of the plot.
- 4. RBW ≥ 1% of the emission bandwidth
- 5. VBW ≥ 3 times the RBW
- 6. Detector = RMS
- 7. Number of sweep point ≥ 2 times Span/RBW
- 8. Sweep = Auto
- 9. Trace = Max hold
- 10. The trace was allowed to stabilize

Test Setup

Refer to section 2.7.1. Setup 2

Measuring Instruments

The measuring equipment is listed in the section 3.1 of this test report.

Test Result

Page 20 / 24 Report No.: TCWA24070017901

4.5 Spurious Emission at Antenna Terminals

Limits

FCC part	Test Band	Limit
§22.917(a) §24.238(a) §27.53(h)	GSM 850/ PCS 1900 LTE Band 2/4/5/66	The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.
§27.53(m)	LTE Band 7/38/41	All frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz.

Test Procedure

KDB 971168 D01 V03r01 Section 6.0

Test Settings

- 1. The transmitter output was connected to a calibrated coaxial cable and coupler, The other end is connected to the spectrum analyzer and simulated station.
- 2. The simulated base station was set to force the EUT to its maximum transmitting power.
- 3. Start frequency was set to 9kHz and stop frequency was set to 10th harmonic.
- 4. RBW and VBW (see test notes)
- 5. Detector = RMS
- 6. Sweep = Auto
- 7. Sweep point = below 30MHz(1001pts); 30MHz 1GHz(2001pts); above 1GHz(40001pts)
- 8. Trace = trace average for continuous emissions, max hold for pulse emissions
- 9. Allow trace to fully stabilize

Test Notes

- 1. Compliance with the applicable limits is based on the use of measurement instrumentation employing a resolution bandwidth 100kHz or greater for measurements below 1GHz. However, in the 1MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission is attenuated at least 26dB below the transmitter power
- 2. 9kHz 150kHz: RBW=1kHz, VBW≥3 times the RBW
- 3. 150kHz 30MHz: RBW=10kHz, VBW≥3 times the RBW

Test Setup

Refer to section 2.7.2 for details

Measuring Instruments

The measuring equipment is listed in the section 3.1 of this test report.

Test Result

Page 21 / 24 Report No.: TCWA24070017901

4.6 Field Strength of Spurious Radiation

Limits

FCC part	Test Band	Limit
§22.917(a) §24.238(a) §27.53(h)	GSM 850/ PCS 1900 LTE Band 2/4/5/66	The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.
§27.53(m)	LTE Band 41	All frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz.

Test Procedure

KDB 971168 D01 V03r01 Section 7

Test Settings

- For radiated emissions measurements performed at frequencies less than or equal to 1GHz, the EUT shall be placed on a RF-transparent table or support at a nominal height of 80cm above the reference ground plane.
- 2. For radiated emissions measurements performed at frequencies above 1GHz, the EUT shall be placed on a RF-transparent table or support at a nominal height of 150cm above the ground plane.
- 3. Radiated measurements shall be made with the measurement antenna positioned in both horizontal and vertical polarization. The measurement antenna shall be varied from 1m to 4m in height above the reference ground in a search for the relative positioning that produces the maximum radiated signal level (i.e, field strength or received power), when orienting the measurement antenna in vertical polarization, the minimum height of the lowest element of the antenna shall clear the site reference ground plane by at least 25cm.
- 4. For each suspected emission, the EUT was ranged its worst case and then tune the antenna tower(from 1~4m) and turntable(from 0~360°) find the maximum reading. Preamplifier and a high pass filter are used for the test in order get better signal level comply with the guidelines.
- 5. The simulated base station was set to force the EUT to its maximum transmitting power.
- 6. spectrum analyzer setting:

Measurements 9KHz~150KHz: RBW = 300Hz; VBW ≥ 3 kHz; Detector = RMS

Measurements 150KHz~30MHz: RBW = 10KHz; VBW ≥ 30 kHz; Detector = RMS

Measurements 30MHz~1000MHz: RBW = 100KHz or 1MHz; VBW ≥ 1MHz or 3MHz; Detector = RMS

Measurements Above 1000MHz: RBW = 1 MHz; VBW ≥ 3 MHz; Detector = RMS

7. The field strength is calculated by adding the Antenna Factor, Cable Factor. The basic equation with a sample calculation is as follows:

 $E(dB\mu V/m) = Measured amplitude level (dB\mu V) + Cable Loss (dB) + Antenna Factor (dB/m).$

E(dBμV/m) = Measured amplitude level (dBm) + 107 + Cable Loss (dB) + Antenna Factor (dB/m).

E(dBuV/m) = EIRP(dBm) - 20log(D) + 104.8; where D is the measurement distance(in the far field region) in m.

EIRP(dBm) = E(dB μ V/m) + 20log(D) - 104.8; where D is the measurement distance(in the far field region) in m.

So, from d: The measuring distance is usually at 3m, then 20*Log(3)=9.5424

Then, EIRP (dBm)= E (dBµV/m) +9.5424-104.8=E (dBµV/m)-95.2576

- 8. Repeat above procedures until all frequencies measured was complete.
- 9. Measure and record the results in the test report.

Test notes

- 1. The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst-case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the tables below.
- 2. Radiated spurious emissions were investigated from 9kHz to 30MHz, 30MHz to 1GHz and above 1GHz. the disturbance between 9KHz to 30MHz and 18GHz to 40GHz was very low. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be recorded, so only the harmonics had been displayed.
- 3. 30MHz to 1GHz only reflects the worst data in the report

Page 22 / 24 Report No.: TCWA24070017901

- Based on engineering evaluation, only middle channel test results are shown in the report.
- The "-" shown in the following RSE tables should be ignored because this is Fundamental frequency.

Test Setup

Refer to section 2.7.2 for details.

Measuring Instruments

The measuring equipment is listed in the section 3.1 of this test report.

Test Result

Page 23 / 24 Report No.: TCWA24070017901

4.7 Frequency Stability V.S. Temperature, Voltage

Limits

§22.355:

The carrier frequency shall not depart from the reference frequency in excess of ± 2.5 ppm for mobile stations. §24.235 / §27.54:

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

Test Procedure

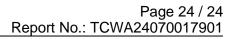
KDB 971168 D01 V03r01 Section 9

Test Settings

- The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).
- The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

Test Notes

- a.) Temperature:
 - The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.
- b.) Primary Supply Voltage:
 - The primary supply voltage is varied from 85% to 115% of the nominal value for non-hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.


Test Setup

Refer to section 2.7.1 Setup 3

Measuring Instruments

The measuring equipment is listed in the section 3.1 of this test report.

Test Result

Appendix

Appendix List:

ppendix-A GSM
ppendix-B LTE Band 2
ppendix-B LTE Band 4
ppendix-B LTE Band 5
ppendix-B LTE Band 7
ppendix-B LTE Band 38
ppendix-B LTE Band 41
ppendix-B LTE Band 66
ppendix-C Field Strength of Spurious Radiation

~The End~